1
|
Mackintosh MJ, Hoischen D, Martin HD, Schapiro I, Gärtner W. Merocyanines form bacteriorhodopsins with strongly bathochromic absorption maxima. Photochem Photobiol Sci 2024; 23:31-53. [PMID: 38070056 DOI: 10.1007/s43630-023-00496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 02/02/2024]
Abstract
There is a need to shift the absorbance of biomolecules to the optical transparency window of tissue for applications in optogenetics and photo-pharmacology. There are a few strategies to achieve the so-called red shift of the absorption maxima. Herein, a series of 11 merocyanine dyes were synthesized and employed as chromophores in place of retinal in bacteriorhodopsin (bR) to achieve a bathochromic shift of the absorption maxima relative to bR's [Formula: see text] of 568 nm. Assembly with the apoprotein bacterioopsin (bO) led to stable, covalently bound chromoproteins with strongly bathochromic absorbance bands, except for three compounds. Maximal red shifts were observed for molecules 9, 2, and 8 in bR where the [Formula: see text] was 766, 755, and 736 nm, respectively. While these three merocyanines have different end groups, they share a similar structural feature, namely, a methyl group which is located at the retinal equivalent position 13 of the polyene chain. The absorption and fluorescence data are also presented for the retinal derivatives in their aldehyde, Schiff base (SB), and protonated SB (PSB) forms in solution. According to their hemicyanine character, the PSBs and their analogue bRs exhibited fluorescence quantum yields (Φf) several orders of magnitude greater than native bR (Φf 0.02 to 0.18 versus 1.5 × 10-5 in bR) while also exhibiting much smaller Stokes shifts than bR (400 to 1000 cm-1 versus 4030 cm-1 in bR). The experimental results are complemented by quantum chemical calculations where excellent agreement between the experimental [Formula: see text] and the calculated [Formula: see text] was achieved with the second-order algebraic-diagrammatic construction [ADC(2)] method. In addition, quantum mechanics/molecular mechanics (QM/MM) calculations were employed to shed light on the origin of the bathochromic shift of merocyanine 2 in bR compared with native bR.
Collapse
Affiliation(s)
- Megan J Mackintosh
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dorothee Hoischen
- Institute for Organic Chemistry and Macromolecular Chemistry, University of Düsseldorf, 40225, Düsseldorf, Germany
- ISK Biosciences Europe N.V., 1831, Diegem, Belgium
| | - Hans-Dieter Martin
- Institute for Organic Chemistry and Macromolecular Chemistry, University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | |
Collapse
|
2
|
Shigeta A, Otani Y, Miyasa R, Makino Y, Kawamura I, Okitsu T, Wada A, Naito A. Photoreaction Pathways of Bacteriorhodopsin and Its D96N Mutant as Revealed by in Situ Photoirradiation Solid-State NMR. MEMBRANES 2022; 12:membranes12030279. [PMID: 35323754 PMCID: PMC8949607 DOI: 10.3390/membranes12030279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/18/2022]
Abstract
Bacteriorhodopsin (BR) functions as a light-driven proton pump that transitions between different states during the photocycle, such as all-trans (AT; BR568) and 13-cis, 15-syn (CS; BR548) state and K, L, M1, M2, N, and O intermediates. In this study, we used in situ photoirradiation 13C solid-state NMR to observe a variety of photo-intermediates and photoreaction pathways in [20-13C]retinal-WT-BR and its mutant [20-13C, 14-13C]retinal-D96N-BR. In WT-BR, the CS state converted to the CS* intermediate under photoirradiation with green light at −20 °C and consequently converted to the AT state in the dark. The AT state converted to the N intermediate under irradiation with green light. In D96N-BR, the CS state was converted to the CS* intermediate at −30 °C and consequently converted to the AT state. Simultaneously, the AT state converted to the M and L intermediates under green light illumination at −30 °C and subsequently converted to the AT state in the dark. The M intermediate was directly excited to the AT state by UV light illumination. We demonstrated that short-lived photo-intermediates could be observed in a stationary state using in situ photoirradiation solid-state NMR spectroscopy for WT-BR and D96N-BR, enabling insight into the light-driven proton pump activity of BR.
Collapse
Affiliation(s)
- Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Yuto Otani
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Ryota Miyasa
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
- Correspondence: (I.K.); (A.N.)
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan; (T.O.); (A.W.)
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan; (T.O.); (A.W.)
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
- Correspondence: (I.K.); (A.N.)
| |
Collapse
|
3
|
Islam MS, Gaston JP, Baker MAB. Fluorescence Approaches for Characterizing Ion Channels in Synthetic Bilayers. MEMBRANES 2021; 11:857. [PMID: 34832086 PMCID: PMC8619978 DOI: 10.3390/membranes11110857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Ion channels are membrane proteins that play important roles in a wide range of fundamental cellular processes. Studying membrane proteins at a molecular level becomes challenging in complex cellular environments. Instead, many studies focus on the isolation and reconstitution of the membrane proteins into model lipid membranes. Such simpler, in vitro, systems offer the advantage of control over the membrane and protein composition and the lipid environment. Rhodopsin and rhodopsin-like ion channels are widely studied due to their light-interacting properties and are a natural candidate for investigation with fluorescence methods. Here we review techniques for synthesizing liposomes and for reconstituting membrane proteins into lipid bilayers. We then summarize fluorescence assays which can be used to verify the functionality of reconstituted membrane proteins in synthetic liposomes.
Collapse
Affiliation(s)
- Md. Sirajul Islam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (M.S.I.); (J.P.G.)
| | - James P. Gaston
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (M.S.I.); (J.P.G.)
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (M.S.I.); (J.P.G.)
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| |
Collapse
|
4
|
Sarac K, Orek C, Koparir P. Experimental and Theoretical Investigations Regarding the Thione–Thiol Tautomerism in 4-Benzyl-5-(thiophene-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Suhaj A, Gowland D, Bonini N, Owen DM, Lorenz CD. Laurdan and Di-4-ANEPPDHQ Influence the Properties of Lipid Membranes: A Classical Molecular Dynamics and Fluorescence Study. J Phys Chem B 2020; 124:11419-11430. [PMID: 33275430 DOI: 10.1021/acs.jpcb.0c09496] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Environmentally sensitive (ES) dyes have been used for many decades to study the lipid order of cell membranes, as different lipid phases play a crucial role in a wide variety of cell processes. Yet, the understanding of how ES dyes behave, interact, and affect membranes at the atomistic scale is lacking, partially due to the lack of molecular dynamics (MD) models of these dyes. Here, we present ground- and excited-state MD models of commonly used ES dyes, Laurdan and di-4-ANEPPDHQ, and use MD simulations to study the behavior of these dyes in a disordered and an ordered membrane. We also investigate the effect that these two dyes have on the hydration and lipid order of the membranes, where we see a significant effect on the hydration of lipids proximal to the dyes. These findings are combined with experimental fluorescence experiments of ordered and disordered vesicles and live HeLa cells stained by the aforementioned dyes, where the generalized polarization (GP) values were measured at different concentrations of the dyes. We observe a small but significant decrease of GP at higher Laurdan concentrations in vesicles, while the same effect is not observed in cell membranes. The opposite effect is observed with di-4-ANEPPDHQ where no significant change in GP is seen for vesicles but a very substantial and significant decrease is seen in cell membranes. Together, our results show the profound effect that ES dyes have on membranes, and the presented MD models will be important for further understanding of these effects.
Collapse
Affiliation(s)
- Adam Suhaj
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Duncan Gowland
- Theory & Simulation of Condensed Matter Group, Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Nicola Bonini
- Theory & Simulation of Condensed Matter Group, Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Dylan M Owen
- Institute of Immunology and Immunotherapy, Department of Mathematics and Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Christian D Lorenz
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
6
|
Nagasaka Y, Hososhima S, Kubo N, Nagata T, Kandori H, Inoue K, Yawo H. Gate-keeper of ion transport-a highly conserved helix-3 tryptophan in a channelrhodopsin chimera, C1C2/ChRWR. Biophys Physicobiol 2020; 17:59-70. [PMID: 33173715 PMCID: PMC7593130 DOI: 10.2142/biophysico.bsj-2020007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/01/2022] Open
Abstract
Microbial rhodopsin is a large family of membrane proteins having seven transmembrane helices (TM1-7) with an all-trans retinal (ATR) chromophore that is covalently bound to Lys in the TM7. The Trp residue in the middle of TM3, which is homologous to W86 of bacteriorhodopsin (BR), is highly conserved among microbial rhodopsins with various light-driven functions. However, the significance of this Trp for the ion transport function of microbial rhodopsins has long remained unknown. Here, we replaced the W163 (BR W86 counterpart) of a channelrhodopsin (ChR), C1C2/ChRWR, which is a chimera between ChR1 and 2, with a smaller aromatic residue, Phe to verify its role in the ion transport. Under whole-cell patch clamp recordings from the ND7/23 cells that were transfected with the DNA plasmid coding human codon optimized C1C2/ChRWR (hWR) or its W163F mutant (hWR-W163F), the photocurrents were evoked by a pulsatile light at 475 nm. The ion-transporting activity of hWR was strongly altered by the W163F mutation in 3 points: (1) the H+ leak at positive membrane potential (Vm) and its light-adaptation, (2) the attenuation of cation channel activity and (3) the manifestation of outward H+ pump activity. All of these results strongly suggest that W163 has a role in stabilizing the structure involved in the gating-on and -off of the cation channel, the role of “gate keeper”. We can attribute the attenuation of cation channel activity to the incomplete gating-on and the H+ leak to the incomplete gating-off.
Collapse
Affiliation(s)
- Yujiro Nagasaka
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Shoko Hososhima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Naoko Kubo
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.,Department of Physiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO) , Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Hiromu Yawo
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
7
|
Ono J, Imai M, Nishimura Y, Nakai H. Hydroxide Ion Carrier for Proton Pumps in Bacteriorhodopsin: Primary Proton Transfer. J Phys Chem B 2020; 124:8524-8539. [DOI: 10.1021/acs.jpcb.0c05507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junichi Ono
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Minori Imai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
8
|
Golbedaghi R, Tabanez AM, Esmaeili S, Fausto R. Biological Applications of Macrocyclic Schiff Base Ligands and Their Metal Complexes: A Survey of the Literature (2005–2019). Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Reza Golbedaghi
- Chemistry Department Payame Noor University Tehran 19395‐4697 Iran
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| | - Andreia M. Tabanez
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| | - Somayeh Esmaeili
- Internal Medicine Department Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Rui Fausto
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| |
Collapse
|
9
|
Wickstrand C, Nogly P, Nango E, Iwata S, Standfuss J, Neutze R. Bacteriorhodopsin: Structural Insights Revealed Using X-Ray Lasers and Synchrotron Radiation. Annu Rev Biochem 2019; 88:59-83. [DOI: 10.1146/annurev-biochem-013118-111327] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Directional transport of protons across an energy transducing membrane—proton pumping—is ubiquitous in biology. Bacteriorhodopsin (bR) is a light-driven proton pump that is activated by a buried all- trans retinal chromophore being photoisomerized to a 13- cis conformation. The mechanism by which photoisomerization initiates directional proton transport against a proton concentration gradient has been studied by a myriad of biochemical, biophysical, and structural techniques. X-ray free electron lasers (XFELs) have created new opportunities to probe the structural dynamics of bR at room temperature on timescales from femtoseconds to milliseconds using time-resolved serial femtosecond crystallography (TR-SFX). Wereview these recent developments and highlight where XFEL studies reveal new details concerning the structural mechanism of retinal photoisomerization and proton pumping. We also discuss the extent to which these insights were anticipated by earlier intermediate trapping studies using synchrotron radiation. TR-SFX will open up the field for dynamical studies of other proteins that are not naturally light-sensitive.
Collapse
Affiliation(s)
- Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Przemyslaw Nogly
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Eriko Nango
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
10
|
Naito A, Makino Y, Shigeta A, Kawamura I. Photoreaction pathways and photointermediates of retinal-binding photoreceptor proteins as revealed by in situ photoirradiation solid-state NMR spectroscopy. Biophys Rev 2019; 11:167-181. [PMID: 30811009 DOI: 10.1007/s12551-019-00501-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Photoirradiation solid-state NMR spectroscopy is a powerful means to study photoreceptor retinal-binding proteins by the detection of short-lived photointermediates to elucidate the photoreaction cycle and photoactivated structural changes. An in situ photoirradiation solid-state NMR apparatus has been developed for the irradiation of samples with extremely high efficiency to enable observation of photointermediates which are stationary trapped states. Such observation enables elucidation of the photoreaction processes of photoreceptor membrane proteins. Therefore, in situ photoirradiation is particularly useful study the photocycle of retinal-binding proteins such as sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII) because functional photointermediates have relatively longer half-lives than other photointermediates. As a result, several photointermediates have been trapped as stationary state and their detailed structures and photoreaction cycles have been revealed using photoirradiation solid-state NMR spectroscopy at low temperature. Photoreaction intermediates of bacteriorhodopsin, which functions to provide light-driven proton pump activity, were difficult to trap because the half-lives of the photointermediates were shorter than those of sensory rhodopsin. Therefore, these photointermediates are trapped in a freeze-trapped state at a very low temperature and the NMR signals were observed using a combination of photoirradiation and dynamic nuclear polarization (DNP) experiments.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan.
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| |
Collapse
|
11
|
Species Widely Distributed in Halophilic Archaea Exhibit Opsin-Mediated Inhibition of Bacterioruberin Biosynthesis. J Bacteriol 2018; 201:JB.00576-18. [PMID: 30373756 DOI: 10.1128/jb.00576-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/24/2018] [Indexed: 11/20/2022] Open
Abstract
Halophilic Archaea are a distinctive pink color due to a carotenoid pigment called bacterioruberin. To sense or utilize light, many halophilic Archaea also produce rhodopsins, complexes of opsin proteins with a retinal prosthetic group. Both bacterioruberin and retinal are synthesized from isoprenoid precursors, with lycopene as the last shared intermediate. We previously described a regulatory mechanism by which Halobacterium salinarum bacterioopsin and Haloarcula vallismortis cruxopsin inhibit bacterioruberin synthesis catalyzed by lycopene elongase. In this work, we found that opsins in all three major Halobacteria clades inhibit bacterioruberin synthesis, suggesting that this regulatory mechanism existed in the common Halobacteria ancestor. Halophilic Archaea, which are generally heterotrophic and aerobic, likely evolved from an autotrophic, anaerobic methanogenic ancestor by acquiring many genes from Bacteria via lateral gene transfer. These bacterial "imports" include genes encoding opsins and lycopene elongases. To determine if opsins from Bacteria inhibit bacterioruberin synthesis, we tested bacterial opsins and found that an opsin from Curtobacterium, in the Actinobacteria phylum, inhibits bacterioruberin synthesis catalyzed by its own lycopene elongase, as well as that catalyzed by several archaeal enzymes. We also determined that the lycopene elongase from Halococcus salifodinae, a species from a family of Halobacteria lacking opsin homologs, retained the capacity to be inhibited by opsins. Together, our results indicate that opsin-mediated inhibition of bacterioruberin biosynthesis is a widely distributed mechanism found in both Archaea and Bacteria, possibly predating the divergence of the two domains. Further analysis may provide insight into the acquisition and evolution of the genes and their host species.IMPORTANCE All organisms use a variety of mechanisms to allocate limited resources to match their needs in their current environment. Here, we explore how halophilic microbes use a novel mechanism to allow efficient production of rhodopsin, a complex of an opsin protein and a retinal prosthetic group. We previously demonstrated that Halobacterium salinarum bacterioopsin directs available resources toward retinal by inhibiting synthesis of bacterioruberin, a molecule that shares precursors with retinal. In this work, we show that this mechanism can be carried out by proteins from halophilic Archaea that are not closely related to H. salinarum and those in at least one species of Bacteria Therefore, opsin-mediated inhibition of bacterioruberin synthesis may be a highly conserved, ancient regulatory mechanism.
Collapse
|
12
|
Aouad MR, Messali M, Rezki N, Al-Zaqri N, Warad I. Single proton intramigration in novel 4-phenyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thione: XRD-crystal interactions, physicochemical, thermal, Hirshfeld surface, DFT realization of thiol/thione tautomerism. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Berbasova T, Santos EM, Nosrati M, Vasileiou C, Geiger JH, Borhan B. Light-Activated Reversible Imine Isomerization: Towards a Photochromic Protein Switch. Chembiochem 2016; 17:407-14. [PMID: 26684483 PMCID: PMC4835339 DOI: 10.1002/cbic.201500613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 01/07/2023]
Abstract
Mutants of cellular retinoic acid-binding protein II (CRABPII), engineered to bind all-trans-retinal as an iminium species, demonstrate photochromism upon irradiation with light at different wavelengths. UV light irradiation populates the cis-imine geometry, which has a high pKa , leading to protonation of the imine and subsequent "turn-on" of color. Yellow light irradiation yields the trans-imine isomer, which has a depressed pKa , leading to loss of color because the imine is not protonated. The protein-bound retinylidene chromophore undergoes photoinduced reversible interconversion between the colored and uncolored species, with excellent fatigue resistance.
Collapse
Affiliation(s)
- Tetyana Berbasova
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Elizabeth M Santos
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Meisam Nosrati
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
14
|
Dai G, Kikukawa T, Ihara K, Iwasa T. Microbial rhodopsins of Halorubrum species isolated from Ejinoor salt lake in Inner Mongolia of China. Photochem Photobiol Sci 2015; 14:1974-82. [PMID: 26328780 DOI: 10.1039/c5pp00161g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial rhodopsins are photoactive proteins that use a retinal molecule as the photoactive center. Because of structural simplicity and functional diversity, microbial rhodopsins have been an excellent model system for structural biology. In this study, a halophilic archaea that has three microbial rhodopsin-type genes in its genome was isolated from Ejinoor salt lake in Inner Mongolia of China. A sequence of 16S rRNA showed that the strain belongs to Halorubrum genus and named Halorubrum sp. ejinoor (He). The translated amino acid sequences of its microbial rhodopsin-type genes suggest that they are homologs of archaerhodopsin (HeAR), halorhodopsin (HeHR) and sensory rhodopsin II (HeSRII). The mRNAs of three types of genes were detected by RT-PCR and their amounts were investigated by Real-Time RT-PCR. The amount of mRNA of HeSRII was the smallest and the amounts of of HeAR and HeHR were 30 times and 10 times greater than that of HeSRII. The results of light-induced pH changes suggested the presence of a light-driven proton pump and a light-driven chloride ion pump in the membrane vesicles of He. Flash induced absorbance changes of the He membrane fraction indicated that HeAR and HeHR are photoactive and undergo their own photocycles. This study revealed that three microbial rhodopsin-type genes are all expressed in the strain and at least two of them, HeAR and HeHR, are photochemically and physiologically active like BR and HR of Halobacterium salinarum, respectively. To our knowledge, this is the first report of physiological activity of HR-homolog of Halorubrum species.
Collapse
|
15
|
Inoue K, Kato Y, Kandori H. Light-driven ion-translocating rhodopsins in marine bacteria. Trends Microbiol 2015; 23:91-8. [PMID: 25432080 DOI: 10.1016/j.tim.2014.10.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/25/2022]
Abstract
Microbial rhodopsins are the photoreceptive membrane proteins found in diverse microorganisms from within Archaea, Eubacteria, and eukaryotes. They have a hep-tahelical transmembrane structure that binds to an all-trans retinal chromophore. Since 2000, thousands of proteorhodopsins, genes of light-driven proton pump rhodopsins, have been identified from various species of marine bacteria. This suggests that they are used for the conversion of light into chemical energy, contribut-ing to carbon circulation related to ATP synthesis in the ocean. Furthermore, novel types of rhodopsin (sodium and chloride pumps) have recently been discovered. Here, we review recent progress in our understanding of ion-transporting rhodopsins of marine bacteria, based mainly on biophysical and biochemical research.
Collapse
|
16
|
Oshima K, Shigeta A, Makino Y, Kawamura I, Okitsu T, Wada A, Tuzi S, Iwasa T, Naito A. Characterization of photo-intermediates in the photo-reaction pathways of a bacteriorhodopsin Y185F mutant using in situ photo-irradiation solid-state NMR spectroscopy. Photochem Photobiol Sci 2015; 14:1694-702. [PMID: 26169449 DOI: 10.1039/c5pp00154d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-reaction pathways of a bacteriorhodopsin Y185F mutant were examined using in situ photo-irradiation solid-state NMR spectroscopy. (13)C CP MAS NMR spectra were recorded at -40 °C in the dark (D1), under irradiation with 520 nm light (L1), subsequently in the dark (D2), and again under irradiation with 520 nm light (L2). In the process from D1 to L1, the 13-cis, 15-syn (CS; bR548) state changed to a CS*- (13-cis, 15-syn) intermediate, which was highly stable at -40 °C, and the all-trans (AT; bR568) state transformed to an N-intermediate. Under the D2 conditions, the N-intermediate transformed to an O-intermediate, which was highly stable at -40 °C in the dark. During subsequent irradiation with 520 nm light (L2), the O-intermediate transformed to the N-intermediate through the AT state, whereas the CS*-intermediate did not change. The CS*-intermediate was converted to the AT state (or O-intermediate) after the temperature was increased to -20 °C. Upon subsequent increase of the temperature to 20 °C, the AT state (or O-intermediate) was converted to the CS state until reaching equilibrium. In this experiment, the chemical shift values of [20-(13)C, 14-(13)C]retinal provided the 13C[double bond, length as m-dash]C and 15C[double bond, length as m-dash]N configurations, respectively. From these data, the configurations of the AT and CS states and the CS*-, N-, and O-intermediates were determined to be (13-trans, 15-anti), (13-cis, 15-syn), (13-cis, 15-syn), (13-cis, 15-anti), and (13-trans, 15-anti), respectively. (13)C NMR signals of the CS*- and O-intermediates were observed for the first time for the Y185F bR mutant by in situ photo-irradiation solid-state NMR spectroscopy and the configuration of the CS*-intermediate was revealed to be significantly twisted from that of the CS state although both were assigned as (13-cis, 15-syn) configurations.
Collapse
Affiliation(s)
- Kyosuke Oshima
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chan CK, Tüysüz H, Braun A, Ranjan C, La Mantia F, Miller BK, Zhang L, Crozier PA, Haber JA, Gregoire JM, Park HS, Batchellor AS, Trotochaud L, Boettcher SW. Advanced and In Situ Analytical Methods for Solar Fuel Materials. Top Curr Chem (Cham) 2015; 371:253-324. [PMID: 26267386 DOI: 10.1007/128_2015_650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials.
Collapse
Affiliation(s)
- Candace K Chan
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
| | - Artur Braun
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
| | - Chinmoy Ranjan
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Muelheim an der Ruhr, Germany.
| | - Fabio La Mantia
- Semiconductor and Energy Conversion - Center for Electrochemical Sciences, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| | - Benjamin K Miller
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Liuxian Zhang
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Peter A Crozier
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joel A Haber
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA, 9112, USA
| | - John M Gregoire
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA, 9112, USA.
| | - Hyun S Park
- Fuel Cell Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul, 136-791, Republic of Korea.
| | - Adam S Batchellor
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Lena Trotochaud
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Shannon W Boettcher
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
18
|
Inoue K, Koua FHM, Kato Y, Abe-Yoshizumi R, Kandori H. Spectroscopic study of a light-driven chloride ion pump from marine bacteria. J Phys Chem B 2014; 118:11190-9. [PMID: 25166488 DOI: 10.1021/jp507219q] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thousands of light-driven proton-pumping rhodopsins have been found in marine microbes, and a light-driven sodium-ion pumping rhodopsin was recently discovered, which utilizes sunlight for the energy source of the cell. Similarly, a light-driven chloride-ion pump has been found from marine bacteria, and three eubacterial light-driven pumps possess the DTE (proton pump), NDQ (sodium-ion pump), and NTQ (chloride-ion pump) motifs corresponding to the D85, T89, and D96 positions in bacteriorhodopsin (BR). The corresponding motif of the known haloarchaeal chloride-ion pump, halorhodopsin (HR), is TSA, which is entirely different from the NTQ motif of a eubacterial chloride-ion pump. It is thus intriguing to compare the molecular mechanism of these two chloride-ion pumps. Here we report the spectroscopic study of Fulvimarina rhodopsin (FR), a eubacterial light-driven chloride-ion pump from marine bacterium. FR binds a chloride-ion near the retinal chromophore and chloride-ion binding causes a spectral blue-shift. FR predominantly possesses an all-trans retinal, which is responsible for the light-driven chloride-ion pump. Upon light absorption, the red-shifted K intermediate is formed, followed by the appearance of the L and O intermediates. When the M intermediate does not form, this indicates that the Schiff base remains in the protonated state during the photocycle. These molecular mechanisms are common in HR, and a common mechanism for chloride-ion pumping by evolutionarily distant proteins suggests the importance of the electric quadrupole in the Schiff base region and their changes through hydrogen-bonding alterations. One noticeable difference between FR and HR is the uptake of chloride-ion from the extracellular surface. While the uptake occurs upon decay of the O intermediate in HR, chloride-ion uptake accompanies the rise of the O intermediate in FR. This suggests the presence of a second chloride-ion binding site near the extracellular surface of FR, which is unique to the NTQ rhodopsin.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | |
Collapse
|
19
|
Wickstrand C, Dods R, Royant A, Neutze R. Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochim Biophys Acta Gen Subj 2014; 1850:536-53. [PMID: 24918316 DOI: 10.1016/j.bbagen.2014.05.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bacteriorhodopsin (bR) is the simplest known light driven proton pump and has been heavily studied using structural methods: eighty four X-ray diffraction, six electron diffraction and three NMR structures of bR are deposited within the protein data bank. Twenty one X-ray structures report light induced structural changes and changes induced by mutation, changes in pH, thermal annealing or X-ray induced photo-reduction have also been examined. SCOPE OF REVIEW We argue that light-induced structural changes that are replicated across several studies by independent research groups are those most likely to represent what is happening in reality. We present both internal distance matrix analyses that sort deposited bR structures into hierarchal trees, and difference Fourier analysis of deposited X-ray diffraction data. MAJOR CONCLUSIONS An internal distance matrix analysis separates most wild-type bR structures according to their different crystal forms, indicating how the protein's structure is influenced by crystallization conditions. A similar analysis clusters eleven studies of illuminated bR crystals as one branch of a hierarchal tree with reproducible movements of the extracellular portion of helix C towards helix G, and of the cytoplasmic portion of helix F away from helices A, B and G. All crystallographic data deposited for illuminated crystals show negative difference density on a water molecule (Wat402) that forms H-bonds to the retinal Schiff Base and two aspartate residues (Asp85, Asp212) in the bR resting state. Other recurring difference density features indicated reproducible side-chain, backbone and water molecule displacements. X-ray induced radiation damage also disorders Wat402 but acts via cleaving the head-groups of Asp85 and Asp212. GENERAL SIGNIFICANCE A remarkable level of agreement exists when deposited structures and crystallographic observations are viewed as a whole. From this agreement a unified picture of the structural mechanism of light-induced proton pumping by bR emerges. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Antoine Royant
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France; European Synchrotron Radiation Facility, F-38043 Grenoble, France.
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
20
|
Ghimire GD, Sugiyama H, Sonoyama M, Mitaku S. Regeneration of Bacteriorhodopsin from Thermally Unfolded Bacterio-Opsin and All-transRetinal at High Temperatures. Biosci Biotechnol Biochem 2014; 69:252-4. [PMID: 15665500 DOI: 10.1271/bbb.69.252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The temperature dependence of regeneration of bacteriorhodopsin (bR) from its apoprotein, bacterio-opsin (bO), and all-trans retinal was investigated using two different procedures to probe the structural properties of bO at high temperatures. Regeneration experiments performed at 25 degrees C after incubation of bO within the temperature range of 35-75 degrees C indicate that irreversible thermal unfolding begins at 50 degrees C. When bO is incubated for one hour and mixed with retinal at the same elevated temperatures, however, a greater extent of regeneration to bR occurs, even at temperatures ranging from 50 to 65 degrees C. These experimental results indicate that regeneration of bR occurs from thermally unfolded bO and suggest dynamic structural fluctuation of bO in the unfolded state.
Collapse
Affiliation(s)
- Ganga D Ghimire
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | |
Collapse
|
21
|
Sugiyama H, Sonoyama M, Ghimire GD, Mitaku S. Heterogeneity in Regeneration of Bacteriorhodopsin from Bacterio-Opsin and All-transRetinal at High Temperatures: Implications for Dynamic Structural Fluctuations. Biosci Biotechnol Biochem 2014; 70:1350-5. [PMID: 16794313 DOI: 10.1271/bbb.50629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Measurements of regeneration kinetics were performed in order to investigate the regeneration mechanisms of bacteriorhodopsin (bR) from thermally unfolded bacterio-opsin (bO) and all-trans retinal. Regeneration kinetics data were successfully fitted to a single exponential function when regeneration was performed at 25 degrees C after incubation at high temperatures. Conversely, the process of regeneration after the addition of retinal to bO at high temperatures occurred at two different rate constants. These findings strongly suggest that the slower regeneration of bR at high temperatures occurs as a result of dynamic structural fluctuation of bO, whereas the faster process corresponds to regeneration from bO, which retains a native structure capable of retinal binding.
Collapse
Affiliation(s)
- Hiroyuki Sugiyama
- Department of Applied Physics, Graduate School of Engineering, Nagoya University
| | | | | | | |
Collapse
|
22
|
Theoretical investigation of thione-thiol tautomerism, intermolecular double proton transfer reaction and hydrogen bonding interactions in 4-ethyl-5-(2-hydroxyphenyl)-2H-1,2,4-triazole-3(4H)-thione. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Frassanito AM, Barsanti L, Passarelli V, Evangelista V, Gualtieri P. A second rhodopsin-like protein in Cyanophora paradoxa: gene sequence and protein expression in a cell-free system. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 125:188-93. [PMID: 23851421 DOI: 10.1016/j.jphotobiol.2013.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/07/2013] [Accepted: 06/17/2013] [Indexed: 12/15/2022]
Abstract
Here we report the identification and expression of a second rhodopsin-like protein in the alga Cyanophora paradoxa (Glaucophyta), named Cyanophopsin_2. This new protein was identified due to a serendipity event, since the RACE reaction performed to complete the sequence of Cyanophopsin_1, (the first rhodopsin-like protein of C. paradoxa identified in 2009 by our group), amplified a 619 bp sequence corresponding to a portion of a new gene of the same protein family. The full sequence consists of 1175 bp consisting of 849 bp coding DNA sequence and 4 introns of 326 bp. The protein is characterized by an N-terminal region of 47 amino acids, followed by a region with 7 α-helices of 213 amino acids and a C-terminal region of 22 amino acids. This protein showed high identity with Cyanophopsin_1 and other rhodopsin-like proteins of Archea, Bacteria, Fungi and Algae. Cyanophosin_2 (CpR2) was expressed in a cell-free expression system, and characterized by means of absorption spectroscopy.
Collapse
|
24
|
Battistuzzi G, Bortolotti CA, Bellei M, Di Rocco G, Salewski J, Hildebrandt P, Sola M. Role of Met80 and Tyr67 in the Low-pH Conformational Equilibria of Cytochrome c. Biochemistry 2012; 51:5967-78. [DOI: 10.1021/bi3007302] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gianantonio Battistuzzi
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Carlo Augusto Bortolotti
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Marzia Bellei
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Giulia Di Rocco
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Johannes Salewski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Marco Sola
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| |
Collapse
|
25
|
Orzechowski M, Meuwly M. Dynamics of Water Filaments in Disordered Environments. J Phys Chem B 2010; 114:12203-12. [DOI: 10.1021/jp1051003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marek Orzechowski
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | | |
Collapse
|
26
|
Frassanito AM, Barsanti L, Passarelli V, Evangelista V, Gualtieri P. A rhodopsin-like protein in Cyanophora paradoxa: gene sequence and protein immunolocalization. Cell Mol Life Sci 2010; 67:965-71. [PMID: 20016996 PMCID: PMC11115890 DOI: 10.1007/s00018-009-0225-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
Here, we report the DNA sequence of the rhodopsin gene in the alga Cyanophora paradoxa (Glaucophyta). The primers were designed according to the conserved regions of prokaryotic and eukaryotic rhodopsin-like proteins deposited in the GenBank. The sequence consists of 1,272 bp comprised of 5 introns. The correspondent protein, named Cyanophopsin, showed high identity to rhodopsin-like proteins of Archea, Bacteria, Fungi, and Algae. At the N-terminal, the protein is characterized by a region with no transmembrane alpha-helices (80 aa), followed by a region with 7alpha-helices (219 aa) and a shorter 35-aa C-terminal region. The DNA sequence of the N-terminal region was expressed in E. coli and the recombinant purified peptide was used as antigen in hens to obtain polyclonal antibodies. Indirect immunofluorescence in C. paradoxa cells showed a marked labeling of the muroplast (aka cyanelle) membrane.
Collapse
Affiliation(s)
| | - Laura Barsanti
- Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| | | | | | - Paolo Gualtieri
- Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
27
|
Saitô H, Kira A, Arakawa T, Tanio M, Tuzi S, Naito A. Suppressed or recovered intensities analysis in site-directed 13C NMR: Assessment of low-frequency fluctuations in bacteriorhodopsin and D85N mutants revisited. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:167-76. [DOI: 10.1016/j.bbamem.2009.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/08/2009] [Accepted: 06/30/2009] [Indexed: 11/16/2022]
|
28
|
Tóth-Boconádi R, Dér A, Fábián L, Taneva SG, Keszthelyi L. Excitation of the M Intermediates of Bacteriorhodopsin. Photochem Photobiol 2009; 85:609-13. [DOI: 10.1111/j.1751-1097.2008.00521.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Kawamura I, Tanabe J, Ohmine M, Yamaguchi S, Tuzi S, Naito A. Participation of the BC Loop in the Correct Folding of Bacteriorhodopsin as Revealed by Solid-state NMR. Photochem Photobiol 2009; 85:624-30. [DOI: 10.1111/j.1751-1097.2009.00536.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Sugiyama Y, Wang H, Hikima T, Sato M, Kuroda J, Takahashi T, Ishizuka T, Yawo H. Photocurrent attenuation by a single polar-to-nonpolar point mutation of channelrhodopsin-2. Photochem Photobiol Sci 2009; 8:328-36. [DOI: 10.1039/b815762f] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Role of extracellular glutamic acids in the stability and energy landscape of bacteriorhodopsin. Biophys J 2008; 95:3407-18. [PMID: 18621827 DOI: 10.1529/biophysj.108.131904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriorhodopsin (BR), a specialized nanomachine, converts light energy into a proton gradient to power Halobacterium salinarum. In this work, we analyze the mechanical stability of a BR triple mutant in which three key extracellular residues, Glu(9), Glu(194), and Glu(204), were mutated simultaneously to Gln. These three Glu residues are involved in a network of hydrogen bonds, in cation binding, and form part of the proton release pathway of BR. Changes in these features and the robust photocycle dynamics of wild-type (WT) BR are apparent when the three extracellular Glu residues are mutated to Gln. It is speculated that such functional changes of proteins go hand in hand with changes in their mechanical properties. Here, we apply single-molecule dynamic force spectroscopy to investigate how the Glu to Gln mutations change interactions, reaction pathways, and the energy barriers of the structural regions of WT BR. The altered heights and positions of individual energy barriers unravel the changes in the mechanical and the unfolding kinetic properties of the secondary structures of WT BR. These changes in the mechanical unfolding energy landscape cause the proton pump to choose unfolding pathways differently. We suggest that, in a similar manner, the changed mechanical properties of mutated BR alter the functional energy landscape favoring different reaction pathways in the light-induced proton pumping mechanism.
Collapse
|
32
|
Lammers S, Lutz S, Meuwly M. Reactive force fields for proton transfer dynamics. J Comput Chem 2008; 29:1048-63. [PMID: 18072179 DOI: 10.1002/jcc.20864] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A force field-inspired method based on fitted, high-quality multidimensional potential energy surfaces to follow proton transfer (PT) reactions in molecular dynamics simulations is presented. In molecular mechanics with proton transfer (MMPT) a system is partitioned into a region where proton transfer takes place and the remaining degrees of freedom which are treated with a conventional force field. The implementation of the method and applications to specific chemically and biologically relevant scenarios are presented. MMPT is developed in view of two primary areas in mind: to follow the molecular dynamics of proton transfer in the condensed phase on realistic time scales and to adapt the shape (morphing) of the potential energy surface for specific applications. MMPT is applied to PT in protonated ammonia dimer, double proton transfer in 2-pyridone-2-hydroxypyridine, and the first step of PT from a protein side-chain towards a buried [3Fe4S] cluster in ferredoxin I. Specific findings of the work include the fundamental role of the N-N vibration as the gating mode for PT in NH4+...NH3 and the qualitative understanding of PT from the protein to a metastable active-site water molecule in Ferredoxin I.
Collapse
Affiliation(s)
- Sven Lammers
- Chemistry Department, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
33
|
Li W, Chen C, Ye C, Wei T, Zhao Y, Lao F, Chen Z, Meng H, Gao Y, Yuan H, Xing G, Zhao F, Chai Z, Zhang X, Yang F, Han D, Tang X, Zhang Y. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. NANOTECHNOLOGY 2008; 19:145102. [PMID: 21817752 DOI: 10.1088/0957-4484/19/14/145102] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Manufactured fullerene nanoparticles easily enter into cells and hence have been rapidly developed for biomedical uses. However, it is generally unknown which route the nanoparticles undergo when crossing cell membranes and where they localize to the intracellular compartments. Herein we have used both microscopic imaging and biological techniques to explore the processes of [C(60)(C(COOH)(2))(2)](n) nanoparticles across cellular membranes and their intracellular translocation in 3T3 L1 and RH-35 living cells. The fullerene nanoparticles are quickly internalized by the cells and then routed to the cytoplasm with punctate localization. Upon entering the cell, they are synchronized to lysosome-like vesicles. The [C(60)(C(COOH)(2))(2)](n) nanoparticles entering cells are mainly via endocytosis with time-, temperature- and energy-dependent manners. The cellular uptake of [C(60)(C(COOH)(2))(2)](n) nanoparticles was found to be clathrin-mediated but not caveolae-mediated endocytosis. The endocytosis mechanism and the subcellular target location provide key information for the better understanding and predicting of the biomedical function of fullerene nanoparticles inside cells.
Collapse
Affiliation(s)
- Wei Li
- Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Nanotechnology of China & Institute of High Energy Physics, Chinese Academy of Science, Yuquan Road 19B, Beijing 100049, People's Republic of China. Graduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kawamura I, Yoshida H, Ikeda Y, Yamaguchi S, Tuzi S, Saitô H, Kamo N, Naito A. Dynamics change of phoborhodopsin and transducer by activation: study using D75N mutant of the receptor by site-directed solid-state 13C NMR. Photochem Photobiol 2008; 84:921-30. [PMID: 18363620 DOI: 10.1111/j.1751-1097.2008.00326.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pharaonis phoborhodopsin (ppR or sensory rhodopsin II) is a negative phototaxis receptor of Natronomonas pharaonis, and forms a complex, which transmits the photosignal into cytoplasm, with its cognate transducer (pHtrII). We examined a possible local dynamics change of ppR and its D75N mutant complexed with pHtrII, using solid-state (13)C NMR of [3-(13)C]Ala- and [1-(13)C]Val-labeled preparations. We distinguished Ala C(beta) (13)C signals of relatively static stem (Ala221) in the C-terminus of the receptors from those of flexible tip (Ala228, 234, 236 and 238), utilizing a mutant with truncated C-terminus. The local fluctuation frequency at the C-terminal tip was appreciably decreased when ppR was bound to pHtrII, while it was increased when D75N, that mimics the signaling state because of disrupted salt bridge between C and G helices prerequisite for the signal transfer, was bound to pHtrII. This signal change may be considered with the larger dissociation constant of the complex between pHtrII and M-state of ppR. At the same time, it turned out that fluctuation frequency of cytoplasmic portion of pHtrII is lowered when ppR is replaced by D75N in the complex with pHtrII. This means that the C-terminal tip partly participates in binding with the linker region of pHtrII in the dark, but this portion might be released at the signaling state leading to mutual association of the two transducers in the cytoplasmic regions within the ppR/pHtrII complex.
Collapse
Affiliation(s)
- Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kawamura I, Ohmine M, Tanabe J, Tuzi S, Saitô H, Naito A. Dynamic aspects of extracellular loop region as a proton release pathway of bacteriorhodopsin studied by relaxation time measurements by solid state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3090-7. [DOI: 10.1016/j.bbamem.2007.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 11/02/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022]
|
36
|
Chen G, Zhu X, Meng F, Yu Z, Li G. Apoferritin as a bionanomaterial to facilitate the electron transfer reactivity of hemoglobin and the catalytic activity towards hydrogen peroxide. Bioelectrochemistry 2007; 72:77-80. [PMID: 18164668 DOI: 10.1016/j.bioelechem.2007.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 11/08/2007] [Accepted: 11/19/2007] [Indexed: 11/17/2022]
Abstract
In this report, apoferritin as a stable bionanomaterial was modified with hemoglobin on pyrolytic graphite electrode. Rapid electron transfer reactions of hemoglobin were achieved with the help of apoferritin in a large pH range. Moreover, hemoglobin as an enzyme exhibits fine electrocatalytic activity towards the reaction of hydrogen peroxide, and a wide concentration range of linear relationship between the reduction peak current and the concentration of hydrogen peroxide has been obtained with a higher upper detection limit, which may be further developed for a hydrogen peroxide biosensor. Therefore, a new property of apoferritin is explored, in which apoferritin works as a bionanomaterial to be an accelerant of the electron transfer of Hb and a stabilizer to retain the catalytic ability of the protein under mal-condition.
Collapse
Affiliation(s)
- Guifang Chen
- Department of Biochemistry and National Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
37
|
Sudo Y, Iwamoto M, Shimono K, Kamo N. Pharaonis Phoborhodopsin Binds to its Cognate Truncated Transducer Even in the Presence of a Detergent with a 1:1 Stoichiometry¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740489ppbtic2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Renthal R, Gracia N, Regalado R. Water and Carboxyl Group Environments in the Dehydration Blueshift of Bacteriorhodopsin¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720714wacgei2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Wang J, El-Sayed MA. The Effect of Metal Cation Binding on the Protein, Lipid and Retinal Isomeric Ratio in Regenerated Bacteriorhodopsin of Purple Membrane¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730564teomcb2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Tóth-Boconádi R, Dér A, Taneva SG, Keszthelyi L. Excitation of the L intermediate of bacteriorhodopsin: electric responses to test x-ray structures. Biophys J 2006; 90:2651-5. [PMID: 16399840 PMCID: PMC1403183 DOI: 10.1529/biophysj.105.068817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The L intermediate of bacteriorhodopsin was excited, and its electrical response was measured. Two positive components were found in it with respect to the direction of proton pumping: an unresolved fast component, and a slower one (tau=7 micros) of small amplitude. The fast component was assigned to a charge motion corresponding to reisomerization of the retinal moiety, whereas the slow one was attributed to charge rearrangements reestablishing the ground state. Because three x-ray crystallographic structures have recently been reported for the L intermediate, it seemed important to calculate the intramolecular dipole moment changes associated to bR-->L for all three structures, so as to compare them with similar quantities determined from the electrical signals. The results are discussed in terms of amino acid side chains possibly contributing to the observed effect. We propose to use electrical signals as a verification tool for intermediate structures of the photocycle, and thus for molecular models of proton pumping.
Collapse
Affiliation(s)
- R Tóth-Boconádi
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | |
Collapse
|
41
|
Kamihira M, Watts A. Functionally Relevant Coupled Dynamic Profile of Bacteriorhodopsin and Lipids in Purple Membranes. Biochemistry 2006; 45:4304-13. [PMID: 16566605 DOI: 10.1021/bi051756j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of bacteriorhodopsin (bR) and the lipid headgroups in oriented purple membranes (PMs) was determined at various temperatures and relative humidity (rh) using solid-state NMR spectroscopy. The 31P NMR spectra of the alpha- and gamma-phosphate groups in methyl phosphatidylglycerophosphate (PGP-Me), which is the major phospholipid in the PM, changed sensitively with hydration levels. Between 253 and 233 K, the signals from a fully hydrated sample became broadened similarly to those of a dry sample at 293 K. The 15N cross polarization (CP) NMR spectral intensities from [15N]Gly bR incorporated into fully hydrated PMs were suppressed in 15N CP NMR spectra at 293 K compared with those of dry membranes but gradually recovered at low temperatures or at lower hydration (75%) levels. The suppression of the NMR signals, which is due to interference with proton decoupling frequency (approximately 45 kHz), coupled with short spin-spin relaxation times (T2) indicates that the loops of bR, in particular, have motional components around this frequency. The motion of the transmembrane alpha-helices in bR was largely affected by the freezing of excess water at low temperatures. While between 253 and 233 K, where a dynamic phase transition-like change was observed in the 31P NMR spectra for the phosphate lipid headgroups, the molecular motion of the loops and the C- and N-termini slowed, suggesting lipid-loop interactions, although protein-protein interactions between stacks cannot be excluded. The results of T2 measurements of dry samples, which do not have proton pumping activity, were similar to those for fully hydrated samples below 213 K where the M-intermediates can be trapped. These results suggest that motions in the 10s micros correlation regime may be functionally important for the photocycle of bR, and protein-lipid interactions are motionally coupled in this dynamic regime.
Collapse
Affiliation(s)
- Miya Kamihira
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
42
|
Sumii M, Furutani Y, Waschuk SA, Brown LS, Kandori H. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote. Biochemistry 2006; 44:15159-66. [PMID: 16285719 DOI: 10.1021/bi0513498] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leptosphaeria rhodopsin (LR) is an archaeal-type rhodopsin found in fungi, and is the first light-driven proton-pumping retinal protein from eukaryotes. LR pumps protons in a manner similar to that of bacteriorhodopsin (BR), a light-driven proton pump of haloarchaea. The amino acid sequence of LR is more homologous to that of Neurospora rhodopsin (NR) than BR, whereas NR has no proton-pumping activity. These facts raise the question of how the proton-pumping function is achieved. In this paper, we studied structural changes of LR following the retinal photoisomerization by means of low-temperature Fourier transform infrared (FTIR) spectroscopy, and compared the obtained spectra with those for BR and NR. While the light-induced photoisomerization from the all-trans to 13-cis form was commonly observed among LR, BR, and NR, we found that the structural changes of LR are closer to those of BR than to those of NR in terms of detailed vibrational bands of retinal and protein. The most prominent difference was seen for the water O-D stretching vibrations (measured in D2O). LR exhibits an O-D stretch of water at 2257 cm(-1), indicating the presence of a strongly hydrogen-bonded water molecule. Such strongly hydrogen-bonded water molecules (O-D stretch at <2400 cm(-1)) were observed for BR, but not for NR. Comprehensive studies of BR mutants and archaeal rhodopsins have revealed that strongly hydrogen-bonded water molecules are found only in the proteins exhibiting proton-pumping activity, suggesting that strongly hydrogen-bonded water molecules and transient weakening of their binding are essential for the proton-pumping function of rhodopsins. This observation for LR provided additional experimental evidence of the correlation between strongly hydrogen-bonded water molecules and proton-pumping activity of archaeal rhodopsins.
Collapse
Affiliation(s)
- Masayo Sumii
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | |
Collapse
|
43
|
Kubo M, Sato M, Aizawa T, Kojima C, Kamo N, Mizuguchi M, Kawano K, Demura M. Disassembling and Bleaching of Chloride-Free pharaonis Halorhodopsin by Octyl-β-glucoside. Biochemistry 2005; 44:12923-31. [PMID: 16185061 DOI: 10.1021/bi0511235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natronomonas (Natronobacterium) pharaonis halorhodopsin (NpHR) is a transmembrane, seven-helix retinal protein of the archaeal bacterium and acts as an inward light-driven chloride ion pump in the membrane. The denaturation process of NpHR solubilized with n-octyl-beta-d-glucopyranoside (OG) was investigated to clarify the effects of the chloride ion and pH on the stability and bleaching of the NpHR chromophore. Initially, active NpHR solubilized with n-dodecyl-beta-d-maltopyranoside (DM) was obtained from the recombinant halo-opsin (NpHO), which was expressed in Escherichia coli cells, by adding all-trans retinal to the medium. Apparent molecular weight of the active NpHR solubilized with DM, which was determined by gel-filtration chromatography and dynamic light scattering, indicated the oligomeric state. The bleaching of NpHR in the dark by the addition of 50 mM OG in the presence and absence of chloride was investigated. In the presence of 256 mM NaCl, the bleaching of NpHR was strongly inhibited. On the other hand, in the absence of NaCl, an immediate decrease of absorbance at 600 nm was observed. Stopped-flow rapid-mixing analysis clarified the bleaching process in the absence of chloride as DM-NpHR (oligomeric) <--> OG-NpHR (disassembled) <--> intermediate --> NpHO and free retinal, and each rate constant were determined. The formation of an intermediate (450 nm) in the dark was found to be strongly dependent on pH, as well as anion and detergent concentrations. The disassembling and protonation of a Schiff base corresponding to the bleaching intermediate is also discussed.
Collapse
Affiliation(s)
- Megumi Kubo
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Primary events in the bacteriorhodopsin photocycle: Torsional vibrational dephasing in the first excited electronic state. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Haney CJ, Grass G, Franke S, Rensing C. New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 2005; 32:215-26. [PMID: 15889311 DOI: 10.1007/s10295-005-0224-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2004] [Accepted: 03/19/2005] [Indexed: 11/28/2022]
Abstract
Cation diffusion facilitator (CDF) proteins are a phylogenetically ubiquitous family of intermembrane transporters generally believed to play a role in the homeostasis of a wide range divalent metal cations. CDFs are found in a host of membranes, including the bacterial cell membrane, the vacuolar membrane of both plants and yeast, and the golgi apparatus of animals. As such, they are potentially useful in the engineering of hyperaccumulative phytoremediation systems. While not yet sufficient for reliable biotechnological manipulation, characterization of this family is proceeding briskly. Experimental data suggests that CDFs are generally homodimers that use proton antiport to drive substrate translocation across a membrane. This translocation of both substrate and protons is likely mediated by a combination of histidines, aspartates, and glutamates. Functional data has suggested that CDFs are not limited to metal homeostasis roles, as some appear to be determinants in the operation of high-volume metal resistance systems, and others may facilitate cation-donation as a means of signal transduction. This review seeks to give an overview of the data prompting these conclusions, while presenting additional data whose interpretation is still contentious.
Collapse
Affiliation(s)
- Christopher J Haney
- Department of Soil, Water, and Environmental Science, University of Arizona, Shantz Bld number 38 Rm 424, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
46
|
Shibata A, Sakata A, Ueno S, Hori T, Minami K, Baba Y, Kamo N. Regeneration and inhibition of proton pumping activity of bacteriorhodopsin blue membrane by cationic amine anesthetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1669:17-25. [PMID: 15842995 DOI: 10.1016/j.bbamem.2005.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 11/15/2022]
Abstract
Bacteriorhodopsin (bR) is the prototype of an integral membrane protein with seven membrane-spanning alpha-helices and serves as a model of the G-protein-coupled drug receptors. This study is aimed at reaching a greater understanding of the role of amine local anesthetic cations on the proton transport in the bR protein, and furthermore, the functional role of "the cation" in the proton pumping mechanism. The effect of the amine anesthetic cations on the proton pump in the bR blue membrane was compared with those by divalent (Ca2+, Mg2+ and Mn2+) and monovalent metal cations (Li+, Na+, K+ and Cs+), which are essential for the correct functioning of the proton pumping of the bR protein. The results suggest that the interacting site of the divalent cation to the bR membrane may differ from that of the monovalent metal cation. The electric current profile of the bR blue membrane in the presence of the amine anesthetic cations was biphasic, involving the generation and inhibition of the proton pumping activity in a concentration-dependent manner. The extent of the regeneration of the proton pump by the additives increased in the order of monovalent metal cation<monovalent amine anesthetic cation<divalent metal cation. We found that organic cations such as the amine anesthetics can also regenerate the proton pump in the bR protein. The inhibition of proton transport in the bR protein by the anesthetic cations was elucidated using the wild type, the E204Q and the D96N mutated bRs. The hydrophobic interaction of the amine anesthetics with the bR protein plays an important part in inhibiting the bR proton pump.
Collapse
Affiliation(s)
- Akira Shibata
- Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi, Tokushima 770-8505, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Godsi O, Turner B, Suwinska K, Peskin U, Eichen Y. Enol-enamine tautomerism in crystals of 1,3-bis(pyridin-2-yl) propan-2-one: a combined crystallographic and quantum-chemical investigation of the effect of packing on tautomerization processes. J Am Chem Soc 2005; 126:13519-25. [PMID: 15479108 DOI: 10.1021/ja046311h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The enolpyridine, OH-ketoenamime, NH equilibrium in crystals of 1,3-bis(pyridin-2-yl)propan-2-one was studied using temperature-dependent single-crystal X-ray diffraction. The relative population of the different tautomers was found to be sensitive to the temperature in the range of 100-300 K, illustrating the small thermodynamic difference between these two tautomers. This energy resemblance is partially attributed to the molecular packing in the crystal, where the molecules are arranged in the form of dimers. Ab initio electronic energy calculations (HF/6-31G** and MP2/6-31G**) reveal the effect of dimerization in the crystal on the electronic energy levels. Several tautomeric states were identified in the dimer of 1,3-bis(pyridin-2-yl)propan-2-one. A model is proposed in which four of these dimer states are populated in the crystal at ambient temperatures. The crystallographic data were treated according to this four-state dimer model, suggesting that the free energy of the OH-NH dimers is higher than that of the OH-OH dimers by 120 +/- 10 cal mol(-1) and that the NH-NH dimers are yet higher in free energy by 50 +/- 10 cal mol(-1).
Collapse
Affiliation(s)
- Oded Godsi
- Department of Chemistry, Technion - Israel Institute of Technology, Technion City, 32000 Haifa, Israel
| | | | | | | | | |
Collapse
|
48
|
Fraysse AS, Møller ALB, Poulsen LR, Wollenweber B, Buch-Pedersen MJ, Palmgren MG. A systematic mutagenesis study of Ile-282 in transmembrane segment M4 of the plasma membrane H+-ATPase. J Biol Chem 2005; 280:21785-90. [PMID: 15829483 DOI: 10.1074/jbc.m413091200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homology models of plasma membrane H(+)-ATPase (Bukrinsky, J. T., Buch-Pedersen, M. J., Larsen, S., and Palmgren, M. G. (2001) FEBS Lett. 494, 6-10) has pointed to residues in transmembrane segment M4 as being important for proton translocation by P-type proton pumps. To test this model, alanine-scanning mutagenesis was carried out through 12 residues in the M4 of the plant plasma membrane H(+)-ATPase AHA2. An I282A mutation showed apparent reduced H(+) affinity, and this residue was subsequently substituted with all other naturally occurring amino acids by saturation mutagenesis. The ability of mutant enzymes to substitute for the yeast proton pump PMA1 was found to correlate with the size of the side chain rather than its chemical nature. Thus, smaller side chains (Gly, Ala, and Ser) at this position resulted in lower H(+) affinity and lowered levels of H(+) transport in vivo, whereas substitution with side chains of similar and larger size resulted in only minor effects. Substitutions of Ile-282 had only minor effects on ATP affinity and sensitivity toward vanadate, ruling out an indirect effect through changes in the enzyme conformational equilibrium. These results are consistent with a model in which the backbone carbonyl oxygen of Ile-282 contributes directly to proton translocation.
Collapse
Affiliation(s)
- A Staffan Fraysse
- Department of Plant Biology, The Royal Danish Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
49
|
Raghavan TM, Furtado I. Expression of carotenoid pigments of haloarchaeal cultures exposed to aniline. ENVIRONMENTAL TOXICOLOGY 2005; 20:165-169. [PMID: 15793825 DOI: 10.1002/tox.20091] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of exposure to aniline on growth and pigmentation in three haloarchaeal isolates from the Indian subcontinent--GUSF (MTCC 3265), from the estuarine saltpans of Goa, India; and GURFT-1 and GURFP-1, both from continental shelf sediments of the west coast of India--were studied. In nutrient-rich tryptone yeast extract medium containing 25% NaCl/crude salt, the growth of GUSF, measured as absorbance at 600 nm, was not affected significantly at all concentrations of aniline used [0.005%-0.04% (v/v)], whereas the growth phases of GURFT-1 and GURFP-1 were affected at concentrations > 0.005%; the total yield, however, was nearly equal to the yield of cultures growing in the absence of aniline. GURFT-1 reached approximately 40% of total yield on the 7th day in the presence of 0.04% aniline, which declined thereafter. The pigmentation observed visually was completely abolished at concentrations of aniline greater than 0.01%. Spectral scans of acetone extracts of the pigment of each of the cultures exposed to concentrations of aniline > 0.01% showed that (i) the bacterioruberin component of the pigments (absorbance in the range 390-500 nm) was completely abolished and (ii) the pigment component(s) shifted toward squalene and phytofluene derivatives (320-360 nm). This is the first report examining the effect of an aromatic pollutant such as aniline on the growth and pigmentation of haloarchaeal cultures.
Collapse
Affiliation(s)
- T M Raghavan
- Department of Microbiology, Goa University, Goa 403 206, India
| | | |
Collapse
|
50
|
Sato M, Kubo M, Aizawa T, Kamo N, Kikukawa T, Nitta K, Demura M. Role of Putative Anion-Binding Sites in Cytoplasmic and Extracellular Channels ofNatronomonas pharaonisHalorhodopsin†. Biochemistry 2005; 44:4775-84. [PMID: 15779904 DOI: 10.1021/bi047500f] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Natronomonas (Natronobacterium) pharaonis halorhodopsin (NpHR) is an inward light-driven Cl(-) ion pump. For efficient Cl(-) transport, the existence of Cl(-)-binding or -interacting sites in both extracellular (EC) and cytoplasmic (CP) channels is postulated. Candidates include Arg123 and Thr126 in EC channels and Lys215 and Thr218 in CP channels. The roles played by these amino acid residues in anion binding and in the photocycle have been investigated by mutation of the amino acid residues at these positions. Anion binding was assayed by changes in circular dichroism and the shift in the absorption maximum upon addition of Cl(-) to anion-free NpHR. The binding affinity was affected in mutants in which certain EC residues had been replaced; this finding revealed the importance of Arg123. On the other hand, mutants in which certain residues in the CP channel were replaced (CP mutants) did not show changes in their dissociation constants. The photocycles of these mutants were also examined, and in the case of the EC mutants, the transition to the last step was greatly delayed; on the other hand, in the CP mutants, L2-photointermediate decay was significantly prolonged, except in the case of K215Q, which lacked the O-photointermediate. The importance of Thr218 for binding of Cl(-) to the CP channel was indicated by these results. On the basis of these observations, the possible anion transport mechanism of NpHR was discussed.
Collapse
Affiliation(s)
- Maki Sato
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|