1
|
Landeck JT, Pajak J, Norman EK, Sedivy EL, Kelch BA. Differences between bacteria and eukaryotes in clamp loader mechanism, a conserved process underlying DNA replication. J Biol Chem 2024; 300:107166. [PMID: 38490435 PMCID: PMC11044049 DOI: 10.1016/j.jbc.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader replication factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the Escherichia coli clamp loader at high resolution using cryo-electron microscopy. We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how the clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.
Collapse
Affiliation(s)
- Jacob T Landeck
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Emily K Norman
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Emma L Sedivy
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Brian A Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
2
|
Landeck JT, Pajak J, Norman EK, Sedivy EL, Kelch BA. Differences in clamp loader mechanism between bacteria and eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569468. [PMID: 38076975 PMCID: PMC10705477 DOI: 10.1101/2023.11.30.569468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp, and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader Replication Factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the E. coli clamp loader at high resolution using cryo-electron microscopy (cryo-EM). We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.
Collapse
Affiliation(s)
- Jacob T. Landeck
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Emily K. Norman
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Emma L. Sedivy
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Brian A. Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| |
Collapse
|
3
|
Mondol T, Stodola JL, Galletto R, Burgers PM. PCNA accelerates the nucleotide incorporation rate by DNA polymerase δ. Nucleic Acids Res 2019; 47:1977-1986. [PMID: 30605530 PMCID: PMC6393303 DOI: 10.1093/nar/gky1321] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 12/29/2022] Open
Abstract
DNA polymerase delta (Pol δ) is responsible for the elongation and maturation of Okazaki fragments in eukaryotic cells. Proliferating cell nuclear antigen (PCNA) recruits Pol δ to the DNA and serves as a processivity factor. Here, we show that PCNA also stimulates the catalytic rate of Saccharomyces cerevisiae Pol δ by >10-fold. We determined template/primer DNA binding affinities and stoichiometries by Pol δ in the absence of PCNA, using electrophoretic mobility shift assays, fluorescence intensity changes and fluorescence anisotropy binding titrations. We provide evidence that Pol δ forms higher ordered complexes upon binding to DNA. The Pol δ catalytic rates in the absence and presence of PCNA were determined at millisecond time resolution using quench flow kinetic measurements. The observed rate for single nucleotide incorporation by a preformed DNA-Pol δ complex in the absence of PCNA was 40 s−1. PCNA enhanced the nucleotide incorporation rate by >10 fold. Compared to wild-type, a growth-defective yeast PCNA mutant (DD41,42AA) showed substantially less stimulation of the Pol δ nucleotide incorporation rate, identifying the face of PCNA that is important for the acceleration of catalysis.
Collapse
Affiliation(s)
- Tanumoy Mondol
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA.,MilliporeSigma, St. Louis, MO, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
4
|
Kelch BA. Review: The lord of the rings: Structure and mechanism of the sliding clamp loader. Biopolymers 2017; 105:532-46. [PMID: 26918303 DOI: 10.1002/bip.22827] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 12/15/2022]
Abstract
Sliding clamps are ring-shaped polymerase processivity factors that act as master regulators of cellular replication by coordinating multiple functions on DNA to ensure faithful transmission of genetic and epigenetic information. Dedicated AAA+ ATPase machines called clamp loaders actively place clamps on DNA, thereby governing clamp function by controlling when and where clamps are used. Clamp loaders are also important model systems for understanding the basic principles of AAA+ mechanism and function. After nearly 30 years of study, the ATP-dependent mechanism of opening and loading of clamps is now becoming clear. Here I review the structural and mechanistic aspects of the clamp loading process, as well as comment on questions that will be addressed by future studies. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 532-546, 2016.
Collapse
Affiliation(s)
- Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| |
Collapse
|
5
|
Abstract
A range of enzymes in DNA replication and repair bind to DNA-clamps: torus-shaped proteins that encircle double-stranded DNA and act as mobile tethers. Clamps from viruses (such as gp45 from the T4 bacteriophage) and eukaryotes (PCNAs) are homotrimers, each protomer containing two repeats of the DNA-clamp motif, while bacterial clamps (pol III β) are homodimers, each protomer containing three DNA-clamp motifs. Clamps need to be flexible enough to allow opening and loading onto primed DNA by clamp loader complexes. Equilibrium and steered molecular dynamics simulations have been used to study DNA-clamp conformation in open and closed forms. The E. coli and PCNA clamps appear to prefer closed, planar conformations. Remarkably, gp45 appears to prefer an open right-handed spiral conformation in solution, in agreement with previously reported biophysical data. The structural preferences of DNA clamps in solution have implications for understanding the duty cycle of clamp-loaders.
Collapse
|
6
|
Arias-Palomo E, O'Shea VL, Hood IV, Berger JM. The bacterial DnaC helicase loader is a DnaB ring breaker. Cell 2013; 153:438-48. [PMID: 23562643 DOI: 10.1016/j.cell.2013.03.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/03/2012] [Accepted: 03/01/2013] [Indexed: 11/26/2022]
Abstract
Dedicated AAA+ ATPases deposit hexameric ring-shaped helicases onto DNA to promote replication in cellular organisms. To understand how loading occurs, we used electron microscopy and small angle X-ray scattering (SAXS) to determine the ATP-bound structure of the intact E. coli DnaB⋅DnaC helicase/loader complex. The 480 kDa dodecamer forms a three-tiered assembly, in which DnaC adopts a spiral configuration that remodels N-terminal scaffolding and C-terminal motor regions of DnaB to produce a clear break in the helicase ring. Surprisingly, DnaC's AAA+ fold is dispensable for ring remodeling because the DnaC isolated helicase-binding domain can both load DnaB onto DNA and increase the efficiency by which the helicase acts on substrates in vitro. Our data demonstrate that DnaC opens DnaB by a mechanism akin to that of polymerase clamp loaders and indicate that bacterial replicative helicases, like their eukaryotic counterparts, possess autoregulatory elements that influence how hexameric motor domains are loaded onto and unwind DNA.
Collapse
Affiliation(s)
- Ernesto Arias-Palomo
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
7
|
Abstract
To achieve the high degree of processivity required for DNA replication, DNA polymerases associate with ring-shaped sliding clamps that encircle the template DNA and slide freely along it. The closed circular structure of sliding clamps necessitates an enzyme-catalyzed mechanism, which not only opens them for assembly and closes them around DNA, but specifically targets them to sites where DNA synthesis is initiated and orients them correctly for replication. Such a feat is performed by multisubunit complexes known as clamp loaders, which use ATP to open sliding clamp rings and place them around the 3' end of primer-template (PT) junctions. Here we discuss the structure and composition of sliding clamps and clamp loaders from the three domains of life as well as T4 bacteriophage, and provide our current understanding of the clamp-loading process.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
8
|
Zhuang Z, Ai Y. Processivity factor of DNA polymerase and its expanding role in normal and translesion DNA synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1081-93. [PMID: 19576301 DOI: 10.1016/j.bbapap.2009.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 11/30/2022]
Abstract
Clamp protein or clamp, initially identified as the processivity factor of the replicative DNA polymerase, is indispensable for the timely and faithful replication of DNA genome. Clamp encircles duplex DNA and physically interacts with DNA polymerase. Clamps from different organisms share remarkable similarities in both structure and function. Loading of clamp onto DNA requires the activity of clamp loader. Although all clamp loaders act by converting the chemical energy derived from ATP hydrolysis to mechanical force, intriguing differences exist in the mechanistic details of clamp loading. The structure and function of clamp in normal and translesion DNA synthesis has been subjected to extensive investigations. This review summarizes the current understanding of clamps from three kingdoms of life and the mechanism of loading by their cognate clamp loaders. We also discuss the recent findings on the interactions between clamp and DNA, as well as between clamp and DNA polymerase (both the replicative and specialized DNA polymerases). Lastly the role of clamp in modulating polymerase exchange is discussed in the context of translesion DNA synthesis.
Collapse
Affiliation(s)
- Zhihao Zhuang
- Department of Chemistry and Biochemistry, 214A Drake Hall, University of Delaware, Newark, DE, 19716, USA.
| | | |
Collapse
|
9
|
Rouillon C, Henneke G, Flament D, Querellou J, Raffin JP. DNA Polymerase Switching on Homotrimeric PCNA at the Replication Fork of the Euryarchaea Pyrococcus abyssi. J Mol Biol 2007; 369:343-55. [PMID: 17442344 DOI: 10.1016/j.jmb.2007.03.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 12/28/2022]
Abstract
DNA replication in Archaea, as in other organisms, involves large protein complexes called replisomes. In the Euryarchaeota subdomain, only two putative replicases have been identified, and their roles in leading and lagging strand DNA synthesis are still poorly understood. In this study, we focused on the coupling of proliferating cell nuclear antigen (PCNA)-loading mechanisms with DNA polymerase function in the Euryarchaea Pyrococcus abyssi. PCNA spontaneously loaded onto primed DNA, and replication factor C dramatically increased this loading. Surprisingly, the family B DNA polymerase (Pol B) also increased PCNA loading, probably by stabilizing the clamp on primed DNA via an essential motif. In contrast, on an RNA-primed DNA template, the PCNA/Pol B complex was destabilized in the presence of dNTPs, allowing the family D DNA polymerase (Pol D) to perform RNA-primed DNA synthesis. Then, Pol D is displaced by Pol B to perform processive DNA synthesis, at least on the leading strand.
Collapse
Affiliation(s)
- Christophe Rouillon
- IFREMER, UMR 6197, Laboratoire de Microbiologie et Environnements Extrêmes, BP 70, F-29280 Plouzané, France
| | | | | | | | | |
Collapse
|
10
|
Sun S, Geng L, Shamoo Y. Structure and enzymatic properties of a chimeric bacteriophage RB69 DNA polymerase and single-stranded DNA binding protein with increased processivity. Proteins 2006; 65:231-8. [PMID: 16881051 DOI: 10.1002/prot.21088] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In vivo, replicative DNA polymerases are made more processive by their interactions with accessory proteins at the replication fork. Single-stranded DNA binding protein (SSB) is an essential protein that binds tightly and cooperatively to single-stranded DNA during replication to remove adventitious secondary structures and protect the exposed DNA from endogenous nucleases. Using information from high resolution structures and biochemical data, we have engineered a functional chimeric enzyme of the bacteriophage RB69 DNA polymerase and SSB with substantially increased processivity. Fusion of RB69 DNA polymerase with its cognate SSB via a short six amino acid linker increases affinity for primer-template DNA by sixfold and subsequently increases processivity by sevenfold while maintaining fidelity. The crystal structure of this fusion protein was solved by a combination of multiwavelength anomalous diffraction and molecular replacement to 3.2 A resolution and shows that RB69 SSB is positioned proximal to the N-terminal domain of RB69 DNA polymerase near the template strand channel. The structural and biochemical data suggest that SSB interactions with DNA polymerase are transient and flexible, consistent with models of a dynamic replisome during elongation.
Collapse
Affiliation(s)
- Siyang Sun
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
11
|
Indiani C, O'Donnell M. The replication clamp-loading machine at work in the three domains of life. Nat Rev Mol Cell Biol 2006; 7:751-61. [PMID: 16955075 DOI: 10.1038/nrm2022] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sliding clamps are ring-shaped proteins that tether DNA polymerases to DNA, which enables the rapid and processive synthesis of both leading and lagging strands at the replication fork. The clamp-loading machinery must repeatedly load sliding-clamp factors onto primed sites at the replication fork. Recent structural and biochemical analyses provide unique insights into how these clamp-loading ATPase machines function to load clamps onto the DNA. Moreover, these studies highlight the evolutionary conservation of the clamp-loading process in the three domains of life.
Collapse
Affiliation(s)
- Chiara Indiani
- Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
12
|
Abstract
Sliding clamps and clamp loaders are processivity factors required for efficient DNA replication. Sliding clamps are ring-shaped complexes that tether DNA polymerases to DNA to increase the processivity of synthesis. Clamp loaders assemble these ring-shaped clamps onto DNA in an ATP-dependent reaction. The overall process of clamp loading is dynamic in that protein-protein and protein-DNA interactions must actively change in a coordinated fashion to complete the mechanical clamp-loading reaction cycle. The clamp loader must initially have a high affinity for both the clamp and DNA to bring these macromolecules together, but then must release the clamp on DNA for synthesis to begin. Evidence is presented for a mechanism in which the clamp-loading reaction comprises a series of binding reactions to ATP, the clamp, DNA, and ADP, each of which promotes some change in the conformation of the clamp loader that alters interactions with the next component of the pathway. These changes in interactions must be rapid enough to allow the clamp loader to keep pace with replication fork movement. This review focuses on the measurement of dynamic and transient interactions required to assemble the Escherichia coli sliding clamp on DNA.
Collapse
Affiliation(s)
- Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA.
| |
Collapse
|
13
|
Goedken ER, Levitus M, Johnson A, Bustamante C, O'Donnell M, Kuriyan J. Fluorescence measurements on the E.coli DNA polymerase clamp loader: implications for conformational changes during ATP and clamp binding. J Mol Biol 2004; 336:1047-59. [PMID: 15037068 DOI: 10.1016/j.jmb.2003.12.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 12/19/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
Sliding clamps are ring-shaped proteins that tether DNA polymerases to their templates during processive DNA replication. The action of ATP-dependent clamp loader complexes is required to open the circular clamps and to load them onto DNA. The crystal structure of the pentameric clamp loader complex from Escherichia coli (the gamma complex), determined in the absence of nucleotides, revealed a highly asymmetric and extended form of the clamp loader. Consideration of this structure suggested that a compact and more symmetrical inactive form may predominate in solution in the absence of crystal packing forces. This model has the N-terminal domains of the delta and delta' subunits of the clamp loader close to each other in the inactive state, with the clamp loader opening in a crab-claw-like fashion upon ATP-binding. We have used fluorescence resonance energy transfer (FRET) to investigate the structural changes in the E.coli clamp loader complex that result from ATP-binding and interactions between the clamp loader and the beta clamp. FRET measurements using fluorophores placed in the N-terminal domains of the delta and delta' subunits indicate that the distances between these subunits in solution are consistent with the previously crystallized extended form of the clamp loader. Furthermore, the addition of nucleotide and clamp to the labeled clamp loader does not appreciably alter these FRET distances. Our results suggest that the changes that occur in the relative positioning of the delta and delta' subunits when ATP binds to and activates the complex are subtle, and that crab-claw-like movements are not a significant component of the clamp loader mechanism.
Collapse
Affiliation(s)
- Eric R Goedken
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
14
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Wong K, Kassavetis GA, Leonetti JP, Geiduschek EP. Mutational and functional analysis of a segment of the sigma family bacteriophage T4 late promoter recognition protein gp55. J Biol Chem 2003; 278:7073-80. [PMID: 12496274 DOI: 10.1074/jbc.m211447200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 late promoters, which consist of a simple 8-base pair TATA box, are recognized by the gene 55 protein (gp55), a small, highly diverged member of the sigma family proteins that replaces sigma(70) during the final phase of the T4 multiplication cycle. A 16-amino acid segment of gp55 that is proposed to be homologous to the sigma(70) region 2.2 has been subjected to alanine scanning and other mutagenesis. The corresponding proteins have been examined in vitro for binding to Escherichia coli RNA polymerase core enzyme and for the ability to generate accurately initiating basal as well as sliding clamp-activated T4 late transcription. Mutations in the amino acid 68-83 segment of gp55 generate a wide range of effects on these functions. The changes are interpreted in terms of the multiple steps of involvement of gp55, like other sigma proteins, in transcription. Effects of mutations on RNA polymerase core binding are consistent with the previously proposed homology of amino acids 68-82 of gp55 with sigma(70) region 2.2 and the recently determined structures of the Thermus thermophilus and Thermus aquaticus sigma(70)-RNA polymerase holoenzymes.
Collapse
Affiliation(s)
- Kevin Wong
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | | | |
Collapse
|
16
|
Trakselis MA, Berdis AJ, Benkovic SJ. Examination of the role of the clamp-loader and ATP hydrolysis in the formation of the bacteriophage T4 polymerase holoenzyme. J Mol Biol 2003; 326:435-51. [PMID: 12559912 DOI: 10.1016/s0022-2836(02)01330-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transient kinetic analyses further support the role of the clamp-loader in bacteriophage T4 as a catalyst which loads the clamp onto DNA through the sequential hydrolysis of two molecules of ATP before and after addition of DNA. Additional rapid-quench and pulse-chase experiments have documented this stoichiometry. The events of ATP hydrolysis have been related to the opening/closing of the clamp protein through fluorescence resonance energy transfer (FRET). In the absence of a hydrolysable form of ATP, the distance across the subunit interface of the clamp does not increase as measured by intramolecular FRET, suggesting gp45 cannot be loaded onto DNA. Therefore, ATP hydrolysis by the clamp-loader appears to open the clamp wide enough to encircle DNA easily. Two additional molecules of ATP then are hydrolyzed to close the clamp onto DNA. The presence of an intermolecular FRET signal indicated that the dissociation of the clamp-loader from this complex occurred after guiding the polymerase onto the correct face of the clamp bound to DNA. The final holoenzyme complex consists of the clamp, DNA, and the polymerase. Although this sequential assembly mechanism can be generally applied to most other replication systems studied to date, the specifics of ATP utilization seem to vary across replication systems.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry, 415 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
17
|
Toedt GH, Krishnan R, Friedhoff P. Site-specific protein modification to identify the MutL interface of MutH. Nucleic Acids Res 2003; 31:819-25. [PMID: 12560476 PMCID: PMC149211 DOI: 10.1093/nar/gkg191] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have mapped the region for the protein interaction site of the Escherichia coli mismatch repair protein MutH for its activator protein MutL by a site-specific protein modification approach. For this purpose we generated a cysteine-free variant of MutH and 12 variants thereof, each containing a single cysteine residue at surface positions selected on the basis of available structural and sequence information for MutH. All MutH variants displayed wild type activity both in vivo and in vitro. These variants were then site-specifically modified at their cysteine residues with thiol-specific reagents and then tested for their ability to be stimulated in their DNA cleavage activity by the activator protein MutL. Thereby we were able to identify a defined region in the MutH protein that is important for interaction with MutL, and most likely represents the MutL binding site of MutH.
Collapse
Affiliation(s)
- Grischa H Toedt
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | | | |
Collapse
|
18
|
Abstract
The elaborate process of genomic replication requires a large collection of proteins properly assembled at a DNA replication fork. Several decades of research on the bacterium Escherichia coli and its bacteriophages T4 and T7 have defined the roles of many proteins central to DNA replication. These three different prokaryotic replication systems use the same fundamental components for synthesis at a moving DNA replication fork even though the number and nature of some individual proteins are different and many lack extensive sequence homology. The components of the replication complex can be grouped into functional categories as follows: DNA polymerase, helix destabilizing protein, polymerase accessory factors, and primosome (DNA helicase and DNA primase activities). The replication of DNA derives from a multistep enzymatic pathway that features the assembly of accessory factors and polymerases into a functional holoenzyme; the separation of the double-stranded template DNA by helicase activity and its coupling to the primase synthesis of RNA primers to initiate Okazaki fragment synthesis; and the continuous and discontinuous synthesis of the leading and lagging daughter strands by the polymerases. This review summarizes and compares and contrasts for these three systems the types, timing, and mechanism of reactions and of protein-protein interactions required to initiate, control, and coordinate the synthesis of the leading and lagging strands at a DNA replication fork and comments on their generality.
Collapse
Affiliation(s)
- S J Benkovic
- Pennsylvania State University, Department of Chemistry, 414 Wartik Laboratory, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
19
|
Trakselis MA, Benkovic SJ. Intricacies in ATP-dependent clamp loading: variations across replication systems. Structure 2001; 9:999-1004. [PMID: 11709164 DOI: 10.1016/s0969-2126(01)00676-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA replication requires the coordinated effort of many proteins to create a highly processive biomachine able to replicate entire genomes in a single process. The clamp proteins confer on replisomes this property of processivity but in turn require clamp loaders for their functional assembly onto DNA. A more detailed view of the mechanisms for holoenzyme assembly in replication systems has been obtained from the advent of novel solution experiments and the appearance of low- and high-resolution structures for the clamp loaders.
Collapse
Affiliation(s)
- M A Trakselis
- Department of Chemistry, 414 Wartik Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
20
|
Dalrymple BP, Kongsuwan K, Wijffels G, Dixon NE, Jennings PA. A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci U S A 2001; 98:11627-32. [PMID: 11573000 PMCID: PMC58780 DOI: 10.1073/pnas.191384398] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction between DNA polymerases and sliding clamp proteins confers processivity in DNA synthesis. This interaction is critical for most DNA replication machines from viruses and prokaryotes to higher eukaryotes. The clamp proteins also participate in a variety of dynamic and competing protein-protein interactions. However, clamp-protein binding sequences have not so far been identified in the eubacteria. Here we show from three lines of evidence, bioinformatics, yeast two-hybrid analysis, and inhibition of protein-protein interaction by modified peptides, that variants of a pentapeptide motif (consensus QL[SD]LF) are sufficient to enable interaction of a number of proteins with an archetypal eubacterial sliding clamp (the beta subunit of Escherichia coli DNA polymerase III holoenzyme). Representatives of this motif are present in most sequenced members of the eubacterial DnaE, PolC, PolB, DinB, and UmuC families of DNA polymerases and the MutS1 mismatch repair protein family. The component tripeptide DLF inhibits the binding of the alpha (DnaE) subunit of E. coli DNA polymerase III to beta at microM concentration, identifying key residues. Comparison of the eubacterial, eukaryotic, and archaeal sliding clamp binding motifs suggests that the basic interactions have been conserved across the evolutionary landscape.
Collapse
Affiliation(s)
- B P Dalrymple
- Commonwealth Scientific and Industrial Research Organisation Livestock Industries, 120 Meiers Road, Indooroopilly QLD 4068, Australia
| | | | | | | | | |
Collapse
|
21
|
Trakselis MA, Mayer MU, Ishmael FT, Roccasecca RM, Benkovic SJ. Dynamic protein interactions in the bacteriophage T4 replisome. Trends Biochem Sci 2001; 26:566-72. [PMID: 11551794 DOI: 10.1016/s0968-0004(01)01929-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The bacteriophage T4 DNA replisome is a complex dynamic system employing a variety of proteins to orchestrate the synthesis of DNA on both the leading and lagging strands. Assembly of the protein complexes responsible for DNA synthesis and priming requires the coordination of transient biomolecular interactions. This interplay of proteins has been dissected through the use of small molecules including fluorescent probes and crosslinkers, enabling the development of a complex dynamic structural and kinetic model for DNA polymerase holoenzyme assembly and primosome formation.
Collapse
Affiliation(s)
- M A Trakselis
- Dept of Chemistry, 414 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
22
|
Trakselis MA, Alley SC, Abel-Santos E, Benkovic SJ. Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 2001; 98:8368-75. [PMID: 11459977 PMCID: PMC37445 DOI: 10.1073/pnas.111006698] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coordinated assembly of the DNA polymerase (gp43), the sliding clamp (gp45), and the clamp loader (gp44/62) to form the bacteriophage T4 DNA polymerase holoenzyme is a multistep process. A partially opened toroid-shaped gp45 is loaded around DNA by gp44/62 in an ATP-dependent manner. Gp43 binds to this complex to generate the holoenzyme in which gp45 acts to topologically link gp43 to DNA, effectively increasing the processivity of DNA replication. Stopped-flow fluorescence resonance energy transfer was used to investigate the opening and closing of the gp45 ring during holoenzyme assembly. By using two site-specific mutants of gp45 along with a previously characterized gp45 mutant, we tracked changes in distances across the gp45 subunit interface through seven conformational changes associated with holoenzyme assembly. Initially, gp45 is partially open within the plane of the ring at one of the three subunit interfaces. On addition of gp44/62 and ATP, this interface of gp45 opens further in-plane through the hydrolysis of ATP. Addition of DNA and hydrolysis of ATP close gp45 in an out-of-plane conformation. The final holoenzyme is formed by the addition of gp43, which causes gp45 to close further in plane, leaving the subunit interface open slightly. This open interface of gp45 in the final holoenzyme state is proposed to interact with the C-terminal tail of gp43, providing a point of contact between gp45 and gp43. This study further defines the dynamic process of bacteriophage T4 polymerase holoenzyme assembly.
Collapse
Affiliation(s)
- M A Trakselis
- Department of Chemistry, 414 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
23
|
Sutton MD, Farrow MF, Burton BM, Walker GC. Genetic interactions between the Escherichia coli umuDC gene products and the beta processivity clamp of the replicative DNA polymerase. J Bacteriol 2001; 183:2897-909. [PMID: 11292811 PMCID: PMC99508 DOI: 10.1128/jb.183.9.2897-2909.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Accepted: 01/22/2001] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli umuDC gene products encode DNA polymerase V, which participates in both translesion DNA synthesis (TLS) and a DNA damage checkpoint control. These two temporally distinct roles of the umuDC gene products are regulated by RecA-single-stranded DNA-facilitated self-cleavage of UmuD (which participates in the checkpoint control) to yield UmuD' (which enables TLS). In addition, even modest overexpression of the umuDC gene products leads to a cold-sensitive growth phenotype, apparently due to the inappropriate expression of the DNA damage checkpoint control activity of UmuD(2)C. We have previously reported that overexpression of the epsilon proofreading subunit of DNA polymerase III suppresses umuDC-mediated cold sensitivity, suggesting that interaction of epsilon with UmuD(2)C is important for the DNA damage checkpoint control function of the umuDC gene products. Here, we report that overexpression of the beta processivity clamp of the E. coli replicative DNA polymerase (encoded by the dnaN gene) not only exacerbates the cold sensitivity conferred by elevated levels of the umuDC gene products but, in addition, confers a severe cold-sensitive phenotype upon a strain expressing moderately elevated levels of the umuD'C gene products. Such a strain is not otherwise normally cold sensitive. To identify mutant beta proteins possibly deficient for physical interactions with the umuDC gene products, we selected for novel dnaN alleles unable to confer a cold-sensitive growth phenotype upon a umuD'C-overexpressing strain. In all, we identified 75 dnaN alleles, 62 of which either reduced the expression of beta or prematurely truncated its synthesis, while the remaining alleles defined eight unique missense mutations of dnaN. Each of the dnaN missense mutations retained at least a partial ability to function in chromosomal DNA replication in vivo. In addition, these eight dnaN alleles were also unable to exacerbate the cold sensitivity conferred by modestly elevated levels of the umuDC gene products, suggesting that the interactions between UmuD' and beta are a subset of those between UmuD and beta. Taken together, these findings suggest that interaction of beta with UmuD(2)C is important for the DNA damage checkpoint function of the umuDC gene products. Four possible models for how interactions of UmuD(2)C with the epsilon and the beta subunits of DNA polymerase III might help to regulate DNA replication in response to DNA damage are discussed.
Collapse
Affiliation(s)
- M D Sutton
- Biology Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
24
|
Stucki M, Stagljar I, Jónsson ZO, Hübscher U. A coordinated interplay: proteins with multiple functions in DNA replication, DNA repair, cell cycle/checkpoint control, and transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:261-98. [PMID: 11008490 DOI: 10.1016/s0079-6603(00)65007-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In eukaryotic cells, DNA transactions such as replication, repair, and transcription require a large set of proteins. In all of these events, complexes of more than 30 polypetides appear to function in highly organized and structurally well-defined machines. We have learned in the past few years that the three essential macromolecular events, replication, repair, and transcription, have common functional entities and are coordinated by complex regulatory mechanisms. This can be documented for replication and repair, for replication and checkpoint control, and for replication and cell cycle control, as well as for replication and transcription. In this review we cover the three different protein classes: DNA polymerases, DNA polymerase accessory proteins, and selected transcription factors. The "common enzyme-different pathway strategy" is fascinating from several points of view: first, it might guarantee that these events are coordinated; second, it can be viewed from an evolutionary angle; and third, this strategy might provide cells with backup mechanisms for essential physiological tasks.
Collapse
Affiliation(s)
- M Stucki
- Department of Veterinary Biochemistry, University of Zürich-Irchel, Switzerland
| | | | | | | |
Collapse
|
25
|
Janzen DM, Torgov MY, Reddy MK. In vitro reconstitution of the bacteriophage T4 clamp loader complex (gp44/62). J Biol Chem 1999; 274:35938-43. [PMID: 10585481 DOI: 10.1074/jbc.274.50.35938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The clamp loader complex (CLC) of bacteriophage T4 is essential for viability and has analogs in both prokaryotes and eukaryotes. The gp44 and gp62 subunits of the T4 CLC, in a 4:1 ratio, tightly associate such that the two proteins co-purify. Using transformed Escherichia coli, we were able to demonstrate for the first time purification of the unique protein gp62 in the absence of gp44. We experimentally determined the isoelectric point for the individual subunits. An in vitro physical interaction could be observed between the native subunits, which resulted in a reconstituted CLC that displayed the signature pattern of the ATPase functions of native CLC. Thus we demonstrate that the CLC forms via a self-assembly pathway rather than through a translational capture mechanism.
Collapse
Affiliation(s)
- D M Janzen
- Chemistry Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201-0413, USA
| | | | | |
Collapse
|
26
|
Latham GJ, Dong F, Pietroni P, Dozono JM, Bacheller DJ, von Hippel PH. Opening of a monomer-monomer interface of the trimeric bacteriophage T4-coded GP45 sliding clamp is required for clamp loading onto DNA. Proc Natl Acad Sci U S A 1999; 96:12448-53. [PMID: 10535942 PMCID: PMC22945 DOI: 10.1073/pnas.96.22.12448] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The replication system of bacteriophage T4 uses a trimeric ring-shaped processivity clamp (gp45) to tether the replication polymerase (gp43) to the template-primer DNA. This ring is placed onto the DNA by an ATPase-driven clamp-loading complex (gp44/62) where it then transfers, in closed form, to the polymerase. It generally has been assumed that one of the functions of the loading machinery is to open the clamp to place it around the DNA. However, the mechanism by which this occurs has not been fully defined. In this study we design and characterize a double-mutant gp45 protein that contains pairs of cysteine residues located at each monomer-monomer interface of the trimeric clamp. This mutant protein is functionally equivalent to wild-type gp45. However, when all three monomer-monomer interfaces are tethered by covalent crosslinks formed (reversibly or irreversibly) between the cysteine pairs these closed clamps can no longer be loaded onto the DNA nor onto the polymerase, effectively eliminating processive strand-displacement DNA synthesis. Analysis of the individual steps of the clamp-loading process shows that the ATPase-dependent interactions between the clamp and the clamp loader that precede DNA binding are hyperstimulated by the covalently crosslinked ring, suggesting that binding of the closed ring induces a futile, ATP-driven, ring-opening cycle. These findings and others permit further characterization and ordering of the steps involved in the T4 clamp-loading process.
Collapse
Affiliation(s)
- G J Latham
- Institute of Molecular Biology, Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | |
Collapse
|
27
|
Jing DH, Dong F, Latham GJ, von Hippel PH. Interactions of bacteriophage T4-coded primase (gp61) with the T4 replication helicase (gp41) and DNA in primosome formation. J Biol Chem 1999; 274:27287-98. [PMID: 10480949 DOI: 10.1074/jbc.274.38.27287] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One primase (gp61) and six helicase (gp41) subunits interact to form the bacteriophage T4-coded primosome at the DNA replication fork. In order to map some of the detailed interactions of the primase within the primosome, we have constructed and characterized variants of the gp61 primase that carry kinase tags at either the N or the C terminus of the polypeptide chain. These tagged gp61 constructs have been probed using several analytical methods. Proteolytic digestion and protein kinase protection experiments show that specific interactions with single-stranded DNA and the T4 helicase hexamer significantly protect both the N- and the C-terminal regions of the T4 primase polypeptide chain against modification by these procedures and that this protection becomes more pronounced when the primase is assembled within the complete ternary primosome complex. Additional discrete sites of both protection and apparent hypersensitivity along the gp61 polypeptide chain have also been mapped by proteolytic footprinting reactions for the binary helicase-primase complex and in the three component primosome. These studies provide a detailed map of a number of gp61 contact positions within the primosome and reveal interactions that may be important in the structure and function of this central component of the T4 DNA replication complex.
Collapse
Affiliation(s)
- D H Jing
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | |
Collapse
|
28
|
Alley SC, Jones AD, Soumillion P, Benkovic SJ. The carboxyl terminus of the bacteriophage T4 DNA polymerase contacts its sliding clamp at the subunit interface. J Biol Chem 1999; 274:24485-9. [PMID: 10455110 DOI: 10.1074/jbc.274.35.24485] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The location of the interaction of the COOH terminus of the bacteriophage T4 DNA polymerase with its trimeric, circular sliding clamp has been established. A peptide corresponding to the COOH terminus of the DNA polymerase was labeled with a fluorophore and fluorescence spectroscopy used to show that it forms a specific complex with the sliding clamp by virtue of its low K(D) value (7.1 +/- 1.0 microM). The same peptide was labeled with a photoaffinity probe and cross-linked to the sliding clamp. Mass spectrometry of tryptic digests determined the sole linkage point to be Ala-159 on the sliding clamp, an amino acid that lies on the subunit interface. These results demonstrate that the COOH terminus of the DNA polymerase is inserted into the subunit interface of its sliding clamp, thereby conferring processivity to the DNA polymerase.
Collapse
Affiliation(s)
- S C Alley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
29
|
Wong K, Geiduschek EP. Activator-sigma interaction: A hydrophobic segment mediates the interaction of a sigma family promoter recognition protein with a sliding clamp transcription activator. J Mol Biol 1998; 284:195-203. [PMID: 9813112 DOI: 10.1006/jmbi.1998.2166] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of transcription at bacteriophage T4 late promoters and coupling of late transcription to concurrent replication requires a peculiar transcriptional activator, the gp45 sliding clamp of the T4 DNA polymerase. In order to activate transcription, the topologically DNA-linked trimeric gp45 must interact with two T4-encoded RNA polymerase-binding proteins, the gp33 co-activator, and the gp55 late sigma factor. The carboxy termini of gp55 and gp33 share a similar sequence, which has been shown to be required for response of late transcription to activation by gp45. Alanine-scanning mutagenesis of the C terminus of gp55 shows that residues within the short hydrophobic sequence L(D/A)FLYE, are necessary for gp55 to bind to gp45, and to respond maximally to transcriptional activation by gp45. When fused to GST, the peptide SLDFLYE suffices for specific gp45 binding. Thus, it constitutes the main gp55 epitope for gp45 interaction.
Collapse
Affiliation(s)
- K Wong
- Department of Biology and Center for Molecular Genetics, University of California, 9500 Gilman Drive, San Diego, CA, 92093-0634, USA.
| | | |
Collapse
|
30
|
Latham GJ, Bacheller DJ, Pietroni P, von Hippel PH. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. III. The Gp43 DNA polymerase binds to the same face of the sliding clamp as the clamp loader. J Biol Chem 1997; 272:31685-92. [PMID: 9395510 DOI: 10.1074/jbc.272.50.31685] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the preceding paper (Latham, G. J., Bacheller, D. J., Pietroni, P. , and von Hippel, P. H. (1997) J. Biol. Chem. 272, 31677-31684), we demonstrated that the T4 gp44/62-ATP clamp loader binds to the C-terminal face of the gp45 sliding clamp. Here we extend these results by exploring the structural relationship between the gp43 polymerase and the gp45 sliding clamp. Using fluorescence intensity and polarization techniques, as well as photo-cross-linking methods, we present evidence that gp43, like gp44/62, binds to the C-terminal face of gp45. In addition, we show that g43 binds to the gp45 clamp in two distinct interaction modes, depending on the presence or absence of template-primer DNA. When template-primer DNA is present, gp43 binds tightly to gp45 to form the highly processive DNA polymerase holoenzyme. Gp43 also binds to gp45 in the absence of template-primer DNA, but this interaction is more than 100 times weaker than gp43-gp45 binding on DNA. Specific interactions between gp43 and the C-terminal face of gp45 are maintained in both modes of binding. These results underscore the pivotal role of template-primer DNA in modulating the strength of protein-protein interactions during DNA synthesis and provide additional insight into the structural requirements of the replication process.
Collapse
Affiliation(s)
- G J Latham
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|
31
|
Pietroni P, Young MC, Latham GJ, von Hippel PH. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. I. Conformational changes within the gp44/62-gp45-ATP complex during clamp loading. J Biol Chem 1997; 272:31666-76. [PMID: 9395508 DOI: 10.1074/jbc.272.50.31666] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A multisubunit ring-shaped protein complex is used to tether the polymerase to the DNA at the primer-template junction in most DNA replication systems. This "sliding clamp" interacts with the polymerase, completely encircles the DNA duplex, and is assembled onto the DNA by a specific clamp loading complex in an ATP-driven process. Site-specific mutagenesis has been used to introduce single cysteine residues as reactive sites for adduct formation within each of the three subunits of the bacteriophage T4-coded sliding clamp complex (gp45). Two such mutants, gp45S19C and gp45K81C, are reacted with the cysteine-specific photoactivable cross-linker TFPAM-3 and used to track the changes in the relative positioning of the gp45 subunits with one another and with the other components of the clamp loading complex (gp44/62) in the various stages of the loading process. Cross-linking interactions performed in the presence of nucleotide cofactors show that ATP binding and hydrolysis, interaction with primer-template DNA, and release of ADP all result in significant conformational changes within the clamp loading cycle. A structural model is presented to account for the observed rearrangements of intersubunit contacts within the complex during the loading process.
Collapse
Affiliation(s)
- P Pietroni
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|
32
|
Latham GJ, Bacheller DJ, Pietroni P, von Hippel PH. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. II. The Gp44/62 clamp loader interacts with a single defined face of the sliding clamp ring. J Biol Chem 1997; 272:31677-84. [PMID: 9395509 DOI: 10.1074/jbc.272.50.31677] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The phage T4 gp45 sliding clamp is a ring-shaped replication accessory protein that is mounted onto DNA in an ATP-dependent manner by the gp44/62 clamp loader. In the preceding paper (Pietroni, P., Young, M. C., Latham, G. J., and von Hippel, P. H. (1997) J. Biol. Chem. 272, 31666-31676), two gp45 mutants were exploited to probe interactions of the sliding clamp ring with the gp44/62 loading machinery at various steps during the clamp loading process. In this report, these studies are extended to examine the polarity of the binding interaction between gp45 and gp44/62. Three different gp45 mutants containing a single cysteine in three topographically distinct positions were used. Several different reporter groups, including extrinsic fluorophores, a photo-cross-linker, and a biotin linker for use in a novel "streptavidin interference assay," were covalently attached to these cysteine residues. Since gp45 is a trimeric protein, these three different mutations allowed us to probe up to nine distinct local environments along the surface of the sliding clamp in the presence and absence of other replication proteins. The results show that the gp44/62-ATP clamp loader complex binds exclusively to the C-terminal (S19C) face of the gp45 ring.
Collapse
Affiliation(s)
- G J Latham
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|