1
|
Shi YJ, Chiou JT, Wang LJ, Huang CH, Lee YC, Chen YJ, Chang LS. Blocking of negative charged carboxyl groups converts Naja atra neurotoxin to cardiotoxin-like protein. Int J Biol Macromol 2020; 164:2953-2963. [PMID: 32846183 DOI: 10.1016/j.ijbiomac.2020.08.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022]
Abstract
Naja atra cobrotoxin and cardiotoxin 3 (CTX3) exhibit neurotoxicity and cytotoxicity, respectively. In the present study, we aimed to investigate whether the carboxyl groups of cobrotoxin play a role in structural constraints, thereby preventing cobrotoxin from exhibiting cytotoxic activity. Six of the seven carboxyl groups in cobrotoxin were conjugated with semicarbazide. Measurement of circular dichroism spectra and Trp fluorescence quenching showed that the gross conformation of semicarbazide-modified cobrotoxin (SEM-cobrotoxin) and cobrotoxin differed. In sharp contrast to cobrotoxin, SEM-cobrotoxin demonstrated membrane-damaging activity and cytotoxicity, which are feature more characteristic of CTX3. Furthermore, both SEM-cobrotoxin and CTX3 induced cell death through AMPK activation. Analyses of the interaction between polydiacetylene/lipid vesicles and fluorescence-labeled lipids revealed that SEM-cobrotoxin and cobrotoxin adopted different membrane-bound states. The structural characteristics of SEM-cobrotoxin were similar to those of CTX3, including trifluoroethanol (TFE)-induced structural transformation and membrane binding-induced conformational change. Conversely, cobrotoxin was insensitive to the TFE-induced effect. Collectively, the data of this study indicate that blocking negatively charged residues confers cobrotoxin with membrane-damaging activity and cytotoxicity. The findings also suggest that the structural constraints imposed by carboxyl groups control the functional properties of snake venom α-neurotoxins during the divergent evolution of snake venom neurotoxins and cardiotoxins.
Collapse
Affiliation(s)
- Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
2
|
Talley TT, Chao CK, Berkman CE, Richardson RJ, Thompson CM. Inhibition of Acetylcholinesterases by Stereoisomeric Organophosphorus Compounds Containing Both Thioester and p-Nitrophenyl Leaving Groups. Chem Res Toxicol 2020; 33:2455-2466. [PMID: 32833441 DOI: 10.1021/acs.chemrestox.0c00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies with acetylcholinesterase (AChE) inhibited by organophosphorus (OP) compounds with two chiral centers can serve as models or surrogates for understanding the rate, orientation, and postinhibitory mechanisms by the nerve agent soman that possesses dual phosphorus and carbon chiral centers. In the current approach, stereoisomers of O-methyl, [S-(succinic acid, diethyl ester), O-(4-nitrophenyl) phosphorothiolate (MSNPs) were synthesized, and the inhibition, reactivation, and aging mechanisms were studied with electric eel AChE (eeAChE) and recombinant mouse brain AChE (rmAChE). The MSNP RPRC isomer was the strongest inhibitor of both eeAChE and rmAChE at 8- and 24-fold greater potency, respectively, than the weakest SPSC isomer. eeAChE inhibited by the RPRC- or RPSC-MSNP isomer underwent spontaneous reactivation ∼10- to 20-fold faster than the enzyme inhibited by SPRC- and SPSC-MSNP, and only 4% spontaneous reactivation was observed from the SPRC-eeAChE adduct. Using 2-pyridine aldoxime methiodide (2-PAM) or trimedoxime (TMB-4), eeAChE inhibited by RPRC- or SPRC-MSNP reactivated up to 90% and 3- to 4-fold faster than eeAChE inhibited by the RPSC- or SPSC-MSNP isomer. Spontaneous reactivation rates for rmAChE were 1.5- to 10-fold higher following inhibition by RPSC- and SPSC-MSNPs than inhibition by either RC isomer, a trend opposite to that found for eeAChE. Oxime reactivation of rmAChE following inhibition by RPRC- and SPRC-MSNPs was 2.5- to 5-fold faster than inhibition by RPSC- or SPSC-MSNPs. Due to structural similarities, MSNPs that phosphylate AChE with the loss of the p-nitrophenoxy (PNP) group form identical, nonreactivatable adducts to those formed from SP-isomalathion; however, all the MSNP isomers inhibited AChE to form adducts that reactivated. Thus, MSNPs inactivate AChE via the ejection of either PNP or thiosuccinyl groups to form a combination of reactivatable and nonreactivatable adducts, and this differs from the mechanism of AChE inhibition by isomalathion.
Collapse
Affiliation(s)
- Todd T Talley
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, United States
| | - Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, United States
| | - Clifford E Berkman
- Department of Chemistry and Biochemistry, Washington State University, Pullman, Washington 99164, United States
| | - Rudy J Richardson
- Departments of Environmental Health Sciences and Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States.,Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
3
|
Ayvazyan NM, O'Leary VB, Dolly JO, Ovsepian SV. Neurobiology and therapeutic utility of neurotoxins targeting postsynaptic mechanisms of neuromuscular transmission. Drug Discov Today 2019; 24:1968-1984. [PMID: 31247153 DOI: 10.1016/j.drudis.2019.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/15/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022]
Abstract
The neuromuscular junction (NMJ) is the principal site for the translation of motor neurochemical signals to muscle activity. Therefore, the release and sensing machinery of acetylcholine (ACh) along with muscle contraction are two of the main targets of natural toxins and pathogens, causing paralysis. Given pharmacology and medical advances, the active ingredients of toxins that target postsynaptic mechanisms have become of major interest, showing promise as drug leads. Herein, we review key facets of prevalent toxins modulating the mechanisms of ACh sensing and generation of the postsynaptic response, with muscle contraction. We consider the correlation between their outstanding selectivity and potency plus effects on motor function, and discuss emerging data advocating their usage for the development of therapies alleviating neuromuscular dysfunction.
Collapse
Affiliation(s)
- Naira M Ayvazyan
- Orbeli Institute of Physiology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Praha 10, Czech Republic
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Saak V Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland; The National Institute of Mental Health, Topolová 748, Klecany, Czech Republic; Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Praha 10, Czech Republic.
| |
Collapse
|
4
|
Antivenom for Neuromuscular Paralysis Resulting From Snake Envenoming. Toxins (Basel) 2017; 9:toxins9040143. [PMID: 28422078 PMCID: PMC5408217 DOI: 10.3390/toxins9040143] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Antivenom therapy is currently the standard practice for treating neuromuscular dysfunction in snake envenoming. We reviewed the clinical and experimental evidence-base for the efficacy and effectiveness of antivenom in snakebite neurotoxicity. The main site of snake neurotoxins is the neuromuscular junction, and the majority are either: (1) pre-synaptic neurotoxins irreversibly damaging the presynaptic terminal; or (2) post-synaptic neurotoxins that bind to the nicotinic acetylcholine receptor. Pre-clinical tests of antivenom efficacy for neurotoxicity include rodent lethality tests, which are problematic, and in vitro pharmacological tests such as nerve-muscle preparation studies, that appear to provide more clinically meaningful information. We searched MEDLINE (from 1946) and EMBASE (from 1947) until March 2017 for clinical studies. The search yielded no randomised placebo-controlled trials of antivenom for neuromuscular dysfunction. There were several randomised and non-randomised comparative trials that compared two or more doses of the same or different antivenom, and numerous cohort studies and case reports. The majority of studies available had deficiencies including poor case definition, poor study design, small sample size or no objective measures of paralysis. A number of studies demonstrated the efficacy of antivenom in human envenoming by clearing circulating venom. Studies of snakes with primarily pre-synaptic neurotoxins, such as kraits (Bungarus spp.) and taipans (Oxyuranus spp.) suggest that antivenom does not reverse established neurotoxicity, but early administration may be associated with decreased severity or prevent neurotoxicity. Small studies of snakes with mainly post-synaptic neurotoxins, including some cobra species (Naja spp.), provide preliminary evidence that neurotoxicity may be reversed with antivenom, but placebo controlled studies with objective outcome measures are required to confirm this.
Collapse
|
5
|
Kessler P, Marchot P, Silva M, Servent D. The three-finger toxin fold: a multifunctional structural scaffold able to modulate cholinergic functions. J Neurochem 2017; 142 Suppl 2:7-18. [PMID: 28326549 DOI: 10.1111/jnc.13975] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 12/26/2022]
Abstract
Three-finger fold toxins are miniproteins frequently found in Elapidae snake venoms. This fold is characterized by three distinct loops rich in β-strands and emerging from a dense, globular core reticulated by four highly conserved disulfide bridges. The number and diversity of receptors, channels, and enzymes identified as targets of three-finger fold toxins is increasing continuously. Such manifold diversity highlights the specific adaptability of this fold for generating pleiotropic functions. Although this toxin superfamily disturbs many biological functions by interacting with a large diversity of molecular targets, the most significant target is the cholinergic system. By blocking the activity of the nicotinic and muscarinic acetylcholine receptors or by inhibiting the enzyme acetylcholinesterase, three-finger fold toxins interfere most drastically with neuromuscular junction functioning. Several of these toxins have become powerful pharmacological tools for studying the function and structure of their molecular targets. Most importantly, since dysfunction of these receptors/enzyme is involved in many diseases, exploiting the three-finger scaffold to create novel, highly specific therapeutic agents may represent a major future endeavor. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Pascal Kessler
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascale Marchot
- Aix-Marseille Université/Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Faculté des Sciences Campus Luminy, Marseille, France
| | - Marcela Silva
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.,Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Chan YS, Cheung RCF, Xia L, Wong JH, Ng TB, Chan WY. Snake venom toxins: toxicity and medicinal applications. Appl Microbiol Biotechnol 2016; 100:6165-6181. [PMID: 27245678 DOI: 10.1007/s00253-016-7610-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022]
Abstract
Snake venoms are complex mixtures of small molecules and peptides/proteins, and most of them display certain kinds of bioactivities. They include neurotoxic, cytotoxic, cardiotoxic, myotoxic, and many different enzymatic activities. Snake envenomation is a significant health issue as millions of snakebites are reported annually. A large number of people are injured and die due to snake venom poisoning. However, several fatal snake venom toxins have found potential uses as diagnostic tools, therapeutic agent, or drug leads. In this review, different non-enzymatically active snake venom toxins which have potential therapeutic properties such as antitumor, antimicrobial, anticoagulating, and analgesic activities will be discussed.
Collapse
Affiliation(s)
- Yau Sang Chan
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Nanhai Ave 3688, 518060, Shenzhen, Guangdong, China
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lixin Xia
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Nanhai Ave 3688, 518060, Shenzhen, Guangdong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Blanchet G, Upert G, Mourier G, Gilquin B, Gilles N, Servent D. New α-adrenergic property for synthetic MTβ and CM-3 three-finger fold toxins from black mamba. Toxicon 2013; 75:160-7. [PMID: 23648423 DOI: 10.1016/j.toxicon.2013.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/15/2013] [Accepted: 04/19/2013] [Indexed: 12/28/2022]
Abstract
Despite their isolation more than fifteen years ago from the venom of the African mamba Dendroaspis polylepis, very few data are known on the functional activity of MTβ and CM-3 toxins. MTβ was initially classified as a muscarinic toxin interacting non-selectively and with low affinity with the five muscarinic receptor subtypes while no biological function was determined for CM-3. Recent results highlight the multifunctional activity of three-finger fold toxins for muscarinic and adrenergic receptors and reveal some discrepancies in the pharmacological profiles of their venom-purified and synthetic forms. Here, we report the pharmacological characterization of chemically-synthesized MTβ and CM-3 toxins on nine subtypes of muscarinic and adrenergic receptors and demonstrate their high potency for α-adrenoceptors and in particular a sub-nanomolar affinity for the α1A-subtype. Strikingly, no or very weak affinity were found for muscarinic receptors, highlighting that pharmacological characterizations of venom-purified peptides may be risky due to possible contaminations. The biological profile of these two homologous toxins looks like that one previously reported for the Dendroaspis angusticeps ρ-Da1a toxin. Nevertheless, MTβ and CM-3 interact more potently than ρ-Da1a with α1B- and α1D-AR subtypes. A computational analysis of the stability of the MTβ structure suggests that mutation S38I, could be involved in this gain in function.
Collapse
Affiliation(s)
- Guillaume Blanchet
- CEA, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), F-91191 Gif sur Yvette, France; UFR Sciences de la Vie, Université Pierre et Marie Curie (UPMC), 4 place Jussieu, Paris, France
| | | | | | | | | | | |
Collapse
|
8
|
Fruchart-Gaillard C, Mourier G, Blanchet G, Vera L, Gilles N, Ménez R, Marcon E, Stura EA, Servent D. Engineering of three-finger fold toxins creates ligands with original pharmacological profiles for muscarinic and adrenergic receptors. PLoS One 2012; 7:e39166. [PMID: 22720062 PMCID: PMC3375269 DOI: 10.1371/journal.pone.0039166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/16/2012] [Indexed: 01/26/2023] Open
Abstract
Protein engineering approaches are often a combination of rational design and directed evolution using display technologies. Here, we test “loop grafting,” a rational design method, on three-finger fold proteins. These small reticulated proteins have exceptional affinity and specificity for their diverse molecular targets, display protease-resistance, and are highly stable and poorly immunogenic. The wealth of structural knowledge makes them good candidates for protein engineering of new functionality. Our goal is to enhance the efficacy of these mini-proteins by modifying their pharmacological properties in order to extend their use in imaging, diagnostics and therapeutic applications. Using the interaction of three-finger fold toxins with muscarinic and adrenergic receptors as a model, chimeric toxins have been engineered by substituting loops on toxin MT7 by those from toxin MT1. The pharmacological impact of these grafts was examined using binding experiments on muscarinic receptors M1 and M4 and on the α1A-adrenoceptor. Some of the designed chimeric proteins have impressive gain of function on certain receptor subtypes achieving an original selectivity profile with high affinity for muscarinic receptor M1 and α1A-adrenoceptor. Structure-function analysis supported by crystallographic data for MT1 and two chimeras permits a molecular based interpretation of these gains and details the merits of this protein engineering technique. The results obtained shed light on how loop permutation can be used to design new three-finger proteins with original pharmacological profiles.
Collapse
Affiliation(s)
- Carole Fruchart-Gaillard
- CEA, iBiTecS, Service d’Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Gif-sur-Yvette, France
| | - Gilles Mourier
- CEA, iBiTecS, Service d’Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Gif-sur-Yvette, France
| | - Guillaume Blanchet
- CEA, iBiTecS, Service d’Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Gif-sur-Yvette, France
- Université Pierre et Marie Curie, Paris, France
| | - Laura Vera
- CEA, iBiTecS, Service d’Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Gif-sur-Yvette, France
| | - Nicolas Gilles
- CEA, iBiTecS, Service d’Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Gif-sur-Yvette, France
| | - Renée Ménez
- CEA, iBiTecS, Service d’Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Gif-sur-Yvette, France
| | - Elodie Marcon
- CEA, iBiTecS, Service d’Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Gif-sur-Yvette, France
| | - Enrico A. Stura
- CEA, iBiTecS, Service d’Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Gif-sur-Yvette, France
| | - Denis Servent
- CEA, iBiTecS, Service d’Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
9
|
Culver C, Melvin A, Mudie S, Rocha S. HIF-1α depletion results in SP1-mediated cell cycle disruption and alters the cellular response to chemotherapeutic drugs. Cell Cycle 2011; 10:1249-60. [PMID: 21412054 DOI: 10.4161/cc.10.8.15326] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hypoxia inducible factor (HIF) is the major transcription factor involved in the regulation of the cellular response to hypoxia, or low oxygen tensions. Even though HIF-1 function is mostly studied following hypoxic stress, well oxygenated areas of several diseased tissues have detectable levels of this transcription factor. Therefore, it is surprising how little is known about the function of HIF in normoxia. This study seeks to fill this gap. Using transient HIF-1α knockdown, as well as, stable cell lines generated using short hairpin RNAs (shRNA), we have further characterized the role of HIF-1α in normoxia. Our data reveals that knockdown of HIF-1α results in a significant increase in cells in the G1 phase of the cell cycle. We find that HIF-1α depletion increases the protein and mRNA of both p21 and p27. p21 is induced via, at least in part, p53-independent but SP1-dependent mechanisms. Interestingly, HIF-1α knockdown also alters the cellular response to chemotherapeutic agents. These data have important implications in not only for the further understanding of HIF-1α, a major transcription factor, but also for the use of HIF-targeted and combination therapies in cancer treatment.
Collapse
Affiliation(s)
- Carolyn Culver
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, University of Dundee, Dundee, Scotland, UK
| | | | | | | |
Collapse
|
10
|
Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 2010; 56:855-67. [PMID: 20670641 DOI: 10.1016/j.toxicon.2010.07.010] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/19/2010] [Indexed: 12/15/2022]
Abstract
Snake venoms are complex mixtures of pharmacologically active peptides and proteins. These protein toxins belong to a small number of superfamilies of proteins. Three-finger toxins belong to a superfamily of non-enzymatic proteins found in all families of snakes. They have a common structure of three beta-stranded loops extending from a central core containing all four conserved disulphide bonds. Despite the common scaffold, they bind to different receptors/acceptors and exhibit a wide variety of biological effects. Thus, the structure-function relationships of this group of toxins are complicated and challenging. Studies have shown that the functional sites in these 'sibling' toxins are located on various segments of the molecular surface. Targeting to a wide variety of receptors and ion channels and hence distinct functions in this group of mini proteins is achieved through a combination of accelerated rate of exchange of segments as well as point mutations in exons. In this review, we describe the structural and functional diversity, structure-function relationships and evolution of this group of snake venom toxins.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | | |
Collapse
|
11
|
Siang AS, Doley R, Vonk FJ, Kini RM. Transcriptomic analysis of the venom gland of the red-headed krait (Bungarus flaviceps) using expressed sequence tags. BMC Mol Biol 2010; 11:24. [PMID: 20350308 PMCID: PMC2861064 DOI: 10.1186/1471-2199-11-24] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/29/2010] [Indexed: 03/10/2023] Open
Abstract
Background The Red-headed krait (Bungarus flaviceps, Squamata: Serpentes: Elapidae) is a medically important venomous snake that inhabits South-East Asia. Although the venoms of most species of the snake genus Bungarus have been well characterized, a detailed compositional analysis of B. flaviceps is currently lacking. Results Here, we have sequenced 845 expressed sequence tags (ESTs) from the venom gland of a B. flaviceps. Of the transcripts, 74.8% were putative toxins; 20.6% were cellular; and 4.6% were unknown. The main venom protein families identified were three-finger toxins (3FTxs), Kunitz-type serine protease inhibitors (including chain B of β-bungarotoxin), phospholipase A2 (including chain A of β-bungarotoxin), natriuretic peptide (NP), CRISPs, and C-type lectin. Conclusion The 3FTxs were found to be the major component of the venom (39%). We found eight groups of unique 3FTxs and most of them were different from the well-characterized 3FTxs. We found three groups of Kunitz-type serine protease inhibitors (SPIs); one group was comparable to the classical SPIs and the other two groups to chain B of β-bungarotoxins (with or without the extra cysteine) based on sequence identity. The latter group may be functional equivalents of dendrotoxins in Bungarus venoms. The natriuretic peptide (NP) found is the first NP for any Asian elapid, and distantly related to Australian elapid NPs. Our study identifies several unique toxins in B. flaviceps venom, which may help in understanding the evolution of venom toxins and the pathophysiological symptoms induced after envenomation.
Collapse
Affiliation(s)
- Ang Swee Siang
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117546, Singapore
| | | | | | | |
Collapse
|
12
|
Sharabi O, Peleg Y, Mashiach E, Vardy E, Ashani Y, Silman I, Sussman JL, Shifman JM. Design, expression and characterization of mutants of fasciculin optimized for interaction with its target, acetylcholinesterase. Protein Eng Des Sel 2009; 22:641-8. [PMID: 19643977 PMCID: PMC2742391 DOI: 10.1093/protein/gzp045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Predicting mutations that enhance protein–protein affinity remains a challenging task, especially for high-affinity complexes. To test our capability to improve the affinity of such complexes, we studied interaction of acetylcholinesterase with the snake toxin, fasciculin. Using the program ORBIT, we redesigned fasciculin's sequence to enhance its interactions with Torpedo californica acetylcholinesterase. Mutations were predicted in 5 out of 13 interfacial residues on fasciculin, preserving most of the polar inter-molecular contacts seen in the wild-type toxin/enzyme complex. To experimentally characterize fasciculin mutants, we developed an efficient strategy to over-express the toxin in Escherichia coli, followed by refolding to the native conformation. Despite our predictions, a designed quintuple fasciculin mutant displayed reduced affinity for the enzyme. However, removal of a single mutation in the designed sequence produced a quadruple mutant with improved affinity. Moreover, one designed mutation produced 7-fold enhancement in affinity for acetylcholinesterase. This led us to reassess our criteria for enhancing affinity of the toxin for the enzyme. We observed that the change in the predicted inter-molecular energy, rather than in the total energy, correlates well with the change in the experimental free energy of binding, and hence may serve as a criterion for enhancement of affinity in protein–protein complexes.
Collapse
Affiliation(s)
- Oz Sharabi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fruchart-Gaillard C, Mourier G, Marquer C, Stura E, Birdsall NJM, Servent D. Different Interactions between MT7 Toxin and the Human Muscarinic M1 Receptor in Its Free and N-Methylscopolamine-Occupied States. Mol Pharmacol 2008; 74:1554-63. [DOI: 10.1124/mol.108.050773] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Thakur MK, Kumar RC. 17Beta-estradiol modulates age-dependent binding of 40 kDa nuclear protein to androgen receptor promoter in mouse cerebral cortex. Biogerontology 2007; 8:575-82. [PMID: 17619166 DOI: 10.1007/s10522-007-9102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 05/15/2007] [Indexed: 11/24/2022]
Abstract
Androgen influences the function of central and peripheral nervous system and plays a crucial role in maintaining reproductive behaviors and neuroendocrine regulation. Such action is mediated by interaction of androgen receptor (AR) promoter with nuclear proteins, which are involved in transcriptional regulation of androgen responsive genes. We have analyzed the binding of AR core promoter to nuclear proteins from the cerebral cortex of adult and old mice of both sexes by electrophoretic mobility shift assay (EMSA) and characterized the bound protein by Southwestern blotting. EMSA showed that the binding of nuclear proteins declined in the cerebral cortex of intact old mice as compared to adult. Following gonadectomy, the binding was reduced in old male and adult female but increased in old female. In contrast, estradiol supplementation increased the binding in old male and adult female but decreased in old female. Southwestern blotting analysis revealed that a 40 kDa nuclear protein bound to the promoter and the binding pattern was similar to that observed in EMSA. Further characterization of this protein may help to explore the intricate mechanism that underlies the transcriptional regulation of androgen responsive genes during aging.
Collapse
Affiliation(s)
- Mahendra K Thakur
- Biochemistry & Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| | | |
Collapse
|
15
|
Wang J, Gu J, Leszczynski J. Hydrogen-bonding interactions in the binding of loop 1 of fasciculin 2 to Torpedo californica acetylcholinesterase: a density functional theory study. J Phys Chem B 2007; 109:13761-9. [PMID: 16852724 DOI: 10.1021/jp044302p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, the interactions of model complexes at the interface between loop1 of fasciculin 2 (Fas2) and acetylcholinesterase (AChE) are theoretically explored. Three interaction models based upon the crystal structure of the complex of Fas2 with AChE from Torpedo californica (PDB code ) were fully optimized at the B3LYP/6-311G(d,p) level of theory. The atoms-in-molecules (AIM) approach was employed to characterize the corresponding noncovalent hydrogen bonds through the densities and the Laplacians of electron densities at the bond critical points. The total interaction energy of loop 1 (Fas2) with AChE is predicted to be -99.4 kcal/mol. It is concluded that the Fas2 residue Thr8, which contributes more than half of the total binding energy, plays the most important role among the three binding sites. The energy decomposition results through the Kitaura-Morokuma scheme suggest that the electrostatic term is the major component of the entire interaction energy. The positive cooperativity effect revealed in the Thr8(F)-related models was confirmed through the geometry characteristics, AIM results, and the energy decomposition analysis.
Collapse
Affiliation(s)
- Jing Wang
- Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, Jackson, Mississippi 39217, USA
| | | | | |
Collapse
|
16
|
Wang J, Gu J, Leszczynski J. A model study of interactions between TcAChE peripheral site segment Tyr70Val71 and loop 1 of Fasciculin 2. J Biomol Struct Dyn 2006; 24:139-48. [PMID: 16928137 DOI: 10.1080/07391102.2006.10507107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The continuous chain of residues (Thr7 to Ala12) of Loop1 of Fas2 (F1) and its interaction with the peripheral binding sites (Tyr70-Val71) of AChE (P1) has been studied. Our results suggest that the flexibility of Loop1 might be caused by either the partially protonated guanidine group of Arg11 under experimental conditions or by the interaction with the negatively charged center of substrates. The binding energy of F1-P1 is predicted to be -16.6 kcal/mol at the B3LYP/6-311G(d,p) level, which is assumed to originate from one isolated O7...HN10 H-bond, one possible O10...HC71 unconventional O...HC type H-bonding, and the improved pi-bonding cooperativity around the peptide group of the AChE segment Tyr70-Val71. The classical Kitaura-Morokuma energy decomposition analysis, the NPA charge analysis, and the AIM analysis consistently reveal that the peptide group in segment P1 is more polarizable, which might play the key role in the interactions between F1 and P1. The PCM solvent effect corrected results reveal decrease of the interaction energy of the considered model. The importance of Thr8 of Fas2 in the P-site binding of AChE is also concluded. Site-directed mutations on either the Fas2 residue of Thr8 or the AChE residue of Tyr70 are expected to alter the binding behavior of the Loop1 of Fas2 with AChE.
Collapse
Affiliation(s)
- Jing Wang
- Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, Jackson, MS 39217, USA
| | | | | |
Collapse
|
17
|
Modelling interactions between Loop1 of Fasciculin2 (Fas2) and Torpedo californica acetylcholinesterase (TcAChE). Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Mitchell JC, Shahbaz S, Ten Eyck LF. Interfaces in Molecular Docking. MOLECULAR SIMULATION 2006. [DOI: 10.1080/0892702031000152217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Soreq H, Yirmiya R, Cohen O, Glick D. Acetylcholinesterase as a window onto stress responses. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
20
|
Kukkonen A, Peräkylä M, Akerman KEO, Näsman J. Muscarinic Toxin 7 Selectivity Is Dictated by Extracellular Receptor Loops. J Biol Chem 2004; 279:50923-9. [PMID: 15452105 DOI: 10.1074/jbc.m406424200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscarinic toxin 7 (MT7) is a mamba venom protein antagonist with extremely high selectivity for the M1 muscarinic acetylcholine receptor. To map the sites for the interaction of MT7 with muscarinic receptors we have used chimeric M1:M3 receptors and site-directed mutagenesis of the M3 and M4 receptor subtypes. Two Glu residues in M1, one in extracellular loop 2 and one in extracellular loop 3, were found to be important for the high affinity binding of MT7. Substitution of the corresponding Lys residues in the M3 receptor with Glu converted the M3 mutant to an MT7 binding receptor, albeit with lower affinity compared with M1. A Phe --> Tyr substitution in extracellular loop 2 of M3 together with the 2 Glu mutations generated a receptor with an increased MT7 affinity (apparent Ki = 0.26 nM in a functional assay) compared with the M1 receptor (apparent Ki = 1.31 nM). The importance of the identified amino acid residues was confirmed with a mutated M4 receptor constructs. The results indicate that the high selectivity of MT7 for the M1 receptor depends on very few residues, thus providing good prospects for future design and synthesis of muscarinic receptor-selective ligands.
Collapse
Affiliation(s)
- Anu Kukkonen
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, Kuopio University, FIN-70211 Kuopio, Finland
| | | | | | | |
Collapse
|
21
|
Vizioli NM, Rusell ML, Carducci CN. On-line preconcentration capillary electrophoresis for purity profiling of synthetic peptides. Anal Chim Acta 2004. [DOI: 10.1016/j.aca.2004.03.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Bourne Y, Taylor P, Radić Z, Marchot P. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J 2003; 22:1-12. [PMID: 12505979 PMCID: PMC140045 DOI: 10.1093/emboj/cdg005] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The peripheral anionic site on acetylcholinesterase (AChE), located at the active center gorge entry, encompasses overlapping binding sites for allosteric activators and inhibitors; yet, the molecular mechanisms coupling this site to the active center at the gorge base to modulate catalysis remain unclear. The peripheral site has also been proposed to be involved in heterologous protein associations occurring during synaptogenesis or upon neurodegeneration. A novel crystal form of mouse AChE, combined with spectrophotometric analyses of the crystals, enabled us to solve unique structures of AChE with a free peripheral site, and as three complexes with peripheral site inhibitors: the phenylphenanthridinium ligands, decidium and propidium, and the pyrogallol ligand, gallamine, at 2.20-2.35 A resolution. Comparison with structures of AChE complexes with the peptide fasciculin or with organic bifunctional inhibitors unveils new structural determinants contributing to ligand interactions at the peripheral site, and permits a detailed topographic delineation of this site. Hence, these structures provide templates for designing compounds directed to the enzyme surface that modulate specific surface interactions controlling catalytic activity and non-catalytic heterologous protein associations.
Collapse
Affiliation(s)
- Yves Bourne
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20,
Ingénierie des Protéines, CNRS UMR 6560, Institut Fédératif de Recherche Jean Roche, Université de la Méditerranée, Faculté de Médecine Secteur Nord, F-13916 Marseille Cedex 20, France and Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA Corresponding authors e-mail: or
| | - Palmer Taylor
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20,
Ingénierie des Protéines, CNRS UMR 6560, Institut Fédératif de Recherche Jean Roche, Université de la Méditerranée, Faculté de Médecine Secteur Nord, F-13916 Marseille Cedex 20, France and Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA Corresponding authors e-mail: or
| | - Zoran Radić
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20,
Ingénierie des Protéines, CNRS UMR 6560, Institut Fédératif de Recherche Jean Roche, Université de la Méditerranée, Faculté de Médecine Secteur Nord, F-13916 Marseille Cedex 20, France and Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA Corresponding authors e-mail: or
| | - Pascale Marchot
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20,
Ingénierie des Protéines, CNRS UMR 6560, Institut Fédératif de Recherche Jean Roche, Université de la Méditerranée, Faculté de Médecine Secteur Nord, F-13916 Marseille Cedex 20, France and Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA Corresponding authors e-mail: or
| |
Collapse
|
23
|
Abstract
1. Snake venoms are complex mixtures of pharmacologically active peptides and proteins. 2. These protein toxins belong to a small number of superfamilies of proteins. The present review describes structure-function relationships of three-finger toxins. 3. All toxins share a common structure of three beta-stranded loops extending from a central core. However, they bind to different receptors/acceptors and exhibit a wide variety of biological effects. 4. Thus, the structure-function relationships of this group of toxins are complicated and challenging. 5. Studies have shown that the functional sites in these "sibling" toxins are located on various segments of the molecular surface.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.
| |
Collapse
|
24
|
Tai K, Shen T, Henchman RH, Bourne Y, Marchot P, McCammon JA. Mechanism of acetylcholinesterase inhibition by fasciculin: a 5-ns molecular dynamics simulation. J Am Chem Soc 2002; 124:6153-61. [PMID: 12022850 DOI: 10.1021/ja017310h] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our previous molecular dynamics simulation (10 ns) of mouse acetylcholinesterase (EC 3.1.1.7) revealed complex fluctuation of the enzyme active site gorge. Now we report a 5-ns simulation of acetylcholinesterase complexed with fasciculin 2. Fasciculin 2 binds to the gorge entrance of acetylcholinesterase with excellent complementarity and many polar and hydrophobic interactions. In this simulation of the protein-protein complex, where fasciculin 2 appears to sterically block access of ligands to the gorge, again we observe a two-peaked probability distribution of the gorge width. When fasciculin is present, the gorge width distribution is altered such that the gorge is more likely to be narrow. Moreover, there are large increases in the opening of alternative passages, namely, the side door (near Thr 75) and the back door (near Tyr 449). Finally, the catalytic triad arrangement in the acetylcholinesterase active site is disrupted with fasciculin bound. These data support that, in addition to the steric obstruction seen in the crystal structure, fasciculin may inhibit acetylcholinesterase by combined allosteric and dynamical means. Additional data from these simulations can be found at http://mccammon.ucsd.edu/.
Collapse
Affiliation(s)
- Kaihsu Tai
- Howard Hughes Medical Institute and Department of Chemistry, University of California, San Diego, La Jolla, California 92093-0365, USA
| | | | | | | | | | | |
Collapse
|
25
|
Richards JS, Russell DL, Ochsner S, Espey LL. Ovulation: new dimensions and new regulators of the inflammatory-like response. Annu Rev Physiol 2002; 64:69-92. [PMID: 11826264 DOI: 10.1146/annurev.physiol.64.081501.131029] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ovulation is a complex process that is initiated by the lutenizing hormone surge and is controlled by the temporal and spatial expression of specific genes. This review focuses on recent endocrine, biochemical, and genetic information that has been derived largely from the identification of new genes that are expressed in the ovary, and from knowledge gained by the targeted deletion of genes that appear to impact the ovulation process. Two main areas are described in most detail. First, because mutant mouse models indicate that appropriate formation of the cumulus matrix is essential for successful ovulation, genes expressed in the cumulus cells and those that control cumulus expansion are discussed. Second, because mice null for the progesterone receptor fail to ovulate and are ideal models for dissecting the critical events downstream of progesterone receptor, genes expressed in mural granulosa cells that regulate the expression of novel proteases are described.
Collapse
Affiliation(s)
- JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
26
|
Mitchell JC, Kerr R, Ten Eyck LF. Rapid atomic density methods for molecular shape characterization. J Mol Graph Model 2002; 19:325-30, 388-90. [PMID: 11449571 DOI: 10.1016/s1093-3263(00)00079-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two methods for rapid characterization of molecular shape are presented. Both techniques are based on the density of atoms near the molecular surface. The Fast Atomic Density Evaluation (FADE) algorithm uses fast Fourier transforms to quickly estimate densities. The Pairwise Atomic Density Reverse Engineering (PADRE) method derives modified density measures from the relationship between atomic density and total potentials. While many shape-characterization techniques define shape relative to a surface, the descriptors returned by FADE and PADRE can measure local geometry from points within the three-dimensional space surrounding a molecule. The methods can be used to find crevices and protrusions near the surface of a molecule and to test shape complementarity at the interface between docking molecules.
Collapse
Affiliation(s)
- J C Mitchell
- San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, USA.
| | | | | |
Collapse
|
27
|
Jeyaseelan K, Ma D, Armugam A. Real-time detection of gene promoter activity: quantitation of toxin gene transcription. Nucleic Acids Res 2001; 29:E58-8. [PMID: 11410681 PMCID: PMC55757 DOI: 10.1093/nar/29.12.e58] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a new method for quantification of promoter activity in cell lines transfected with recombinant plasmids containing the reporter gene encoding chloramphenicol acetyl transferase (CAT) by real-time PCR. As the efficiency of transfection has a direct influence on the total mRNA produced, we have used the neomycin-resistance gene present within the same vector DNA to normalize the measurement of mRNA levels. Three promoters from genes encoding toxins (pre-synaptic neurotoxin phospholipase A(2), post-synaptic alpha neurotoxin and cardiotoxin), believed to have evolved from the same ancestor but exhibiting different promoter activities, have been employed in this study to demonstrate the feasibility and accuracy of the method in CAT gene reporter analysis.
Collapse
Affiliation(s)
- K Jeyaseelan
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 10 Medical Drive, 119260, Singapore.
| | | | | |
Collapse
|
28
|
Schweitz H, Pacaud P, Diochot S, Moinier D, Lazdunski M. MIT(1), a black mamba toxin with a new and highly potent activity on intestinal contraction. FEBS Lett 1999; 461:183-8. [PMID: 10567694 DOI: 10.1016/s0014-5793(99)01459-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mamba intestinal toxin (MIT(1)) isolated from Dendroaspis polylepis venom is a 81 amino acid polypeptide cross-linked by five disulphide bridges. MIT(1) has a very potent action on guinea-pig intestinal contractility. MIT(1) (1 nM) potently contracts longitudinal ileal muscle and distal colon, and this contraction is equivalent to that of 40 mM K(+). Conversely MIT(1) relaxes proximal colon again as potently as 40 mM K(+). The MIT(1)-induced effects are antagonised by tetrodotoxin (1 microM) in proximal and distal colon but not in longitudinal ileum. The MIT(1)-induced relaxation of the proximal colon is reversibly inhibited by the NO synthase inhibitor L-NAME (200 microM). (125)I-labelled MIT(1) binds with a very high affinity to both ileum and brain membranes (K(d)=1.3 pM and 0.9 pM, and B(max)=30 fmol/mg and 26 fmol/mg, respectively). MIT(1) is a very highly selective toxin for a receptor present both in the CNS and in the smooth muscle and which might be an as yet unidentified K(+) channel.
Collapse
Affiliation(s)
- H Schweitz
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, 660, route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | | | | | | | | |
Collapse
|
29
|
Gartel AL, Tyner AL. The growth-regulatory role of p21 (WAF1/CIP1). PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 20:43-71. [PMID: 9928526 DOI: 10.1007/978-3-642-72149-6_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- A L Gartel
- Department of Genetics, University of Illinois at Chicago 60607, USA
| | | |
Collapse
|
30
|
Falkenstein RJ, Peña C. Interaction of synthetic peptides from fasciculin with acetylcholinesterase. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:233-8. [PMID: 10333298 DOI: 10.1023/a:1020688325108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fasciculins (Fas) are three-looped polypeptides isolated from mamba venom which exert their toxic action by inhibiting noncompetitively acetylcholinesterase (AChE). A peptide (Fas-D) encompassing the first loop sequence was synthesized and characterized chemically, structurally, and functionally. Fas-D possesses an intramolecular disulfide bridge, present in the native toxin. Circular dichroism (CD) indicated the existence of 21.8% beta-sheet content and 24.2% beta-turn in this peptide, compatible with crystallographic data of the native toxin. The peptide showed only low partial AChE inhibition at submillimolar concentrations, much lower than that observed with Fas and a peptide (Fas-B) encompassing the second loop sequence. The simultaneous presence of Fas-D and Fas-B produced an additive inhibitory effect on AChE activity; calculated Ki and alphaKi values (7.3 +/-2.4 microM and 10.0 +/- 1.8 microM, respectively) were not significantly different, thus indicating noncompetitive inhibition. These results are consistent with site-directed mutagenesis studies and analysis of the crystal structure of the Fas-AChE complex, which indicate that residues from loops I and II contribute to Fas binding to the enzyme.
Collapse
Affiliation(s)
- R J Falkenstein
- Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | |
Collapse
|
31
|
Marchot P, Bourne Y, Prowse CN, Bougis PE, Taylor P. Inhibition of mouse acetylcholinesterase by fasciculin: crystal structure of the complex and mutagenesis of fasciculin. Toxicon 1998; 36:1613-22. [PMID: 9792178 DOI: 10.1016/s0041-0101(98)00154-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Fasciculins are members of the superfamily of three-fingered peptidic toxins from Elapidae venoms. They selectively inhibit mammalian and electric fish acetylcholinesterases (AChE) with Ki values in the pico- to nanomolar range. Kinetic studies performed in solution indicate that fasciculin does not totally occlude ligand access to the active site of AChE, but rather binds to a peripheral site of the enzyme to inhibit catalysis, perhaps allosterically. The crystal structure of the Fas2-mouse AChE complex delineated a large contact area consistent with the low dissociation constant of the complex; the Fas2 and AChE residues participating in the binding interface were unambiguously established, and major hydrophobic interactions were identified. The structure however suggests that fasciculin totally occludes substrate entry into the catalytic site of AChE, and does not reveal to what extent each contact between Fas2 and AChE contributes to the overall binding energy. New probes, designed to delineate the individual contributions of the fasciculin residues to the complex formation and conformation, were generated by site-directed mutagenesis of a synthetic Fas2 gene. A fully processed recombinant fasciculin, rFas2, that is undistinguishable from the natural, venom-derived Fas2, was expressed in a mammalian system; fourteen mutants, encompassing 16 amino acid residues distributed among the three loops (fingers) of Fas2, were developed from both the kinetic and structural data and analyzed for inhibition of mouse AChE. The determinants identified by the structural and the functional approaches do coincide. However, only a few of the many residues which make up the overall interactive site of the Fas2 molecule provide the strong interactions required for high affinity binding and enzyme inhibition. Potential drug design from the fasciculin molecule is discussed.
Collapse
Affiliation(s)
- P Marchot
- CNRS UMR 6560 Ingénierie des Protéines, Institut Fédératif de Recherche Jean Roche, Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|