1
|
Zhang T, Jia L, Li X, Niu Z, Zhang S, Dong W, Peng L, Ma M, Wang H, Tang X, Chen Q. Integrative proteome and metabolome analyses reveal molecular basis of the tail resorption during the metamorphic climax of Nanorana pleskei. Front Cell Dev Biol 2024; 12:1431173. [PMID: 39224435 PMCID: PMC11366584 DOI: 10.3389/fcell.2024.1431173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
During the metamorphosis of anuran amphibians, the tail resorption process is a necessary and crucial change. One subject that has received relatively little or no attention is the expression patterns of proteins and metabolites in the different tail portions during metamorphosis, especially in highland amphibians. The mechanisms of tail resorption in three portions (the tip, middle and root) of the tail were investigated in N. pleskei G43 tadpole based on two omics (proteomic and metabolomic). Integrin αVβ3 was found to be high expressed in the distal portion of the tail, which could improve the sensitiveness to thyroid hormones in the distal portion of the tail. Muscle regression displayed a spatial pattern with stronger regression in distal and weaker one in proximal portion. Probably, this stronger regression was mainly performed by the proteases of proteasome from the active translation by ribosomes. The suicide model and murder model coexisted in the tail resorption. Meanwhile, fatty acids, amino acids, pyrimidine, and purine which derived from the breakdown of tissues can be used as building blocks or energy source for successful metamorphosis. Our data improved a better comprehension of the tail resorption mechanisms underlying the metamorphism of N. pleskei tadpole through identifying important participating proteins and metabolites.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lun Jia
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinying Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Weijun Dong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Huihui Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Douglas AJ, Todd LA, Katzenback BA. The amphibian invitrome: Past, present, and future contributions to our understanding of amphibian immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104644. [PMID: 36708792 DOI: 10.1016/j.dci.2023.104644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Many amphibian populations are declining worldwide, and infectious diseases are a leading cause. Given the eminent threat infectious diseases pose to amphibian populations, there is a need to understand the host-pathogen-environment interactions that govern amphibian susceptibility to disease and mortality events. However, using animals in research raises an ethical dilemma, which is magnified by the alarming rates at which many amphibian populations are declining. Thus, in vitro study systems such as cell lines represent valuable tools for furthering our understanding of amphibian immune systems. In this review, we curate a list of the amphibian cell lines established to date (the amphibian invitrome), highlight how research using amphibian cell lines has advanced our understanding of the amphibian immune system, anti-ranaviral defence mechanisms, and Batrachochytrium dendrobatidis replication in host cells, and offer our perspective on how future use of amphibian cell lines can advance the field of amphibian immunology.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lauren A Todd
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
3
|
Wynen H, Taylor E, Heyland A. Thyroid hormone-induced cell death in sea urchin metamorphic development. J Exp Biol 2022; 225:284353. [PMID: 36412991 PMCID: PMC10112870 DOI: 10.1242/jeb.244560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Thyroid hormones (THs) are important regulators of development, metabolism and homeostasis in metazoans. Specifically, they have been shown to regulate the metamorphic transitions of vertebrates and invertebrates alike. Indirectly developing sea urchin larvae accelerate the formation of juvenile structures in response to thyroxine (T4) treatment, while reducing their larval arm length. The mechanisms underlying larval arm reduction are unknown and we hypothesized that programmed cell death (PCD) is linked to this process. To test this hypothesis, we measured larval arm retraction in response to different THs (T4, T3, rT3, Tetrac) and assessed cell death in larvae using three different methods (TUNEL, YO-PRO-1 and caspase-3 activity) in the sea urchin Strongylocentrotus purpuratus. We also compared the extent of PCD in response to TH treatment before and after the invagination of the larval ectoderm, which marks the initiation of juvenile development in larval sea urchin species. We found that T4 treatment results in the strongest reduction of larval arms but detected a significant increase of PCD in response to T4, T3 and Tetrac in post-ingression but not pre-ingression larvae. As post-ingression larvae have initiated metamorphic development and therefore allocate resources to both larval and the juvenile structures, these results provide evidence that THs regulate larval development differentially via PCD. PCD in combination with cell proliferation likely has a key function in sea urchin development.
Collapse
Affiliation(s)
- Hannah Wynen
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Elias Taylor
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Andreas Heyland
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
4
|
Gu J, Zhan AJ, Jiang JL, Chen Y, Xu J, Ye L, Mao MG. Conserved function of Pacific cod Caspase-3 in apoptosis. Gene 2020; 732:144370. [PMID: 31954860 DOI: 10.1016/j.gene.2020.144370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
Apoptosis plays a significant role in the cellular immune responses against infections, especially those related to viruses. Across various species, Caspase 3 is a prominent mediator of apoptosis and participates in the cell death signaling cascade. However, its role remains relatively unknown in cod fish. In this study, we aimed to reveal the role of Pacific cod Caspase-3 (GmCasp3) in apoptosis and its evolutionary position. Our results showed that the GmCasp3 cDNA contains an open reading frame of 864 nucleotides; that codes for 287 amino acids long protein with a molecular weight of 32.03 kDa. The sequence alignments and 3-D model indicated that GmCasp3 contained highly conserved domains, such as "QACRG", "GSWFI" and "HG" active sites, however, the phylogenetic tree analysis revealed that both GmCasp3 and Atlantic cod caspase-3 clustered together are far from the high vertebrate branch, indicating they are at a lower position in vertebrate evolution. Red fluorescent labeling vector pDsRed2-C1-GmCasp3 was constructed and it was transfected into EPC cell lines. The result showed that GmCasp3 protein was distribute in the protoplasm and expressed in apoptotic cell debris. Moreover, the GmCasp3 enzyme activity increased with the increased post-transfection analysis time, while the genome DNA was visibly fragmented at 36 h post transfection. Flow cytometry analysis showed that the proportion of apoptosis cells increased from 12 h to 24 h post transfection. In conclusion, the conserved functions of GmCasp3 in apoptosis indicated that Pacific cod has the similar apoptotic characteristics as other animals.
Collapse
Affiliation(s)
- Jie Gu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Applied Biology and Aquaculture in North China, Liaoning Province, College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China
| | - Ai-Jun Zhan
- Shenzhen Academy of Inspection and Quarantine, Shenzhen 518000, China
| | - Jie-Lan Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Applied Biology and Aquaculture in North China, Liaoning Province, College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China
| | - Yu Chen
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Applied Biology and Aquaculture in North China, Liaoning Province, College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China
| | - Jia Xu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Applied Biology and Aquaculture in North China, Liaoning Province, College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China
| | - Lin Ye
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Applied Biology and Aquaculture in North China, Liaoning Province, College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China
| | - Ming-Guang Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Applied Biology and Aquaculture in North China, Liaoning Province, College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
5
|
Hseu YC, Cho HJ, Gowrisankar YV, Thiyagarajan V, Chen XZ, Lin KY, Huang HC, Yang HL. Kalantuboside B induced apoptosis and cytoprotective autophagy in human melanoma A2058 cells: An in vitro and in vivo study. Free Radic Biol Med 2019; 143:397-411. [PMID: 31442557 DOI: 10.1016/j.freeradbiomed.2019.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 12/28/2022]
Abstract
Kalantuboside B (KB), a natural bufadienolide derivative extracted from the succulent plant Kalanchoe tubiflora, is well-known for its cardiotonic, immunomodulatory, and anti-inflammatory properties. In this study, we tested in vitro and in vivo anti-cancer efficacy with low concentrations of KB (5-30 ng/mL; 8.7-52.2 nM) on A2058 melanoma cells; and for the molecular mechanisms that underlie them. KB significantly inhibited the cell viability and colony formation via arresting the cell cycle at G2/M phase. There was an association with a decrease in Cyclin A/B1, Cdc25C, and Cdc2 expressions. Further, this treatment indicated the induction of apoptosis, DNA fragmentation, cytochrome c release, and caspase-3, -8, -9, and -12 activation, and PARP cleavage, which shows that mitochondrial, death-receptor, and ER-stress signaling pathways are involved. KB-induced autophagy was apparent from enhanced LC3-II accumulation, GFP-LC3 puncta, and AVO formation. Surprisingly, KB-mediated cell death was potentiated by 3-MA and CQ to suggest the role of autophagy as a cytoprotective mechanism. Moreover, KB-treated A2058 cells enhanced intracellular ROS generation and antioxidant NAC prevented apoptosis and reversed cytoprotective autophagy. Interestingly, KB-induced apoptosis (PARP cleavage) and cytoprotective autophagy (LC3-II accumulation) were mediated by the up-regulation of the ERK signaling pathway. It was also shown that KB promoted cytoprotective autophagy by a calcium dependent-p53 downregulation pathway. In vivo data showed that KB suppressed tumor growth significantly in A2058-xenografted nude mice. A Western blot indicated cell-cycle inhibition (cyclin A reduction), apoptosis induction (PARP cleavage and Bcl-2 inhibition), and cytoprotective autophagy (LC3-II upregulation and p53 downregulation) in KB-treated A2058-xenografted mice. Our findings suggested that KB-induced ROS pathway plays a role in mediating the apoptosis and cytoprotective autophagy in human melanoma cells. Thus, KB is considered to be a putative anti-tumor agent.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Hsin-Ju Cho
- Institute of Nutrition, China Medical University, Taichung, 40402, Taiwan
| | - Yugandhar Vudhya Gowrisankar
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Varadharajan Thiyagarajan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Xuan-Zao Chen
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 71004, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Hsin-Ling Yang
- Institute of Nutrition, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
6
|
Gordon SJV, Fenker DE, Vest KE, Padilla-Benavides T. Manganese influx and expression of ZIP8 is essential in primary myoblasts and contributes to activation of SOD2. Metallomics 2019; 11:1140-1153. [PMID: 31086870 PMCID: PMC6584035 DOI: 10.1039/c8mt00348c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trace elements such as copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) function as enzyme cofactors and second messengers in cell signaling. Trace elements are emerging as key regulators of differentiation and development of mammalian tissues including blood, brain, and skeletal muscle. We previously reported an influx of Cu and dynamic expression of metal transporters during differentiation of skeletal muscle cells. Here, we demonstrate that during differentiation of skeletal myoblasts an increase of Mn, Fe and Zn also occurs. Interestingly the Mn increase is concomitant with increased Mn-dependent SOD2 levels. To better understand the Mn import pathway in skeletal muscle cells, we probed the functional relevance of the closely related proteins ZIP8 and ZIP14, which are implicated in Zn, Mn, and Fe transport. Partial depletion of ZIP8 severely impaired growth of myoblasts and led to cell death under differentiation conditions, indicating that ZIP8-mediated metal transport is essential in skeletal muscle cells. Moreover, knockdown of Zip8 impaired activity of the Mn-dependent SOD2. Growth defects were partially rescued only by Mn supplementation to the medium, suggesting additional functions for ZIP8 in the skeletal muscle lineage. Restoring wild type Zip8 into the knockdown cells rescued the proliferation and differentiation phenotypes. On the other hand, knockdown of Zip14, had only a mild effect on myotube size, consistent with a role for ZIP14 in muscle hypertrophy. Simultaneous knockdown of both Zip8 and Zip14 further impaired differentiation and led cell death. This is the first report on the functional relevance of two members of the ZIP family of metal transporters in the skeletal muscle lineage, and further supports the paradigm that trace metal transporters are important modulators of mammalian tissue development.
Collapse
Affiliation(s)
- Shellaina J. V. Gordon
- Department of Biochemistry and Molecular Pharmacology,
University of Massachusetts Medical School, 394 Plantation St., Worcester, MA,
01605, USA
| | - Daniel E. Fenker
- Department of Molecular Genetics, Biochemistry &
Microbiology, University of Cincinnati School of Medicine, 231 Albert Sabin Way,
Cincinnati, OH, 45267, USA
| | - Katherine E. Vest
- Department of Molecular Genetics, Biochemistry &
Microbiology, University of Cincinnati School of Medicine, 231 Albert Sabin Way,
Cincinnati, OH, 45267, USA
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology,
University of Massachusetts Medical School, 394 Plantation St., Worcester, MA,
01605, USA
| |
Collapse
|
7
|
Nakai Y, Nakajima K, Yaoita Y. An Inhibitor of Thyroid Hormone Synthesis Protects Tail Skin Grafts Transplanted to Syngenic Adult Frogs. Zoolog Sci 2019; 34:414-418. [PMID: 28990472 DOI: 10.2108/zs170011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tail regression in amphibian tadpoles during metamorphosis is one of the most dynamic morphological changes in animal development and is induced by thyroid hormone (TH). It has been proposed that tail resorption is driven by immunological rejection in Xenopus laevis, based on experimental evidence showing that larval skin grafts become atrophic on syngenic recipient adult frogs. This led to the hypothesis that tail regression is induced by an immunological rejection against larval skin-specific antigens called Ouro proteins. However, our group has demonstrated that ouro-knockout tadpoles undergo normal metamorphosis, including tail resorption in Xenopus tropicalis, which indicates that the expression of ouro genes is not necessary for tail regression. In the present study, we showed that an inhibitor of TH synthesis promotes the survival of larval tail skin grafts on syngenic adult Xenopus tropicalis frogs. The levels of endogenous THs in adult frogs were also comparable to those in metamorphosing tadpoles of Xenopus laevis with a regressing tail, and TH induced the regression of tadpole tail tips of Xenopus tropicalis in organ culture. Taken together, these results strongly suggest that endogenous THs in the recipient adult frog induce the degeneration of syngenic tail skin grafts.
Collapse
Affiliation(s)
- Yuya Nakai
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Yoshio Yaoita
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739-8526, Japan
| |
Collapse
|
8
|
Yaoita Y. Tail Resorption During Metamorphosis in Xenopus Tadpoles. Front Endocrinol (Lausanne) 2019; 10:143. [PMID: 30923513 PMCID: PMC6426756 DOI: 10.3389/fendo.2019.00143] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/18/2019] [Indexed: 01/09/2023] Open
Abstract
Tail resorption in anuran tadpoles is one of the most physically and physiologically notable phenomena in developmental biology. A tail that is over twice as long as the tadpole trunk is absorbed within several days, while concurrently the tadpole's locomotive function is continuously managed during the transition of the driving force from the tail to hindlimbs. Elaborate regulation is necessary to accomplish this locomotive switch. Tadpole's hindlimbs must develop from the limb-bud size to the mature size and the nervous system must be arranged to control movement before the tail is degenerated. The order of the development and growth of hindlimbs and the regression of the tail are regulated by the increasing levels of thyroid hormones (THs), the intracellular metabolism of THs, the expression levels of TH receptors, the expression of several effector genes, and other factors that can modulate TH signaling. The tail degeneration that is induced by the TH surge occurs through two mechanisms, direct TH-responsive cell death (suicide) and cell death caused by the degradation of the extracellular matrix and a loss of cellular anchorage (murder). These pathways lead to the collapse of the notochord, the contraction of surviving slow muscles, and, ultimately, the loss of the tail. In this review, I focus on the differential TH sensitivity of the tail and hindlimbs and the mechanism of tail resorption during Xenopus metamorphosis.
Collapse
|
9
|
Nakai Y, Nakajima K, Yaoita Y. Mechanisms of tail resorption during anuran metamorphosis. Biomol Concepts 2018; 8:179-183. [PMID: 28873065 DOI: 10.1515/bmc-2017-0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/08/2017] [Indexed: 11/15/2022] Open
Abstract
Amphibian metamorphosis has historically attracted a good deal of scientific attention owing to its dramatic nature and easy observability. However, the genetic mechanisms of amphibian metamorphosis have not been thoroughly examined using modern techniques such as gene cloning, DNA sequencing, polymerase chain reaction or genomic editing. Here, we review the current state of knowledge regarding molecular mechanisms underlying tadpole tail resorption.
Collapse
|
10
|
Nakai Y, Nakajima K, Robert J, Yaoita Y. Ouro proteins are not essential to tail regression during Xenopus tropicalis metamorphosis. Genes Cells 2016; 21:275-86. [PMID: 26847415 DOI: 10.1111/gtc.12337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/14/2015] [Indexed: 11/28/2022]
Abstract
Tail regression is one of the most prominent transformations observed during anuran metamorphosis. A tadpole tail that is twice as long as the tadpole trunk nearly disappears within 3 days in Xenopus tropicalis. Several years ago, it was proposed that this phenomenon is driven by an immunological rejection of larval-skin-specific antigens, Ouro proteins. We generated ouro-knockout tadpoles using the TALEN method to reexamine this immunological rejection model. Both the ouro1- and ouro2-knockout tadpoles expressed a very low level of mRNA transcribed from a targeted ouro gene, an undetectable level of Ouro protein encoded by a target gene and a scarcely detectable level of the other Ouro protein from the untargeted ouro gene in tail skin. Furthermore, congenital athymic frogs were produced by Foxn1 gene modification. Flow cytometry analysis showed that mutant frogs lacked splenic CD8(+) T cells, which play a major role in cytotoxic reaction. Furthermore, T-cell-dependent skin allograft rejection was dramatically impaired in mutant frogs. None of the knockout tadpoles showed any significant delay in the process of tail shortening during the climax of metamorphosis, which shows that Ouro proteins are not essential to tail regression at least in Xenopus tropicalis and argues against the immunological rejection model.
Collapse
Affiliation(s)
- Yuya Nakai
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima, 739-8526, Japan
| | - Keisuke Nakajima
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima, 739-8526, Japan
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, 14642, NY, USA
| | - Yoshio Yaoita
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima, 739-8526, Japan
| |
Collapse
|
11
|
Tamura K, Takayama S, Ishii T, Mawaribuchi S, Takamatsu N, Ito M. Apoptosis and differentiation of Xenopus tail-derived myoblasts by thyroid hormone. J Mol Endocrinol 2015; 54:185-92. [PMID: 25791374 DOI: 10.1530/jme-14-0327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2015] [Indexed: 02/01/2023]
Abstract
The metamorphosis of anuran amphibians is induced by thyroid hormone (TH). To study the molecular mechanisms underlying tail regression during metamorphosis, we established a cell line, XL-B4, from a Xenopus laevis tadpole tail at a premetamorphic stage. The cells expressed myoblast markers and differentiated into myotubes in differentiation medium. XL-B4 cells expressing fluorescent proteins were transplanted into tadpole tails. At 5 days post-transplantation, fluorescence was observed in myotube-like structures, indicating that the myoblastic cells could contribute to skeletal muscle. Exposure of XL-B4 cells to the TH triiodothyronine (T3) for several days significantly induced apoptotic cell death. We then examined an early response of expression of genes involved in apoptosis or myogenesis to T3. Treatment of the cells with T3 increased transcription of genes for matrix metalloproteinase-9 (MMP-9) and thyroid hormone receptor beta. Interestingly, the T3-treatment also increased myoD transcripts, but decreased the amounts of myogenin mRNA and myosin heavy chain. Importantly, we also observed upregulation of myoD expression and downregulation of myogenin expression in tails, but not in hind limbs, when tadpoles at a premetamorphic stage were treated with T3 for 1 day. These results indicated that T3 could not only induce apoptosis, but also attenuate myogenesis in tadpole tails during metamorphosis.
Collapse
Affiliation(s)
- Kei Tamura
- Department of BiosciencesSchool of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara 252-0373, Japan
| | - Shutaro Takayama
- Department of BiosciencesSchool of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara 252-0373, Japan
| | - Takako Ishii
- Department of BiosciencesSchool of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara 252-0373, Japan
| | - Shuuji Mawaribuchi
- Department of BiosciencesSchool of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara 252-0373, Japan
| | - Nobuhiko Takamatsu
- Department of BiosciencesSchool of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara 252-0373, Japan
| | - Michihiko Ito
- Department of BiosciencesSchool of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara 252-0373, Japan
| |
Collapse
|
12
|
Horn ER, Gabriel M. Gender-related sensitivity of development and growth to real microgravity inXenopus laevis. ACTA ACUST UNITED AC 2013; 321:1-12. [DOI: 10.1002/jez.1831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 06/18/2013] [Accepted: 08/16/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Eberhard R. Horn
- Zoological Institute; Cell and Developmental Biology; Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Martin Gabriel
- Büsgen Institut; Universität Göttingen; Göttingen Germany
| |
Collapse
|
13
|
Dentice M, Antonini D, Salvatore D. Type 3 deiodinase and solid tumors: an intriguing pair. Expert Opin Ther Targets 2013; 17:1369-79. [DOI: 10.1517/14728222.2013.833189] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Role of the Crosstalk between Autophagy and Apoptosis in Cancer. JOURNAL OF ONCOLOGY 2013; 2013:102735. [PMID: 23840208 PMCID: PMC3687500 DOI: 10.1155/2013/102735] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/24/2013] [Indexed: 12/14/2022]
Abstract
Autophagy and apoptosis are catabolic pathways essential for organismal homeostasis. Autophagy is normally a cell-survival pathway involving the degradation and recycling of obsolete, damaged, or harmful macromolecular assemblies; however, excess autophagy has been implicated in type II cell death. Apoptosis is the canonical programmed cell death pathway. Autophagy and apoptosis have now been shown to be interconnected by several molecular nodes of crosstalk, enabling the coordinate regulation of degradation by these pathways. Normally, autophagy and apoptosis are both tumor suppressor pathways. Autophagy fulfils this role as it facilitates the degradation of oncogenic molecules, preventing development of cancers, while apoptosis prevents the survival of cancer cells. Consequently, defective or inadequate levels of either autophagy or apoptosis can lead to cancer. However, autophagy appears to have a dual role in cancer, as it has now been shown that autophagy also facilitates the survival of tumor cells in stress conditions such as hypoxic or low-nutrition environments. Here we review the multiple molecular mechanisms of coordination of autophagy and apoptosis and the role of the proteins involved in this crosstalk in cancer. A comprehensive understanding of the interconnectivity of autophagy and apoptosis is essential for the development of effective cancer therapeutics.
Collapse
|
15
|
Sakamaki K, Takagi C, Kitayama A, Kurata T, Yamamoto TS, Chiba K, Kominami K, Jung SK, Okawa K, Nozaki M, Kubota HY, Ueno N. Multiple functions of FADD in apoptosis, NF-κB-related signaling, and heart development in Xenopus embryos. Genes Cells 2012; 17:875-96. [PMID: 23025414 DOI: 10.1111/gtc.12004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/19/2012] [Indexed: 12/26/2022]
Abstract
FADD is an adaptor protein that transmits apoptotic signals from death receptors. Additionally, FADD has been shown to play a role in various functions including cell proliferation. However, the physiological role of FADD during embryonic development remains to be delineated. Here, we show the novel roles FADD plays in development and the molecular mechanisms of these roles in Xenopus embryos. By whole-mount in situ hybridization and RT-PCR analysis, we observed that fadd is constantly expressed in early embryos. The upregulation or downregulation of FADD proteins by embryonic manipulation resulted in induction of apoptosis or size changes in the heart during development. Expression of a truncated form of FADD, FADDdd, which lacks pro-apoptotic activity, caused growth retardation of embryos associated with dramatic expressional fluctuations of genes that are regulated by NF-κB. Moreover, we isolated a homolog of mammalian cullin-4 (Cul4), a component of the ubiquitin E3 ligase family, as a FADDdd-interacting molecule in Xenopus embryos. Thus, our study shows that FADD has multiple functions in embryos; it plays a part in the regulation of NF-κB activation and heart formation, in addition to apoptosis. Furthermore, our findings provide new insights into how Cul4-based ligase is related to FADD signaling in embryogenesis.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Eto K, Iwama T, Tajima T, Abe SI. The RNA-binding protein xCIRP2 is involved in apoptotic tail regression during metamorphosis in Xenopus laevis tadpoles. Gen Comp Endocrinol 2012; 179:14-21. [PMID: 22850217 DOI: 10.1016/j.ygcen.2012.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 12/21/2022]
Abstract
Frog metamorphosis induced by thyroid hormone (TH) involves not only cell proliferation and differentiation in reconstituted organs such as limbs, but also apoptotic cell death in degenerated organs such as tails. However, the molecular mechanisms directing the TH-dependent cell fate determination remain unclear. We have previously identified from newts an RNA-binding protein (nRBP) acting as the regulator governing survival and death in germ cells during spermatogenesis. To investigate the molecular events leading the tail resorption during metamorphosis, we analyzed the expression, the functional role in apoptosis, and the regulation of xCIRP2, a frog homolog of nRBP, in tails of Xenopus laevis tadpoles. At the prometamorphic stage, xCIRP2 protein is expressed in fibroblast, epidermal, nerve, and muscular cells and localized in their cytoplasm. When spontaneous metamorphosis progressed, the level of xCIRP2 mRNA remained unchanged but the amount of the protein decreased. In organ cultures of tails at the prometamorphic stage, xCIRP2 protein decreased before their lengths shortened during TH-dependent metamorphosis. The inhibition of calpain or proteasome attenuated the TH-induced decrease of xCIRP2 protein in tails, impairing their regression. These results suggest that xCIRP2 protein is downregulated through calpain- and proteasome-mediated proteolysis in response to TH at the onset of metamorphosis, inducing apoptosis in tails and thereby degenerating them.
Collapse
Affiliation(s)
- Ko Eto
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
| | | | | | | |
Collapse
|
17
|
Fujimoto K, Matsuura K, Das B, Fu L, Shi YB. Direct activation of Xenopus iodotyrosine deiodinase by thyroid hormone receptor in the remodeling intestine during amphibian metamorphosis. Endocrinology 2012; 153:5082-9. [PMID: 22865369 PMCID: PMC3512013 DOI: 10.1210/en.2012-1308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Thyroid hormone (TH) plays critical roles during vertebrate postembryonic development. TH production in the thyroid involves incorporating inorganic iodide into thyroglobulin. The expression of iodotyrosine deiodinase (IYD; also known as iodotyrosine dehalogenase 1) in the thyroid gland ensures efficient recycling of iodine from the byproducts of TH biosynthesis: 3'-monoiodotyrosine and 3', 5'-diiodotyrosine. Interestingly, IYD is known to be expressed in other organs in adult mammals, suggesting iodine recycling outside the thyroid. On the other hand, the developmental role of iodine recycling has yet to be investigated. Here, using intestinal metamorphosis as a model, we discovered that the Xenopus tropicalis IYD gene is strongly up-regulated by TH during metamorphosis in the intestine but not the tail. We further demonstrated that this induction was one of the earliest events during intestinal metamorphosis, with IYD being activated directly through the binding of liganded TH receptors to a TH response element in the IYD promoter region. Because iodide is mainly taken up from the diet in the intestine and the tadpole stops feeding during metamorphosis when the intestine is being remodeled, our findings suggest that IYD transcription is activated by liganded TH receptors early during intestinal remodeling to ensure efficient iodine recycling at the climax of metamorphosis when highest levels of TH are needed for the proper transformations of different organs.
Collapse
Affiliation(s)
- Kenta Fujimoto
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
18
|
Nakajima K, Fujimoto K, Yaoita Y. Regulation of thyroid hormone sensitivity by differential expression of the thyroid hormone receptor during Xenopus metamorphosis. Genes Cells 2012; 17:645-59. [PMID: 22686326 DOI: 10.1111/j.1365-2443.2012.01614.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/15/2012] [Indexed: 11/30/2022]
Abstract
During amphibian metamorphosis, a series of dynamic changes occur in a predetermined order. Hind limb morphogenesis begins in response to low levels of thyroid hormone (TH) in early prometamorphosis, but tail muscle cell death is delayed until climax, when TH levels are high. It takes about 20 days for tadpoles to grow from early prometamorphosis to climax. To study the molecular basis of the timing of tissue-specific transformations, we introduced thyroid hormone receptor (TR) expression constructs into tail muscle cells of Xenopus tadpoles. The TR-transfected tail muscle cells died upon exposure to a low level of thyroxine (T4). This cell death was suggested to be mediated by type 2 iodothyronine deiodinase (D2) that converts T4 to T3-the more active form of TH. D2 mRNA was induced in the TR-overexpressing cells by low levels of TH. D2 promoter contains a TH-response element (TRE) with a lower affinity for TR. These results show that the TR transfection confers the ability to respond to physiological concentrations of TH at early prometamorphosis to tail muscle cells through D2 activity and promotes TH signaling. We propose the positive feedback loop model to amplify the cell's ability to respond to low levels of T4.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | | | | |
Collapse
|
19
|
Okada M, Nakajima K, Yaoita Y. Translational regulation by the 5'-UTR of thyroid hormone receptor α mRNA. J Biochem 2012; 151:519-31. [PMID: 22406405 DOI: 10.1093/jb/mvs026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thyroid hormone (TH) regulates gene transcription by binding to the thyroid hormone receptor (TR) and plays a critical role in the regulation of development, growth and metabolism. The ligated TR activates many effector genes, which contributes to the orchestrated remodelling of the amphibian metamorphosis. However, the mechanisms regulating TRα protein level remain unknown. We determined the nucleotide sequences of the 5'-untranslated regions (5'-UTRs) in amphibian TRα mRNAs. The TRα 5'-UTR contains evolutionarily conserved regions. We demonstrated that a 161-nt stretch of the Xenopus TRα 5'-UTR strongly represses the translation of the downstream open reading frame in both frog and human cell lines, as well as in a cell-free translation system. An analysis using successive deletions of the TRα 5'-UTR revealed five elements possessing translational repressive activity. We analysed two elements, the 14-nt GC-rich region and the 15-nt upstream open reading frame (uORF), by introducing point mutations. This analysis showed that the GC-rich region, which shares its nucleotide sequence with the Sp1-binding site, requires stringent sequence specificity at a nucleotide level for translational repression to take place, whereas under our study conditions, the uORF does not. This study provides an example of complex translational regulation by multiple elements.
Collapse
Affiliation(s)
- Morihiro Okada
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | | | | |
Collapse
|
20
|
Ishizuya-Oka A. Amphibian organ remodeling during metamorphosis: Insight into thyroid hormone-induced apoptosis. Dev Growth Differ 2011; 53:202-12. [DOI: 10.1111/j.1440-169x.2010.01222.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Dentice M. Hedgehog-mediated regulation of thyroid hormone action through iodothyronine deiodinases. Expert Opin Ther Targets 2011; 15:493-504. [DOI: 10.1517/14728222.2011.553607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Divya L, Beyo RS, Sreejith P, Akbarsha MA, Oommen OV. Skeletal muscle–melanocyte association during tadpole tail resorption in a tropical frog, Clinotarsus curtipes Jerdon (Anura, Ranoidea). ZOOLOGY 2010; 113:175-83. [DOI: 10.1016/j.zool.2009.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/30/2009] [Accepted: 11/06/2009] [Indexed: 01/08/2023]
|
23
|
Abstract
During amphibian metamorphosis, the larval tissues/organs rapidly degenerate to adapt from the aquatic to the terrestrial life. At the cellular level, a large quantity of apoptosis occurs in a spatiotemporally-regulated fashion in different organs to ensure timely removal of larval organs/tissues and the development of adult ones for the survival of the individuals. Thus, amphibian metamorphosis provides us a good opportunity to understand the mechanisms regulating apoptosis. To investigate this process at the molecular level, a number of thyroid hormone (TH) response genes have been isolated from several organs of Xenopus laevis tadpoles and their expression and functional analyses are now in progress using modern molecular and genetic technologies. In this review, we will first summarize when and where apoptosis occurs in typical larva-specific and larval-to-adult remodeling amphibian organs to highlight that the timing of apoptosis is different in different tissues/organs, even though all are induced by the same circulating TH. Next, to discuss how TH spatiotemporally regulates the apoptosis, we will focus on apoptosis of the X. laevis small intestine, one of the best characterized remodeling organs. Functional studies of TH response genes using transgenic frogs and culture techniques have shown that apoptosis of larval epithelial cells can be induced by TH either cell-autonomously or indirectly through interactions with extracellular matrix (ECM) components of the underlying basal lamina. Here, we propose that multiple intra- and extracellular apoptotic pathways are coordinately controlled by TH to ensure massive but well-organized apoptosis, which is essential for the proper progression of amphibian metamorphosis.
Collapse
Affiliation(s)
- Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan
| | - Yun-Bo Shi
- Laboratory of Gene Regulation and Development, National Institute for Child Health and Human Development, NIH, Bethesda, Maryland, MD 20892-5431, USA
| |
Collapse
|
24
|
Harrison AR, Lee MS, McLoon LK. Effects of elevated thyroid hormone on adult rabbit extraocular muscles. Invest Ophthalmol Vis Sci 2009; 51:183-91. [PMID: 19628737 DOI: 10.1167/iovs.09-3681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Human extraocular muscles (EOM) are preferentially susceptible to thyroid eye disease. Although the specific cause of this autoimmune disorder is unknown, it is often associated with elevated thyroid hormone levels. Thus, the effect of elevated thyroid hormone levels on cross-sectional area, myofiber size, satellite cells, and myosin heavy chain (MyHC) isoform expression was examined in adult rabbit EOMs, to determine how elevated thyroid hormone alters EOM biology. METHODS After 1 month of elevated thyroid hormone levels, the EOMs were removed and prepared for histologic examination. Total muscle mass, myofiber size, patterns of MyHC isoform expression, and the number of satellite cells were determined. RESULTS Elevated thyroid hormone levels significantly decreased muscle mass, total number of myofibers, and mean cross-sectional area of the myofibers. Alterations in MyHC isoform expression were extremely complex, but several basic patterns emerged. The percentages of neonatal- and developmental-positive myofibers decreased in almost all EOM regions examined, and the percentages of slow-positive myofibers significantly increased. In contrast to normal EOMs, which retain a population of activated satellite cells throughout life, elevated thyroid hormone levels resulted in the virtual disappearance of MyoD-positive cells and a decrease in Pax7-positive cells. CONCLUSIONS The reductions in EOM size, number of fibers expressing developmental and neonatal MyHC, and number of MyoD- and Pax7-positive satellite cells suggest that elevated thyroid hormone levels decrease the ongoing myofiber remodeling normally seen in the EOM. These catabolic changes have important implications for maintenance of function in the EOMs.
Collapse
Affiliation(s)
- Andrew R Harrison
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
25
|
Saitoh T, Tsuchiya Y, Kinoshita T, Itoh M, Yamashita S. Inhibition of apoptosis by ascorbic and dehydroascorbic acids in Xenopus egg extracts. Reprod Med Biol 2008; 8:3-9. [PMID: 29699301 DOI: 10.1007/s12522-008-0001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022] Open
Abstract
Purpose The viability of mammalian eggs after ovulation is reported to be improved by the presence of ascorbic acid in the culture medium. However, the pro-survival mechanisms of ascorbic acid are poorly understood. The molecular pathways of apoptosis are evolutionarily conserved among animal species, and Xenopus eggs are technically and ethically more suitable for biochemical analyses than mammalian eggs. We used Xenopus egg cytoplasmic extracts to examine the direct intracellular effects of ascorbic acid. Methods Incubation of egg extracts for more than 4 h induces the spontaneous release of cytochrome c from mitochondria. This event triggers the activation of caspases, cleavage of substrate proteins, and execution of apoptosis. Multiple signal transduction pathways including proteolysis and protein phosphorylation are also involved in this process. We examined whether any of these events might be inhibited by the addition of ascorbic acid. Results Ascorbic acid showed no effect against cytochrome c release, but prevented caspase activation and substrate cleavage. Ascorbic acid also blocked the proteolysis of apoptosis inhibitor proteins and the dephosphorylation of p42 MAP kinase. However, dehydroascorbic acid (oxidized form of ascorbic acid) and acetate (unrelated acid) were equally effective, indicating that these effects were primarily due to their acidity. In addition, dehydroascorbic acid inhibited caspase activities directly in vitro. Conclusions The anti-apoptotic effect of ascorbic acid in Xenopus egg extracts is mainly due to cytoplasmic acidification rather than its intracellular antioxidant activity. Instead, oxidative conversion of ascorbic acid into dehydroascorbic acid may inhibit apoptosis through the inhibition of caspases.
Collapse
Affiliation(s)
- Tomohiro Saitoh
- Department of Obstetrics and Gynecology Toho University Medical Center Sakura Hospital 564-1 Shimoshizu Sakura-shi 285-8741 Chiba Japan
| | - Yuichi Tsuchiya
- Department of Biochemistry Toho University School of Medicine 5-21-16 Omori-nishi Ota-ku 143-8540 Tokyo Japan
| | - Toshihiko Kinoshita
- Department of Obstetrics and Gynecology Toho University Medical Center Sakura Hospital 564-1 Shimoshizu Sakura-shi 285-8741 Chiba Japan
| | - Motohiro Itoh
- Department of Obstetrics and Gynecology Toho University Medical Center Sakura Hospital 564-1 Shimoshizu Sakura-shi 285-8741 Chiba Japan
| | - Shigeru Yamashita
- Department of Biochemistry Toho University School of Medicine 5-21-16 Omori-nishi Ota-ku 143-8540 Tokyo Japan
| |
Collapse
|
26
|
Chowdhury I, Tharakan B, Bhat GK. Caspases - an update. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:10-27. [PMID: 18602321 DOI: 10.1016/j.cbpb.2008.05.010] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 05/23/2008] [Accepted: 05/23/2008] [Indexed: 02/07/2023]
Abstract
Caspases belong to a family of highly conserved aspartate-specific cysteine proteases and are members of the interleukin-1beta-converting enzyme family, present in multicellular organisms. The caspase gene family consists of 15 mammalian members that are grouped into two major sub-families, namely inflammatory caspases and apoptotic caspases. The apoptotic caspases are further subdivided into two sub-groups, initiator caspases and executioner caspases. The caspases form a caspase-cascade system that plays the central role in the induction, transduction and amplification of intracellular apoptotic signals for cell fate determination, regulation of immunity, and cellular proliferation and differentiation. The substrates of apoptotic caspases have been associated with cellular dismantling, while inflammatory caspases mediate the proteolytic activation of inflammatory cytokines. The activation of this delicate caspase-cascade system and its functions are regulated by a variety of regulatory molecules, such as the inhibitor of apoptosis protein (IAP), FLICE, calpain, and Ca(2+). Based on the available literature we have reviewed and discussed the members of the caspase family, caspase-cascade system, caspase-regulating molecules and their apoptotic and non-apoptotic functions in cellular life and death. Also recent progress in the molecular structure and physiological role of non-mammalian caspases such as paracaspases, metacaspases and caspase-like-protease family members are included in relation to that of mammalian species.
Collapse
Affiliation(s)
- Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive, SW., Atlanta, GA 30310, USA
| | | | | |
Collapse
|
27
|
Mawaribuchi S, Tamura K, Okano S, Takayama S, Yaoita Y, Shiba T, Takamatsu N, Ito M. Tumor necrosis factor-alpha attenuates thyroid hormone-induced apoptosis in vascular endothelial cell line XLgoo established from Xenopus tadpole tails. Endocrinology 2008; 149:3379-89. [PMID: 18403482 DOI: 10.1210/en.2007-1591] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Amphibian metamorphosis induced by T(3) involves programmed cell death and the differentiation of various types of cells in degenerated and reconstructed tissues. However, the signaling pathway that directs the T(3)-dependent cell-fate determinations remains unclear. TNF-alpha is a pleiotropic cytokine that affects diverse cellular responses. Engagement of TNF-alpha with its receptor (TNFR1) causes intracellular apoptotic and/or survival signaling. To investigate TNF signaling functions during anuran metamorphosis, we first identified Xenopus laevis orthologs of TNF (xTNF)-alpha and its receptor. We found that xTNF-alpha activated nuclear factor-kappaB in X. laevis A6 cells through the Fas-associated death domain and receptor-interacting protein 1. Interestingly, xTNF-alpha mRNA in blood cells showed prominent expression at prometamorphosis during metamorphosis. Next, to elucidate the apoptotic and/or survival signaling induced by xTNF-alpha in an in vitro model of metamorphosis, we established a vascular endothelial cell line, XLgoo, from X. laevis tadpole tail. XLgoo cells formed actin stress fibers and elongated in response to xTNF-alpha. T(3) induced apoptosis in these cells, but the addition of xTNF-alpha blocked the T(3)-induced apoptosis. In addition, treatment of the cells with T(3) for 2 d induced the expression of thyroid hormone receptor-beta and caspase-3, and this thyroid hormone receptor-beta induction was drastically repressed by xTNF-alpha. Furthermore, in organ culture of the tail, xTNF-alpha significantly attenuated the tail degeneration induced by T(3). These findings suggested that xTNF-alpha could protect vascular endothelial cells from apoptotic cell death induced by T(3) during metamorphosis and thereby participate in the regulation of cell fate.
Collapse
Affiliation(s)
- Shuuji Mawaribuchi
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Shiokawa K, Aso M, Kondo T, Uchiyama H, Kuroyanagi S, Takai JI, Takahashi S, Kajitani M, Kaito C, Sekimizu K, Takayama E, Igarashi K, Hara H. Gene expression in Pre-MBT embryos and activation of maternally-inherited program of apoptosis to be executed at around MBT as a fail-safe mechanism in Xenopus early embryogenesis. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:213-31. [PMID: 19787085 PMCID: PMC2733083 DOI: 10.4137/grsb.s579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
S-adenosylmethionine decarboxylase (SAMDC) is an enzyme which converts S-adenosylmethione (SAM), a methyl donor, to decarboxylated SAM (dcSAM), an aminopropyl donor for polyamine biosynthesis. In our studies on gene expression control in Xenopus early embryogenesis, we cloned the mRNA for Xenopus SAMDC, and overexpressed the enzyme by microinjecting its mRNA into Xenopus fertilized eggs. In the mRNA-injected embryos, the level of SAMDC was enormously increased, the SAM was exhausted, and protein synthesis was greatly inhibited, but cellular polyamine content did not change appreciably. SAMDC-overexpressed embryos cleaved and developed normally up to the early blastula stage, but at the midblastula stage, or the stage of midblastula transition (MBT), all the embryos were dissociated into cells, and destroyed due to execution of apoptosis. During cleavage SAMDC-overexpressed embryos transcribed caspase-8 gene, and this was followed by activation of caspase-9. When we overexpressed p53 mRNA in fertilized eggs, similar apoptosis took place at MBT, but in this case, transcription of caspase-8 did not occur, however activation of caspase-9 took place. Apoptosis induced by SAMDC-overexpression was completely suppressed by Bcl-2, whereas apoptosis induced by p53 overexpression or treatments with other toxic agents was only partially rescued. When we injected SAMDC mRNA into only one blastomere of 8- to 32-celled embryos, descendant cells of the mRNA-injected blastomere were segregated into the blastocoel and underwent apoptosis within the blastocoel, although such embryos continued to develop and became tadpoles with various extents of anomaly, reflecting the developmental fate of the eliminated cells. Thus, embryonic cells appear to check themselves at MBT and if physiologically severely-damaged cells occur, they are eliminated from the embryo by activation and execution of the maternally-inherited program of apoptosis. We assume that the apoptosis executed at MBT is a "fail-safe" mechanism of early development to save the embryo from accidental damages that take place during cleavage.
Collapse
Affiliation(s)
- Koichiro Shiokawa
- Department of Biosciences, School of Science and Engineering, Teikyo University; 1-1 Toyosatodai, Utsunomiya, Tochigi Prefecture 320-8551, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Saelim N, Holstein D, Chocron ES, Camacho P, Lechleiter JD. Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria. Apoptosis 2008; 12:1781-94. [PMID: 17701361 DOI: 10.1007/s10495-007-0109-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We recently reported that shortened thyroid hormone receptor isoforms (TRs) can target mitochondria and acutely modulate inositol 1,4,5 trisphosphate (IP3)-mediated Ca2+ signaling when activated by thyroid hormone 3,5,3'-tri-iodothyronine (T3). Stimulation occurs via an increase in mitochondrial metabolism that is independent of transcriptional activity. Here, we present evidence that T3-bound xTRbetaA1s inhibit apoptotic activity mediated by cytochrome c release. An assay for apoptotic potency was modified to measure the ability of Xenopus oocyte extracts to induce morphological changes in isolated liver nuclei. Apoptotic potency was significantly decreased when oocyte extract was prepared from xTRbetaA1 expressing oocytes and treated with T3. The ability of T3 treatment to inhibit apoptosis was dependent on the expression of xTRbetaA1s in the mitochondrial fraction, not in the cytosolic fraction. T3 treatment also increased the membrane potential of isolated mitochondria prepared from oocytes expressing xTRbetaA1s but not from wildtype controls. We conclude that T3 acutely regulates cytochrome c release in a potential dependent manner by activating TRs located within mitochondria.
Collapse
Affiliation(s)
- Nuttawut Saelim
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
30
|
Fujimoto K, Nakajima K, Yaoita Y. Expression of matrix metalloproteinase genes in regressing or remodeling organs during amphibian metamorphosis. Dev Growth Differ 2007; 49:131-43. [PMID: 17335434 DOI: 10.1111/j.1440-169x.2007.00916.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several matrix metalloproteinases (MMP) are induced by thyroid hormone (TH) during the climax of amphibian metamorphosis and play a pivotal role in the remodeling of the intestine and the regressing tail and gills by degrading the extracellular matrix (ECM). We compared MMP gene expression levels precisely by quantitative real-time reverse transcription-polymerase chain reaction. The expression of MMP genes increases prominently at Nieuwkoop and Faber (NF) stages 60, 60-61 and 62 in the intestine, gills and tail, respectively, when the drastic morphological changes start in each organ. Gene expression analysis in the TH-treated tadpoles and cell line revealed that MMP mRNAs are upregulated in response to TH quickly within several hours to low levels and then increase in a day to high levels. All TH-induced MMP genes have TH response elements (TREs). The presence of high affinity TREs in MMP genes correlates with early TH-induction. Based on these results, we propose that TH stimulates the transcription of MMP genes through TREs within several hours to low levels and then brings about the main increase of mRNAs by TH-induced transcriptional factors, including TH receptor beta, in a cell type-specific transcriptional environment.
Collapse
Affiliation(s)
- Kenta Fujimoto
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | | | | |
Collapse
|
31
|
Yao M, Stenzel-Poore M, Denver RJ. Structural and functional conservation of vertebrate corticotropin-releasing factor genes: evidence for a critical role for a conserved cyclic AMP response element. Endocrinology 2007; 148:2518-31. [PMID: 17289845 DOI: 10.1210/en.2006-1413] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Corticotropin-releasing factor (CRF) plays a central role in neuroendocrine, autonomic, immune, and behavioral responses to stressors. We analyzed the proximal promoters of two Xenopus laevis CRF genes and found them to be remarkably conserved with mammalian CRF genes. We found several conserved cis elements in the frog CRF genes including a cAMP response element (CRE), activator protein 1 binding sites, and glucocorticoid response elements. Exposure to a physical stressor caused a rapid elevation in phosphorylated CRE binding protein (CREB; 20 min) and CRF (1 h) in the anterior preoptic area of juvenile frogs. CREB bound to the putative frog CREs in vitro, which was disrupted by point mutations introduced into the CRE. The frog proximal CRF promoters supported basal transcription in transfection assays, and forskolin caused robust transcriptional activation. Mutagenesis of the CRE or overexpression of a dominant-negative CREB reduced forskolin-induced promoter activation. Using electroporation-mediated gene transfer in tadpole brain, we show that the proximal CRF promoters support cAMP or stressor-dependent transcription in vivo, which was abolished by mutation of the CRE. Using chromatin immunoprecipitation, we found that CREB associated with the proximal frog CRF promoter in vivo in a stressor-dependent manner. These data provide strong support for the hypothesis that stressor-induced CRF gene activation in vivo depends on CREB binding to the CRE in the promoter. Our findings show that the basic regulatory elements of the CRF gene responsible for stressor-induced activation arose early in vertebrate evolution and have been maintained by strong positive selection.
Collapse
Affiliation(s)
- Meng Yao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | |
Collapse
|
32
|
Sakata SI, Yan Y, Satou Y, Momoi A, Ngo-Hazelett P, Nozaki M, Furutani-Seiki M, Postlethwait JH, Yonehara S, Sakamaki K. Conserved function of caspase-8 in apoptosis during bony fish evolution. Gene 2007; 396:134-48. [PMID: 17459614 PMCID: PMC2064871 DOI: 10.1016/j.gene.2007.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 02/24/2007] [Accepted: 03/14/2007] [Indexed: 11/19/2022]
Abstract
Caspase-8, a member of the caspase family, plays an important role in apoptotic signal transduction in mammals. Here we report the identification and characterization of the caspase-8 (casp8) gene in the zebrafish Danio rerio. The zebrafish casp8 gene has a genomic organization similar to mammalian casp8 genes, consisting of 10 exons. By chromosome mapping, we found that casp8 maps on linkage group 6 (LG6), a zebrafish chromosome segment orthologous to the long arm of human Chr. 2, which carries CASP8. In contrast, the zebrafish casp10-like gene and the cflar gene separately localize on LG9 and LG11, respectively, and these genes form a cluster with CASP8 on the human chromosome. This chromosomal segregation is unique to fish but not other vertebrates. Furthermore, we examined the function of zebrafish Casp8 protein in mammalian cells, and showed that it has pro-apoptotic activity when overexpressed. In addition, this molecule was capable of transmitting apoptotic signals mediated through not only Fas but also the TNF receptor in mouse Casp8-deficient cells. Expression analysis showed that casp8 is maternally expressed, and transcripts continue to be present throughout embryogenesis and into larval stages. These results show that zebrafish casp8 has a structure and function similar to mammalian CASP8 orthologs, and our study suggests that the role of caspase-8 in the apoptotic signal pathway has been conserved over at least 450 million years of vertebrate evolution.
Collapse
Affiliation(s)
- Shin-ichi Sakata
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Amphibian metamorphosis. Dev Biol 2007; 306:20-33. [PMID: 17449026 DOI: 10.1016/j.ydbio.2007.03.021] [Citation(s) in RCA: 318] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/09/2007] [Accepted: 03/18/2007] [Indexed: 10/23/2022]
|
34
|
Buchholz DR, Heimeier RA, Das B, Washington T, Shi YB. Pairing morphology with gene expression in thyroid hormone-induced intestinal remodeling and identification of a core set of TH-induced genes across tadpole tissues. Dev Biol 2007; 303:576-90. [PMID: 17214978 DOI: 10.1016/j.ydbio.2006.11.037] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 11/01/2006] [Accepted: 11/21/2006] [Indexed: 01/26/2023]
Abstract
Thyroid hormone (T3) plays a central role in vertebrate post-embryonic development, and amphibian metamorphosis provides a unique opportunity to examine T3-dependent developmental changes. To establish a molecular framework for understanding T3-induced morphological change, we identified a set of gene expression profiles controlled by T3 in the intestine via microarray analysis. Samples were obtained from premetamorphic Xenopus laevis tadpole intestines after 0, 1, 3, and 6 days of T3 treatment, which induces successive cell death and proliferation essential for intestinal remodeling. Using a set of 21,807 60-mer oligonucleotide probes representing >98% of the Unigene clusters, we found that 1997 genes were differentially regulated by 1.5-fold or more during this remodeling process and were clustered into four temporal expression profiles; transiently up- or downregulated and late up- or downregulated. Gene Ontology categories most significantly associated with these clusters were proteolysis, cell cycle, development and transcription, and electron transport and metabolism, respectively. These categories are common with those found for T3-regulated genes from brain, limb, and tail, although more than 70% of T3-regulated genes are tissue-specific, likely due to the fact that not all genes are annotated into GO categories and that GO categories common to different organs also contain genes regulated by T3 tissue specifically. Finally, a core set of upregulated genes, most previously unknown to be T3-regulated, were identified and enriched in genes involved in transcription and cell signaling.
Collapse
Affiliation(s)
- Daniel R Buchholz
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development/NIH, Bethesda, MD 20892-5431, USA
| | | | | | | | | |
Collapse
|
35
|
Cai L, Das B, Brown DD. Changing a limb muscle growth program into a resorption program. Dev Biol 2006; 304:260-71. [PMID: 17234173 PMCID: PMC1868508 DOI: 10.1016/j.ydbio.2006.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/14/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
Transgenic Xenopus laevis tadpoles that express a dominant negative form of the thyroid hormone receptor (TRDN) controlled by the cardiac actin muscle promoter (pCar) develop with very little limb muscle. Under the control of the tetracycline system the transgene can be induced at will by adding doxycycline to the rearing water. Pre-existing limb muscle fibers begins to disintegrate within 2 days after up-regulation of the TRDN transgene. The muscle cells do not die even after weeks of transgene exposure when the myofibrils have degenerated completely and the tadpole is nearing death. A microarray analysis after 2 weeks of exposure to the transgene identified 24 muscle genes whose expression was altered in such a way that they might cause the muscle phenotype. These candidate genes are normally activated in growing limb muscle but they are repressed by the TRDN transgene. Several of these genes have been implicated in mammalian myopathies. However, the expression of only one of these genes, calsequestrin, is down-regulated in 1 day and therefore might initiate the degeneration. Calsequestrin is one of several affected genes that encode proteins involved in calcium sequestration, transport and utilization in muscle suggesting that uncontrolled calcium influx into the growing limb muscle fibers causes rhabdomyolysis. Many of the same genes that are down-regulated in the tail at the peak of metamorphic climax just before it is resorbed are suppressed in the transgenic limb muscle in effect turning the limb growth program into a tail resorption program.
Collapse
Affiliation(s)
- Liquan Cai
- Carnegie Institution, 3520 San Martin Dr. Baltimore, MD 21218, USA
| | | | | |
Collapse
|
36
|
Fujimoto K, Nakajima K, Yaoita Y. One of the duplicated matrix metalloproteinase-9 genes is expressed in regressing tail during anuran metamorphosis. Dev Growth Differ 2006; 48:223-41. [PMID: 16681648 DOI: 10.1111/j.1440-169x.2006.00859.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The drastic morphological changes of the tadpole are induced during the climax of anuran metamorphosis, when the concentration of endogenous thyroid hormone is maximal. The tadpole tail, which is twice as long as the body, shortens rapidly and disappears completely in several days. We isolated a cDNA clone, designated as Xl MMP-9TH, similar to the previously reported Xenopus laevis MMP-9 gene, and showed that their Xenopus tropicalis counterparts are located tandemly about 9 kb apart from each other in the genome. The Xenopus MMP-9TH gene was expressed in the regressing tail and gills and the remodeling intestine and central nervous system, and induced in thyroid hormone-treated tail-derived myoblastic cultured cells, while MMP-9 mRNA was detected in embryos. Three thyroid hormone response elements in the distal promoter and the first intron were involved in the upregulation of the Xl MMP-9TH gene by thyroid hormone in transient expression assays, and their relative positions are conserved between X. laevis and X. tropicalis promoters. These data strongly suggest that the MMP-9 gene was duplicated, and differentiated into two genes, one of which was specialized in a common ancestor of X. laevis and X. tropicalis to be expressed in degenerating and remodeling organs as a response to thyroid hormone during metamorphosis.
Collapse
Affiliation(s)
- Kenta Fujimoto
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | | | | |
Collapse
|
37
|
Kominami K, Takagi C, Kurata T, Kitayama A, Nozaki M, Sawasaki T, Kuida K, Endo Y, Manabe N, Ueno N, Sakamaki K. The initiator caspase, caspase-10β, and the BH-3-only molecule, Bid, demonstrate evolutionary conservation inXenopusof their pro-apoptotic activities in the extrinsic and intrinsic pathways. Genes Cells 2006; 11:701-17. [PMID: 16824191 DOI: 10.1111/j.1365-2443.2006.00983.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two major apoptotic signaling pathways have been defined in mammals, the extrinsic pathway, initiated by ligation of death receptors, and the intrinsic pathway, triggered by cytochrome c release from mitochondria. Here, we identified and characterized the Xenopus homologs of caspase-10 (xCaspase-10beta), a novel initiator caspase, and Bid (xBid), a BH3-only molecule of the Bcl-2 family involved in both the extrinsic and intrinsic pathways. Exogenous expression of these molecules induced apoptosis of mammalian cells. By biochemical and cytological analyses, we clarified that xCaspase-10beta and xBid exhibit structural and functional similarities to their mammalian orthologues. We also detected xCaspase-10beta and xBid transcripts during embryogenesis by whole-mount in situ hybridization and RT-PCR analysis. Microinjection of mRNA encoding a protease-defect xCaspase-10beta mutant into embryos resulted in irregular development. Enforced expression of active xBid induced cell death in developing embryos. Using transgenic frogs established to allow monitoring of caspase activation in vivo, we confirmed that this form of cell death is caspase-dependent apoptosis. Thus, we demonstrated that the machinery governing the extrinsic and intrinsic apoptotic pathways are already established in Xenopus embryos. Additionally, we propose that the functions of the initiator caspase and BH3-only molecule are evolutionarily conserved in vertebrates, functioning during embryonic development.
Collapse
Affiliation(s)
- Katsuya Kominami
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Furlow JD, Neff ES. A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis. Trends Endocrinol Metab 2006; 17:40-7. [PMID: 16464605 DOI: 10.1016/j.tem.2006.01.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 11/17/2005] [Accepted: 01/19/2006] [Indexed: 12/19/2022]
Abstract
Thyroid hormone induces the complete metamorphosis of anuran tadpoles into juvenile frogs. Arguably, anuran metamorphosis is the most dramatic effect of a hormone in any vertebrate. Recent advances in pharmacology and molecular biology have made the study of this remarkable process in the frog Xenopus laevis attractive to developmental biologists and endocrinologists alike. In particular, the availability of a straightforward transgenesis assay and the near completion of the Xenopus tropicalis genome are enabling significant advances to be made in our understanding of the major remaining problems of metamorphosis: the extraordinary tissue specificity of responses, the precise timing of morphological changes, the degree of cell autonomy of hormone responses and developmental competence. We argue that X. laevis metamorphosis presents an exciting opportunity for understanding the role of thyroid hormone in vertebrate development.
Collapse
Affiliation(s)
- J David Furlow
- Section of Neurobiology, Physiology, and Behavior, University of California-Davis, One Shields Avenue, Davis, CA 95616-8519, USA.
| | | |
Collapse
|
39
|
Boorse GC, Denver RJ. Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides. Gen Comp Endocrinol 2006; 146:9-18. [PMID: 16413023 DOI: 10.1016/j.ygcen.2005.11.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/18/2005] [Accepted: 11/26/2005] [Indexed: 12/01/2022]
Abstract
Peptides of the corticotropin-releasing factor (CRF) family are expressed throughout the central nervous system (CNS) and in peripheral tissues where they play diverse roles in physiology, behavior, and development. Current data supports the existence of four paralogous genes in vertebrates that encode CRF, urocortin/urotensin 1, urocortin 2 or urocortin 3. Corticotropin-releasing factor is the major hypophysiotropin for adrenocorticotropin, and also functions as a thyrotropin-releasing factor in non-mammalian species. In the CNS, CRF peptides function as neurotransmitters/neuromodulators. Recent work shows that CRF peptides are also expressed at diverse sites outside of the CNS in mammals, and we found widespread expression of CRF and urocortins, CRF receptors and CRF binding protein (CRF-BP) genes in the frog Xenopus laevis. The functions of CRF peptides expressed in the periphery in non-mammalian species are largely unexplored. We recently found that CRF acts as a cytoprotective agent in the X. laevis tadpole tail, and that the CRF-BP can block CRF action and hasten tail muscle cell death. The expression of the CRF-BP is strongly upregulated in the tadpole tail at metamorphic climax where it may neutralize CRF bioactivity, thus promoting tail resorption. Corticotropin-releasing factor and urocortins are also known to be cytoprotective in mammalian cells. Thus, CRF peptides may play diverse roles in physiology and development, and these functions likely arose early in vertebrate evolution.
Collapse
Affiliation(s)
- Graham C Boorse
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
40
|
Boorse GC, Kholdani CA, Seasholtz AF, Denver RJ. Corticotropin-releasing factor is cytoprotective in Xenopus tadpole tail: coordination of ligand, receptor, and binding protein in tail muscle cell survival. Endocrinology 2006; 147:1498-507. [PMID: 16322064 DOI: 10.1210/en.2005-1273] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Upon metamorphosis, amphibian tadpoles lose their tails through programmed cell death induced by thyroid hormone (T3). Before transformation, the tail functions as an essential locomotory organ. The binding protein for the stress neuropeptide corticotropin-releasing factor (CRF; CRF-BP) is strongly up-regulated in the tail of Xenopus tadpoles during spontaneous or T3-induced metamorphosis. This finding led us to investigate physiological roles for CRF and CRF-BP in tadpole tail. We found CRF, CRF-BP, and functional CRF1 receptor in tail and CRF and functional CRF1 receptors, but not CRF-BP, in the tail muscle-derived cell line XLT-15. CRF, acting via the CRF1 receptor, slowed spontaneous tail regression in explant culture and caused a reduction in caspase 3/7 activity. CRF increased, but stable CRF-BP overexpression decreased, [3H]thymidine incorporation in XLT-15 cells. Overexpression of CRF-BP in vivo accelerated the loss of tail muscle cells during spontaneous metamorphosis. Lastly, exposure of tail explants to hypoxia increased CRF and urocortin 1 but strongly decreased CRF-BP mRNA expression. We show that CRF is expressed in tadpole tail, is up-regulated by environmental stressors, and is cytoprotective. The inhibitory binding protein for CRF is regulated by hormones or by environmental stressors and can modulate CRF bioactivity.
Collapse
Affiliation(s)
- Graham C Boorse
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | |
Collapse
|
41
|
Das B, Cai L, Carter MG, Piao YL, Sharov AA, Ko MSH, Brown DD. Gene expression changes at metamorphosis induced by thyroid hormone in Xenopus laevis tadpoles. Dev Biol 2006; 291:342-55. [PMID: 16458881 DOI: 10.1016/j.ydbio.2005.12.032] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/08/2005] [Accepted: 12/14/2005] [Indexed: 11/26/2022]
Abstract
Thyroid hormone (TH) controlled gene expression profiles have been studied in the tail, hind limb and brain tissues during TH-induced and spontaneous Xenopus laevis metamorphosis. Amplified cRNA probes mixed with a universal standard were hybridized to a set of 21,807-sense strand 60-mer oligonucleotides on each slide representing the entries in X. laevis UniGene Build 48. Most of the up-regulated genes in hind limb and brain are the same. This reflects in part the fact that the initial response to TH induction in both tissues is cell proliferation. A large number of up-regulated genes in the limb and brain programs encode common components of the cell cycle, DNA and RNA metabolism, transcription and translation. Notch is one of the few genes that is differentially expressed exclusively in the brain in the first 48 h of TH induction studied in these experiments. The TH-induced gene expression changes in the tail are different from the limb and brain programs. Distinct muscle and fibroblast programs were identified in the tail. Dying muscle fibers in tail (marked by active caspase-3) up-regulate a group of genes that include proteolytic enzymes. At the climax of metamorphosis, tail muscle down-regulates more than half of the genes that encode the glycolytic enzymes in the cytoplasm and the tricarboxylic acid pathway and all five complexes of the electron transport system in mitochondria. These changes in gene expression precede the activation of caspase-3. Some of these same energy metabolism-related genes are up-regulated in the limb and brain programs by TH. A prominent feature of the tail fibroblasts is the down-regulation of several collagen and other extra cellular matrix genes and the up-regulation of hydrolytic enzymes that are responsible for dissolving the notochord and resorbing the tail.
Collapse
Affiliation(s)
- Biswajit Das
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Hilder TL, Carlson GM, Haystead TAJ, Krebs EG, Graves LM. Caspase-3 dependent cleavage and activation of skeletal muscle phosphorylase b kinase. Mol Cell Biochem 2006; 275:233-42. [PMID: 16335803 DOI: 10.1007/s11010-005-2411-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylase b kinase (PhK) is a key enzyme involved in the conversion of glycogen to glucose in skeletal muscle and ultimately an increase in intracellular ATP. Since apoptosis is an ATP-dependent event, we investigated the regulation of skeletal muscle PhK during apoptosis. Incubation of PhK with purified caspase-3 in vitro resulted in the highly selective cleavage of the regulatory alpha subunit and resulted in a 2-fold increase in PhK activity. Edman protein sequencing of a stable 72 kD amino-terminal fragment and a 66 kD carboxy-terminal fragment revealed a specific caspase-3 cleavage site within the alpha subunit at residue 646 (DWMD G). Treatment of differentiated C2C12 mouse muscle myoblasts with the inducers of apoptosis staurosporine, TPEN, doxorubicin, or UV irradiation resulted in the disappearance of the alpha subunit of PhK as determined by immunoblotting, as well as a concurrent increase in caspase-3 activity. Moreover, induction of apoptosis by TPEN resulted in increased phosphorylase activity and sustained ATP levels throughout a 7 h time course. However, induction of apoptosis with staurosporine, also a potent PhK inhibitor, led to a rapid loss in phosphorylase activity and intracellular ATP, suggesting that PhK inhibition by staurosporine impairs the ability of apoptotic muscle cells to generate ATP. Thus, these studies indicate that PhK may be a substrate for caspase regulation during apoptosis and suggest that activation of this enzyme may be important for the generation of ATP during programmed cell death.
Collapse
Affiliation(s)
- Thomas L Hilder
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514-7365, USA
| | | | | | | | | |
Collapse
|
43
|
Du Pasquier D, Rincheval V, Sinzelle L, Chesneau A, Ballagny C, Sachs LM, Demeneix B, Mazabraud A. Developmental cell death duringXenopus metamorphosis involves BID cleavage and caspase 2 and 8 activation. Dev Dyn 2006; 235:2083-94. [PMID: 16786588 DOI: 10.1002/dvdy.20874] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Elimination of tadpole organs during Xenopus metamorphosis is largely achieved through apoptosis, and recent evidence suggest involvement of the mitochondrial death route and bax-initiated caspase-3 and -9 deployment. However, events upstream of the activation of Bax are unknown. In other models, proteins of the BH3-only group such as BID are known to assure this function. We show that Xenopus bid transcript levels increase at metamorphosis in larval cells destined to disappear. This increase correlates with an abrupt rise in Caspase-2 and -8 mRNA levels and an enhanced activity of Caspase-2 and -8. In BIDGFP transgenic animal's tail regression is accelerated. The cleavage of BIDGFP fusion protein during natural or T(3)-induced metamorphosis was specifically inhibited by caspase-8 inhibitors. Our results show that tail regression at metamorphosis implicates an apoptotic pathway inducible by T(3) hormone in an organ autonomous manner and involving the cell death executioners BID and Caspases-2 and -8.
Collapse
Affiliation(s)
- D Du Pasquier
- Laboratoire de Transgenèse et Génétique des Amphibiens, CNRS UMR 8080, IBAIC, Université Paris-Sud, Orsay Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Boorse GC, Crespi EJ, Dautzenberg FM, Denver RJ. Urocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution. Endocrinology 2005; 146:4851-60. [PMID: 16037378 DOI: 10.1210/en.2005-0497] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several corticotropin-releasing factor (CRF) family genes have been identified in vertebrates. Mammals have four paralogous genes that encode CRF or the urocortins 1, 2, and 3. In teleost fishes, a CRF, urotensin I (a fish ortholog of mammalian urocortin 1) and urocortin 3 have been identified, suggesting that at least three of the four mammalian lineages arose in a common ancestor of modern bony fishes and tetrapods. Here we report the isolation of genes orthologous to mammalian urocortin 1 and urocortin 3 from the South African clawed frog, Xenopus laevis. We characterize the pharmacology of the frog peptides and show that X. laevis urocortin 1 binds to and activates the frog CRF1 and CRF2 receptors at picomolar concentrations. Similar to mammals, frog urocortin 3 is selective for the CRF2 receptor. Only frog urocortin 1 binds to the CRF-binding protein, although with significantly lower affinity than frog CRF. Both urocortin genes are expressed in brain, pituitary, heart, and kidney of juvenile frogs; urocortin 1 is also expressed in skin. We also identified novel urocortin sequences in the genomes of pufferfish, zebrafish, chicken, and dog. Phylogenetic analysis supports the view that four paralogous lineages of CRF-like peptides arose before the divergence of the actinopterygian and sarcopterygian fishes. Our findings show that the functional relationships among CRF ligands and binding proteins, and their anorexigenic actions mediated by the CRF2 receptor, arose early in vertebrate evolution.
Collapse
Affiliation(s)
- Graham C Boorse
- Department of Ecology and Evolutionary Biology, 3065C Kraus Natural Science Building, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | |
Collapse
|
45
|
Shiokawa K, Takayama E, Higo T, Kuroyanagi S, Kaito C, Hara H, Kajitani M, Sekimizu K, Tadakuma T, Miura KI, Igarashi K, Yaoita Y. Occurrence of pre-MBT synthesis of caspase-8 mRNA and activation of caspase-8 prior to execution of SAMDC (S-adenosylmethionine decarboxylase)-induced, but not p53-induced, apoptosis in Xenopus late blastulae. Biochem Biophys Res Commun 2005; 336:682-91. [PMID: 16143307 DOI: 10.1016/j.bbrc.2005.08.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 08/19/2005] [Indexed: 11/26/2022]
Abstract
Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus fertilized eggs activates caspase-9 and executes maternal program of apoptosis shortly after midblastula transition (MBT). We find that overexpression of caspase-8 and p53, like that of SAMDC, induces apoptosis in Xenopus late blastulae. The apoptosis induced by p53 was abolished by injection of mRNA for xdm-2, a negative regulator of p53, and by injection of a peptide inhibitor or a dominant-negative type mutant of caspase-9, but not caspase-8. The apoptosis induced by SAMDC was not abolished by injection of xdm-2 mRNA, but was abolished by injection of a peptide inhibitor or a dominant-negative type mutant mRNA of both caspase-9 and caspase-8. Unlike caspase-9 mRNA, caspase-8 mRNA did not occur as a maternal mRNA rather induced to be expressed during cleavage stage (pre-MBT stage) by overexpression of SAMDC but not p53. Furthermore, while activities to process procaspase-8 and procaspase-9 appeared in SAMDC-overexpressed apoptotic embryos, the activity to process procaspase-8 did not appear in p53-overexpressed apoptotic embryos. We conclude there are at least two pathways in the execution of the maternal program of apoptosis in Xenopus embryos; one being through do novo expression of caspase-8 gene during cleavage stage, and the other without involvement of caspase-8.
Collapse
Affiliation(s)
- Koichiro Shiokawa
- Laboratory of Molecular Embryology, Department of Biological Science, Graduate School of Sciences, The University of Tokyo, 7-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The death of different types of cells occurs in regressing or remodeling organs to transform from a tadpole to a frog in both temporally and spatially regulated manners during amphibian metamorphosis. This morphological change is drastic and visible with the naked eye. This review summarizes our current understanding of the basic mechanism of the cell death during the metamorphosis. It focuses in particular on the tail resorption and the remodeling of intestine and skin where programmed cell death is executed by thyroid hormone-signaling through the cell-autonomous response (suicide) and the degradation of the extracellular matrix (murder).
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | | | | |
Collapse
|
47
|
Takayama E, Higo T, Kai M, Fukasawa M, Nakajima K, Hara H, Tadakuma T, Igarashi K, Yaoita Y, Shiokawa K. Involvement of caspase-9 in execution of the maternal program of apoptosis in Xenopus late blastulae overexpressed with S-adenosylmethionine decarboxylase. Biochem Biophys Res Commun 2005; 325:1367-75. [PMID: 15555578 DOI: 10.1016/j.bbrc.2004.10.179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Indexed: 11/23/2022]
Abstract
We previously demonstrated that overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus early embryos induces execution of maternal program of apoptosis shortly after midblastula transition, which likely serves as a fail-safe mechanism of early development to eliminate physiologically damaged cells before they entering the gastrula stage. To determine how caspases are involved in this process, we microinjected peptide inhibitors and "dominant-negative forms" of caspase-9 and -1 into Xenopus fertilized eggs, and found that inhibitors of caspase-9, but not caspase-1, completely suppress SAMDC-induced apoptosis. The lysate of SAMDC-overexpressing late blastulae contained activity to cleave in vitro-synthesized [(35)S]procaspase-9, but not [(35)S]procaspase-1, and mRNA for caspase-9, but not caspase-1, occurred abundantly in the unfertilized egg as maternal mRNA. We also found that overexpression of caspase-9 and -1 equally executes the apoptosis, but the apoptosis executed by these mRNAs was only partially rescued by Bcl-2 and rescued embryos did not develop beyond neurula stage. These results indicate that activation of caspase-9 is a key step for execution of the maternally preset program of apoptosis in Xenopus early embryos.
Collapse
Affiliation(s)
- Eiji Takayama
- Department of Parasitology and Immunology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rowe I, Le Blay K, Du Pasquier D, Palmier K, Levi G, Demeneix B, Coen L. Apoptosis of tail muscle during amphibian metamorphosis involves a caspase 9-dependent mechanism. Dev Dyn 2005; 233:76-87. [PMID: 15765509 DOI: 10.1002/dvdy.20312] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The climax of amphibian metamorphosis is marked by thyroid hormone-dependent tadpole tail resorption, implicating apoptosis of multiple cell types, including epidermal cells, fibroblasts, nerve cells, and muscles. The molecular cascades leading to and coordinating the death of different cell types are not fully elucidated. It is known that the mitochondrial pathway, and in particular the Bax and XR11 genes, regulates the balance between apoptosis and survival in muscle. However, the down-stream factors modulated by changes in mitochondrial permeability have not been studied in a functional context. To investigate further the mitochondrial-dependent pathway, we analyzed the regulation and the role of caspase 9 in Xenopus tadpoles. We report that caspase 9 mRNA is expressed in the tail before metamorphosis and increases before and during climax. Similarly, at the protein level, the production of active forms of caspase 9 increases in muscle tissue as metamorphosis progresses. To assess the functional role of caspase 9, we designed a dominant-negative protein. Overexpression of this dominant-negative abrogates both Bax-induced cell death in vitro and muscle apoptosis in vivo during natural metamorphosis. These findings consolidate a model of metamorphic muscle death that directly implicates the mitochondrial pathway and the apoptosome.
Collapse
Affiliation(s)
- Isaline Rowe
- Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, UMR-CNRS 5166, Paris, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Sachs LM, Le Mevel S, Demeneix BA. Implication ofbaxinXenopus laevistail regression at metamorphosis. Dev Dyn 2004; 231:671-82. [PMID: 15497139 DOI: 10.1002/dvdy.20166] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Apoptosis is fundamental to normal vertebrate development. A dramatic example of postembryonic development involving apoptosis is tail regression during amphibian metamorphosis. Earlier studies led us to propose a functional role for the pro-apoptotic protein Bax in tadpole tail regression. However, its physiological relevance has never been analyzed. We have now cloned a cDNA encoding Xenopus laevis bax (xlbax) and used in vivo gene transfer in tail muscle to analyze the effects of xlbax overexpression. Furthermore, by using an antisense strategy in a similar experimental paradigm, xlbax antisense mRNA was shown to block the apoptotic effects of xlbax and protect against apoptosis in metamorphosing tadpoles. Our results suggest that xlbax is a regulator of muscle fiber death in the regressing tail during metamorphosis.
Collapse
Affiliation(s)
- Laurent M Sachs
- Département Régulation Développement et Diversité Moléculaire, UMR-5166 CNRS, USM 501 Muséum National d'Histoire Naturelle, Paris, France.
| | | | | |
Collapse
|
50
|
Sakamaki K, Takagi C, Kominami K, Sakata SI, Yaoita Y, Kubota HY, Nozaki M, Yonehara S, Ueno N. The adaptor molecule FADD from Xenopus laevis demonstrates evolutionary conservation of its pro-apoptotic activity. Genes Cells 2004; 9:1249-64. [PMID: 15569156 DOI: 10.1111/j.1365-2443.2004.00802.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
FADD is an adaptor protein that transmits apoptotic signals from death receptors such as Fas to downstream initiator caspases in mammals. We have identified and characterized the Xenopus orthologue of mammalian FADD (xFADD). xFADD contains both a death effector domain (DED) and a death domain (DD) that are structurally homologous to those of mammalian FADD. We observed xFADD binding to Xenopus caspase-8 and caspase-10 as well as to human caspase-8 and Fas through interactions with their homophilic DED and DD domains. When over-expressed, xFADD was also able to induce apoptosis in wild-type mouse embryonic fibroblasts (MEF), but not in caspase-8-deficient MEF cells. In contrast, DED-deficient xFADD (xFADDdn) acted as a dominant-negative mutant and prevented Fas-mediated apoptosis in mammalian cell lines. These results indicate that xFADD transmits apoptotic signals from Fas to caspase-8. Furthermore, we found that transgenic animals expressing xFADD in the developing heart or eye under the control of tissue-specific promoters show abnormal phenotypes. Taken together, these results suggest that xFADD can substitute functionally for its mammalian homologue in death receptor-mediated apoptosis, and we suggest that xFADD functions as a pro-apoptotic adaptor molecule in frogs. Thus, the structural and functional similarities between xFADD and mammalian FADD provide evidence that the apoptotic pathways are evolutionally conserved across vertebrate species.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|