1
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
2
|
Presequence recognition by the tom40 channel contributes to precursor translocation into the mitochondrial matrix. Mol Cell Biol 2014; 34:3473-85. [PMID: 25002531 DOI: 10.1128/mcb.00433-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than 70% of mitochondrial proteins utilize N-terminal presequences as targeting signals. Presequence interactions with redundant cytosolic receptor domains of the translocase of the outer mitochondrial membrane (TOM) are well established. However, after the presequence enters the protein-conducting Tom40 channel, the recognition events that occur at the trans side leading up to the engagement of the presequence with inner membrane-bound receptors are less well defined. Using a photoaffinity-labeling approach with modified presequence peptides, we identified Tom40 as a presequence interactor of the TOM complex. Utilizing mass spectrometry, we mapped Tom40's presequence-interacting regions to both sides of the β-barrel. Analysis of a phosphorylation site within one of the presequence-interacting regions revealed altered translocation kinetics along the presequence pathway. Our analyses assess the relation between the identified presequence-binding region of Tom40 and the intermembrane space domain of Tom22. The identified presequence-interacting region of Tom40 is capable of functioning independently of the established trans-acting TOM presequence-binding domain during matrix import.
Collapse
|
3
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
4
|
Movileanu L. Watching single proteins using engineered nanopores. Protein Pept Lett 2014; 21:235-46. [PMID: 24370252 PMCID: PMC3924890 DOI: 10.2174/09298665113209990078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/03/2012] [Accepted: 11/10/2012] [Indexed: 12/22/2022]
Abstract
Recent studies in the area of single-molecule detection of proteins with nanopores show a great promise in fundamental science, bionanotechnology and proteomics. In this mini-review, I discuss a comprehensive array of examinations of protein detection and characterization using protein and solid-state nanopores. These investigations demonstrate the power of the single-molecule nanopore measurements to reveal a broad range of functional, structural, biochemical and biophysical features of proteins, such as their backbone flexibility, enzymatic activity, binding affinity as well as their concentration, size and folding state. Engineered nanopores in organic materials and in inorganic membranes coupled with surface modification and protein engineering might provide a new generation of sensing devices for molecular biomedical diagnostics.
Collapse
Affiliation(s)
- Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA.
| |
Collapse
|
5
|
Gessmann D, Flinner N, Pfannstiel J, Schlösinger A, Schleiff E, Nussberger S, Mirus O. Structural elements of the mitochondrial preprotein-conducting channel Tom40 dissolved by bioinformatics and mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1647-57. [DOI: 10.1016/j.bbabio.2011.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 11/27/2022]
|
6
|
Peixoto PM, Dejean LM, Kinnally KW. The therapeutic potential of mitochondrial channels in cancer, ischemia-reperfusion injury, and neurodegeneration. Mitochondrion 2011; 12:14-23. [PMID: 21406252 DOI: 10.1016/j.mito.2011.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/23/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Mitochondria communicate with the rest of the cell through channels located in their inner and outer membranes. Most of the time, the message is encoded by the flow of anions and cations e.g., through VDAC and PTP, respectively. However, proteins are also both imported and exported across the mitochondrial membranes e.g., through TOM and MAC, respectively. Transport through mitochondrial channels is exquisitely regulated and controls a myriad of processes; from energy production to cell death. Here, we examine the role of some of the mitochondrial channels involved in neurodegeneration, ischemia-reperfusion injury and cancer in the context of their potential as therapeutic targets.
Collapse
Affiliation(s)
- Pablo M Peixoto
- New York University, College of Dentistry, 345 East 24th Street, New York, NY 10010, United States
| | | | | |
Collapse
|
7
|
Peixoto PM, Ryu SY, Kinnally KW. Mitochondrial ion channels as therapeutic targets. FEBS Lett 2010; 584:2142-52. [PMID: 20178788 PMCID: PMC2872129 DOI: 10.1016/j.febslet.2010.02.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/31/2022]
Abstract
The study of mitochondrial ion channels changed our perception of these double-wrapped organelles from being just the power house of a cell to the guardian of a cell's fate. Mitochondria communicate with the cell through these special channels. Most of the time, the message is encoded by ion flow across the mitochondrial outer and inner membranes. Potassium, sodium, calcium, protons, nucleotides, and proteins traverse the mitochondrial membranes in an exquisitely regulated manner to control a myriad of processes, from respiration and mitochondrial morphology to cell proliferation and cell death. This review is an update on both well established and putative mitochondrial channels regarding their composition, function, regulation, and therapeutic potential.
Collapse
Affiliation(s)
| | - Shin-Young Ryu
- New York University College of Dentistry, New York, NY, 10002
| | | |
Collapse
|
8
|
Zoratti M, De Marchi U, Biasutto L, Szabò I. Electrophysiology clarifies the megariddles of the mitochondrial permeability transition pore. FEBS Lett 2010; 584:1997-2004. [PMID: 20080089 DOI: 10.1016/j.febslet.2010.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 12/18/2022]
Abstract
After a brief review of the early history of mitochondrial electrophysiology, the contribution of this approach to the study of the mitochondrial permeability transition (MPT) is recapitulated. It has for example provided evidence for a dimeric nature of the MPT pore, allowed the distinction between two levels of control of its activity, and underscored the relevance of redox events for the phenomenon. Single-channel recording provides a means to finally solve the riddle of the biochemical entity underlying it by comparing the characteristics of the pore with those of channels formed by candidate molecules or complexes. The possibility that this entity may be the protein import machinery of the inner mitochondrial membrane is emphasized.
Collapse
|
9
|
Poynor M, Eckert R, Nussberger S. Dynamics of the preprotein translocation channel of the outer membrane of mitochondria. Biophys J 2008; 95:1511-22. [PMID: 18456827 PMCID: PMC2479589 DOI: 10.1529/biophysj.108.131003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 04/07/2008] [Indexed: 11/18/2022] Open
Abstract
The protein translocase of the outer mitochondrial membrane (TOM) serves as the main entry site for virtually all mitochondrial proteins. Like many other protein translocases it also has an ion channel activity that can be used to study the dynamical properties of this supramolecular complex. We have purified TOM core complex and Tom40, the main pore forming subunit, from mitochondria of the filamentous fungus Neurospora crassa and incorporated them into planar lipid bilayers. We then examined their single channel properties to provide a detailed description of the conformational dynamics of this channel in the absence of its protein substrate. For isolated TOM core complex we have found at least six conductance states. Transitions between these states were voltage-dependent with a bell-shaped open probability distribution and distinct kinetics depending on the polarity of the applied voltage. The states with the largest conductance followed an Ohmic I/V characteristic consistent with a large cylindrical pore with very little interaction with the permeating ions. For the lower conductance states, however, we have observed inverted S-shaped nonlinear current-voltage curves reminiscent to those of much narrower pores where the permeating ions have to surmount an electrostatic energy barrier. At low voltages (<+/-70 mV), purified Tom40 protein did not show any transitions between its conductance states. Prolonged exposure to higher voltages induced similar gating behavior to what we observed for TOM core complex. This effect was time-dependent and reversible, indicating that Tom40 forms not only the pore but also contains the "gating machinery" of the complex. However, for proper functioning, additional proteins (Tom22, Tom7, Tom6, and Tom5) are required that act as a modulator of the pore dynamics by significantly reducing the energy barrier between different conformational states.
Collapse
Affiliation(s)
- Melissa Poynor
- Abteilung Biophysik, Biologisches Institut, Universität Stuttgart, Stuttgart, Germany
| | | | | |
Collapse
|
10
|
Abstract
In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area.
Collapse
Affiliation(s)
- Brian O'Rourke
- Institute of Molecular Cardiobiology, Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| |
Collapse
|
11
|
Abstract
Over 4 decades ago, microelectrode studies of in situ nuclei showed that, under certain conditions, the nuclear envelope (NE) behaves as a barrier opposing the nucleocytoplasmic flow of physiological ions. As the nuclear pore complexes (NPCs) of the NE are the only pathways for direct nucleocytoplasmic flow, those experiments implied that the NPCs are capable of restricting ion flow. These early studies validated electrophysiology as a useful approach to quantify some of the mechanisms by which NPCs mediate gene activity and expression. Since electron microscopy (EM) and other non-electrophysiological investigations, showed that the NPC lumen is a nanochannel, the opinion prevailed that the NPC could not oppose the flow of ions and, therefore, that electrophysiological observations resulted from technical artifacts. Consequently, the initial enthusiasm with nuclear electrophysiology faded out in less than a decade. In 1990, nuclear electrophysiology was revisited with patch-clamp, the most powerful electrophysiological technique to date. Patch-clamp has consistently demonstrated that the NE has intrinsic ion channel activity. Direct demonstrations of the NPC on-off ion channel gating behavior were published for artificial conditions in 1995 and for intact living nuclei in 2002. This on-off switching/gating behavior can be interpreted in terms of a metastable energy barrier. In the hope of advancing nuclear electrophysiology, and to complement the other papers contained in this special issue of the journal, here I review some of the main technical, experimental, and theoretical issues of the field, with special focus on NPCs.
Collapse
Affiliation(s)
- José Omar Bustamante
- The Nuclear Physiology Lab and The Nanobiotechnology Group, The Millenium Institute of Nanosciences, The South-American Network of Nanobiotechnology, Federal University of Sergipe, Department of Physics, Brazil.
| |
Collapse
|
12
|
Grigoriev SM, Muro C, Dejean LM, Campo ML, Martinez-Caballero S, Kinnally KW. Electrophysiological approaches to the study of protein translocation in mitochondria. ACTA ACUST UNITED AC 2004; 238:227-74. [PMID: 15364200 DOI: 10.1016/s0074-7696(04)38005-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Electrophysiological techniques have been integral to our understanding of protein translocation across various membranes, and, in particular, the mitochondrial inner and outer membranes. Descriptions of various methodologies (for example, patch clamp, planar bilayers, and tip dip, and their past and potential contributions) are detailed within. The activity of protein import channels of native mitochondrial inner and outer membranes can be studied by directly patch clamping mitochondria and mitoplasts (mitochondria stripped of their outer membrane by French pressing) from various genetically manipulated strains of yeast and mammalian tissue cultured cells. The channel activities of TOM, TIM23, and TIM22 complexes are compared with those reconstituted in proteoliposomes and with those of the recombinant proteins Tom40p, Tim23p, and Tim22p, which play major roles in protein translocation. Studies of the mechanism(s) and the role of channels in protein translocation in mitochondria are prototypes, as the same principles are likely followed in all biological membranes including the endoplasmic reticulum and chloroplasts. The ability to apply electrophysiological techniques to these channels is now allowing investigations into the role of mitochondria in diverse fields such as neurotransmitter release, long-term potentiation, and apoptosis.
Collapse
Affiliation(s)
- Sergey M Grigoriev
- College of Dentistry, Department of Basic Sciences, New York University, 345 East 24th Street, New York, New York 10010, USA
| | | | | | | | | | | |
Collapse
|
13
|
Muro C, Grigoriev SM, Pietkiewicz D, Kinnally KW, Campo ML. Comparison of the TIM and TOM channel activities of the mitochondrial protein import complexes. Biophys J 2003; 84:2981-9. [PMID: 12719229 PMCID: PMC1302860 DOI: 10.1016/s0006-3495(03)70024-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Water-filled channels are central to the process of translocating proteins since they provide aqueous pathways through the hydrophobic environment of membranes. The Tom and Tim complexes translocate precursors across the mitochondrial outer and inner membranes, respectively, and contain channels referred to as TOM and TIM (previously called PSC and MCC). In this study, little differences were revealed from a direct comparison of the single channel properties of the TOM and TIM channels of yeast mitochondria. As they perform similar functions in translocating proteins across membranes, it is not surprising that both channels are high conductance, voltage-dependent channels that are slightly cation selective. Reconstituted TIM and TOM channel activities are not modified by deletion of the outer membrane channel VDAC, but are similarly affected by signal sequence peptides.
Collapse
Affiliation(s)
- Concepción Muro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, 10071 Cáceres, Spain
| | | | | | | | | |
Collapse
|
14
|
Pfanner N, Chacinska A. The mitochondrial import machinery: preprotein-conducting channels with binding sites for presequences. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:15-24. [PMID: 12191764 DOI: 10.1016/s0167-4889(02)00260-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mitochondrial preproteins with amino-terminal presequences must cross two membranes to reach the matrix of the organelle. Both outer and inner membranes contain hydrophilic high-conductance channels that are responsible for selective translocation of preproteins. The channels are embedded in dynamic protein complexes, the TOM complex of the outer membrane and the TIM23 complex of the inner membrane. Both channel-forming proteins, Tom40 and Tim23, carry specific binding sites for presequences, but differ in their pore size and response to a membrane potential. Studies with the TOM machinery show that other subunits of the translocase complex also provide specific binding sites for preproteins, modulate the channel activity and are critical for assembly of the channel.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104, Freiburg Germany.
| | | |
Collapse
|
15
|
Antos N, Budzińska M, Kmita H. An interplay between the TOM complex and porin isoforms in the yeast Saccharomyces cerevisiae mitochondria. FEBS Lett 2001; 500:12-6. [PMID: 11434918 DOI: 10.1016/s0014-5793(01)02575-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outer mitochondrial membrane of Saccharomyces cerevisiae contains two isoforms of mitochondrial porin, known also as the voltage-dependent anion channel. The isoform termed here porin1 displays channel-forming activity enabling metabolite transport whereas the second one, termed here porin2, does not form a channel and its function is still not clear. We have shown recently that in the absence of porin1, the channel within the protein import machinery (the TOM complex) is essential for metabolite transport across the outer membrane [Kmita and Budzińska, Biochim. Biophys. Acta 1509 (2000) 6044-6050]. Here, we report that the TOM complex channel may also serve as a supplementary pathway for metabolites in the presence of porin1 when the permeability of the latter is limited and the role of the TOM complex seems to increase when porin2 is depleted.
Collapse
Affiliation(s)
- N Antos
- Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Adam Mickiewicz University, Fredry 10, 61-701 Poznan, Poland
| | | | | |
Collapse
|
16
|
Antos N, Stobienia O, Budzińska M, Kmita H. Under conditions of insufficient permeability of VDAC1, external NADH may use the TOM complex channel to cross the outer membrane of Saccharomyces cerevisiae mitochondria. J Bioenerg Biomembr 2001; 33:119-26. [PMID: 11456217 DOI: 10.1023/a:1010748431000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thus far, only three channel-forming activities have been identified in the outer membrane of the yeast Saccharomyces cerevisiae mitochondria. Two of them, namely the TOM complex channel (translocase of the outer membrane) and the PSC (peptide-sensitive channel) participate in protein translocation and are probably identical, whereas a channel-forming protein called VDAC (voltage-dependent anion channel) serves as the major pathway for metabolites. The VDAC is present in two isoforms (VDAC1 and VDAC2) of which only VDAC1 has been shown to display channel-forming activity. Moreover, the permeability of VDAC1 has been reported to be limited in uncoupled mitochondria of S. cerevisiae. The presented data indicate that in S. cerevisiae-uncoupled mitochondria, external NADH, applied at higher concentrations (above 50 nmoles per 0.1 mg of mitochondrial protein), may use the TOM complex channel, besides VDAC1, to cross the outer membrane. Thus, the permeability of VDAC1 could be a limiting step in transport of external NADH across the outer membrane and might be supplemented by the TOM complex channel.
Collapse
Affiliation(s)
- N Antos
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Poznan University, Poland
| | | | | | | |
Collapse
|
17
|
Abstract
Eukaryotic chromosomes are confined to the nucleus, which is separated from the rest of the cell by two concentric membranes known as the nuclear envelope (NE). The NE is punctuated by holes known as nuclear pore complexes (NPCs), which provide the main pathway for transport of cellular material across the nuclear-cytoplasmic boundary. The single NPC is a complicated octameric structure containing more than 100 proteins called nucleoporins. NPCs function as transport machineries for inorganic ions and macromolecules. The most prominent feature of an individual NPC is a large central channel, ~7 nm in width and 50 nm in length. NPCs exhibit high morphological and functional plasticity, adjusting shape to function. Macromolecules ranging from 1 to >100 kDa travel through the central channel into (and out of) the nucleoplasm. Inorganic ions have additional pathways for communication between cytosol and nucleus. NE can turn from a simple sieve that separates two compartments by a given pore size to a smart barrier that adjusts its permeabiltiy to the metabolic demands of the cell. Early microelectrode work characterizes the NE as a membrane barrier of highly variable permeability, indicating that NPCs are under regulatory control. Electrical voltage across the NE is explained as the result of electrical charge separation due to selective barrier permeability and unequal distribution of charged macromolecules across the NE. Patch-clamp work discovers NE ion channel activity associated with NPC function. From comparison of early microelectrode work with patch-clamp data and late results obtained by the nuclear hourglass technique, it is concluded that NPCs are well-controlled supramolecular structures that mediate transport of macromolecules and small ions by separate physical pathways, the large central channel and the small peripheral channels, respectively. Electrical properties of the two pathways are still unclear but could have great impact on the understanding of signal transfer across NE and gene expression.
Collapse
Affiliation(s)
- M Mazzanti
- Dipartmento di Biologia Cellulare e dello Sviluppo, Università "la Sapienza," Rome, Italy
| | | | | |
Collapse
|
18
|
Kmita H, Budzińska M. Involvement of the TOM complex in external NADH transport into yeast mitochondria depleted of mitochondrial porin1. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:86-94. [PMID: 11118520 DOI: 10.1016/s0005-2736(00)00284-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The protein(s) responsible for metabolite transport through the outer membrane of the yeast Saccharomyces cerevisiae mitochondria depleted of mitochondrial porin (also known as voltage-dependent anion selective channel), termed here porin1, is (are) still unidentified. It is postulated that the transport may be supported by the protein import machinery of the outer membrane, the TOM complex (translocase of the outer membrane). We demonstrate here that in the absence of functional porin1, the blockage of the TOM complex by the fusion protein termed pb(2)-DHFR (consisting of the first 167 amino acids of yeast cytochrome b(2) preprotein connected to mouse dihydrofolate reductase) limits the access of external NADH to mitochondria. It was measured by the ability of the blockage to inhibit external NADH oxidation by the proper dehydrogenase located at the outer surface of the inner membrane. The inhibition depends on external NADH concentration and increases with decreasing amounts of the substrate. In the presence of 1 microg of pb(2)-DHFR per 50 microg of mitochondrial protein almost quantitative inhibition was observed when external NADH was applied at the concentration of 70 nmol per mg of mitochondrial protein. On the other hand, external NADH decreases the levels of pb(2)-DHFR binding at the trans site of the TOM complex in porin1-depleted mitochondria in a concentration-dependent fashion. Our data define an important role of the TOM complex in the transport of external NADH across the outer membrane of porin1-depleted mitochondria.
Collapse
Affiliation(s)
- H Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Poznan University, Fredry 10, 61-701, Poznan, Poland.
| | | |
Collapse
|
19
|
Schleiff E. Signals and receptors--the translocation machinery on the mitochondrial surface. J Bioenerg Biomembr 2000; 32:55-66. [PMID: 11768763 DOI: 10.1023/a:1005512412404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Most proteins involved in mitochondrial biogenesis are encoded by the genome of the nucleus. They are synthesized in the cytosol and have to be transported toward and, subsequently, imported into the organelle. This targeting and import process is initiated by the specific mitochondrial targeting signal, which differs pending on the final localization of the protein. The preprotein will be recognized by cytosolic proteins, which function in transport toward the mitochondria and in maintaining the import competent state of the preprotein. The precursor will be transferred onto a multicomponent complex on the outer mitochondrial membrane, formed by receptor proteins and the general insertion pore (GIP). Some proteins are directly sorted into the outer membrane whereas the majority will be transported over the outer membrane through the import channel followed by further distribution of those proteins.
Collapse
Affiliation(s)
- E Schleiff
- Department of Biochemistry, McGill University, Montreal, Canada.
| |
Collapse
|
20
|
Rivera IL, Shore GC, Schleiff E. Cloning and characterization of a 35-kDa mouse mitochondrial outer membrane protein MOM35 with high homology to Tom40. J Bioenerg Biomembr 2000; 32:111-21. [PMID: 11768756 DOI: 10.1023/a:1005524815130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have cloned a 35-kDa protein from a mouse cDNA library with a 25% overall amino acid identity to yTom40 and 27% identity to nTom40. This homolog toTom40 was named MOM35. It contains two possible start codons 36 amino acids apart from each other. Both the long and the short version of MOM35 can be imported in vitro into mouse mitochondria. The identified protein is imported into the outer mitochondrial membrane and comprises a trypsin-resistance pattern similar to that of nTom40. Tom40 of N. crassa, S. cerevisiae, and the protein identified herein contains a highly conserved region with possible physiological importance. Subsequent investigation has revealed that this region interacts specifically in vitro with preproteins proposed to be imported by a Tom40-dependent pathway.
Collapse
Affiliation(s)
- I L Rivera
- Department of Biochemistry, McGill University, Montreal Quebec, Canada
| | | | | |
Collapse
|
21
|
Kinnally KW, Muro C, Campo ML. MCC and PSC, the putative protein import channels of mitochondria. J Bioenerg Biomembr 2000; 32:47-54. [PMID: 11768761 DOI: 10.1023/a:1005560328334] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
All but a small fraction of the hundreds of proteins in a mitochondrion are synthesized in the cytoplasm and imported into the organelle. Water-filled channels are integral to the process of translocating proteins since channels can provide an aqueous pathway through the hydrophobic environment of the membrane. The MCC (multiple conductance channel) and PSC (peptide-sensitive channel) are two high-conductance channels previously identified in electrophysiological studies of mitochondrial membranes. MCC and PSC are the putative pores of the import complexes of the inner and outer membranes, respectively. The genetic, biochemical, and biophysical evidence regarding these assignments are summarized herein. These findings support the identification of MCC and PSC as the protein import channels of mitochondria.
Collapse
Affiliation(s)
- K W Kinnally
- Division of Molecular Medicine, Wadsworth Center, Albany, New York 12201-0509, USA
| | | | | |
Collapse
|
22
|
Jonas EA, Buchanan J, Kaczmarek LK. Prolonged activation of mitochondrial conductances during synaptic transmission. Science 1999; 286:1347-50. [PMID: 10558987 DOI: 10.1126/science.286.5443.1347] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although ion channels have been detected in mitochondria, scientists have not been able to record ion transport in mitochondria of intact cells. A variation of the patch clamp technique was used to record ion channel activity from intracellular organelles in the presynaptic terminal of the squid. Electron microscopy indicated that mitochondria are numerous in this terminal and are the only organelles compatible with the tips of the pipettes. Before synaptic stimulation, channel activity was infrequent and its conductance was small, although large conductances ( approximately 0.5 to 2.5 nanosiemens) could be detected occasionally. During a train of action potentials, the conductance of the mitochondrial membrane increased up to 60-fold. The conductance increased after a delay of several hundred milliseconds and continued to increase after stimulation had stopped. Recovery occurred over tens of seconds.
Collapse
Affiliation(s)
- E A Jonas
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
23
|
Tremblais K, Oliver L, Juin P, Le Cabellec TM, Meflah K, Vallette FM. The C-terminus of bax is not a membrane addressing/anchoring signal. Biochem Biophys Res Commun 1999; 260:582-91. [PMID: 10403809 DOI: 10.1006/bbrc.1999.0904] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested that BCL-2 family members associate with certain organelles through their hydrophobic C-terminus which in the case of bcl-2, appears to play a key role in the regulation of apoptosis. We have investigated the association of bax with microsomal, nuclear and mitochondrial membranes using a cell-free system and found, contrary to bcl-2, that bax binds poorly to these organelles. Deletion of the C-terminal of bax (baxDeltaC) or exchanging the C-terminal ends of bax and bcl-XL suggests that the bax C-terminus is not an addressing/anchoring signal. In agreement with this observation, HL-60 cells transfected with either bax or baxDeltaC show no difference in sensitivity to an apoptotic signal. In the cell-free system, at low pH, bax becomes associated with mitochondria after a change of conformation, a result consistant with its structural homology with certain bacterial toxins. In HL-60 cells, as observed in the cell-free system, bax acquired a protease resistant conformation upon its translocation from the cytosol to the mitochondria after the induction of apoptosis.
Collapse
Affiliation(s)
- K Tremblais
- Unité INSERM 419, 9 Quai Moncousu, Nantes Cedex 01, 44035, France
| | | | | | | | | | | |
Collapse
|
24
|
Künkele KP, Juin P, Pompa C, Nargang FE, Henry JP, Neupert W, Lill R, Thieffry M. The isolated complex of the translocase of the outer membrane of mitochondria. Characterization of the cation-selective and voltage-gated preprotein-conducting pore. J Biol Chem 1998; 273:31032-9. [PMID: 9813001 DOI: 10.1074/jbc.273.47.31032] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complex of the translocase mitochondrial outer membrane (TOM), mediates recognition, unfolding, and translocation of preproteins. We have used a combination of biochemical and electrophysiological methods to study the properties of the preprotein-conducting pore of the purified TOM complex. The pore is cation-selective and voltage-gated. It shows three main conductance levels with characteristic slow and fast kinetics transitions to states of lower conductance following application of transmembrane voltages. These electrical properties distinguish it from the mitochondrial voltage-dependent anion channel (porin) and are identical to those of the previously described peptide-sensitive channel. Binding of antibodies to the C terminus of Tom40 on the intermembrane space side of the outer membrane modifies the channel properties and allows determination of the orientation of the channel within the lipid bilayer. Mitochondrial presequence peptides specifically interact with the pore and decrease the ion flow through the channel in a voltage-dependent manner. We propose that the presequence-induced closures of the pore are related to structural alterations of the TOM complex observed during the various stages of preprotein movement across the mitochondrial outer membrane.
Collapse
Affiliation(s)
- K P Künkele
- Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie der Universität München, Goethestrasse 33, 80336 Munich, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pavlov PF, Glaser E. Inhibition of protein import into mitochondria by amphiphilic cations: potential targets and mechanism of action. Biochem Biophys Res Commun 1998; 252:84-91. [PMID: 9813150 DOI: 10.1006/bbrc.1998.9590] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this paper we describe for the first time the inhibitory effect of three amphiphilic cations, trifluoperazine, propranolol and dibucaine on mitochondrial protein import. The amphiphilic cations did not affect binding of mitochondrial precursor proteins to mitochondria. Import into mitoplasts was affected in a similar manner to intact mitochondria, indicating that the protein import machinery of the inner membrane of mitochondria was responsible for the observed effect. At concentrations which completely inhibited protein import, the amphiphilic cations did not affect the membrane potential (DeltaPsi) across the inner membrane. The inhibitory potency of amphiphilic cations reflects their lipid/water partition coefficient and relatively high concentrations of the drugs were required for complete inhibition, hence we propose that the mechanism of protein import inhibition by amphiphilic cations is due to membrane perturbing effects. We discuss the implications of our findings in view of the possible connection between various inner mitochondrial membrane channels and the protein import pore.
Collapse
Affiliation(s)
- P F Pavlov
- Arrhenius Laboratory for Natural Sciences, Stockholm University, Stockholm, 10691, Sweden
| | | |
Collapse
|
26
|
Hill K, Model K, Ryan MT, Dietmeier K, Martin F, Wagner R, Pfanner N. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins [see comment]. Nature 1998; 395:516-21. [PMID: 9774109 DOI: 10.1038/26780] [Citation(s) in RCA: 381] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mitochondrial outer membrane contains machinery for the import of preproteins encoded by nuclear genes. Eight different Tom (translocase of outer membrane) proteins have been identified that function as receptors and/or are related to a hypothetical general import pore. Many mitochondrial membrane channel activities have been described, including one related to Tim23 of the inner-membrane protein-import system; however, the pore-forming subunit(s) of the Tom machinery have not been identified until now. Here we describe the expression and functional reconstitution of Tom40, an integral membrane protein with mainly beta-sheet structure. Tom40 forms a cation-selective high-conductance channel that specifically binds to and transports mitochondrial-targeting sequences added to the cis side of the membrane. We conclude that Tom40 is the pore-forming subunit of the mitochondrial general import pore and that it constitutes a hydrophilic, approximately 22 A wide channel for the import of preproteins.
Collapse
Affiliation(s)
- K Hill
- Biophysik, Universität Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Künkele KP, Heins S, Dembowski M, Nargang FE, Benz R, Thieffry M, Walz J, Lill R, Nussberger S, Neupert W. The preprotein translocation channel of the outer membrane of mitochondria. Cell 1998; 93:1009-19. [PMID: 9635430 DOI: 10.1016/s0092-8674(00)81206-4] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The preprotein translocase of the outer membrane of mitochondria (TOM complex) facilitates the recognition, insertion, and translocation of nuclear-encoded mitochondrial preproteins. We have purified the TOM complex from Neurospora crassa and analyzed its composition and functional properties. The TOM complex contains a cation-selective high-conductance channel. Upon reconstitution into liposomes, it mediates integration of proteins into and translocation across the lipid bilayer. TOM complex particles have a diameter of about 138 A, as revealed by electron microscopy and image analysis; they contain two or three centers of stain-filled openings, which we interpret as pores with an apparent diameter of about 20 A. We conclude that the structure reported here represents the protein-conducting channel of the mitochondrial outer membrane.
Collapse
Affiliation(s)
- K P Künkele
- Institut für Physiologische Chemie, Physikalische Biochemie, und Zellbiologie der Universität München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Teter SA, Theg SM. Energy-transducing thylakoid membranes remain highly impermeable to ions during protein translocation. Proc Natl Acad Sci U S A 1998; 95:1590-4. [PMID: 9465060 PMCID: PMC19107 DOI: 10.1073/pnas.95.4.1590] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We investigated the operation of a posttranslational protein translocation pathway to determine whether ions are excluded from the translocase during protein transport. The membrane capacitance during protein translocation across chloroplast thylakoid membranes was monitored via electric-field-indicating carotenoid electrochromic bandshift measurements. Evidence is presented that shows that the membrane ion conductance is not increased during the complete cycle of binding, transport, and substrate release by the DeltapH-dependent translocase; i.e., the membrane remains ion-tight during protein translocation. We further demonstrate that a synthetic targeting peptide that directs proteins across this membrane does not gate translocation pores. We conclude that protein transport across the thylakoid membrane does not compromise its ability to maintain ion gradients and is, thus, unlikely to affect its functions in energy transduction.
Collapse
Affiliation(s)
- S A Teter
- Division of Biological Sciences, Section of Plant Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|