1
|
Boudouaia-Ouali A, Dali-Sahi M. Alpha T-catenin: a crucial tumor suppressor in cancer pathogenesis. J Mol Histol 2024; 55:655-660. [PMID: 39083160 DOI: 10.1007/s10735-024-10232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/21/2024] [Indexed: 10/10/2024]
Abstract
Alpha T-catenin has recently been identified as a crucial tumor suppressor in various cancer types, with roles that go beyond just providing structural support in adherens junctions. This review brings together recent findings on alpha T-catenin's important involvement in key signaling pathways related to cancer progression. We present strong evidence of its regulatory role in Wnt signaling, a pathway often disrupted in colorectal cancer, and explain how it inhibits cell proliferation and tumor growth. We also discuss the significant downregulation of alpha T-catenin in colorectal cancers and its potential as a prognostic marker. Moreover, this review looks at how increasing alpha T-catenin levels can reduce tumor growth and spread, suggesting new therapeutic strategies. Additionally, we reveal alpha T-catenin's unexpected impact on NF-κB signaling in basal E-cadherin-negative breast cancer, expanding its importance across different cancer types. By bringing these findings together, we provide a thorough understanding of alpha T-catenin's tumor-suppressing actions, setting the stage for new targeted therapies and diagnostic tools in cancer treatment.
Collapse
Affiliation(s)
| | - Majda Dali-Sahi
- Department of Biology, University of Tlemcen, 13000, Tlemcen, Algeria
- Analytical Chemistry and Electrochemistry Laboratory, University of Tlemcen, 13000, Tlemcen, Algeria
| |
Collapse
|
2
|
Wang J, Ma Y, Li T, Li J, Yang X, Hua G, Cai G, Zhang H, Liu Z, Wu K, Deng X. MiR-199a-3p Regulates the PTPRF/β-Catenin Axis in Hair Follicle Development: Insights into the Pathogenic Mechanism of Alopecia Areata. Int J Mol Sci 2023; 24:17632. [PMID: 38139460 PMCID: PMC10743674 DOI: 10.3390/ijms242417632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Alopecia areata is an autoimmune disease characterized by the immune system attacking self hair follicles, mainly in the scalp. There is no complete cure, and the pathogenesis is still not fully understood. Here, sequencing of skin tissues collected from 1-month-old coarse- and fine-wool lambs identified miR-199a-3p as the only small RNA significantly overexpressed in the fine-wool group, suggesting a role in hair follicle development. MiR-199a-3p expression was concentrated in the dermal papillae cells of sheep hair follicles, along with enhanced β-catenin expression and the inhibition of PTPRF protein expression. We also successfully constructed a mouse model of alopecia areata by intracutaneous injection with an miR-199a-3p antagomir. Injection of the miR-199a-3p agomir resulted in hair growth and earlier anagen entry. Conversely, local injection with the miR-199a-3p antagomir resulted in suppressed hair growth at the injection site, upregulation of immune system-related genes, and downregulation of hair follicle development-related genes. In vivo and in vitro analyses demonstrated that miR-199a-3p regulates hair follicle development through the PTPRF/β-catenin axis. In conclusion, a mouse model of alopecia areata was successfully established by downregulation of a small RNA, suggesting the potential value of miR-199a-3p in the study of alopecia diseases. The regulatory role of miR-199a-3p in the PTPRF/β-catenin axis was confirmed, further demonstrating the link between alopecia areata and the Wnt-signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xuemei Deng
- Beijing Key Laboratory for Animal Genetic Improvement & State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (J.W.); (Y.M.); (T.L.); (J.L.); (X.Y.); (G.H.); (G.C.); (H.Z.); (Z.L.); (K.W.)
| |
Collapse
|
3
|
Kanadome T, Hoshino N, Nagai T, Yagi T, Matsuda T. Visualization of trans-interactions of a protocadherin-α between processes originating from single neurons. iScience 2023; 26:107238. [PMID: 37534169 PMCID: PMC10392085 DOI: 10.1016/j.isci.2023.107238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Clustered protocadherin (Pcdh), a cell adhesion protein, is involved in the self-recognition and non-self-discrimination of neurons by conferring diversity on the cell surface. Although the roles of Pcdh in neurons have been elucidated, it has been challenging to visualize its adhesion activity in neurons, which is a molecular function of Pcdh. Here, we present fluorescent indicators, named IPADs, which visualize the interaction of protocadherin-α4 isoform (α4). IPADs successfully visualize not only homophilic α4 trans-interactions, but also combinatorial homophilic interactions between cells. The reversible nature of IPADs overcomes a drawback of the split-GFP technique and allows for monitoring the dissociation of α4 trans-interactions. Specially designed IPADs for self-recognition are able to monitor the formation and disruption of α4 trans-interactions between processes originating from the same neurons. We expect that IPADs will be useful tools for obtaining spatiotemporal information on Pcdh interactions in neuronal self-recognition and non-self-discrimination processes.
Collapse
Affiliation(s)
- Takashi Kanadome
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Natsumi Hoshino
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| |
Collapse
|
4
|
Kanadome T, Hayashi K, Seto Y, Eiraku M, Nakajima K, Nagai T, Matsuda T. Development of intensiometric indicators for visualizing N-cadherin interaction across cells. Commun Biol 2022; 5:1065. [PMID: 36207396 PMCID: PMC9546846 DOI: 10.1038/s42003-022-04023-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
N-cadherin (NCad) is a classical cadherin that mediates cell–cell interactions in a Ca2+-dependent manner. NCad participates in various biological processes, from ontogenesis to higher brain functions, though the visualization of NCad interactions in living cells remains limited. Here, we present intensiometric NCad interaction indicators, named INCIDERs, that utilize dimerization-dependent fluorescent proteins. INCIDERs successfully visualize reversible NCad interactions across cells. Compared to FRET-based indicators, INCIDERs have a ~70-fold higher signal contrast, enabling clear identification of NCad interactions. In primary neuronal cells, NCad interactions are visualized between closely apposed processes. Furthermore, visualization of NCad interaction at cell adhesion sites in dense cell populations is achieved by two-photon microscopy. INCIDERs are useful tools in the spatiotemporal investigation of NCad interactions across cells; future research should evaluate the potential of INCIDERs in mapping complex three-dimensional architectures in multi-cellular systems. Intensiometric N-cadherin (NCad) interaction indicators, named INCIDERs, visualize reversible NCad-mediated cell-cell interactions.
Collapse
Affiliation(s)
- Takashi Kanadome
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.,Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan
| | - Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yusuke Seto
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8507, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan.
| |
Collapse
|
5
|
Duong CN, Brückner R, Schmitt M, Nottebaum AF, Braun LJ, Meyer Zu Brickwedde M, Ipe U, Vom Bruch H, Schöler HR, Trapani G, Trappmann B, Ebrahimkutty MP, Huveneers S, de Rooij J, Ishiyama N, Ikura M, Vestweber D. Force-induced changes of α-catenin conformation stabilize vascular junctions independently of vinculin. J Cell Sci 2021; 134:273834. [PMID: 34851405 PMCID: PMC8729784 DOI: 10.1242/jcs.259012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Cadherin-mediated cell adhesion requires anchoring via the β-catenin–α-catenin complex to the actin cytoskeleton, yet, α-catenin only binds F-actin weakly. A covalent fusion of VE-cadherin to α-catenin enhances actin anchorage in endothelial cells and strongly stabilizes endothelial junctions in vivo, blocking inflammatory responses. Here, we have analyzed the underlying mechanism. We found that VE-cadherin–α-catenin constitutively recruits the actin adaptor vinculin. However, removal of the vinculin-binding region of α-catenin did not impair the ability of VE-cadherin–α-catenin to enhance junction integrity. Searching for an alternative explanation for the junction-stabilizing mechanism, we found that an antibody-defined epitope, normally buried in a short α1-helix of the actin-binding domain (ABD) of α-catenin, is openly displayed in junctional VE-cadherin–α-catenin chimera. We found that this epitope became exposed in normal α-catenin upon triggering thrombin-induced tension across the VE-cadherin complex. These results suggest that the VE-cadherin–α-catenin chimera stabilizes endothelial junctions due to conformational changes in the ABD of α-catenin that support constitutive strong binding to actin. Summary: There are novel antibody epitopes at the actin-binding domain of α-catenin that correlate with high affinity binding and are exposed in junction-stabilizing VE-cadherin–α-catenin fusion proteins.
Collapse
Affiliation(s)
- Cao Nguyen Duong
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Randy Brückner
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Martina Schmitt
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Astrid F Nottebaum
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Laura J Braun
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Marika Meyer Zu Brickwedde
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Ute Ipe
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Hermann Vom Bruch
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Giuseppe Trapani
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Mirsana P Ebrahimkutty
- Institute of Medical Physics and Biophysics, University of Muenster, Muenster 48149, Germany
| | - Stephan Huveneers
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan de Rooij
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Noboru Ishiyama
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| |
Collapse
|
6
|
Development of FRET-based indicators for visualizing homophilic trans interaction of a clustered protocadherin. Sci Rep 2021; 11:22237. [PMID: 34782670 PMCID: PMC8593154 DOI: 10.1038/s41598-021-01481-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022] Open
Abstract
Clustered protocadherins (Pcdhs), which are cell adhesion molecules, play a fundamental role in self-recognition and non-self-discrimination by conferring diversity on the cell surface. Although systematic cell-based aggregation assays provide information regarding the binding properties of Pcdhs, direct visualization of Pcdh trans interactions across cells remains challenging. Here, we present Förster resonance energy transfer (FRET)-based indicators for directly visualizing Pcdh trans interactions. We developed the indicators by individually inserting FRET donor and acceptor fluorescent proteins (FPs) into the ectodomain of Pcdh molecules. They enabled successful visualization of specific trans interactions of Pcdh and revealed that the Pcdh trans interaction is highly sensitive to changes in extracellular Ca2+ levels. We expect that FRET-based indicators for visualizing Pcdh trans interactions will provide a new approach for investigating the roles of Pcdh in self-recognition and non-self-discrimination processes.
Collapse
|
7
|
Joutsen J, Da Silva AJ, Luoto JC, Budzynski MA, Nylund AS, de Thonel A, Concordet JP, Mezger V, Sabéran-Djoneidi D, Henriksson E, Sistonen L. Heat Shock Factor 2 Protects against Proteotoxicity by Maintaining Cell-Cell Adhesion. Cell Rep 2021; 30:583-597.e6. [PMID: 31940498 DOI: 10.1016/j.celrep.2019.12.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Maintenance of protein homeostasis, through inducible expression of molecular chaperones, is essential for cell survival under protein-damaging conditions. The expression and DNA-binding activity of heat shock factor 2 (HSF2), a member of the heat shock transcription factor family, increase upon exposure to prolonged proteotoxicity. Nevertheless, the specific roles of HSF2 and the global HSF2-dependent gene expression profile during sustained stress have remained unknown. Here, we found that HSF2 is critical for cell survival during prolonged proteotoxicity. Strikingly, our RNA sequencing (RNA-seq) analyses revealed that impaired viability of HSF2-deficient cells is not caused by inadequate induction of molecular chaperones but is due to marked downregulation of cadherin superfamily genes. We demonstrate that HSF2-dependent maintenance of cadherin-mediated cell-cell adhesion is required for protection against stress induced by proteasome inhibition. This study identifies HSF2 as a key regulator of cadherin superfamily genes and defines cell-cell adhesion as a determinant of proteotoxic stress resistance.
Collapse
Affiliation(s)
- Jenny Joutsen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Alejandro Jose Da Silva
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Jens Christian Luoto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Marek Andrzej Budzynski
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Anna Serafia Nylund
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Aurelie de Thonel
- CNRS, UMR 7216 "Epigenetic and Cell Fate," 75250 Paris Cedex 13, France; University of Paris Diderot, Sorbonne Paris Cité, 75250 Paris Cedex 13, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Valérie Mezger
- CNRS, UMR 7216 "Epigenetic and Cell Fate," 75250 Paris Cedex 13, France; University of Paris Diderot, Sorbonne Paris Cité, 75250 Paris Cedex 13, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Délara Sabéran-Djoneidi
- CNRS, UMR 7216 "Epigenetic and Cell Fate," 75250 Paris Cedex 13, France; University of Paris Diderot, Sorbonne Paris Cité, 75250 Paris Cedex 13, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Eva Henriksson
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.
| |
Collapse
|
8
|
Stahley SN, Basta LP, Sharan R, Devenport D. Celsr1 adhesive interactions mediate the asymmetric organization of planar polarity complexes. eLife 2021; 10:e62097. [PMID: 33529151 PMCID: PMC7857726 DOI: 10.7554/elife.62097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/23/2021] [Indexed: 12/31/2022] Open
Abstract
To orchestrate collective polarization across tissues, planar cell polarity (PCP) proteins localize asymmetrically to cell junctions, a conserved feature of PCP that requires the atypical cadherin Celsr1. We report that mouse Celsr1 engages in both trans- and cis-interactions, and organizes into dense and highly stable punctate assemblies. We provide evidence suggesting that PCP-mutant variant of Celsr1, Celsr1Crsh, selectively impairs lateral cis-interactions. Although Celsr1Crsh mediates cell adhesion in trans, it displays increased mobility, diminishes junctional enrichment, and fails to engage in homophilic adhesion with the wild-type protein, phenotypes that can be rescued by ectopic cis-dimerization. Using biochemical and super-resolution microscopy approaches, we show that although Celsr1Crsh physically interacts with PCP proteins Frizzled6 and Vangl2, it fails to organize these proteins into asymmetric junctional complexes. Our results suggest mammalian Celsr1 functions not only as a trans-adhesive homodimeric bridge, but also as an organizer of intercellular Frizzled6 and Vangl2 asymmetry through lateral, cis-interactions.
Collapse
Affiliation(s)
- Sara N Stahley
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Lena P Basta
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Rishabh Sharan
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Danelle Devenport
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
9
|
Pederick DT, Richards KL, Piltz SG, Kumar R, Mincheva-Tasheva S, Mandelstam SA, Dale RC, Scheffer IE, Gecz J, Petrou S, Hughes JN, Thomas PQ. Abnormal Cell Sorting Underlies the Unique X-Linked Inheritance of PCDH19 Epilepsy. Neuron 2019; 97:59-66.e5. [PMID: 29301106 DOI: 10.1016/j.neuron.2017.12.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/24/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022]
Abstract
X-linked diseases typically exhibit more severe phenotypes in males than females. In contrast, protocadherin 19 (PCDH19) mutations cause epilepsy in heterozygous females but spare hemizygous males. The cellular mechanism responsible for this unique pattern of X-linked inheritance is unknown. We show that PCDH19 contributes to adhesion specificity in a combinatorial manner such that mosaic expression of Pcdh19 in heterozygous female mice leads to striking sorting between cells expressing wild-type (WT) PCDH19 and null PCDH19 in the developing cortex, correlating with altered network activity. Complete deletion of PCDH19 in heterozygous mice abolishes abnormal cell sorting and restores normal network activity. Furthermore, we identify variable cortical malformations in PCDH19 epilepsy patients. Our results highlight the role of PCDH19 in determining cell adhesion affinities during cortical development and the way segregation of WT and null PCDH19 cells is associated with the unique X-linked inheritance of PCDH19 epilepsy.
Collapse
Affiliation(s)
- Daniel T Pederick
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kay L Richards
- Florey Institute of Neuroscience and Mental Health and Department of Medicine Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sandra G Piltz
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Raman Kumar
- School of Medicine and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Stefka Mincheva-Tasheva
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Simone A Mandelstam
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Radiology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Medical Imaging, Royal Children's Hospital, Florey Neurosciences Institute, Parkville, VIC 3052, Australia
| | - Russell C Dale
- Institute for Neuroscience and Muscle Research, University of Sydney, Sydney, NSW 2006, Australia
| | - Ingrid E Scheffer
- Florey Institute of Neuroscience and Mental Health and Department of Medicine Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia; The University of Melbourne, Austin Health and Royal Children's Hospital, Melbourne, VIC 3084, Australia
| | - Jozef Gecz
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; School of Medicine and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health and Department of Medicine Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - James N Hughes
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul Q Thomas
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; School of Medicine and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.
| |
Collapse
|
10
|
Bisogni AJ, Ghazanfar S, Williams EO, Marsh HM, Yang JYH, Lin DM. Tuning of delta-protocadherin adhesion through combinatorial diversity. eLife 2018; 7:e41050. [PMID: 30547884 PMCID: PMC6326727 DOI: 10.7554/elife.41050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
The delta-protocadherins (δ-Pcdhs) play key roles in neural development, and expression studies suggest they are expressed in combination within neurons. The extent of this combinatorial diversity, and how these combinations influence cell adhesion, is poorly understood. We show that individual mouse olfactory sensory neurons express 0-7 δ-Pcdhs. Despite this apparent combinatorial complexity, K562 cell aggregation assays revealed simple principles that mediate tuning of δ-Pcdh adhesion. Cells can vary the number of δ-Pcdhs expressed, the level of surface expression, and which δ-Pcdhs are expressed, as different members possess distinct apparent adhesive affinities. These principles contrast with those identified previously for the clustered protocadherins (cPcdhs), where the particular combination of cPcdhs expressed does not appear to be a critical factor. Despite these differences, we show δ-Pcdhs can modify cPcdh adhesion. Our studies show how intra- and interfamily interactions can greatly amplify the impact of this small subfamily on neuronal function.
Collapse
Affiliation(s)
- Adam J Bisogni
- Department of Biomedical SciencesCornell UniversityIthacaUnited States
| | - Shila Ghazanfar
- School of Mathematics and StatisticsThe University of SydneySydneyAustralia
| | - Eric O Williams
- Department of Biomedical SciencesCornell UniversityIthacaUnited States
- Department of Biology and ChemistryFitchburg State UniversityFitchburgUnited States
| | - Heather M Marsh
- Department of Biomedical SciencesCornell UniversityIthacaUnited States
| | - Jean YH Yang
- School of Mathematics and StatisticsThe University of SydneySydneyAustralia
| | - David M Lin
- Department of Biomedical SciencesCornell UniversityIthacaUnited States
| |
Collapse
|
11
|
Chiasson-MacKenzie C, McClatchey AI. Cell-Cell Contact and Receptor Tyrosine Kinase Signaling. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029215. [PMID: 28716887 DOI: 10.1101/cshperspect.a029215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The behavior of cells within tissues is governed by the activities of adhesion receptors that provide spatial cues and transmit forces through intercellular junctions, and by growth-factor receptors, particularly receptor tyrosine kinases (RTKs), that respond to biochemical signals from the environment. Coordination of these two activities is essential for the patterning and polarized migration of cells during morphogenesis and for homeostasis in mature tissues; loss of this coordination is a hallmark of developing cancer and driver of metastatic progression. Although much is known about the individual functions of adhesion and growth factor receptors, we have a surprisingly superficial understanding of the mechanisms by which their activities are coordinated.
Collapse
Affiliation(s)
- Christine Chiasson-MacKenzie
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Departments of Pathology, Charlestown, Massachusetts 02129
| | - Andrea I McClatchey
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Departments of Pathology, Charlestown, Massachusetts 02129
| |
Collapse
|
12
|
Li D, Lo W, Rudloff U. Merging perspectives: genotype-directed molecular therapy for hereditary diffuse gastric cancer (HDGC) and E-cadherin-EGFR crosstalk. Clin Transl Med 2018; 7:7. [PMID: 29468433 PMCID: PMC5821620 DOI: 10.1186/s40169-018-0184-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Hereditary diffuse gastric cancer is a cancer predisposition syndrome associated with germline mutations of the E-cadherin gene (CDH1; NM_004360). Male CDH1 germline mutation carriers have by the age of 80 years an estimated 70% cumulative incidence of gastric cancer, females of 56% for gastric and of 42% for lobular breast cancer. Metastatic HDGC has a poor prognosis which is worse than for sporadic gastric cancer. To date, there have been no treatment options described tailored to this molecular subtype of gastric cancer. Here we review recent differential drug screening and gene expression results in c.1380del CDH1-mutant HDGC cells which identified drug classes targeting PI3K (phosphoinositide 3-kinase), MEK (mitogen-activated protein kinase), FAK (focal adhesion kinase), PKC (protein kinase C), and TOPO2 (topoisomerase II) as selectively more effective in cells with defective CDH1 function. ERK1-ERK2 (extracellular signal regulated kinase) signaling measured as top enriched network in c.1380delA CDH1-mutant cells. We compared these findings to synthetic lethality and pharmacological screening results in isogenic CDH1-/- MCF10A mammary epithelial cells with and without CDH1 expression and current knowledge of E-cadherin/catenin-EGFR cross-talk, and suggest different rationales how loss of E-cadherin function activates PI3K, mTOR, EGFR, or FAK signaling. These leads represent molecularly selected treatment options tailored to the treatment of CDH1-deficient familial gastric cancer.
Collapse
Affiliation(s)
- Dandan Li
- Thoracic & Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Winifred Lo
- Thoracic & Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, MD, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Udo Rudloff
- Thoracic & Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
13
|
Stadler M, Scherzer M, Walter S, Holzner S, Pudelko K, Riedl A, Unger C, Kramer N, Weil B, Neesen J, Hengstschläger M, Dolznig H. Exclusion from spheroid formation identifies loss of essential cell-cell adhesion molecules in colon cancer cells. Sci Rep 2018; 8:1151. [PMID: 29348601 PMCID: PMC5773514 DOI: 10.1038/s41598-018-19384-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
Many cell lines derived from solid cancers can form spheroids, which recapitulate tumor cell clusters and are more representative of the in vivo situation than 2D cultures. During spheroid formation, a small proportion of a variety of different colon cancer cell lines did not integrate into the sphere and lost cell-cell adhesion properties. An enrichment protocol was developed to augment the proportion of these cells to 100% purity. The basis for the separation of spheroids from non-spheroid forming (NSF) cells is simple gravity-sedimentation. This protocol gives rise to sub-populations of colon cancer cells with stable loss of cell-cell adhesion. SW620 cells lacked E-cadherin, DLD-1 cells lost α-catenin and HCT116 cells lacked P-cadherin in the NSF state. Knockdown of these molecules in the corresponding spheroid-forming cells demonstrated that loss of the respective proteins were indeed responsible for the NSF phenotypes. Loss of the spheroid forming phenotype was associated with increased migration and invasion properties in all cell lines tested. Hence, we identified critical molecules involved in spheroid formation in different cancer cell lines. We present here a simple, powerful and broadly applicable method to generate new sublines of tumor cell lines to study loss of cell-cell adhesion in cancer progression.
Collapse
Affiliation(s)
- Mira Stadler
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090, Vienna, Austria.,Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martin Scherzer
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090, Vienna, Austria.,Karolinska Institutet, Solnavägen 1, 171 77, Solna, Sweden
| | - Stefanie Walter
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090, Vienna, Austria
| | - Silvio Holzner
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090, Vienna, Austria
| | - Karoline Pudelko
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090, Vienna, Austria
| | - Angelika Riedl
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090, Vienna, Austria.,Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria, Dr. Boehringer-Gasse 5-11, 1130, Vienna, Austria
| | - Christine Unger
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090, Vienna, Austria
| | - Nina Kramer
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090, Vienna, Austria
| | - Beatrix Weil
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090, Vienna, Austria
| | - Jürgen Neesen
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090, Vienna, Austria.
| |
Collapse
|
14
|
Beta-catenin and p53 expression in topographic compartments of colorectal cancer and its prognostic value following surgery. Ann Diagn Pathol 2017; 31:1-8. [DOI: 10.1016/j.anndiagpath.2017.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/18/2017] [Accepted: 05/23/2017] [Indexed: 01/02/2023]
|
15
|
Bianchini JM, Kitt KN, Gloerich M, Pokutta S, Weis WI, Nelson WJ. Reevaluating αE-catenin monomer and homodimer functions by characterizing E-cadherin/αE-catenin chimeras. J Cell Biol 2015; 210:1065-74. [PMID: 26416960 PMCID: PMC4586751 DOI: 10.1083/jcb.201411080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our results demonstrate that E-cadherin/αE-catenin chimeras homodimerize and do not mimic αE-catenin in the native CCC, and imply that both CCC-bound monomer and cytosolic homodimer αE-catenin are required for strong cell adhesion. As part of the E-cadherin–β-catenin–αE-catenin complex (CCC), mammalian αE-catenin binds F-actin weakly in the absence of force, whereas cytosolic αE-catenin forms a homodimer that interacts more strongly with F-actin. It has been concluded that cytosolic αE-catenin homodimer is not important for intercellular adhesion because E-cadherin/αE-catenin chimeras thought to mimic the CCC are sufficient to induce cell–cell adhesion. We show that, unlike αE-catenin in the CCC, these chimeras homodimerize, bind F-actin strongly, and inhibit the Arp2/3 complex, all of which are properties of the αE-catenin homodimer. To more accurately mimic the junctional CCC, we designed a constitutively monomeric chimera, and show that E-cadherin–dependent cell adhesion is weaker in cells expressing this chimera compared with cells in which αE-catenin homodimers are present. Our results demonstrate that E-cadherin/αE-catenin chimeras used previously do not mimic αE-catenin in the native CCC, and imply that both CCC-bound monomer and cytosolic homodimer αE-catenin are required for strong cell–cell adhesion.
Collapse
Affiliation(s)
| | - Khameeka N Kitt
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | - Sabine Pokutta
- Department of Structural Biology, Stanford University, Stanford, CA 94305
| | - William I Weis
- Department of Structural Biology, Stanford University, Stanford, CA 94305 Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, CA 94305 Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| |
Collapse
|
16
|
Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015; 2015:272858. [PMID: 26556953 PMCID: PMC4628659 DOI: 10.1155/2015/272858] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.
Collapse
|
17
|
Monga SP. β-Catenin Signaling and Roles in Liver Homeostasis, Injury, and Tumorigenesis. Gastroenterology 2015; 148:1294-310. [PMID: 25747274 PMCID: PMC4494085 DOI: 10.1053/j.gastro.2015.02.056] [Citation(s) in RCA: 498] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 12/11/2022]
Abstract
β-catenin (encoded by CTNNB1) is a subunit of the cell surface cadherin protein complex that acts as an intracellular signal transducer in the WNT signaling pathway; alterations in its activity have been associated with the development of hepatocellular carcinoma and other liver diseases. Other than WNT, additional signaling pathways also can converge at β-catenin. β-catenin also interacts with transcription factors such as T-cell factor, forkhead box protein O, and hypoxia inducible factor 1α to regulate the expression of target genes. We discuss the role of β-catenin in metabolic zonation of the adult liver. β-catenin also regulates the expression of genes that control metabolism of glucose, nutrients, and xenobiotics; alterations in its activity may contribute to the pathogenesis of nonalcoholic steatohepatitis. Alterations in β-catenin signaling may lead to activation of hepatic stellate cells, which is required for fibrosis. Many hepatic tumors such as hepatocellular adenomas, hepatocellular cancers, and hepatoblastomas have mutations in CTNNB1 that result in constitutive activation of β-catenin, so this molecule could be a therapeutic target. We discuss how alterations in β-catenin activity contribute to liver disease and how these might be used in diagnosis and prognosis, as well as in the development of therapeutics.
Collapse
Affiliation(s)
- Satdarshan Pal Monga
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
18
|
Pelissier-Rota MA, Chartier NT, Jacquier-Sarlin MR. Dynamic Regulation of Adherens Junctions: Implication in Cell Differentiation and Tumor Development. INTERCELLULAR COMMUNICATION IN CANCER 2015:53-149. [DOI: 10.1007/978-94-017-7380-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Xu JX, Lu TS, Li S, Wu Y, Ding L, Denker BM, Bonventre JV, Kong T. Polycystin-1 and Gα12 regulate the cleavage of E-cadherin in kidney epithelial cells. Physiol Genomics 2014; 47:24-32. [PMID: 25492927 DOI: 10.1152/physiolgenomics.00090.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaction of polycystin-1 (PC1) and Gα12 is important for development of kidney cysts in autosomal dominant polycystic kidney disease (ADPKD). The integrity of cell polarity and cell-cell adhesions (mainly E-cadherin-mediated adherens junction) is altered in the renal epithelial cells of ADPKD. However, the key signaling pathway for this alteration is not fully understood. Madin-Darby canine kidney (MDCK) cells maintain the normal integrity of epithelial cell polarity and adherens junctions. Here, we found that deletion of Pkd1 increased activation of Gα12, which then promoted the cystogenesis of MDCK cells. The morphology of these cells was altered after the activation of Gα12. By using liquid chromatography-mass spectrometry, we found several proteins that could be related this change in the extracellular milieu. E-cadherin was one of the most abundant peptides after active Gα12 was induced. Gα12 activation or Pkd1 deletion increased the shedding of E-cadherin, which was mediated via increased ADAM10 activity. The increased shedding of E-cadherin was blocked by knockdown of ADAM10 or specific ADAM10 inhibitor GI254023X. Pkd1 deletion or Gα12 activation also changed the distribution of E-cadherin in kidney epithelial cells and caused β-catenin to shift from cell membrane to nucleus. Finally, ADAM10 inhibitor, GI254023X, blocked the cystogenesis induced by PC1 knockdown or Gα12 activation in renal epithelial cells. Our results demonstrate that the E-cadherin/β-catenin signaling pathway is regulated by PC1 and Gα12 via ADAM10. Specific inhibition of this pathway, especially ADAM10 activity, could be a novel therapeutic regimen for ADPKD.
Collapse
Affiliation(s)
- Jen X Xu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tzong-Shi Lu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Suyan Li
- Division of Basic Neuroscience, McLean Hospital, Belmont, Massachusetts
| | - Yong Wu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lai Ding
- Harvard NeuroDiscovery Center, Boston, Massachusetts; and
| | - Bradley M Denker
- Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tianqing Kong
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts;
| |
Collapse
|
20
|
Sotomayor M, Gaudet R, Corey DP. Sorting out a promiscuous superfamily: towards cadherin connectomics. Trends Cell Biol 2014; 24:524-36. [PMID: 24794279 DOI: 10.1016/j.tcb.2014.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 12/21/2022]
Abstract
Members of the cadherin superfamily of proteins are involved in diverse biological processes such as morphogenesis, sound transduction, and neuronal connectivity. Key to cadherin function is their extracellular domain containing cadherin repeats, which can mediate interactions involved in adhesion and cell signaling. Recent cellular, biochemical, and structural studies have revealed that physical interaction among cadherins is more complex than originally thought. Here we review work on new cadherin complexes and discuss how the classification of the mammalian family can be used to search for additional cadherin-interacting partners. We also highlight some of the challenges in cadherin research; namely, the characterization of a cadherin connectome in biochemical and structural terms, as well as the elucidation of molecular mechanisms underlying the functional diversity of nonclassical cadherins in vivo.
Collapse
Affiliation(s)
- Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH 43210, USA.
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - David P Corey
- Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Similarities and differences in the regulation of leukocyte extravasation and vascular permeability. Semin Immunopathol 2014; 36:177-92. [PMID: 24638889 DOI: 10.1007/s00281-014-0419-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
Leukocyte extravasation is regulated and mediated by a multitude of adhesion and signaling molecules. Many of them enable the capturing and docking of leukocytes to the vessel wall. Others allow leukocytes to crawl on the apical surface of endothelial cells to appropriate sites of exit. While these steps are well understood and the adhesion molecules mediating these interactions are largely identified, a still growing number of adhesion receptors mediate the diapedesis process, the actual migration of leukocytes through the endothelial cell layer, and the underlying basement membrane. In most cases, it is not known which molecular processes they actually mediate, whether they enable the migration of leukocytes through the endothelial cell layer or whether they are involved in the destabilization of endothelial junctions. In addition, leukocytes are able to circumvent junctions and transcytose directly through the body of endothelial cells. While this latter route indeed exists, recent work has highlighted in vivo the junctional pathway as the prevalent way of leukocyte exit in various inflamed tissues. Recent work elucidating molecular mechanisms that regulate endothelial junctions and thereby leukocyte extravasation and vascular permeability will be discussed.
Collapse
|
22
|
Jeong YM, Park WJ, Kim MK, Baek KJ, Kwon NS, Yun HY, Kim DS. Leucine-rich glioma inactivated 3 promotes HaCaT keratinocyte migration. Wound Repair Regen 2014; 21:634-40. [PMID: 23815230 DOI: 10.1111/wrr.12066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 04/30/2013] [Indexed: 12/24/2022]
Abstract
Our finding that human skin expresses leucine-rich glioma inactivated 3 (LGI3) raises the question of the function of this cytokine in keratinocytes. We have shown that LGI3 stimulates human HaCaT keratinocyte migration without affecting viability or proliferation. Western blot analysis showed that LGI3 induced focal adhesion kinase activation, Akt phosphorylation, and glycogen synthase kinase 3β (GSK3β) phosphorylation in these cells. Using the scratch wound assay and a modified Boyden chamber, we found that LY294002, a selective phosphatidylinositol 3-kinase inhibitor, and LiCl, a selective GSK3β inhibitor, abolished LGI3-induced cell migration. We tested β-catenin levels after LGI3 treatment because the Akt-GSK3β pathway regulates β-catenin accumulation, and β-catenin promotes cell migration. LGI3 treatment increased β-catenin protein and nuclear localization, whereas LY294002 prevented LGI3-induced focal adhesion kinase and Akt activation as well as β-catenin accumulation. Overall, these data suggest that LGI3 stimulates HaCaT cell migration following β-catenin accumulation through the Akt pathway.
Collapse
Affiliation(s)
- Yun-Mi Jeong
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Fram S, King H, Sacks DB, Wells CM. A PAK6-IQGAP1 complex promotes disassembly of cell-cell adhesions. Cell Mol Life Sci 2013; 71:2759-73. [PMID: 24352566 PMCID: PMC4059965 DOI: 10.1007/s00018-013-1528-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 12/04/2022]
Abstract
p-21 activated 6 (PAK6), first identified as interacting with the androgen receptor (AR), is over-expressed in multiple cancer tissues and has been linked to the progression of prostate cancer, however little is known about PAK6 function in the absence of AR signaling. We report here that PAK6 is specifically required for carcinoma cell–cell dissociation downstream of hepatocyte growth factor (HGF) for both DU145 prostate cancer and HT29 colon cancer cells. Moreover, PAK6 overexpression can drive cells to escape from adhesive colonies in the absence of stimulation. We have localized PAK6 to cell–cell junctions and have detected a direct interaction between the kinase domain of PAK6 and the junctional protein IQGAP1. Co-expression of IQGAP1 and PAK6 increases cell colony escape and leads to elevated PAK6 activation. Further studies have identified a PAK6/E-cadherin/IQGAP1 complex downstream of HGF. Moreover, we find that β-catenin is also localized with PAK6 in cell–cell junctions and is a novel PAK6 substrate. We propose a unique role for PAK6, independent of AR signaling, where PAK6 drives junction disassembly during HGF-driven cell–cell dissociation via an IQGAP1/E-cadherin complex that leads to the phosphorylation of β-catenin and the disruption of cell–cell adhesions.
Collapse
Affiliation(s)
- Sally Fram
- Division of Cancer Studies, King's College London, New Hunts House, Guys Campus, London, SE1 1UL, UK
| | | | | | | |
Collapse
|
24
|
Akita K, Tanaka M, Tanida S, Mori Y, Toda M, Nakada H. CA125/MUC16 interacts with Src family kinases, and over-expression of its C-terminal fragment in human epithelial cancer cells reduces cell-cell adhesion. Eur J Cell Biol 2013; 92:257-63. [PMID: 24246580 DOI: 10.1016/j.ejcb.2013.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/02/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022] Open
Abstract
MUC16/CA125 is over-expressed in human epithelial tumors including ovarian, breast and some other carcinomas. The purpose of this study is to investigate how cell surface MUC16 is functionally involved in tumor progression, with a special focus on the role of its cytoplasmic tail. Forced expression of C-terminal MUC16 fragment (MUC16C) in epithelial cancer cells increased cell migration. We found that MUC16C directly interacted with Src family kinases (SFKs). Notably, localizations of E-cadherin and β-catenin at the cell-cell contacts were more diffuse in MUC16C transfectants compared with mock transfectants. Furthermore, MUC16C transfectants showed reduced Ca(2+)-dependent cell-cell adhesion, but the treatment of cells with PP2, a SFKs inhibitor, restored this. Because cell surface MUC16 is also associated with the E-cadherin/β-catenin complex, the over-expression of MUC16 and its interaction with SFKs may enhance SFKs-induced deregulation of E-cadherin. Thus, our results suggest a role for cell surface MUC16 in cell-cell adhesion of epithelial cancer cells.
Collapse
Affiliation(s)
- Kaoru Akita
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
McCole DF. Phosphatase regulation of intercellular junctions. Tissue Barriers 2013; 1:e26713. [PMID: 24868494 DOI: 10.4161/tisb.26713] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 02/06/2023] Open
Abstract
Intercellular junctions represent the key contact points and sites of communication between neighboring cells. Assembly of these junctions is absolutely essential for the structural integrity of cell monolayers, tissues and organs. Disruption of junctions can have severe consequences such as diarrhea, edema and sepsis, and contribute to the development of chronic inflammatory diseases. Cell junctions are not static structures, but rather they represent highly dynamic micro-domains that respond to signals from the intracellular and extracellular environments to modify their composition and function. This review article will focus on the regulation of tight junctions and adherens junctions by phosphatase enzymes that play an essential role in preserving and modulating the properties of intercellular junction proteins.
Collapse
Affiliation(s)
- Declan F McCole
- Division of Biomedical Sciences; University of California, Riverside; Riverside, CA USA
| |
Collapse
|
26
|
Rare missense neuronal cadherin gene (CDH2) variants in specific obsessive-compulsive disorder and Tourette disorder phenotypes. Eur J Hum Genet 2013; 21:850-4. [PMID: 23321619 DOI: 10.1038/ejhg.2012.245] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/01/2012] [Accepted: 10/11/2012] [Indexed: 12/21/2022] Open
Abstract
The recent finding that the neuronal cadherin gene CDH2 confers a highly significant risk for canine compulsive disorder led us to investigate whether missense variants within the human ortholog CDH2 are associated with altered susceptibility to obsessive-compulsive disorder (OCD), Tourette disorder (TD) and related disorders. Exon resequencing of CDH2 in 320 individuals identified four non-synonymous single-nucleotide variants, which were subsequently genotyped in OCD probands, Tourette disorder probands and relatives, and healthy controls (total N=1161). None of the four variants was significantly associated with either OCD or TD. One variant, N706S, was found only in the OCD/TD groups, but not in controls. By examining clinical data, we found there were significant TD-related phenotype differences between those OCD probands with and without the N845S variant with regard to the co-occurrence of TD (Fisher's exact test P=0.014, OR=6.03). Both N706S and N845S variants conferred reduced CDH2 protein expression in transfected cells. Although our data provide no overall support for association of CDH2 rare variants in these disorders considered as single entities, the clinical features and severity of probands carrying the uncommon non-synonymous variants suggest that CDH2, along with other cadherin and cell adhesion genes, is an interesting gene to pursue as a plausible contributor to OCD, TD and related disorders with repetitive behaviors, including autism spectrum disorders.
Collapse
|
27
|
Hirayama T, Yagi T. Clustered protocadherins and neuronal diversity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:145-67. [PMID: 23481194 DOI: 10.1016/b978-0-12-394311-8.00007-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuronal diversity is a fundamental requirement for complex neuronal networks and brain function. The clustered protocadherin (Pcdh) family possesses several characteristic features that are important for the molecular basis of neuronal diversity. Clustered Pcdhs are expressed predominantly in the central nervous system, in neurites, growth cones, and synapses. They consist of about 60 isoforms, and their expression is stochastically and combinatorially regulated in individual neurons. The multiple clustered Pcdhs expressed in individual neurons form heteromultimeric protein complexes that exhibit homophilic adhesion properties. Theoretically, the clustered Pcdhs could generate more than 3×10(10) possible variations in each neuron and 12,720 types of cis-tetramers per neuron. The clustered Pcdhs are important for normal neuronal development. The clustered Pcdh genes have also attracted attention as a target for epigenetic regulation.
Collapse
Affiliation(s)
- Teruyoshi Hirayama
- KOKORO Biology Group and JST-CREST, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | | |
Collapse
|
28
|
Küppers V, Vestweber D, Schulte D. Locking endothelial junctions blocks leukocyte extravasation, but not in all tissues. Tissue Barriers 2013; 1:e23805. [PMID: 24665379 PMCID: PMC3879176 DOI: 10.4161/tisb.23805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022] Open
Abstract
The passage of leukocytes across the blood vessel wall is a fundamental event in the inflammatory response. During the last decades, there has been significant progress in understanding the molecular mechanisms involved in leukocyte transmigration. However, it is still a matter of debate whether leukocytes migrate paracellularly or transcellularly through an endothelial cell layer. We could recently show that a VE-cadherin-α-catenin fusion protein locks endothelial junctions in the skin and strongly reduces leukocyte diapedesis in lung, skin and cremaster, establishing the paracellular route as the major transmigration pathway in these tissues. However, the homing of naïve lymphocytes into lymph nodes and extravasation of neutrophils in the inflamed peritoneum were not affected by VE-cadherin-α-catenin. This unexpected heterogeneity of the diapedesis process in different tissues as well as the complexity and dynamics of the cadherin-catenin complex in regulating endothelial junctions will be discussed.
Collapse
|
29
|
Kume K, Haraguchi M, Hijioka H, Ishida T, Miyawaki A, Nakamura N, Ozawa M. The transcription factor Snail enhanced the degradation of E-cadherin and desmoglein 2 in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012; 430:889-94. [PMID: 23261431 DOI: 10.1016/j.bbrc.2012.12.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 12/12/2012] [Indexed: 12/14/2022]
Abstract
Epithelial-mesenchymal transition (EMT), a key process in the tumor metastatic cascade, is characterized by the loss of cell-cell junctions and cell polarity as well as the acquisition of migratory and invasive properties. However, the precise molecular events that initiate this complex EMT process are poorly understood. Snail is a regulator of EMT that represses E-cadherin transcription through its interaction with proximal E-boxes in the promoter region of target genes. To investigate the role of Snail in EMT, we generated stable Snail transfectants using the oral squamous cell carcinoma cell line HSC-4 (Snail/HSC-4). Snail/HSC-4 cells had a spindle-shaped mesenchymal morphology, and enhanced migration and invasiveness relative to control cells. Consistent with these EMT changes, the downregulation of epithelial marker proteins, E-cadherin and desmoglein 2, and the upregulation of mesenchymal marker proteins, vimentin and N-cadherin were detected. Despite these observations, the mRNA levels of E-cadherin and desmoglein 2 did not decrease significantly. Although E-cadherin and desmoglein 2 proteins were stable in parental HSC-4 cells, these proteins were rapidly degraded in Snail/HSC-4 cells. The degradation of E-cadherin, but not desmoglein 2, was inhibited by dynasore, an inhibitor of dynamin-dependent endocytosis. Therefore, in HSC-4 cells Snail regulates levels of these proteins both transcriptionally and post-translationally.
Collapse
Affiliation(s)
- Kenichi Kume
- Department of Biochemistry and Molecular Biology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Vestweber D. Relevance of endothelial junctions in leukocyte extravasation and vascular permeability. Ann N Y Acad Sci 2012; 1257:184-92. [PMID: 22671605 DOI: 10.1111/j.1749-6632.2012.06558.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammation and immune surveillance rely on the ability of leukocytes to leave the blood stream and enter tissue. Cytokines and chemokines regulate expression and the activation state of adhesion molecules that enable leukocytes to adhere and arrest at sites of leukocyte exit. Capturing and arrest is followed by the transmigration of leukocytes through the vessel wall-a process called diapedesis. The review will focus on recently published novel approaches to determine the route that leukocytes take in vivo when they migrate through the endothelial layer of blood vessels. This work has revealed the dominant importance of the junctional pathway between endothelial cells in vivo. In addition, recent progress has improved our understanding of the molecular mechanisms that regulate junctional stability, the opening of endothelial junctions during leukocyte extravasation, and the induction of vascular permeability.
Collapse
|
31
|
Tamada M, Farrell DL, Zallen JA. Abl regulates planar polarized junctional dynamics through β-catenin tyrosine phosphorylation. Dev Cell 2012; 22:309-19. [PMID: 22340496 PMCID: PMC3327890 DOI: 10.1016/j.devcel.2011.12.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/17/2011] [Accepted: 12/30/2011] [Indexed: 01/11/2023]
Abstract
Interactions between epithelial cells are mediated by adherens junctions that are dynamically regulated during development. Here we show that the turnover of β-catenin is increased at cell interfaces that are targeted for disassembly during Drosophila axis elongation. The Abl tyrosine kinase is concentrated at specific planar junctions and is necessary for polarized β-catenin localization and dynamics. abl mutant embryos have decreased β-catenin turnover at shrinking edges, and these defects are accompanied by a reduction in multicellular rosette formation and axis elongation. Abl promotes β-catenin phosphorylation on the conserved tyrosine 667 and expression of an unphosphorylatable β-catenin mutant recapitulates the defects of abl mutants. Notably, a phosphomimetic β-catenin(Y667E) mutation is sufficient to increase β-catenin turnover and rescue axis elongation in abl deficient embryos. These results demonstrate that the asymmetrically localized Abl tyrosine kinase directs planar polarized junctional remodeling during Drosophila axis elongation through the tyrosine phosphorylation of β-catenin.
Collapse
Affiliation(s)
- Masako Tamada
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065 USA
| | - Dene L. Farrell
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065 USA
| | - Jennifer A. Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065 USA
| |
Collapse
|
32
|
Lee J, Ju J, Park S, Hong SJ, Yoon S. Inhibition of IGF-1 signaling by genistein: modulation of E-cadherin expression and downregulation of β-catenin signaling in hormone refractory PC-3 prostate cancer cells. Nutr Cancer 2011; 64:153-62. [PMID: 22098108 DOI: 10.1080/01635581.2012.630161] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Elevated levels of insulin-like growth factor-1 (IGF-1) are associated with an increased risk of several different cancers, including prostate cancer. Inhibition of IGF-1 and the downstream signaling pathways mediated by the activation of the IGF-1 receptor (IGF-1R) may be involved in inhibiting prostate carcinogenesis. We investigated whether genistein downregulated the IGF-1/IGF-1R signaling pathway and inhibited cell growth in hormone refractory PC-3 prostate cancer cells. Genistein treatment caused a significant inhibition of IGF-1-stimulated cell growth. Flow cytometry analysis revealed that genistein significantly decreased the number of IGF-1-stimulated cells in the G0/G1 phase of the cell cycle. In IGF-1-treated cells, genistein effectively inhibited the phosphorylation of IGF-1R and the phosphorylation of its downstream targets, such as Src, Akt, and glycogen synthase kinase-3β (GSk-3β). IGF-1 treatment decreased the levels of E-cadherin but increased the levels of β-catenin and cyclin D1. However, genistein treatment greatly attenuated IGF-1-induced β-catenin signaling that correlated with increasing the levels of E-cadherin and decreasing cyclin D1 levels in PC-3 cells. In addition, genistein inhibited T-cell factor/lymphoid enhancer factor (TCF/LEF)-dependent transcriptional activity. These results showed that genistein effectively inhibited cell growth in IGF-1-stimulated PC-3 cells, possibly by inhibiting downstream of IGF-1R activation.
Collapse
Affiliation(s)
- Joomin Lee
- Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University College of Human Ecology, Seodaemun-Gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
33
|
E-cadherin/β-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011; 2011:567305. [PMID: 22007144 PMCID: PMC3191826 DOI: 10.1155/2011/567305] [Citation(s) in RCA: 325] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/25/2011] [Indexed: 12/13/2022] Open
Abstract
E-Cadherin/β-catenin complex plays an important role in maintaining epithelial integrity and disrupting this complex affect not only the adhesive repertoire of a cell, but also the Wnt-signaling pathway. Aberrant expression of the complex is associated with a wide variety of human malignancies and disorders of fibrosis resulting from epithelial-mesenchymal transition. These associations provide insights into the complexity that is likely responsible for the fibrosis/tumor suppressive action of E-cadherin/β-catenin.
Collapse
|
34
|
Schulte D, Küppers V, Dartsch N, Broermann A, Li H, Zarbock A, Kamenyeva O, Kiefer F, Khandoga A, Massberg S, Vestweber D. Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J 2011; 30:4157-70. [PMID: 21857650 DOI: 10.1038/emboj.2011.304] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/27/2011] [Indexed: 01/13/2023] Open
Abstract
To determine whether leukocytes need to open endothelial cell contacts during extravasation, we decided to generate mice with strongly stabilized endothelial junctions. To this end, we replaced VE-cadherin genetically by a VE-cadherin-α-catenin fusion construct. Such mice were completely resistant to the induction of vascular leaks by VEGF or histamine. Neutrophil or lymphocyte recruitment into inflamed cremaster, lung and skin were strongly inhibited in these mice, documenting the importance of the junctional route in vivo. Surprisingly, lymphocyte homing into lymph nodes was not inhibited. VE-cadherin-α-catenin associated more intensely with the actin cytoskeleton as demonstrated by its membrane mobility and detergent extractability. Our results establish the junctional route as the main pathway for extravasating leukocytes in several, although not in all tissues. Furthermore, in these tissues, plasticity of the VE-cadherin-catenin complex is central for the leukocyte diapedesis mechanism.
Collapse
Affiliation(s)
- Dörte Schulte
- Department of Vascular Cell Biology, Max-Planck-Institute of Molecular Biomedicine, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691-731. [PMID: 21527735 DOI: 10.1152/physrev.00004.2010] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.
Collapse
Affiliation(s)
- Carien M Niessen
- Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
36
|
Lade AG, Monga SPS. Beta-catenin signaling in hepatic development and progenitors: which way does the WNT blow? Dev Dyn 2010; 240:486-500. [PMID: 21337461 DOI: 10.1002/dvdy.22522] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2010] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved signaling cascade that plays key roles in development and adult tissue homeostasis and is aberrantly activated in many tumors. Over a decade of work in mouse, chick, xenopus, and zebrafish models has uncovered multiple functions of this pathway in hepatic pathophysiology. Specifically, beta-catenin, the central component of the canonical Wnt pathway, is implicated in the regulation of liver regeneration, development, and carcinogenesis. Wnt-independent activation of beta-catenin by receptor tyrosine kinases has also been observed in the liver. In liver development across various species, through regulation of cell proliferation, differentiation, and maturation, beta-catenin directs foregut endoderm specification, hepatic specification of the foregut, and hepatic morphogenesis. Its role has also been defined in adult hepatic progenitors or oval cells especially in their expansion and differentiation. Thus, beta-catenin undergoes tight temporal regulation to exhibit pleiotropic effects during hepatic development and in hepatic progenitor biology.
Collapse
|
37
|
Lee MH, Padmashali R, Koria P, Andreadis ST. JNK regulates binding of alpha-catenin to adherens junctions and cell-cell adhesion. FASEB J 2010; 25:613-23. [PMID: 21030692 DOI: 10.1096/fj.10-161380] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We recently reported that c-Jun N-terminal kinase (JNK) is associated with adherens junctions and phosphorylates β-catenin at serine 33/37 and threonine 41. Here, we report that inhibition of JNK led to formation of adherens junctions, which was accompanied by dissociation of α-catenin from the β-catenin/E-cadherin complex and increased association of α-catenin with the cytoskeleton. Conversely, activation of JNK increased binding of α-catenin to β-catenin, which was blocked by the JNK inhibitor SP600125 or JNK siRNA. In addition, inhibition of JNK failed to lead to adherens junction formation in cells where α-catenin was absent or knocked down. Conversely, introduction of α-catenin restored the responsiveness of cells to JNK inhibition and led to cell-cell adhesion. Experiments with domain deletion mutants showed that binding of α-catenin to β-catenin was required for transport of adherens junction complexes to the cell surface, while binding to actin was required for translocation to the cell-cell contact sites. Collectively, our results suggest that JNK affects the association of α-catenin with the adherens junction complex and regulates adherens junctions.
Collapse
Affiliation(s)
- Meng-Horng Lee
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | | | | | | |
Collapse
|
38
|
Leonard M, Zhang L, Zhai N, Cader A, Chan Y, Nowak RB, Fowler VM, Menko AS. Modulation of N-cadherin junctions and their role as epicenters of differentiation-specific actin regulation in the developing lens. Dev Biol 2010; 349:363-77. [PMID: 20969840 DOI: 10.1016/j.ydbio.2010.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/05/2010] [Accepted: 10/09/2010] [Indexed: 12/01/2022]
Abstract
Extensive elongation of lens fiber cells is a central feature of lens morphogenesis. Our study investigates the role of N-cadherin junctions in this process in vivo. We investigate both the molecular players involved in N-cadherin junctional maturation and the subsequent function of these junctions as epicenters for the assembly of an actin cytoskeleton that drives morphogenesis. We present the first evidence of nascent cadherin junctions in vivo, and show that they are a prominent feature along lateral interfaces of undifferentiated lens epithelial cells. Maturation of these N-cadherin junctions, required for lens cell differentiation, preceded organization of a cortical actin cytoskeleton along the cells' lateral borders, but was linked to recruitment of α-catenin and dephosphorylation of N-cadherin-linked β-catenin. Biochemical analysis revealed differentiation-specific recruitment of actin regulators cortactin and Arp3 to maturing N-cadherin junctions of differentiating cells, linking N-cadherin junctional maturation with actin cytoskeletal assembly during fiber cell elongation. Blocking formation of mature N-cadherin junctions led to reduced association of α-catenin with N-cadherin, prevented organization of actin along lateral borders of differentiating lens fiber cells and blocked their elongation. These studies provide a molecular link between N-cadherin junctions and the organization of an actin cytoskeleton that governs lens fiber cell morphogenesis in vivo.
Collapse
Affiliation(s)
- Michelle Leonard
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Classical cadherins mediate specific adhesion at intercellular adherens junctions. Interactions between cadherin ectodomains from apposed cells mediate cell-cell contact, whereas the intracellular region functionally links cadherins to the underlying cytoskeleton. Structural, biophysical, and biochemical studies have provided important insights into the mechanism and specificity of cell-cell adhesion by classical cadherins and their interplay with the cytoskeleton. Adhesive binding arises through exchange of beta strands between the first extracellular cadherin domains (EC1) of partner cadherins from adjacent cells. This "strand-swap" binding mode is common to classical and desmosomal cadherins, but sequence alignments suggest that other cadherins will bind differently. The intracellular region of classical cadherins binds to p120 and beta-catenin, and beta-catenin binds to the F-actin binding protein alpha-catenin. Rather than stably bridging beta-catenin to actin, it appears that alpha-catenin actively regulates the actin cytoskeleton at cadherin-based cell-cell contacts.
Collapse
|
40
|
Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci U S A 2010; 107:14893-8. [PMID: 20679223 DOI: 10.1073/pnas.1004526107] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The specificity of interactions between neurons is believed to be mediated by diverse cell adhesion molecules, including members of the cadherin superfamily. Whereas mechanisms of classical cadherin adhesion have been studied extensively, much less is known about the related protocadherins (Pcdhs), which together make up the majority of the superfamily. Here we use quantitative cell aggregation assays and biochemical analyses to characterize cis and trans interactions among the 22-member gamma-Pcdh family, which have been shown to be critical for the control of synaptogenesis and neuronal survival. We show that gamma-Pcdh isoforms engage in trans interactions that are strictly homophilic. In contrast to classical cadherins, gamma-Pcdh interactions are only partially Ca(2+)-dependent, and their specificity is mediated through the second and third extracellular cadherin (EC) domains (EC2 and EC3), rather than through EC1. The gamma-Pcdhs also interact both covalently and noncovalently in the cis-orientation to form multimers both in vitro and in vivo. In contrast to gamma-Pcdh trans interactions, cis interactions are highly promiscuous, with no isoform specificity. We present data supporting a model in which gamma-Pcdh cis-tetramers represent the unit of their adhesive trans interactions. Unrestricted tetramerization in cis, coupled with strictly homophilic interactions in trans, predicts that the 22 gamma-Pcdhs could form 234,256 distinct adhesive interfaces. Given the demonstrated role of the gamma-Pcdhs in synaptogenesis, our data have important implications for the molecular control of neuronal specificity.
Collapse
|
41
|
Zhi L, Wang M, Rao Q, Yu F, Mi Y, Wang J. Enrichment of N-Cadherin and Tie2-bearing CD34+/CD38-/CD123+ leukemic stem cells by chemotherapy-resistance. Cancer Lett 2010; 296:65-73. [PMID: 20444543 DOI: 10.1016/j.canlet.2010.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/12/2010] [Accepted: 03/22/2010] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) arises from genetic changes at the level of stem cell, various mutations have been elucidated, including AML1-ETO fusion gene has been shown as the representative target of cellular transformation for LSCs originating from hematopoietic stem cells (HSCs) compartment. LSCs resemble HSCs with respect to self-renewal capacity and chemotherapy-resistance. However, LSCs possess specific cell-surface markers, they are proposed to reside within the CD34(+)/CD38(-)/CD123(+) compartment. And the interaction mediated by adhesion molecules between LSCs and niche played a role in chemoresistance of LSCs. Therefore, study on the LSCs surface makers related to niche is helpful for the potential target therapy in the future. In this study, the proportions of CD34(+)/CD38(-)/CD123(+) LSCs compartment co-expressing the three adhesion molecules, N-Cadherin, Tie2 and CD44, respectively, from AML patients before and after chemotherapy were analyzed. We demonstrated N-Cadherin and Tie2 positive CD34(+)/CD38(-)/CD123(+) LSCs populations could be enriched by chemotherapy. Furthermore, AML1/ETO fusion signals and MDR1 expression were detected on the CD34(+)/CD38(-)/CD123(+) LSCs populations expressing N-Cadherin and Tie2. Therefore, N-Cadherin and Tie2 are probably the potential markers for identification of LSCs.
Collapse
Affiliation(s)
- Lei Zhi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), PR China
| | | | | | | | | | | |
Collapse
|
42
|
van Buul JD, van Alphen FP, Hordijk PL. The presence of alpha-catenin in the VE-cadherin complex is required for efficient transendothelial migration of leukocytes. Int J Biol Sci 2009; 5:695-705. [PMID: 19918298 PMCID: PMC2777273 DOI: 10.7150/ijbs.5.695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/05/2009] [Indexed: 12/30/2022] Open
Abstract
The majority of the leukocytes cross the endothelial lining of the vessels through cell-cell junctions. The junctional protein Vascular Endothelial (VE)-cadherin is transiently re-distributed from sites of cell-cell contacts during passage of leukocytes. VE-cadherin is part of a protein complex comprising p120-catenin and beta-catenin as intracellular partners. Beta-catenin connects VE-cadherin to alpha-catenin. This VE-cadherin-catenin complex is believed to dynamically control endothelial cell-cell junctions and to regulate the passage of leukocytes, although not much is known about the role of alpha- and beta-catenin during the process of transendothelial migration (TEM). In order to study the importance of the interaction between alpha- and beta-catenin in TEM, we used a cell-permeable version of the peptide encoding the binding site of alpha-catenin for beta-catenin (S27D). The data show that S27D interferes with the interaction between alpha- and beta-catenin and induces a reversible decrease in electrical resistance of the endothelial monolayer. In addition, S27D co-localized with beta-catenin at cell-cell junctions. Surprisingly, transmigration of neutrophils across endothelial monolayers was blocked in the presence of S27D. In conclusion, our results show for the first time that the association of alpha-catenin with the cadherin-catenin complex is required for efficient leukocyte TEM.
Collapse
Affiliation(s)
- Jaap D van Buul
- Dept. Molecular Cell Biology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
43
|
Taulet N, Comunale F, Favard C, Charrasse S, Bodin S, Gauthier-Rouvière C. N-cadherin/p120 catenin association at cell-cell contacts occurs in cholesterol-rich membrane domains and is required for RhoA activation and myogenesis. J Biol Chem 2009; 284:23137-45. [PMID: 19546217 PMCID: PMC2755719 DOI: 10.1074/jbc.m109.017665] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/17/2009] [Indexed: 11/06/2022] Open
Abstract
p120 catenin is a major regulator of cadherin stability at cell-cell contacts and a modulator of Rho GTPase activities. In C2C12 myoblasts, N-cadherin is stabilized at cell contacts through its association with cholesterol-rich membrane domains or lipid rafts (LR) and acts as an adhesion-activated receptor that activates RhoA, an event required for myogenesis induction. Here, we report that association of p120 catenin with N-cadherin at cell contacts occurs specifically in LR. We demonstrate that interaction of p120 catenin with N-cadherin is required for N-cadherin association with LR and for its stabilization at cell contacts. LR disruption inhibits myogenesis induction and N-cadherin-dependent RhoA activation as does the perturbation of the N-cadherin-p120 catenin complex after p120 catenin knockdown. Finally, we observe an N-cadherin-dependent accumulation of RhoA at phosphatidylinositol 4,5-bisphosphate-enriched cell contacts which is lost after LR disruption. Thus, a functional N-cadherin-catenin complex occurs in cholesterol-rich membrane microdomains which allows the recruitment of RhoA and the regulation of its activity during myogenesis induction.
Collapse
Affiliation(s)
- Nicolas Taulet
- From the Centre de Recherche de Biochimie Macromoléculaire, Universités Montpellier 2 et 1, CNRS, Uníté Mixte de Recherche 5237, Institut Fédératif de Recherche 122, 1919 Route de Mende, 34293 Montpellier and
| | - Franck Comunale
- From the Centre de Recherche de Biochimie Macromoléculaire, Universités Montpellier 2 et 1, CNRS, Uníté Mixte de Recherche 5237, Institut Fédératif de Recherche 122, 1919 Route de Mende, 34293 Montpellier and
| | - Cyril Favard
- Institut Fresnel, Domaine Universitaire Saint Jérôme, 13397 Marseille, France
| | - Sophie Charrasse
- From the Centre de Recherche de Biochimie Macromoléculaire, Universités Montpellier 2 et 1, CNRS, Uníté Mixte de Recherche 5237, Institut Fédératif de Recherche 122, 1919 Route de Mende, 34293 Montpellier and
| | - Stéphane Bodin
- From the Centre de Recherche de Biochimie Macromoléculaire, Universités Montpellier 2 et 1, CNRS, Uníté Mixte de Recherche 5237, Institut Fédératif de Recherche 122, 1919 Route de Mende, 34293 Montpellier and
| | - Cécile Gauthier-Rouvière
- From the Centre de Recherche de Biochimie Macromoléculaire, Universités Montpellier 2 et 1, CNRS, Uníté Mixte de Recherche 5237, Institut Fédératif de Recherche 122, 1919 Route de Mende, 34293 Montpellier and
| |
Collapse
|
44
|
Monaghan-Benson E, Burridge K. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. J Biol Chem 2009; 284:25602-11. [PMID: 19633358 DOI: 10.1074/jbc.m109.009894] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular permeability is a complex process involving the coordinated regulation of multiple signaling pathways in the endothelial cell. It has long been documented that vascular endothelial growth factor (VEGF) greatly enhances microvascular permeability; however, the molecular mechanisms controlling VEGF-induced permeability remain unknown. Treatment of microvascular endothelial cells with VEGF led to an increase in reactive oxygen species (ROS) production. ROS are required for VEGF-induced permeability as treatment with the free radical scavenger, N-acetylcysteine, inhibited this effect. Additionally, treatment with VEGF caused ROS-dependent tyrosine phosphorylation of both vascular-endothelial (VE)-cadherin and beta-catenin. Rac1 was required for the VEGF-induced increase in permeability and adherens junction protein phosphorylation. Knockdown of Rac1 inhibited VEGF-induced ROS production consistent with Rac lying upstream of ROS in this pathway. Collectively, these data suggest that VEGF leads to a Rac-mediated generation of ROS, which, in turn, elevates the tyrosine phosphorylation of VE-cadherin and beta-catenin, ultimately regulating adherens junction integrity.
Collapse
Affiliation(s)
- Elizabeth Monaghan-Benson
- Department of Cell and Developmental Biology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA.
| | | |
Collapse
|
45
|
Collagen Type I may Influence the Expression of E-Cadherin and Beta-catenin in Carcinoma Ex-pleomorphic Adenoma. Appl Immunohistochem Mol Morphol 2009; 17:312-8. [DOI: 10.1097/pai.0b013e3181946ea6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Bourguignon LYW, Xia W, Wong G. Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J Biol Chem 2009; 284:2657-2671. [PMID: 19047049 PMCID: PMC2631959 DOI: 10.1074/jbc.m806708200] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/10/2008] [Indexed: 12/18/2022] Open
Abstract
In this study we have investigated hyaluronan (HA)-mediated CD44 (an HA receptor) interactions with p300 (a histone acetyltransferase) and SIRT1 (a histone deacetylase) in human breast tumor cells (MCF-7 cells). Specifically, our results indicate that HA binding to CD44 up-regulates p300 expression and its acetyltransferase activity that, in turn, promotes acetylation of beta-catenin and NFkappaB-p65 leading to activation of beta-catenin-associated T-cell factor/lymphocyte enhancer factor transcriptional co-activation and NFkappaB-specific transcriptional up-regulation, respectively. These changes then cause the expression of the MDR1 (P-glycoprotein/P-gp) gene and the anti-apoptotic gene Bcl-x(L) resulting in chemoresistance in MCF-7 cells. Our data also show that down-regulation of p300, beta-catenin, or NFkappaB-p65 in MCF-7 cells (by transfecting cells with p300-, beta-catenin-, or NFkappaB-p65-specific small interfering RNA) inhibits the HA/CD44-mediated beta-catenin/NFkappaB-p65 acetylation and abrogates the aforementioned transcriptional activities. Subsequently, there is a significant decrease in both MDR1 and Bcl-x(L) gene expression and an enhancement in caspase-3 activity and chemosensitivity in the breast tumor cells. Further analyses indicate that activation of SIRT1 (deacetylase) by resveratrol (a natural antioxidant) induces SIRT1-p300 association and acetyltransferase inactivation, leading to deacetylation of HA/CD44-induced beta-catenin and NFkappaB-p65, inhibition of beta-catenin-T-cell factor/lymphocyte enhancer factor and NFkappaB-specific transcriptional activation, and the impairment of MDR1 and Bcl-x(L) gene expression. All these multiple effects lead to an activation of caspase-3 and a reduction of chemoresistance. Together, these findings suggest that the interactions between HA/CD44-stimulated p300 (acetyltransferase) and resveratrol-activated SIRT1 (deacetylase) play pivotal roles in regulating the balance between cell survival versus apoptosis, and multidrug resistance versus sensitivity in breast tumor cells.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Department of Medicine, Endocrine Unit (111N2), University of California at San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121.
| | - Weiliang Xia
- Department of Medicine, Endocrine Unit (111N2), University of California at San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121
| | - Gabriel Wong
- Department of Medicine, Endocrine Unit (111N2), University of California at San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121
| |
Collapse
|
47
|
Interobserver variability and aberrant E-cadherin immunostaining of lobular neoplasia and infiltrating lobular carcinoma. Mod Pathol 2008; 21:1224-37. [PMID: 18587329 DOI: 10.1038/modpathol.2008.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The distinction between lobular neoplasia and infiltrating lobular carcinoma from ductal neoplasia and infiltrating duct carcinoma with equivocal histologic features may present a challenge as this distinction has important therapeutic implications. Although E-cadherin staining has been of value in helping to make this determination, the variability of the E-cadherin staining pattern and the immunohistochemistry techniques can be problematic in clinical practice. A total of 161 cases of breast lesions previously diagnosed as lobular neoplasia and infiltrating lobular carcinoma were selected from the departmental files. Three surgical pathologists interpreted them in a blinded manner for the histology diagnoses and E-cadherin staining. E-cadherin staining was conducted on the paraffin-embedded sections of the breast lesions using two different source antibodies. Our results using morphology and E-cadherin stain agreed with the previous diagnoses of lobular neoplasia and infiltrating lobular carcinoma in 140 of 161 cases (86.9%). Among the 140 cases, three pathologists agreed with the morphologic diagnoses of lobular neoplasia and infiltrating lobular carcinoma in 100 (71.4%), two pathologists in 26 (18.6%) and one pathologist in 14 (10%). All three pathologists disagreed with the previous diagnoses of lobular neoplasia and infiltrating lobular carcinoma but reevaluated as ductal lesions in 21 cases (13.0%). E-cadherin staining was confirmatory in 136 of total 161 cases (84.5%) of both lobular and duct lesions by showing the loss of staining in lobular lesions and the presence of complete membrane staining in duct lesions. Aberrant E-cadherin reactions were retained weak or partial incomplete thin membrane reaction in lobular-type lesions and reduced membrane reaction in ductal-type lesions were seen in 25 of the total 161 cases (15.5%). E-cadherin immunoreaction with two different antibodies showed discrepant results in 5 of 78 cases tested (6.4%). This study illustrates (1) interobserver variability of the morphologic diagnoses of lobular neoplasia/infiltrating lobular carcinoma and duct neoplasia/infiltrating duct carcinoma, (2) the occasional presence of aberrant E-cadherin stain pattern in these breast lesions and (3) variability of E-cadherin immunostaining results by two different antibodies.
Collapse
|
48
|
Abstract
Desmosomes are intercellular junctions responsible for strong cell-cell adhesion in epithelia and cardiac muscle. Numerous studies have shown that the other major type of epithelial cell adhesion, the adherens junction, is destabilized by src-induced tyrosine phosphorylation of two of its principal components, E-cadherin and beta-catenin. Here we show that treatment of epithelial cells with the potent tyrosine phosphatase inhibitor sodium pervanadate causes tyrosine phosphorylation of the major desmosomal components desmoglein 2 and plakoglobin in both the non-ionic detergent soluble and insoluble cell fractions and, surprisingly, stabilizes desmosomal adhesion, inducing the hyper-adhesive form normally found in tissues and confluent cell sheets. Taken together with the few other studies on desmosomes these results suggest that the effects of tyrosine phosphorylation on desmosomal adhesion are complex.
Collapse
Affiliation(s)
- David R Garrod
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | | | | | |
Collapse
|
49
|
Tominaga J, Fukunaga Y, Abelardo E, Nagafuchi A. Defining the function of beta-catenin tyrosine phosphorylation in cadherin-mediated cell-cell adhesion. Genes Cells 2008; 13:67-77. [PMID: 18173748 DOI: 10.1111/j.1365-2443.2007.01149.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Beta-catenin is a key protein in cadherin-catenin cell adhesion complex and its tyrosine phosphorylation is believed to cause destruction of junctional apparatus. The broad spectrum of substrates for kinases and phosphatases, however, does not rule out tyrosine phosphorylation of other junctional proteins as the main culprit in reduction of cell adhesion activity. Further, the endogenous beta-catenin perturbs detailed functional analysis of phosphorylated mutant beta-catenin in living cells. To directly evaluate the effect of beta-catenin tyrosine phosphorylation in cell adhesion, we utilized F9 cells in which expression of endogenous beta-catenin and its closely related protein plakoglobin were completely shut down. We also used alpha-catenin-deficient (alphaD) cells to evaluate the role of alpha-catenin on beta-catenin tyrosine phosphorylation. We show that beta-catenin with phosphorylation mutation at 654th tyrosine forms functional cadherin-catenin complex to mediate strong cadherin-mediated cell adhesion. Moreover, we show that 64th and 86th tyrosines are mainly phosphorylated in F9 cells, especially in the absence of alpha-catenin. Phosphorylation of these tyrosine residues, however, does not affect cadherin-mediated cell adhesion activity. Our data identified a novel site phosphorylated by endogenous tyrosine kinases in beta-catenin. We also demonstrate that tyrosine phosphorylation of beta-catenin might regulate cadherin-mediated cell adhesion in a more complicated way than previously expected.
Collapse
Affiliation(s)
- Junji Tominaga
- Division of Cellular Interactions, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | |
Collapse
|
50
|
Abstract
Proper embryonic development is guaranteed under conditions of regulated cell-cell and cell-matrix adhesion. The cells of an embryo have to be able to distinguish their neighbours as being alike or different. Cadherins, single-pass transmembrane, Ca(2+)-dependent adhesion molecules that mainly interact in a homophilic manner, are major contributors to cell-cell adhesion. Cadherins play pivotal roles in important morphogenetic and differentiation processes during development, and in maintaining tissue integrity and homeostasis. Changes in cadherin expression throughout development enable differentiation and the formation of various organs. In addition to these functions, cadherins have strong implications in tumourigenesis, since frequently tumour cells show deregulated cadherin expression and inappropriate switching among family members. In this review, I focus on E- and N-cadherin, giving an overview of their structure, cellular function, importance during development, role in cancer, and of the complexity of Ecadherin gene regulation.
Collapse
Affiliation(s)
- Marc P Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| |
Collapse
|