1
|
Jourdi G, Abdoul J, Siguret V, Decleves X, Frezza E, Pailleret C, Gouin-Thibault I, Gandrille S, Neveux N, Samama CM, Pasquali S, Gaussem P. Induced forms of α 2-macroglobulin neutralize heparin and direct oral anticoagulant effects. Int J Biol Macromol 2021; 184:209-217. [PMID: 34126147 DOI: 10.1016/j.ijbiomac.2021.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Alpha2-macroglobulin (α2M) is a physiological macromolecule that facilitates the clearance of many proteinases, cytokines and growth factors in human. Here, we explored the effect of induced forms of α2M on anticoagulant drugs. Gla-domainless factor Xa (GDFXa) and methylamine (MA)-induced α2M were prepared and characterized by electrophoresis, immunonephelometry, chromogenic, clot waveform and rotational thromboelastometry assays. Samples from healthy volunteers and anticoagulated patients were included. In vivo neutralization of anticoagulants was evaluated in C57Bl/6JRj mouse bleeding-model. Anticoagulant binding sites on induced α2M were depicted by computer-aided energy minimization modeling. GDFXa-induced α2M neutralized dabigatran and heparins in plasma and whole blood. In mice, a single IV dose of GDFXa-induced α2M following anticoagulant administration significantly reduced blood loss and bleeding time. Being far easier to prepare, we investigated the efficacy of MA-induced α2M. It neutralized rivaroxaban, apixaban, dabigatran and heparins in spiked samples in a concentration-dependent manner and in samples from treated patients. Molecular docking analysis evidenced the ability of MA-induced α2M to bind non-covalently these compounds via some deeply buried binding sites. Induced forms of α2M have the potential to neutralize direct oral anticoagulants and heparins, and might be developed as a universal antidote in case of major bleeding or urgent surgery.
Collapse
Affiliation(s)
- Georges Jourdi
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France; AP-HP. Centre-Université de Paris, Hôpital Cochin, F-75014, Paris, France; Research Centre, Montreal Heart Institute, University of Montreal, Faculty of Pharmacy, Montreal, Canada.
| | - Johan Abdoul
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France
| | - Virginie Siguret
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France; AP-HP. Nord-Université de Paris, Hôpital Lariboisière, F-75010 Paris, France
| | - Xavier Decleves
- AP-HP. Centre-Université de Paris, Hôpital Cochin, F-75014, Paris, France; Université de Paris, Variabilité de réponse aux psychotropes, INSERM UMR_S1144, F-75006 Paris, France
| | - Elisa Frezza
- Laboratoire CiTCoM, Université de Paris, CNRS, F-75006 Paris, France
| | - Claire Pailleret
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France; Clinique du Mont Louis, F-75011 Paris, France
| | - Isabelle Gouin-Thibault
- Laboratoire d'hématologie, CHU Pontchaillou, Université de Rennes 1, CIC-Inserm1414, F-35000 Rennes, France
| | - Sophie Gandrille
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France; AP-HP. Centre-Université de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Nathalie Neveux
- AP-HP. Centre-Université de Paris, Hôpital Cochin, F-75014, Paris, France
| | - Charles Marc Samama
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France; AP-HP. Centre-Université de Paris, Hôpital Cochin, F-75014, Paris, France
| | - Samuela Pasquali
- Laboratoire CiTCoM, Université de Paris, CNRS, F-75006 Paris, France
| | - Pascale Gaussem
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France; AP-HP. Centre-Université de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France.
| |
Collapse
|
2
|
Goulas T, Garcia-Ferrer I, Marrero A, Marino-Puertas L, Duquerroy S, Gomis-Rüth FX. Structural and functional insight into pan-endopeptidase inhibition by α2-macroglobulins. Biol Chem 2017; 398:975-994. [PMID: 28253193 DOI: 10.1515/hsz-2016-0329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/18/2017] [Indexed: 12/30/2022]
Abstract
Peptidases must be exquisitely regulated to prevent erroneous cleavage and one control is provided by protein inhibitors. These are usually specific for particular peptidases or families and sterically block the active-site cleft of target enzymes using lock-and-key mechanisms. In contrast, members of the +1400-residue multi-domain α2-macroglobulin inhibitor family (α2Ms) are directed against a broad spectrum of endopeptidases of disparate specificities and catalytic types, and they inhibit their targets without disturbing their active sites. This is achieved by irreversible trap mechanisms resulting from large conformational rearrangement upon cleavage in a promiscuous bait region through the prey endopeptidase. After decades of research, high-resolution structural details of these mechanisms have begun to emerge for tetrameric and monomeric α2Ms, which use 'Venus-flytrap' and 'snap-trap' mechanisms, respectively. In the former, represented by archetypal human α2M, inhibition is exerted through physical entrapment in a large cage, in which preys are still active against small substrates and inhibitors that can enter the cage through several apertures. In the latter, represented by a bacterial α2M from Escherichia coli, covalent linkage and steric hindrance of the prey inhibit activity, but only against very large substrates.
Collapse
|
3
|
Shaikh TR, Gao H, Baxter WT, Asturias FJ, Boisset N, Leith A, Frank J. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat Protoc 2009; 3:1941-74. [PMID: 19180078 DOI: 10.1038/nprot.2008.156] [Citation(s) in RCA: 356] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol describes the reconstruction of biological molecules from the electron micrographs of single particles. Computation here is performed using the image-processing software SPIDER and can be managed using a graphical user interface, termed the SPIDER Reconstruction Engine. Two approaches are described to obtain an initial reconstruction: random-conical tilt and common lines. Once an existing model is available, reference-based alignment can be used, a procedure that can be iterated. Also described is supervised classification, a method to look for homogeneous subsets when multiple known conformations of the molecule may coexist.
Collapse
Affiliation(s)
- Tanvir R Shaikh
- Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Arandjelovic S, Dragojlovic N, Li X, Myers RR, Campana WM, Gonias SL. A derivative of the plasma protease inhibitor alpha(2)-macroglobulin regulates the response to peripheral nerve injury. J Neurochem 2007; 103:694-705. [PMID: 17725582 DOI: 10.1111/j.1471-4159.2007.04800.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Peripheral nerve injury induces endoneural inflammation, controlled by diverse cytokines and extracellular mediators. Although inflammation is coupled to axonal regeneration, fulminant inflammation may increase nerve damage and neuropathic pain. alpha(2)-Macroglobulin (alpha2M) is a plasma protease inhibitor, cytokine carrier, and ligand for cell-signaling receptors, which exists in two well-characterized conformations and in less well-characterized intermediate states. Previously, we generated an alpha2M derivative (alpha(2)-macroglobulin activated for cytokine binding; MAC) similar in structure to alpha(2)M conformational intermediates, which binds tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), and inhibits endotoxin toxicity. In this study, we report that the continuum of cytokines that bind to MAC includes IL-6 and IL-18. MAC inhibited TNF-alpha-induced p38 mitogen-activated protein kinase activation and cell death in cultured Schwann cells. When administered by i.p. injection to mice with sciatic nerve crush injury, MAC decreased inflammation and preserved axons. Macrophage infiltration and TNF-alpha expression also are decreased. MAC inhibited TNF-alpha expression in the chronic constriction injury model of nerve injury. When MAC was prepared using a mutated recombinant alpha2M, which does not bind to the alpha2M receptor, low-density lipoprotein receptor-related protein-1, activity in the chronic constriction injury model was blocked. These studies demonstrate that an alpha2M derivative is capable of regulating the response to peripheral nerve injury by a mechanism that requires low-density lipoprotein receptor-related protein-1.
Collapse
Affiliation(s)
- Sanja Arandjelovic
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
5
|
Janssen BJC, Huizinga EG, Raaijmakers HCA, Roos A, Daha MR, Nilsson-Ekdahl K, Nilsson B, Gros P. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 2005; 437:505-11. [PMID: 16177781 DOI: 10.1038/nature04005] [Citation(s) in RCA: 409] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 07/05/2005] [Indexed: 11/08/2022]
Abstract
The mammalian complement system is a phylogenetically ancient cascade system that has a major role in innate and adaptive immunity. Activation of component C3 (1,641 residues) is central to the three complement pathways and results in inflammation and elimination of self and non-self targets. Here we present crystal structures of native C3 and its final major proteolytic fragment C3c. The structures reveal thirteen domains, nine of which were unpredicted, and suggest that the proteins of the alpha2-macroglobulin family evolved from a core of eight homologous domains. A double mechanism prevents hydrolysis of the thioester group, essential for covalent attachment of activated C3 to target surfaces. Marked conformational changes in the alpha-chain, including movement of a critical interaction site through a ring formed by the domains of the beta-chain, indicate an unprecedented, conformation-dependent mechanism of activation, regulation and biological function of C3.
Collapse
Affiliation(s)
- Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ireland JLH, Jimenez-Krassel F, Winn ME, Burns DS, Ireland JJ. Evidence for autocrine or paracrine roles of alpha2-macroglobulin in regulation of estradiol production by granulosa cells and development of dominant follicles. Endocrinology 2004; 145:2784-94. [PMID: 15001551 DOI: 10.1210/en.2003-1407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
alpha(2)-Macroglobulin (alpha(2)-M) inhibits proteinases and modulates the actions of growth factors and cytokines. Despite the key roles proteinases, growth factors, and cytokines have in folliculogenesis, the role of alpha(2)-M in follicular development is unknown. Our objectives were to: 1) determine whether granulosa cells produce alpha(2)-M and have alpha(2)-M receptors, 2) examine the effect of alpha(2)-M on estradiol production by granulosa cells, 3) establish whether amounts of alpha(2)-M and alpha(2)-M receptors were altered during dominant nonovulatory follicle development, and 4) examine alpha(2)-M's mechanism of action. The results demonstrated that bovine granulosa cells contain 5.2- and 15-kb mRNAs and 720- and 500-kDa proteins that correspond, respectively, to sizes of mRNAs and proteins for alpha(2)-M and the alpha(2)-M receptor. Treatment of granulosa cells with alpha(2)-M resulted in a specific dose-responsive increase in estradiol production. Cell viability, cell number, and the amount of aromatase in granulosa cells were not altered by alpha(2)-M. Treatment of granulosa cells with factors that bind alpha(2)-M or its receptor did not mimic alpha(2)-M action. Although intrafollicular amounts of alpha(2)-M remained unchanged, amounts of alpha(2)-M receptor in granulosa cells were strongly inversely associated with concentrations of estradiol in dominant and subordinate follicles. Based on these results, we concluded that alpha(2)-M may have autocrine or paracrine roles in granulosa cells potentially important for regulation of estradiol production and development of dominant follicles.
Collapse
Affiliation(s)
- J L H Ireland
- Molecular Reproductive Endocrinology Laboratory, Department of Animal Science, Michigan State University, East Lansing, Michigan 48824-1225, USA.
| | | | | | | | | |
Collapse
|
7
|
Husted LB, Sorensen ES, Armstrong PB, Quigley JP, Kristensen L, Sottrup-Jensen L. Localization of carbohydrate attachment sites and disulfide bridges in limulus alpha 2-macroglobulin. Evidence for two forms differing primarily in their bait region sequences. J Biol Chem 2002; 277:43698-706. [PMID: 12218066 DOI: 10.1074/jbc.m208236200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primary structure determination of the dimeric invertebrate alpha(2)-macroglobulin (alpha(2)M) from Limulus polyphemus has been completed by determining its sites of glycosylation and disulfide bridge pattern. Of seven potential glycosylation sites for N-linked glycosylation, six (Asn(275), Asn(307), Asn(866), Asn(896), Asn(1089), and Asn(1145)) carry common glucosamine-based carbohydrates groups, whereas one (Asn(80)) carries a carbohydrate chain containing both glucosamine and galactosamine. Nine disulfide bridges, which are homologues with bridges in human alpha(2)M, have been identified (Cys(228)-Cys(269), Cys(456)-Cys(580), Cys(612)-Cys(799), Cys(657)-Cys(707), Cys(849)-Cys(876), Cys(874)-Cys(910), Cys(946)-Cys(1328), Cys(1104)-Cys(1155), and Cys(1362)-Cys(1475)). In addition to these bridges, Limulus alpha(2)M contains three unique bridges that connect Cys(361) and Cys(382), Cys(1370) and Cys(1374), respectively, and Cys(719) in one subunit with the same residue in the other subunit of the dimer. The latter bridge forms the only interchain disulfide bridge in Limulus alpha(2)M. The location of this bridge within the bait region is discussed and compared with other alpha-macroglobulins. Several peptides identified in the course of determining the disulfide bridge pattern provided evidence for the existence of two forms of Limulus alpha(2)M. The two forms have a high degree of sequence identity, but they differ extensively in large parts of their bait regions suggesting that they have different inhibitory spectra. The two forms (Limulus alpha(2)M-1 and -2) are most likely present in an approximately 2:1 ratio in the hemolymph of each animal, and they can be partially separated on a Mono Q column at pH 7.4 by applying a shallow gradient of NaCl.
Collapse
Affiliation(s)
- Lise B Husted
- Department of Molecular Biology, Science Park Division, University of Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
8
|
Kolodziej SJ, Wagenknecht T, Strickland DK, Stoops JK. The three-dimensional structure of the human alpha 2-macroglobulin dimer reveals its structural organization in the tetrameric native and chymotrypsin alpha 2-macroglobulin complexes. J Biol Chem 2002; 277:28031-7. [PMID: 12015318 DOI: 10.1074/jbc.m202714200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three-dimensional electron microscopy reconstructions of the human alpha(2)-macroglobulin (alpha(2)M) dimer and chymotrypsin-transformed alpha(2)M reveal the structural arrangement of the two dimers that comprise native and proteinase-transformed molecules. They consist of two side-by-side extended strands that have a clockwise and counterclockwise twist about their major axes in the native and transformed structures, respectively. This and other studies show that there are major contacts between the two strands at both ends of the molecule that evidently sequester the receptor binding domains. Upon proteinase cleavage of the bait domains and subsequent thiol ester cleavages, which occur near the central region of the molecule, the two strands separate by 40 A at both ends of the structure to expose the receptor binding domains and form the arm-like extensions of the transformed alpha(2)M. During the transformation of the structure, the strands untwist to expose the alpha(2)M central cavity to the proteinase. This extraordinary change in the architecture of alpha(2)M functions to completely engulf two molecules of chymotrypsin within its central cavity and to irreversibly encapsulate them.
Collapse
Affiliation(s)
- Steven J Kolodziej
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
9
|
Qazi U, Kolodziej SJ, Gettins PG, Stoops JK. The structure of the C949S mutant human alpha(2)-macroglobulin demonstrates the critical role of the internal thiol esters in its proteinase-entrapping structural transformation. J Struct Biol 2000; 131:19-26. [PMID: 10945966 DOI: 10.1006/jsbi.2000.4269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A three-dimensional reconstruction of a protein-engineered mutant alpha(2)-macroglobulin (alpha(2)M) in which a serine residue was substituted for the cysteine 949 (C949S), making it unable to form internal thiol ester moieties, was compared with native and methylamine-transformed alpha(2)Ms. The native alpha(2)M structure consists of two oppositely oriented Z-shaped strands. Thiol ester cleavage following an encounter with a proteinase or a nucleophilic attack by methylamine causes a structural transformation in which the strands assume an opposite handedness and a significant portion of the protein density migrates from the distal ends of the molecule toward the center. The C949S mutant showed a protein density distribution very similar to that of transformed alpha(2)M, with a compact central region of protein density connected to two receptor-binding arms on each end of the molecule. Since no particle shapes characteristic of native or half-transformed alpha(2)Ms were seen in electron micrographs and the C949S mutant and alpha(2)M-methylamine structures are highly similar, we conclude that the intact thiol esters maintain native alpha(2)M in a quasi-stable state. In their absence, alpha(2)M folds into the more stable transformed structure, which displays the functionally important receptor-binding domains and contains the proteinase-entrapping internal cavity.
Collapse
Affiliation(s)
- U Qazi
- Dept. of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
10
|
Kolodziej SJ, Hudmon A, Waxham MN, Stoops JK. Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase IIalpha and truncated CaM kinase IIalpha reveal a unique organization for its structural core and functional domains. J Biol Chem 2000; 275:14354-9. [PMID: 10799516 DOI: 10.1074/jbc.275.19.14354] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of the structural organization of calcium/ calmodulin-dependent protein kinase IIalpha (CaM KIIalpha) and truncated CaM KIIalpha by three-dimensional electron microscopy and protein engineering show that the structures consist of 12 subunits that are organized in two stacked hexameric rings with 622 symmetry. The body of CaM KIIalpha is gear-shaped, consisting of six slanted flanges, and has six foot-like processes attached by narrow appendages to both ends of the flanges. Truncated CaM KIIalpha that lacks functional domains has a structure that is very similar to the body of CaM KIIalpha. Thus, the functional domains reside in the foot-like processes, and the association domain comprises the gear-shaped core. The ribbon diagram of the bilobate structure of CaM KI fits nicely in the envelope of the foot-like component and indicates that the crevice between the two lobes comprising the functional domains is near the middle portion of the foot. The clustering of the functional domains provides a favorable arrangement for the autophosphorylation reaction, and the unusual arrangement of the catalytic domain on extended tethers appears to be significant for the remarkable functional diversity of CaM KIIalpha in cellular regulation.
Collapse
Affiliation(s)
- S J Kolodziej
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
11
|
Gonias SL, Carmichael A, Mettenburg JM, Roadcap DW, Irvin WP, Webb DJ. Identical or overlapping sequences in the primary structure of human alpha(2)-macroglobulin are responsible for the binding of nerve growth factor-beta, platelet-derived growth factor-BB, and transforming growth factor-beta. J Biol Chem 2000; 275:5826-31. [PMID: 10681572 DOI: 10.1074/jbc.275.8.5826] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha(2)-Macroglobulin (alpha(2)M) functions as a proteinase inhibitor and as a carrier of diverse growth factors. In this study, we localized binding sites for platelet-derived growth factor-BB (PDGF-BB) and nerve growth factor-beta (NGF-beta) to a linear sequence in the 180-kDa human alpha(2)M subunit which includes amino acids 591-774. A glutathione S-transferase fusion protein containing amino acids 591-774 (FP3) bound PDGF-BB and NGF-beta in ligand blotting assays whereas five other fusion proteins, which collectively include amino acids 99-590 and 775-1451 did not. The K(D) values for PDGF-BB and NGF-beta binding to immobilized FP3 were 300 +/- 40 and 180 +/- 30 nM, respectively; these values were comparable with those determined using methylamine-modified alpha(2)M, suggesting that higher-order alpha(2)M structure is not necessary for PDGF-BB and NGF-beta binding. PDGF-BB and NGF-beta blocked the binding of transforming growth factor-beta1 (TGF-beta1) to FP3. Furthermore, murinoglobulin, which is the only known member of the alpha-macroglobulin family that does not bind TGF-beta, also failed to bind PDGF-BB and NGF-beta. These results support the hypothesis that either a single linear sequence in human alpha(2)M or overlapping sequences are responsible for the binding of TGF-beta, PDGF-BB, and NGF-beta, even though there is minimal sequence identity between these three growth factors. FP3 blocked the binding of PDGF-BB to a purified chimeric protein, in which the extracellular domain of the PDGF beta receptor was fused to the IgG(1) Fc domain, and to PDGF receptors on NIH 3T3 cells. Thus, FP3 may inhibit the activity of PDGF-BB.
Collapse
Affiliation(s)
- S L Gonias
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Qazi U, Gettins PG, Strickland DK, Stoops JK. Structural details of proteinase entrapment by human alpha2-macroglobulin emerge from three-dimensional reconstructions of Fab labeled native, half-transformed, and transformed molecules. J Biol Chem 1999; 274:8137-42. [PMID: 10075716 DOI: 10.1074/jbc.274.12.8137] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three-dimensional electron microscopy reconstructions of native, half-transformed, and transformed alpha2-macroglobulins (alpha2Ms) labeled with a monoclonal Fab Fab offer new insight into the mechanism of its proteinase entrapment. Each alpha2M binds four Fabs, two at either end of its dimeric protomers approximately 145 A apart. In the native structure, the epitopes are near the base of its two chisel-like features, laterally separated by 120 A, whereas in the methylamine-transformed alpha2M, the epitopes are at the base of its four arms, laterally separated by 160 A. Upon thiol ester cleavage, the chisels on the native alpha2M appear to split with a separation and rotation to give the four arm-like extensions on transformed alpha2M. Thus, the receptor binding domains previously enclosed within the chisels are exposed. The labeled structures further indicate that the two protomeric strands that constitute the native and transformed molecules are related and reside one on each side of the major axes of these structures. The half-transformed structure shows that the two Fabs at one end of the molecule have an arrangement similar to those on the native alpha2M, whereas on its transformed end, they have rotated. The rotation is associated with a partial untwisting of the strands and an enlargement of the openings to the cavity. We propose that the enlarged openings permit the entrance of the proteinase. Then cleavage of the remaining bait domains by a second proteinase occurs with its entrance into the cavity. This is followed by a retwisting of the strands to encapsulate the proteinases and expose the receptor binding domains associated with the transformed alpha2M.
Collapse
Affiliation(s)
- U Qazi
- Dept of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
13
|
Kolodziej SJ, Klueppelberg HU, Nolasco N, Ehses W, Strickland DK, Stoops JK. Three-dimensional structure of the human plasmin alpha2-macroglobulin complex. J Struct Biol 1998; 123:124-33. [PMID: 9843666 DOI: 10.1006/jsbi.1998.4027] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional reconstructions of the human plasmin alpha2-macroglobulin binary complex were computed from electron microscopy images of stain and frozen-hydrated specimens. The structures show excellent agreement and reveal a molecule with approximate dimensions of 170 (length) x 140 (width) x 140 A (depth). The asymmetric plasmin structure imparts significant asymmetry to the plasmin alpha2-macroglobulin complex not seen in the structures resulting from the reaction of alpha2-macroglobulin with methylamine or chymotrypsin. The structure shows, when combined with other studies, that the C-terminal catalytic domain of the rod-shaped plasmin molecule is entrapped inside of the alpha2-macroglobulin cavity, whereas its N-terminal kringle domains protrude outside one end between the two arm-like features of the transformed alpha2-macroglobulin structure. This arrangement ensures that the catalytic site of plasmin is prevented from degrading plasma proteins. The internalized C-terminal portion of the plasmin structure resides primarily on the major axis of alpha2-macroglobulin, suggesting that after the initial cleavage of the two bait domains and the thiol esters, the rod-shaped plasmin molecule enters the alpha2-macroglobulin cavity through the large openings afforded by the half-transformed structure. This mode of entrapment requires the untwisting and the separation of the two strands that constitute the alpha2-macroglobulin structure.
Collapse
Affiliation(s)
- S J Kolodziej
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center, Houston, Texas, 77030, USA
| | | | | | | | | | | |
Collapse
|