1
|
Gajjar G, Huggins HP, Kim ES, Huang W, Bonnet FX, Updike DL, Keiper BD. Two germ granule eIF4E isoforms reside in different mRNPs to hand off C elegans mRNAs from translational repression to activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595216. [PMID: 38826235 PMCID: PMC11142241 DOI: 10.1101/2024.05.24.595216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
We studied the function of translation factor eIF4E isoforms in regulating mRNAs in germ cell granules/condensates. Translational control of mRNAs plays an essential role in germ cell gene regulation. Messenger ribonucleoprotein (mRNP) complexes assemble on mRNAs as they move from the nucleus into perinuclear germ granules to exert both positive and negative post-transcriptional regulation in the cytoplasm. In C. elegans , germ granules are surprisingly dynamic mRNP condensates that remodel during development. Two eIF4E isoforms (called IFE-1 and IFE-3), eIF4E-Interacting Proteins (4EIPs), RBPs, DEAD-box helicases, polyadenylated mRNAs, Argonautes and miRNAs all occupy positions in germ granules. Affinity purification of IFE-1 and IFE-3 allowed mass spectrometry and mRNA-Seq to identify the proteins and mRNAs that populate stable eIF4E mRNPs. We find translationally controlled mRNAs (e.g. pos-1, mex-3, spn-4, etc.) enriched in IFE-3 mRNPs, but excluded from IFE-1 mRNPs. These mRNAs also require IFE-1 for efficient translation. The findings support a model in which oocytes and embryos utilize the two eIF4Es for opposite purposes on critically regulated germline mRNAs. Careful colocalization of the eIF4Es with other germ granule components suggests an architecture in which GLH-1, PGL-1 and the IFEs are stratified to facilitate sequential interactions for mRNAs. Biochemical characterization demonstrates opposing yet cooperative roles for IFE-3 and IFE-1 to hand-off of translationally controlled mRNAs from the repressed to the activated state, respectively. The model involves eIF4E mRNPs shuttling mRNAs through nuclear pore-associated granules/condensates to cytoplasmic ribosomes.
Collapse
|
2
|
Hernández G, Vazquez-Pianzola P. eIF4E as a molecular wildcard in metazoans RNA metabolism. Biol Rev Camb Philos Soc 2023; 98:2284-2306. [PMID: 37553111 DOI: 10.1111/brv.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
The evolutionary origin of eukaryotes spurred the transition from prokaryotic-like translation to a more sophisticated, eukaryotic translation. During this process, successive gene duplication of a single, primordial eIF4E gene encoding the mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) gave rise to a plethora of paralog genes across eukaryotes that underwent further functional diversification in RNA metabolism. The ability to take different roles is due to eIF4E promiscuity in binding many partner proteins, rendering eIF4E a highly versatile and multifunctional player that functions as a molecular wildcard. Thus, in metazoans, eIF4E paralogs are involved in various processes, including messenger RNA (mRNA) processing, export, translation, storage, and decay. Moreover, some paralogs display differential expression in tissues and developmental stages and show variable biochemical properties. In this review, we discuss recent advances shedding light on the functional diversification of eIF4E in metazoans. We emphasise humans and two phylogenetically distant species which have become paradigms for studies on development, namely the fruit fly Drosophila melanogaster and the roundworm Caenorhabditis elegans.
Collapse
Affiliation(s)
- Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Ave., Tlalpan, Mexico City, 14080, Mexico
| | - Paula Vazquez-Pianzola
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Berne, 3012, Switzerland
| |
Collapse
|
3
|
Albarqi MMY, Ryder SP. The role of RNA-binding proteins in orchestrating germline development in Caenorhabditis elegans. Front Cell Dev Biol 2023; 10:1094295. [PMID: 36684428 PMCID: PMC9846511 DOI: 10.3389/fcell.2022.1094295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
RNA passed from parents to progeny controls several aspects of early development. The germline of the free-living nematode Caenorhabditis elegans contains many families of evolutionarily conserved RNA-binding proteins (RBPs) that target the untranslated regions of mRNA transcripts to regulate their translation and stability. In this review, we summarize what is known about the binding specificity of C. elegans germline RNA-binding proteins and the mechanisms of mRNA regulation that contribute to their function. We examine the emerging role of miRNAs in translational regulation of germline and embryo development. We also provide an overview of current technology that can be used to address the gaps in our understanding of RBP regulation of mRNAs. Finally, we present a hypothetical model wherein multiple 3'UTR-mediated regulatory processes contribute to pattern formation in the germline to ensure the proper and timely localization of germline proteins and thus a functional reproductive system.
Collapse
|
4
|
Characterization of an Atypical eIF4E Ortholog in Leishmania, LeishIF4E-6. Int J Mol Sci 2021; 22:ijms222312720. [PMID: 34884522 PMCID: PMC8657474 DOI: 10.3390/ijms222312720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Leishmania parasites are digenetic protists that shuffle between sand fly vectors and mammalian hosts, transforming from flagellated extracellular promastigotes that reside within the intestinal tract of female sand flies to the obligatory intracellular and non-motile amastigotes within mammalian macrophages. Stage differentiation is regulated mainly by post-transcriptional mechanisms, including translation regulation. Leishmania parasites encode six different cap-binding proteins, LeishIF4E1-6, that show poor conservation with their counterparts from higher eukaryotes and among themselves. In view of the changing host milieu encountered throughout their life cycle, we propose that each LeishIF4E has a unique role, although these functions may be difficult to determine. Here we characterize LeishIF4E-6, a unique eIF4E ortholog that does not readily associate with m7GTP cap in either of the tested life forms of the parasite. We discuss the potential effect of substituting two essential tryptophan residues in the cap-binding pocket, expected to be involved in the cap-binding activity, as judged from structural studies in the mammalian eIF4E. LeishIF4E-6 binds to LeishIF4G-5, one of the five eIF4G candidates in Leishmania. However, despite this binding, LeishIF4E-6 does not appear to function as a translation factor. Its episomal overexpression causes a general reduction in the global activity of protein synthesis, which was not observed in the hemizygous deletion mutant generated by CRISPR-Cas9. This genetic profile suggests that LeishIF4E-6 has a repressive role. The interactome of LeishIF4E-6 highlights proteins involved in RNA metabolism such as the P-body marker DHH1, PUF1 and an mRNA-decapping enzyme that is homologous to the TbALPH1.
Collapse
|
5
|
Huggins HP, Keiper BD. Regulation of Germ Cell mRNPs by eIF4E:4EIP Complexes: Multiple Mechanisms, One Goal. Front Cell Dev Biol 2020; 8:562. [PMID: 32733883 PMCID: PMC7358283 DOI: 10.3389/fcell.2020.00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Translational regulation of mRNAs is critically important for proper gene expression in germ cells, gametes, and embryos. The ability of the nucleus to control gene expression in these systems may be limited due to spatial or temporal constraints, as well as the breadth of gene products they express to prepare for the rapid animal development that follows. During development germ granules are hubs of post-transcriptional regulation of mRNAs. They assemble and remodel messenger ribonucleoprotein (mRNP) complexes for translational repression or activation. Recently, mRNPs have been appreciated as discrete regulatory units, whose function is dictated by the many positive and negative acting factors within the complex. Repressed mRNPs must be activated for translation on ribosomes to introduce novel proteins into germ cells. The binding of eIF4E to interacting proteins (4EIPs) that sequester it represents a node that controls many aspects of mRNP fate including localization, stability, poly(A) elongation, deadenylation, and translational activation/repression. Furthermore, plants and animals have evolved to express multiple functionally distinct eIF4E and 4EIP variants within germ cells, giving rise to different modes of translational regulation.
Collapse
Affiliation(s)
- Hayden P Huggins
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
6
|
Huggins HP, Subash JS, Stoffel H, Henderson MA, Hoffman JL, Buckner DS, Sengupta MS, Boag PR, Lee MH, Keiper BD. Distinct roles of two eIF4E isoforms in the germline of Caenorhabditis elegans. J Cell Sci 2020; 133:jcs237990. [PMID: 32079657 PMCID: PMC7132772 DOI: 10.1242/jcs.237990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/10/2020] [Indexed: 01/15/2023] Open
Abstract
Germ cells use both positive and negative mRNA translational control to regulate gene expression that drives their differentiation into gametes. mRNA translational control is mediated by RNA-binding proteins, miRNAs and translation initiation factors. We have uncovered the discrete roles of two translation initiation factor eIF4E isoforms (IFE-1, IFE-3) that bind 7-methylguanosine (m7G) mRNA caps during Caenorhabditiselegans germline development. IFE-3 plays important roles in germline sex determination (GSD), where it promotes oocyte cell fate and is dispensable for spermatogenesis. IFE-3 is expressed throughout the germline and localizes to germ granules, but is distinct from IFE-1 and PGL-1, and facilitates oocyte growth and viability. This contrasts with the robust expression in spermatocytes of IFE-1, the isoform that resides within P granules in spermatocytes and oocytes, and promotes late spermatogenesis. Each eIF4E is localized by its cognate eIF4E-binding protein (IFE-1:PGL-1 and IFE-3:IFET-1). IFE-3 and IFET-1 regulate translation of several GSD mRNAs, but not those under control of IFE-1. Distinct mutant phenotypes, in vivo localization and differential mRNA translation suggest independent dormant and active periods for each eIF4E isoform in the germline.
Collapse
Affiliation(s)
- Hayden P Huggins
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Jacob S Subash
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Hamilton Stoffel
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Melissa A Henderson
- Department of Molecular Sciences, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Jenna L Hoffman
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - David S Buckner
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Madhu S Sengupta
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Peter R Boag
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Myon-Hee Lee
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
7
|
Blackwell TK, Sewell AK, Wu Z, Han M. TOR Signaling in Caenorhabditis elegans Development, Metabolism, and Aging. Genetics 2019; 213:329-360. [PMID: 31594908 PMCID: PMC6781902 DOI: 10.1534/genetics.119.302504] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/18/2019] [Indexed: 12/30/2022] Open
Abstract
The Target of Rapamycin (TOR or mTOR) is a serine/threonine kinase that regulates growth, development, and behaviors by modulating protein synthesis, autophagy, and multiple other cellular processes in response to changes in nutrients and other cues. Over recent years, TOR has been studied intensively in mammalian cell culture and genetic systems because of its importance in growth, metabolism, cancer, and aging. Through its advantages for unbiased, and high-throughput, genetic and in vivo studies, Caenorhabditis elegans has made major contributions to our understanding of TOR biology. Genetic analyses in the worm have revealed unexpected aspects of TOR functions and regulation, and have the potential to further expand our understanding of how growth and metabolic regulation influence development. In the aging field, C. elegans has played a leading role in revealing the promise of TOR inhibition as a strategy for extending life span, and identifying mechanisms that function upstream and downstream of TOR to influence aging. Here, we review the state of the TOR field in C. elegans, and focus on what we have learned about its functions in development, metabolism, and aging. We discuss knowledge gaps, including the potential pitfalls in translating findings back and forth across organisms, but also describe how TOR is important for C. elegans biology, and how C. elegans work has developed paradigms of great importance for the broader TOR field.
Collapse
Affiliation(s)
- T Keith Blackwell
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Aileen K Sewell
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| |
Collapse
|
8
|
Santos Pereira-Dutra F, Cancela M, Valandro Meneghetti B, Bunselmeyer Ferreira H, Mariante Monteiro K, Zaha A. Functional characterization of the translation initiation factor eIF4E of Echinococcus granulosus. Parasitol Res 2019; 118:2843-2855. [PMID: 31401657 DOI: 10.1007/s00436-019-06421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/02/2019] [Indexed: 01/24/2023]
Abstract
The eukaryotic initiation factor 4E (eIF4E) specifically recognizes the 5' mRNA cap, a rate-limiting step in the translation initiation process. Although the 7-methylguanosine cap (MMGcap) is the most common 5' cap structure in eukaryotes, the trans-splicing process that occurs in several organism groups, including nematodes and flatworms, leads to the addition of a trimethylguanosine cap (TMGcap) to some RNA transcripts. In some helminths, eIF4E can have a dual capacity to bind both MMGcap and TMGcap. In the present work, we evaluated the distribution of eIF4E protein sequences in platyhelminths and we showed that only one gene coding for eIF4E is present in most parasitic flatworms. Based on this result, we cloned the Echinococcus granulosus cDNA sequence encoding eIF4E in Escherichia coli, expressed the recombinant eIF4E as a fusion protein to GST, and tested its ability to capture mRNAs through the 5' cap using pull-down assay and qPCR. Our results indicate that the recombinant eIF4E was able to bind preferentially 5'-capped mRNAs compared with rRNAs from total RNA preparations of E. granulosus. By qPCR, we observed an enrichment in MMG-capped mRNA compared with TMG-capped mRNAs among Eg-eIF4E-GST pull-down RNAs. Eg-eIF4E structural model using the Schistosoma mansoni eIF4E as template showed to be well preserved with only a few differences between chemically similar amino acid residues at the binding sites. These data showed that E. granulosus eIF4E can be used as a potential tool to study full-length 5'-capped mRNA, besides being a potential drug target against parasitic flatworms.
Collapse
Affiliation(s)
- Filipe Santos Pereira-Dutra
- Laboratório de Biologia Molecular de Cestodeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Caixa Postal 15053, Porto Alegre, RS, CEP 91501-970, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Martin Cancela
- Laboratório de Biologia Molecular de Cestodeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Caixa Postal 15053, Porto Alegre, RS, CEP 91501-970, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Bruna Valandro Meneghetti
- Laboratório de Biologia Molecular de Cestodeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Caixa Postal 15053, Porto Alegre, RS, CEP 91501-970, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Biologia Molecular de Cestodeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Caixa Postal 15053, Porto Alegre, RS, CEP 91501-970, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Karina Mariante Monteiro
- Laboratório de Biologia Molecular de Cestodeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Caixa Postal 15053, Porto Alegre, RS, CEP 91501-970, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Biologia Molecular de Cestodeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Caixa Postal 15053, Porto Alegre, RS, CEP 91501-970, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Cordeiro Rodrigues RJ, de Jesus Domingues AM, Hellmann S, Dietz S, de Albuquerque BFM, Renz C, Ulrich HD, Sarkies P, Butter F, Ketting RF. PETISCO is a novel protein complex required for 21U RNA biogenesis and embryonic viability. Genes Dev 2019; 33:857-870. [PMID: 31147388 PMCID: PMC6601512 DOI: 10.1101/gad.322446.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/26/2019] [Indexed: 01/05/2023]
Abstract
Piwi proteins are important for germ cell development in most animals. These proteins are guided to specific targets by small guide RNAs, referred to as piRNAs or 21U RNAs in Caenorhabditis elegans In this organism, even though genetic screens have uncovered 21U RNA biogenesis factors, little is known about how these factors interact or what they do. Based on the previously identified 21U biogenesis factor PID-1 (piRNA-induced silencing-defective 1), we here define a novel protein complex, PETISCO (PID-3, ERH-2, TOFU-6, and IFE-3 small RNA complex), that is required for 21U RNA biogenesis. PETISCO contains both potential 5' cap and 5' phosphate RNA-binding domains and interacts with capped 21U precursor RNA. We resolved the architecture of PETISCO and revealed a second function for PETISCO in embryonic development. This essential function of PETISCO is mediated not by PID-1 but by the novel protein TOST-1 (twenty-one U pathway antagonist). In contrast, TOST-1 is not essential for 21U RNA biogenesis. Both PID-1 and TOST-1 interact directly with ERH-2 using a conserved sequence motif. Finally, our data suggest a role for TOST-1:PETISCO in SL1 homeostasis in the early embryo. Our work describes a key complex for 21U RNA processing in C. elegans and strengthens the view that 21U RNA biogenesis is built on an snRNA-related pathway.
Collapse
Affiliation(s)
- Ricardo J Cordeiro Rodrigues
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics, and Genome Stability, 55128 Mainz, Germany
| | | | - Svenja Hellmann
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Sabrina Dietz
- International PhD Programme on Gene Regulation, Epigenetics, and Genome Stability, 55128 Mainz, Germany
- Quantitative Proteomics Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Bruno F M de Albuquerque
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, 4099-003 Porto, Portugal
| | - Christian Renz
- Maintenance of Genome Stability Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Helle D Ulrich
- Maintenance of Genome Stability Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Peter Sarkies
- Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Falk Butter
- Quantitative Proteomics Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
| |
Collapse
|
10
|
Gioran A, Piazzesi A, Bertan F, Schroer J, Wischhof L, Nicotera P, Bano D. Multi-omics identify xanthine as a pro-survival metabolite for nematodes with mitochondrial dysfunction. EMBO J 2019; 38:embj.201899558. [PMID: 30796049 PMCID: PMC6418696 DOI: 10.15252/embj.201899558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 12/10/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant mitochondrial function contributes to the pathogenesis of various metabolic and chronic disorders. Inhibition of insulin/IGF‐1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effect remain elusive. Using an unbiased multi‐omics approach, we report here that IIS inhibition reduces protein synthesis and favors catabolism in mitochondrial deficient Caenorhabditis elegans. We unveil that the lifespan extension does not occur through the restoration of mitochondrial respiration, but as a consequence of an ATP‐saving metabolic rewiring that is associated with an evolutionarily conserved phosphoproteome landscape. Furthermore, we identify xanthine accumulation as a prominent downstream metabolic output of IIS inhibition. We provide evidence that supplementation of FDA‐approved xanthine derivatives is sufficient to promote fitness and survival of nematodes carrying mitochondrial lesions. Together, our data describe previously unknown molecular components of a metabolic network that can extend the lifespan of short‐lived mitochondrial mutant animals.
Collapse
Affiliation(s)
- Anna Gioran
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Fabio Bertan
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jonas Schroer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
11
|
Wu E, Vashisht AA, Chapat C, Flamand MN, Cohen E, Sarov M, Tabach Y, Sonenberg N, Wohlschlegel J, Duchaine TF. A continuum of mRNP complexes in embryonic microRNA-mediated silencing. Nucleic Acids Res 2018; 45:2081-2098. [PMID: 28204614 PMCID: PMC5389717 DOI: 10.1093/nar/gkw872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) impinge on the translation and stability of their target mRNAs, and play key roles in development, homeostasis and disease. The gene regulation mechanisms they instigate are largely mediated through the CCR4–NOT deadenylase complex, but the molecular events that occur on target mRNAs are poorly resolved. We observed a broad convergence of interactions of germ granule and P body mRNP components on AIN-1/GW182 and NTL-1/CNOT1 in Caenorhabditis elegans embryos. We show that the miRISC progressively matures on the target mRNA from a scanning form into an effector mRNP particle by sequentially recruiting the CCR4–NOT complex, decapping and decay, or germ granule proteins. Finally, we implicate intrinsically disordered proteins, key components in mRNP architectures, in the embryonic function of lsy-6 miRNA. Our findings define dynamic steps of effector mRNP assembly in miRNA-mediated silencing, and identify a functional continuum between germ granules and P bodies in the C. elegans embryo.
Collapse
Affiliation(s)
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Clément Chapat
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - Mathieu N Flamand
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - Emiliano Cohen
- Department of Developmental Biology and Cancer Research, The Institute For Medical Research-Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, The Institute For Medical Research-Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
12
|
Piserà A, Campo A, Campo S. Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. J Genet Genomics 2018; 45:13-24. [DOI: 10.1016/j.jgg.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
|
13
|
Zuberek J, Kuchta K, Hernández G, Sonenberg N, Ginalski K. Diverse cap-binding properties of Drosophila eIF4E isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1292-303. [PMID: 27374989 DOI: 10.1016/j.bbapap.2016.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
The majority of eukaryotic mRNAs are translated in a cap-dependent manner, which requires recognition of the mRNA 5' cap by eIF4E protein. Multiple eIF4E family members have been identified in most eukaryotic organisms. Drosophila melanogaster (Dm) has eight eIF4E related proteins; seven of them belong to Class I and one to Class II. Their biological roles with the exception of Dm eIF4E-1, Dm eIF4E-3 and Dm 4EHP, remain unknown. Here, we compare the molecular basis of Dm eIF4E's interactions with cap and eIF4G peptide by using homology modelling and fluorescence binding assays with various cap analogues. We found that despite the presence of conserved key residues responsible for cap recognition, the differences in binding different cap analogues among Class I Dm eIF4E isoforms are up to 14-fold. The highest affinity for cap analogues was observed for Dm eIF4E-3. We suggest that Dm eIF4E-3 and Dm eIF4E-5 bind the second nucleoside of the cap in an unusual manner via stacking interactions with a histidine or a phenylalanine residue, respectively. Moreover, the analysis of ternary complexes of eIF4G peptide-eIF4E-cap analogue showed cooperativity between eIF4G and cap binding only for Dm eIF4E-4, which exhibits the lowest affinity for cap analogues among all Dm eIF4Es.
Collapse
Affiliation(s)
- Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-089, Poland.
| | - Krzysztof Kuchta
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw 02-089, Poland.
| | - Greco Hernández
- Division of Basic Research, National Institute of Cancer (INCan), Tlalpan, Mexico City 14080, Mexico.
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.
| |
Collapse
|
14
|
Sperm Affects Head Sensory Neuron in Temperature Tolerance of Caenorhabditis elegans. Cell Rep 2016; 16:56-65. [PMID: 27320929 DOI: 10.1016/j.celrep.2016.05.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 03/18/2016] [Accepted: 05/18/2016] [Indexed: 01/12/2023] Open
Abstract
Tolerance to environmental temperature change is essential for the survival and proliferation of animals. The process is controlled by various body tissues, but the orchestration of activity within the tissue network has not been elucidated in detail. Here, we show that sperm affects the activity of temperature-sensing neurons (ASJ) that control cold tolerance in Caenorhabditis elegans. Genetic impairment of sperm caused abnormal cold tolerance, which was unexpectedly restored by impairment of temperature signaling in ASJ neurons. Calcium imaging revealed that ASJ neuronal activity in response to temperature was decreased in sperm mutant gsp-4 with impaired protein phosphatase 1 and rescued by expressing gsp-4 in sperm. Genetic analysis revealed a feedback network in which ASJ neuronal activity regulates the intestine through insulin and a steroid hormone, which then affects sperm and, in turn, controls ASJ neuronal activity. Thus, we propose that feedback between sperm and a sensory neuron mediating temperature tolerance.
Collapse
|
15
|
Friday AJ, Henderson MA, Morrison JK, Hoffman JL, Keiper BD. Spatial and temporal translational control of germ cell mRNAs mediated by the eIF4E isoform IFE-1. J Cell Sci 2015; 128:4487-98. [PMID: 26542024 DOI: 10.1242/jcs.172684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
Regulated mRNA translation is vital for germ cells to produce new proteins in the spatial and temporal patterns that drive gamete development. Translational control involves the de-repression of stored mRNAs and their recruitment by eukaryotic initiation factors (eIFs) to ribosomes. C. elegans expresses five eIF4Es (IFE-1-IFE-5); several have been shown to selectively recruit unique pools of mRNA. Individual IFE knockouts yield unique phenotypes due to inefficient translation of certain mRNAs. Here, we identified mRNAs preferentially translated through the germline-specific eIF4E isoform IFE-1. Differential polysome microarray analysis identified 77 mRNAs recruited by IFE-1. Among the IFE-1-dependent mRNAs are several required for late germ cell differentiation and maturation. Polysome association of gld-1, vab-1, vpr-1, rab-7 and rnp-3 mRNAs relies on IFE-1. Live animal imaging showed IFE-1-dependent selectivity in spatial and temporal translation of germline mRNAs. Altered MAPK activation in oocytes suggests dual roles for IFE-1, both promoting and suppressing oocyte maturation at different stages. This single eIF4E isoform exerts positive, selective translational control during germ cell differentiation.
Collapse
Affiliation(s)
- Andrew J Friday
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Melissa A Henderson
- Department of Molecular Sciences, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - J Kaitlin Morrison
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Jenna L Hoffman
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
16
|
Mangio RS, Votra S, Pruyne D. The canonical eIF4E isoform of C. elegans regulates growth, embryogenesis, and germline sex-determination. Biol Open 2015; 4:843-51. [PMID: 25979704 PMCID: PMC4571089 DOI: 10.1242/bio.011585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
eIF4E plays a conserved role in initiating protein synthesis, but with multiple eIF4E isoforms present in many organisms, these proteins also adopt specialized functions. Previous RNAi studies showed that ife-3, encoding the sole canonical eIF4E isoform of Caenorhabditis elegans, is essential for viability. Using ife-3 gene mutations, we show here that it is maternal ife-3 function that is essential for embryogenesis, but ife-3 null progeny of heterozygous animals are viable. We find that zygotic ife-3 function promotes body growth and regulates germline development in hermaphrodite worms. Specifically, the normal transition from spermatogenesis to oogenesis in the hermaphrodite germline fails in ife-3 mutants. This failure to switch is reversed by inhibiting expression of the key masculinizing gene, fem-3, suggesting ife-3 resembles a growing number of genes that promote the sperm/oocyte switch by acting genetically as upstream inhibitors of fem-3.
Collapse
Affiliation(s)
- Richard S Mangio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - SarahBeth Votra
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - David Pruyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
17
|
Jones GD, Williams EP, Place AR, Jagus R, Bachvaroff TR. The alveolate translation initiation factor 4E family reveals a custom toolkit for translational control in core dinoflagellates. BMC Evol Biol 2015; 15:14. [PMID: 25886308 PMCID: PMC4330643 DOI: 10.1186/s12862-015-0301-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/29/2015] [Indexed: 01/27/2023] Open
Abstract
Background Dinoflagellates are eukaryotes with unusual cell biology and appear to rely on translational rather than transcriptional control of gene expression. The eukaryotic translation initiation factor 4E (eIF4E) plays an important role in regulating gene expression because eIF4E binding to the mRNA cap is a control point for translation. eIF4E is part of an extended, eukaryote-specific family with different members having specific functions, based on studies of model organisms. Dinoflagellate eIF4E diversity could provide a mechanism for dinoflagellates to regulate gene expression in a post-transcriptional manner. Accordingly, eIF4E family members from eleven core dinoflagellate transcriptomes were surveyed to determine the diversity and phylogeny of the eIF4E family in dinoflagellates and related lineages including apicomplexans, ciliates and heterokonts. Results The survey uncovered eight to fifteen (on average eleven) different eIF4E family members in each core dinoflagellate species. The eIF4E family members from heterokonts and dinoflagellates segregated into three clades, suggesting at least three eIF4E cognates were present in their common ancestor. However, these three clades are distinct from the three previously described eIF4E classes, reflecting diverse approaches to a central eukaryotic function. Heterokonts contain four clades, ciliates two and apicomplexans only a single recognizable eIF4E clade. In the core dinoflagellates, the three clades were further divided into nine sub-clades based on the phylogenetic analysis and species representation. Six of the sub-clades included at least one member from all eleven core dinoflagellate species, suggesting duplication in their shared ancestor. Conservation within sub-clades varied, suggesting different selection pressures. Conclusions Phylogenetic analysis of eIF4E in core dinoflagellates revealed complex layering of duplication and conservation when compared to other eukaryotes. Our results suggest that the diverse eIF4E family in core dinoflagellates may provide a toolkit to enable selective translation as a strategy for controlling gene expression in these enigmatic eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0301-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Grant D Jones
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA. .,University of Maryland, Baltimore, Graduate School, Baltimore, USA.
| | - Ernest P Williams
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| | - Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| | - Rosemary Jagus
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| |
Collapse
|
18
|
Zinoviev A, Manor S, Shapira M. Nutritional stress affects an atypical cap-binding protein in Leishmania. RNA Biol 2014; 9:1450-60. [DOI: 10.4161/rna.22709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Freire ER, Vashisht AA, Malvezzi AM, Zuberek J, Langousis G, Saada EA, Nascimento JDF, Stepinski J, Darzynkiewicz E, Hill K, De Melo Neto OP, Wohlschlegel JA, Sturm NR, Campbell DA. eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2014; 20:1272-86. [PMID: 24962368 PMCID: PMC4105752 DOI: 10.1261/rna.045534.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 05/19/2023]
Abstract
Members of the eIF4E mRNA cap-binding family are involved in translation and the modulation of transcript availability in other systems as part of a three-component complex including eIF4G and eIF4A. The kinetoplastids possess four described eIF4E and five eIF4G homologs. We have identified two new eIF4E family proteins in Trypanosoma brucei, and define distinct complexes associated with the fifth member, TbEIF4E5. The cytosolic TbEIF4E5 protein binds cap 0 in vitro. TbEIF4E5 was found in association with two of the five TbEIF4Gs. TbIF4EG1 bound TbEIF4E5, a 47.5-kDa protein with two RNA-binding domains, and either the regulatory protein 14-3-3 II or a 117.5-kDa protein with guanylyltransferase and methyltransferase domains in a potentially dynamic interaction. The TbEIF4G2/TbEIF4E5 complex was associated with a 17.9-kDa hypothetical protein and both 14-3-3 variants I and II. Knockdown of TbEIF4E5 resulted in the loss of productive cell movement, as evidenced by the inability of the cells to remain in suspension in liquid culture and the loss of social motility on semisolid plating medium, as well as a minor reduction of translation. Cells appeared lethargic, as opposed to compromised in flagellar function per se. The minimal use of transcriptional control in kinetoplastids requires these organisms to implement downstream mechanisms to regulate gene expression, and the TbEIF4E5/TbEIF4G1/117.5-kDa complex in particular may be a key player in that process. We suggest that a pathway involved in cell motility is affected, directly or indirectly, by one of the TbEIF4E5 complexes.
Collapse
Affiliation(s)
- Eden R Freire
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Amaranta M Malvezzi
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Edwin A Saada
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Janaína De F Nascimento
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Kent Hill
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Osvaldo P De Melo Neto
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nancy R Sturm
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - David A Campbell
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
20
|
Translational control in the Caenorhabditis elegans germ line. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:205-47. [PMID: 22872479 DOI: 10.1007/978-1-4614-4015-4_8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Translational control is a prevalent form of gene expression regulation in the Caenorhabditis elegans germ line. Linking the amount of protein synthesis to mRNA quantity and translational accessibility in the cell cytoplasm provides unique advantages over DNA-based controls for developing germ cells. This mode of gene expression is especially exploited in germ cell fate decisions and during oogenesis, when the developing oocytes stockpile hundreds of different mRNAs required for early embryogenesis. Consequently, a dense web of RNA regulators, consisting of diverse RNA-binding proteins and RNA-modifying enzymes, control the translatability of entire mRNA expression programs. These RNA regulatory networks are tightly coupled to germ cell developmental progression and are themselves under translational control. The underlying molecular mechanisms and RNA codes embedded in the mRNA molecules are beginning to be understood. Hence, the C. elegans germ line offers fertile grounds for discovering post-transcriptional mRNA regulatory mechanisms and emerges as great model for a systems level understanding of translational control during development.
Collapse
|
21
|
Piecyk K, Davis RE, Jankowska-Anyszka M. Synthesis of N²-modified 7-methylguanosine 5'-monophosphates as nematode translation inhibitors. Bioorg Med Chem 2012; 20:4781-9. [PMID: 22748379 PMCID: PMC3636719 DOI: 10.1016/j.bmc.2012.05.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/25/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
Preparative scale synthesis of 14 new N(2)-modified mononucleotide 5' mRNA cap analogues was achieved. The key step involved use of an S(N)Ar reaction with protected 2-fluoro inosine and various primary and secondary amines. The derivatives were tested in a parasitic nematode, Ascaris suum, cell-free system as translation inhibitors. The most effective compound with IC(50) ∼0.9μM was a N(2)-p-metoxybenzyl-7-methylguanosine-5'-monophosphate 35.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
22
|
Piecyk K, Davis RE, Jankowska-Anyszka M. Synthesis of ¹³C- and ¹⁴C-labeled dinucleotide mRNA cap analogues for structural and biochemical studies. Bioorg Med Chem Lett 2012; 22:4391-5. [PMID: 22658555 PMCID: PMC3652009 DOI: 10.1016/j.bmcl.2012.04.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 04/26/2012] [Accepted: 04/29/2012] [Indexed: 12/13/2022]
Abstract
Herein we describe the first simple and short method for specific labeling of mono- and trimethylated dinucleotide mRNA cap analogues with (13)C and (14)C isotopes. The labels were introduced within the cap structures either at the N7 for monomethylguanosine cap or N7 and N2 position for trimethylguanosine cap. The compounds designed for structural and biochemical studies will be useful tools for better understanding the role of the mRNA cap structures in pre-mRNA splicing, nucleocytoplasmic transport, translation initiation and mRNA degradation.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Richard E. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
23
|
Szczepaniak SA, Zuberek J, Darzynkiewicz E, Kufel J, Jemielity J. Affinity resins containing enzymatically resistant mRNA cap analogs--a new tool for the analysis of cap-binding proteins. RNA (NEW YORK, N.Y.) 2012; 18:1421-32. [PMID: 22589334 PMCID: PMC3383972 DOI: 10.1261/rna.032078.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/12/2012] [Indexed: 05/21/2023]
Abstract
Cap-binding proteins have been routinely isolated using m⁷GTP-Sepharose; however, this resin is inefficient for proteins such as DcpS (scavenger decapping enzyme), which interacts not only with the 7-methylguanosine, but also with the second cap base. In addition, DcpS purification may be hindered by the reduced resin capacity due to the ability of DcpS to hydrolyze m⁷GTP. Here, we report the synthesis of new affinity resins, m⁷GpCH₂pp- and m⁷GpCH₂ppA-Sepharoses, with attached cap analogs resistant to hydrolysis by DcpS. Biochemical tests showed that these matrices, as well as a hydrolyzable m⁷GpppA-Sepharose, bind recombinant mouse eIF4E²⁸⁻²¹⁷ specifically and at high capacity. In addition, purification of cap-binding proteins from yeast extracts confirmed the presence of all expected cap-binding proteins, including DcpS in the case of m⁷GpCH₂pp- and m⁷GpCH₂ppA-Sepharoses. In contrast, binding studies in vitro demonstrated that recombinant human DcpS efficiently bound only m⁷GpCH₂ppA-Sepharose. Our data prove the applicability of these novel resins, especially m⁷GpCH₂ppA-Sepharose, in biochemical studies such as the isolation and identification of cap-binding proteins from different organisms.
Collapse
Affiliation(s)
- Sylwia Anna Szczepaniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Jacek Jemielity
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| |
Collapse
|
24
|
Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists. Comp Funct Genomics 2012; 2012:134839. [PMID: 22778692 PMCID: PMC3388326 DOI: 10.1155/2012/134839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/09/2012] [Indexed: 01/01/2023] Open
Abstract
The greatest diversity of eukaryotic species is within the microbial eukaryotes, the protists, with plants and fungi/metazoa representing just two of the estimated seventy five lineages of eukaryotes. Protists are a diverse group characterized by unusual genome features and a wide range of genome sizes from 8.2 Mb in the apicomplexan parasite Babesia bovis to 112,000-220,050 Mb in the dinoflagellate Prorocentrum micans. Protists possess numerous cellular, molecular and biochemical traits not observed in “text-book” model organisms. These features challenge some of the concepts and assumptions about the regulation of gene expression in eukaryotes. Like multicellular eukaryotes, many protists encode multiple eIF4Es, but few functional studies have been undertaken except in parasitic species. An earlier phylogenetic analysis of protist eIF4Es indicated that they cannot be grouped within the three classes that describe eIF4E family members from multicellular organisms. Many more protist sequences are now available from which three clades can be recognized that are distinct from the plant/fungi/metazoan classes. Understanding of the protist eIF4Es will be facilitated as more sequences become available particularly for the under-represented opisthokonts and amoebozoa. Similarly, a better understanding of eIF4Es within each clade will develop as more functional studies of protist eIF4Es are completed.
Collapse
|
25
|
Hernández G, Proud CG, Preiss T, Parsyan A. On the Diversification of the Translation Apparatus across Eukaryotes. Comp Funct Genomics 2012; 2012:256848. [PMID: 22666084 PMCID: PMC3359775 DOI: 10.1155/2012/256848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 03/07/2012] [Indexed: 11/21/2022] Open
Abstract
Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.
Collapse
Affiliation(s)
- Greco Hernández
- Division of Basic Research, National Institute for Cancer (INCan), Avenida San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080 Mexico City, Mexico
| | - Christopher G. Proud
- Centre for Biological Sciences, University of Southampton, Life Sciences Building (B85), Southampton SO17 1BJ, UK
| | - Thomas Preiss
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Acton, Canberra, ACT 0200, Australia
| | - Armen Parsyan
- Goodman Cancer Centre and Department of Biochemistry, Faculty of Medicine, McGill University, 1160 Pine Avenue West, Montreal, QC, Canada H3A 1A3
- Division of General Surgery, Department of Surgery, Faculty of Medicine, McGill University Health Centre, Royal Victoria Hospital, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1
| |
Collapse
|
26
|
Liu W, Jankowska-Anyszka M, Piecyk K, Dickson L, Wallace A, Niedzwiecka A, Stepinski J, Stolarski R, Darzynkiewicz E, Kieft J, Zhao R, Jones DNM, Davis RE. Structural basis for nematode eIF4E binding an m(2,2,7)G-Cap and its implications for translation initiation. Nucleic Acids Res 2011; 39:8820-32. [PMID: 21965542 PMCID: PMC3203607 DOI: 10.1093/nar/gkr650] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Metazoan spliced leader (SL) trans-splicing generates mRNAs with an m2,2,7G-cap and a common downstream SL RNA sequence. The mechanism for eIF4E binding an m2,2,7G-cap is unknown. Here, we describe the first structure of an eIF4E with an m2,2,7G-cap and compare it to the cognate m7G-eIF4E complex. These structures and Nuclear Magnetic Resonance (NMR) data indicate that the nematode Ascaris suum eIF4E binds the two different caps in a similar manner except for the loss of a single hydrogen bond on binding the m2,2,7G-cap. Nematode and mammalian eIF4E both have a low affinity for m2,2,7G-cap compared with the m7G-cap. Nematode eIF4E binding to the m7G-cap, m2,2,7G-cap and the m2,2,7G-SL 22-nt RNA leads to distinct eIF4E conformational changes. Additional interactions occur between Ascaris eIF4E and the SL on binding the m2,2,7G-SL. We propose interactions between Ascaris eIF4E and the SL impact eIF4G and contribute to translation initiation, whereas these interactions do not occur when only the m2,2,7G-cap is present. These data have implications for the contribution of 5′-UTRs in mRNA translation and the function of different eIF4E isoforms.
Collapse
Affiliation(s)
- Weizhi Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dinucleotide cap analogue affinity resins for purification of proteins that specifically recognize the 5' end of mRNA. Bioorg Med Chem Lett 2011; 21:6131-4. [PMID: 21889340 DOI: 10.1016/j.bmcl.2011.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 11/22/2022]
Abstract
Here we present first dinucleotide affinity resins for purification of proteins that specifically recognize the 5' end of mRNA. Constructed resins possess either a naturally occurring mono- or trimethylated cap or their analogues resistant towards enzymatic degradation, bearing a CH(2) bridge between β and γ position of the 5',5'-triphosphate chain. All cap analogues were attached to a polymer support (EAH-Sepharose) through the carboxylic group that had been generated by derivatization of the 2',3'-cis diol of the second nucleotide in the cap structure with levulinic acid.
Collapse
|
28
|
Jankowska-Anyszka M, Piecyk K, Šamonina-Kosicka J. Synthesis of a new class of ribose functionalized dinucleotide cap analogues for biophysical studies on interaction of cap-binding proteins with the 5' end of mRNA. Org Biomol Chem 2011; 9:5564-72. [PMID: 21701749 DOI: 10.1039/c1ob05425b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
mRNAs of primitive eukaryotes such as Caenorhabditis elegans and Ascaris summ possess two different caps at their 5' terminus. They have either a typical cap which consists of 7-methylguanosine linked via a 5',5'-triphosphate bridge to the first transcribed nucleotide (MMG cap) or an atypical hypermethylated form with two additional methyl groups at the N2 position (TMG cap). Studies on interaction between the 5' end of mRNA and proteins that specifically recognize its structure have been carried out for several years and they often require chemically modified cap analogues. Here, we present the synthesis of five novel dinucleotide MMG and TMG cap analogues designed for binding studies using biophysical methods such as electron spin resonance (ESR) and surface plasmon resonance (SPR). New analogues were prepared by derivatization of the 2',3'-cis diol of the second nucleotide in the cap structure with levulinic acid, and coupling of the obtained acetal through its carboxylic group with 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino TEMPO), ethylenediamine (EDA) or (+)-biotinyl-3,6,9-trioxaundecanediamine (amine-PEO(3)-biotin).
Collapse
|
29
|
Kawasaki I, Jeong MH, Shim YH. Regulation of sperm-specific proteins by IFE-1, a germline-specific homolog of eIF4E, in C. elegans. Mol Cells 2011; 31:191-7. [PMID: 21191815 PMCID: PMC3932688 DOI: 10.1007/s10059-011-0021-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/01/2010] [Accepted: 11/01/2010] [Indexed: 11/27/2022] Open
Abstract
ABSTEACT: IFE-1 is one of the five C. elegans homologs of eIF4E, which is the mRNA 5' cap-binding component of the translation initiation complex eIF4F. Depletion of IFE-1 causes defects in sperm, suggesting that IFE-1 regulates a subset of genes required for sperm functions. To further understand the molecular function of IFE-1, proteomic analysis was performed to search for sperm proteins that are downregulated in ife-1(ok1978); fem-3(q20) mutants relative to the fem-3(q20) control. The fem-3(q20) mutant background was used because it only produces sperm at restrictive temperature. Total worm proteins were subjected to 2D-DIGE, and differentially expressed protein spots were further identified by MALDI-TOF mass spectrometry. Among the identified proteins, GSP-3 and Major Sperm Proteins (MSPs) were found to be significantly down-regulated in the ife-1(ok1978) mutant. Moreover, RNAi of gsp-3 caused an ife-1-like phenotype. These results suggest that IFE-1 is required for efficient expression of some sperm-specific proteins, and the fertilization defect of ife-1 mutant is caused mainly by a reduced level of GSP-3.
Collapse
Affiliation(s)
- Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
30
|
Song A, Labella S, Korneeva NL, Keiper BD, Aamodt EJ, Zetka M, Rhoads RE. A C. elegans eIF4E-family member upregulates translation at elevated temperatures of mRNAs encoding MSH-5 and other meiotic crossover proteins. J Cell Sci 2010; 123:2228-37. [PMID: 20530576 PMCID: PMC2886744 DOI: 10.1242/jcs.063107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2010] [Indexed: 12/29/2022] Open
Abstract
Caenorhabditis elegans expresses five family members of the translation initiation factor eIF4E whose individual physiological roles are only partially understood. We report a specific role for IFE-2 in a conserved temperature-sensitive meiotic process. ife-2 deletion mutants have severe temperature-sensitive chromosome-segregation defects. Mutant germ cells contain the normal six bivalents at diakinesis at 20 degrees C but 12 univalents at 25 degrees C, indicating a defect in crossover formation. Analysis of chromosome pairing in ife-2 mutants at the permissive and restrictive temperatures reveals no defects. The presence of RAD-51-marked early recombination intermediates and 12 well condensed univalents indicate that IFE-2 is not essential for formation of meiotic double-strand breaks or their repair through homologous recombination but is required for crossover formation. However, RAD-51 foci in ife-2 mutants persist into inappropriately late stages of meiotic prophase at 25 degrees C, similar to mutants defective in MSH-4/HIM-14 and MSH-5, which stabilize a critical intermediate in crossover formation. In wild-type worms, mRNAs for msh-4/him-14 and msh-5 shift from free messenger ribonucleoproteins to polysomes at 25 degrees C but not in ife-2 mutants, suggesting that IFE-2 translationally upregulates synthesis of MSH-4/HIM-14 and MSH-5 at elevated temperatures to stabilize Holliday junctions. This is confirmed by an IFE-2-dependent increase in MSH-5 protein levels.
Collapse
Affiliation(s)
- Anren Song
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | - Sara Labella
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Nadejda L. Korneeva
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
- Department of Emergency Medicine, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | - Brett D. Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, USA
| | - Eric J. Aamodt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | - Monique Zetka
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Robert E. Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| |
Collapse
|
31
|
Ruszczyńska-Bartnik K, Maciejczyk M, Stolarski R. Dynamical insight into Caenorhabditis elegans eIF4E recognition specificity for mono-and trimethylated structures of mRNA 5' cap. J Mol Model 2010; 17:727-37. [PMID: 20535623 PMCID: PMC3076583 DOI: 10.1007/s00894-010-0773-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 05/06/2010] [Indexed: 12/01/2022]
Abstract
Specific recognition and binding of the ribonucleic acid 5′ termini (mRNA 5′ cap) by the eukaryotic translation initiation factor 4E (eIF4E) is a key, rate limiting step in translation initiation. Contrary to mammalian and yeast eIF4Es that discriminate in favor of 7-methylguanosine cap, three out of five eIF4E isoforms from the nematode Caenorhabditis elegans as well as eIF4Es from the parasites Schistosome mansoni and Ascaris suum, exhibit dual binding specificity for both 7-methylguanosine-and N2,N2,7-trimethylguanosine cap. To address the problem of the differences in the mechanism of the cap recognition by those highly homologic proteins, we carried out molecular dynamics simulations in water of three factors, IFE-3 and IFE-5 isoforms from C. elegans and murine eIF4E, in the apo form as well as in the complexes with 7-methyl-GDP and N2,N2,7-trimethyl-GDP. The results clearly pointed to a dynamical mechanism of discrimination between each type of the cap, viz. differences in mobility of the loops located at the entrance into the protein binding pockets during the cap association and dissociation. Additionally, our data showed that the hydrogen bond involving the N2-amino group of 7-methylguanosine and the carboxylate of glutamic acid was not stable. The dynamic mechanism proposed here differs from a typical, static one in that the differences in the protein-ligand binding specificity cannot be ascribed to formation and/or disruption of well defined stabilizing contacts.
Collapse
Affiliation(s)
- Katarzyna Ruszczyńska-Bartnik
- Nuclear Magnetic Resonance Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
32
|
Tops BBJ, Gauci S, Heck AJR, Krijgsveld J. Worms from venus and mars: proteomics profiling of sexual differences in Caenorhabditis elegans using in vivo 15N isotope labeling. J Proteome Res 2010; 9:341-51. [PMID: 19916504 DOI: 10.1021/pr900678j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hermaphrodites of the nematode Caenorhabditis elegans produce both sperm and oocytes in the same germline. To investigate the process underlying spermatogenesis and oogenesis separately, we used a quantitative proteomics approach applied to two mutant worm lines (fem-3(q20) and fem-1(hc17)) developing only male and female germlines, respectively. We used stable isotopic labeling of whole animals by feeding them either (14)N or (15)N labeled Escherichia coli. This way, we could confidently identify and quantify 1040 proteins in two independent experiments. Of these, approximately 400 proteins showed significant differential expression between female-like and male-like animals. As expected, proteins linked to oogenesis were found to be highly upregulated in the feminized worms, whereas proteins involved in spermatogenesis were found to be highly upregulated in the masculinized worms. This was complemented by many proteins strongly enriched in either mutant. Although the function of the majority of these proteins is unknown, their expression profile indicates that they have an as yet unrecognized role in the development and/or function of the female- and male germline in C. elegans. We show that members of several protein complexes as well as functionally similar proteins show comparable abundance ratios, indicating coregulation of protein expression. Additional analysis comparing our protein data to a previously published microarray data set shows that mRNA and protein expression are poorly correlating. We provide one of the first examples of a large-scale quantitative proteomics experiment in C. elegans and show the potential and feasibility of an approach enabling system-wide accurate quantitative proteomics experiments in this model organism.
Collapse
Affiliation(s)
- Bastiaan B J Tops
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
33
|
The nematode eukaryotic translation initiation factor 4E/G complex works with a trans-spliced leader stem-loop to enable efficient translation of trimethylguanosine-capped RNAs. Mol Cell Biol 2010; 30:1958-70. [PMID: 20154140 DOI: 10.1128/mcb.01437-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5' end through the eIF4F initiation complex binding to the 5' m(7)G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5' end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m(7)G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5' untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs.
Collapse
|
34
|
Racher H, Hansen D. Translational control in the C. elegans hermaphrodite germ line. Genome 2010; 53:83-102. [DOI: 10.1139/g09-090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The formation of a fully developed gamete from an undifferentiated germ cell requires progression through numerous developmental stages and cell fate decisions. The precise timing and level of gene expression guides cells through these stages. Translational regulation is highly utilized in the germ line of many species, including Caenorhabditis elegans , to regulate gene expression and ensure the proper formation of gametes. In this review, we discuss some of the developmental stages and cell fate decisions involved in the formation of functional gametes in the C. elegans germ line in which translational control has been implicated. These stages include the mitosis versus meiosis decision, the sperm/oocyte decision, and gamete maturation. We also discuss some of the techniques used to identify mRNA targets; the identification of these targets is necessary to clearly understand the role each RNA-binding protein plays in these decisions. Relatively few mRNA targets have been identified, thus providing a major focus for future research. Finally, we propose some reasons why translational control may be utilized so heavily in the germ line. Given that many species have this substantial reliance on translational regulation for the control of gene expression in the germ line, an understanding of translational regulation in the C. elegans germ line is likely to increase our understanding of gamete formation in general.
Collapse
Affiliation(s)
- Hilary Racher
- University of Calgary, 2500 University Drive, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Dave Hansen
- University of Calgary, 2500 University Drive, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
35
|
Liu W, Zhao R, McFarland C, Kieft J, Niedzwiecka A, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E, Jones DNM, Davis RE. Structural insights into parasite eIF4E binding specificity for m7G and m2,2,7G mRNA caps. J Biol Chem 2009; 284:31336-49. [PMID: 19710013 PMCID: PMC2781531 DOI: 10.1074/jbc.m109.049858] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/19/2009] [Indexed: 01/02/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E recognizes the mRNA cap, a key step in translation initiation. Here we have characterized eIF4E from the human parasite Schistosoma mansoni. Schistosome mRNAs have either the typical monomethylguanosine (m(7)G) or a trimethylguanosine (m(2,2,7)G) cap derived from spliced leader trans-splicing. Quantitative fluorescence titration analyses demonstrated that schistosome eIF4E has similar binding specificity for both caps. We present the first crystal structure of an eIF4E with similar binding specificity for m(7)G and m(2,2,7)G caps. The eIF4E.m(7)GpppG structure demonstrates that the schistosome protein binds monomethyl cap in a manner similar to that of single specificity eIF4Es and exhibits a structure similar to other known eIF4Es. The structure suggests an alternate orientation of a conserved, key Glu-90 in the cap-binding pocket that may contribute to dual binding specificity and a position for mRNA bound to eIF4E consistent with biochemical data. Comparison of NMR chemical shift perturbations in schistosome eIF4E on binding m(7)GpppG and m(2,2,7)GpppG identified key differences between the two complexes. Isothermal titration calorimetry demonstrated significant thermodynamics differences for the binding process with the two caps (m(7)G versus m(2,2,7)G). Overall the NMR and isothermal titration calorimetry data suggest the importance of intrinsic conformational flexibility in the schistosome eIF4E that enables binding to m(2,2,7)G cap.
Collapse
Affiliation(s)
- Weizhi Liu
- From the Departments of Biochemistry and Molecular Genetics and
| | - Rui Zhao
- From the Departments of Biochemistry and Molecular Genetics and
| | - Craig McFarland
- From the Departments of Biochemistry and Molecular Genetics and
| | - Jeffrey Kieft
- From the Departments of Biochemistry and Molecular Genetics and
| | - Anna Niedzwiecka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Biological Physics Group, Institute of Physics, Polish Academy of Sciences, 32/46 Lotnikow Avenue, 02-668 Warsaw, Poland
| | | | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - David N. M. Jones
- **Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | | |
Collapse
|
36
|
Li W, DeBella LR, Guven-Ozkan T, Lin R, Rose LS. An eIF4E-binding protein regulates katanin protein levels in C. elegans embryos. ACTA ACUST UNITED AC 2009; 187:33-42. [PMID: 19786575 PMCID: PMC2762092 DOI: 10.1083/jcb.200903003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Caenorhabditis elegans, the MEI-1-katanin microtubule-severing complex is required for meiosis, but must be down-regulated during the transition to embryogenesis to prevent defects in mitosis. A cullin-dependent degradation pathway for MEI-1 protein has been well documented. In this paper, we report that translational repression may also play a role in MEI-1 down-regulation. Reduction of spn-2 function results in spindle orientation defects due to ectopic MEI-1 expression during embryonic mitosis. MEL-26, which is both required for MEI-1 degradation and is itself a target of the cullin degradation pathway, is present at normal levels in spn-2 mutant embryos, suggesting that the degradation pathway is functional. Cloning of spn-2 reveals that it encodes an eIF4E-binding protein that localizes to the cytoplasm and to ribonucleoprotein particles called P granules. SPN-2 binds to the RNA-binding protein OMA-1, which in turn binds to the mei-1 3' untranslated region. Thus, our results suggest that SPN-2 functions as an eIF4E-binding protein to negatively regulate translation of mei-1.
Collapse
Affiliation(s)
- Wei Li
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
37
|
Zamudio JR, Mittra B, Campbell DA, Sturm NR. Hypermethylated cap 4 maximizes Trypanosoma brucei translation. Mol Microbiol 2009; 72:1100-10. [PMID: 19504740 DOI: 10.1111/j.1365-2958.2009.06696.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Through trans-splicing of a 39-nt spliced leader (SL) onto each protein-coding transcript, mature kinetoplastid mRNA acquire a hypermethylated 5'-cap structure, but its function has been unclear. Gene deletions for three Trypanosoma brucei cap 2'-O-ribose methyltransferases, TbMTr1, TbMTr2 and TbMTr3, reveal distinct roles for four 2'-O-methylated nucleotides. Elimination of individual gene pairs yields viable cells; however, attempts at double knock-outs resulted in the generation of a TbMTr2-/-/TbMTr3-/- cell line only. Absence of both kinetoplastid-specific enzymes in TbMTr2-/-/TbMTr3-/- lines yielded substrate SL RNA and mRNA with cap 1. TbMTr1-/- translation is comparable with wildtype, while cap 3 and cap 4 loss reduced translation rates, exacerbated by the additional loss of cap 2. TbMTr1-/- and TbMTr2-/-/TbMTr3-/- lines grow to lower densities under normal culture conditions relative to wildtype cells, with growth rate differences apparent under low serum conditions. Cell viability may not tolerate delays at both the nucleolar Sm-independent and nucleoplasmic Sm-dependent stages of SL RNA maturation combined with reduced rates of translation. A minimal level of mRNA cap ribose methylation is essential for trypanosome viability, providing the first functional role for the cap 4.
Collapse
Affiliation(s)
- Jesse R Zamudio
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Eukaryotic initiation factor 4E (eIF4E) has long been known as the cap-binding protein that participates in recruitment of mRNA to the ribosome. A number of recent advances have not only increased our understanding of how eIF4E acts in translation but also uncovered non-translational roles. New structures have been determined for eIF4E in complex with various ligands and for other cap-binding proteins. We have also learned that most eukaryotic organisms express multiple eIF4E family members, some involved in general translation but others having specialized functions, including repression of translation. A number of new eIF4E-binding proteins have been reported, some of which tether it to specific mRNAs.
Collapse
Affiliation(s)
- Robert E Rhoads
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932.
| |
Collapse
|
39
|
Okade H, Fujita Y, Miyamoto S, Tomoo K, Muto S, Miyoshi H, Natsuaki T, Rhoads RE, Ishida T. Turnip mosaic virus genome-linked protein VPg binds C-terminal region of cap-bound initiation factor 4E orthologue without exhibiting host cellular specificity. J Biochem 2009; 145:299-307. [PMID: 19122207 DOI: 10.1093/jb/mvn180] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the binding specificity of turnip mosaic virus (TuMV) viral protein-genome linked (VPg) with translation initiation factor 4E, we evaluated here the kinetic parameters for the interactions of human eIF4E, Caenorhabditis elegans IFE-3 and IFE-5 and Arabidopsis eIFiso4E, by surface plasmon resonance (SPR). The results indicated that TuMV VPg does not show a binding preference for Arabidopsis eIFiso4E, even though it is from a host species whereas the other eIF4E orthologues are not. Surprisingly, the effect of m(7)GTP on both the rate constants and equilibrium binding constants for the interactions of VPg differed for the four eIF4E orthologues. In the case of eIFiso4E and IFE-3, m(7)GTP increased k(on), but for eIF4E and IFE-5, it decreased k(on). To provide insight into the structural basis for these differences in VPg binding, tertiary structures of the eIF4E orthologues were predicted on the basis of the previously determined crystal structure of m(7)GpppA-bound human eIF4E. The results suggested that in cap-bound eIF4E orthologues, the VPg binds to the C-terminal region, which constitutes one side of the entrance to the cap-binding pocket, whereas in the cap-free state, VPg binds to the widely opened cap-binding pocket and its surrounding region. The binding of VPg to the C-terminal region was confirmed by the SPR analyses of N- or C-terminal residues-deleted eIF4E orthologues.
Collapse
Affiliation(s)
- Hayato Okade
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Translational control in early development: CPEB, P-bodies and germinal granules. Biochem Soc Trans 2008; 36:671-6. [PMID: 18631138 DOI: 10.1042/bst0360671] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Selective protein synthesis in oocytes, eggs and early embryos of many organisms drives several critical aspects of early development, including meiotic maturation and entry into mitosis, establishment of embryonic axes and cell fate determination. mRNA-binding proteins which (usually) recognize 3'-UTR (untranslated region) elements in target mRNAs influence the recruitment of the small ribosomal subunit to the 5' cap. Probably the best studied such protein is CPEB (cytoplasmic polyadenylation element-binding protein), which represses translation in the oocyte in a cap-dependent manner, and activates translation in the meiotically maturing egg, via cytoplasmic polyadenylation. Co-immunoprecipitation and gel-filtration assays revealed that CPEB in Xenopus oocytes is in a very large RNP (ribonucleoprotein) complex and interacts with other RNA-binding proteins including Xp54 RNA helicase, Pat1, RAP55 (RNA-associated protein 55) and FRGY2 (frog germ cell-specific Y-box protein 2), as well as the eIF4E (eukaryotic initiation factor 4E)-binding protein 4E-T (eIF4E-transporter) and an ovary-specific eIF4E1b, which binds the cap weakly. Functional tests which implicate 4E-T and eIF4E1b in translational repression in oocytes led us to propose a model for the specific inhibition of translation of a target mRNA by a weak cap-binding protein. The components of the CPEB RNP complex are common to P-bodies (processing bodies), neuronal granules and germinal granules, suggesting that a highly conserved 'masking' complex operates in early development, neurons and somatic cells.
Collapse
|
41
|
Rutkowska-Wlodarczyk I, Stepinski J, Dadlez M, Darzynkiewicz E, Stolarski R, Niedzwiecka A. Structural changes of eIF4E upon binding to the mRNA 5' monomethylguanosine and trimethylguanosine Cap. Biochemistry 2008; 47:2710-20. [PMID: 18220364 DOI: 10.1021/bi701168z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recognition of the 5' cap by the eukaryotic initiation factor 4E (eIF4E) is the rate-limiting step in the ribosome recruitment to mRNAs. The regular cap consists of 7-monomethylguanosine (MMG) linked by a 5'-5' triphosphate bridge to the first transcribed nucleoside, while some primitive eukaryotes possess a N (2), N (2),7-trimethylguanosine (TMG) cap structure as a result of trans splicing. Mammalian eIF4E is highly specific to the MMG form of the cap in terms of association constants and thermodynamic driving force. We have investigated conformational changes of eIF4E induced by interaction with two cap analogues, 7-methyl-GTP and N (2), N (2),7-trimethyl-GTP. Hydrogen-deuterium exchange and electrospray mass spectrometry were applied to probe local dynamics of murine eIF4E in the apo and cap-bound forms. The data show that the cap binding induces long-range conformational changes in the protein, not only in the cap-binding pocket but also in a distant region of the 4E-BP/eIF4G binding site. Formation of the complex with 7-methyl-GTP makes the eIF4E structure more compact, while binding of N (2), N (2),7-trimethyl-GTP leads to higher solvent accessibility of the protein backbone in comparison with the apo form. The results suggest that the additional double methylation at the N (2)-amino group of the cap causes sterical effects upon binding to mammalian eIF4E which influence the overall solution dynamics of the protein, thus precluding formation of a tight complex.
Collapse
|
42
|
Rhoads RE, Dinkova TD, Jagus R. Approaches for analyzing the differential activities and functions of eIF4E family members. Methods Enzymol 2007; 429:261-97. [PMID: 17913628 DOI: 10.1016/s0076-6879(07)29013-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The translational initiation factor eIF4E binds to the m(7)G-containing cap of mRNA and participates in recruitment of mRNA to ribosomes for protein synthesis. eIF4E also functions in nucleocytoplasmic transport of mRNA, sequestration of mRNA in a nontranslatable state, and stabilization of mRNA against decay in the cytosol. Multiple eIF4E family members have been identified in a wide range of organisms that includes plants, flies, mammals, frogs, birds, nematodes, fish, and various protists. This chapter reviews methods that have been applied to learn the biochemical properties and physiological functions that differentiate eIF4E family members within a given organism. Much has been learned to date about approaches to discover new eIF4E family members, their in vitro properties (cap binding, stimulation of cell-free translation systems), tissue and developmental expression patterns, protein-binding partners, and their effects on the translation or repression of specific subsets of mRNA. Despite these advances, new eIF4E family members continue to be found and new physiological roles discovered.
Collapse
Affiliation(s)
- Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | | |
Collapse
|
43
|
Zamudio JR, Mittra B, Foldynová-Trantírková S, Zeiner GM, Lukes J, Bujnicki JM, Sturm NR, Campbell DA. The 2'-O-ribose methyltransferase for cap 1 of spliced leader RNA and U1 small nuclear RNA in Trypanosoma brucei. Mol Cell Biol 2007; 27:6084-92. [PMID: 17606627 PMCID: PMC1952150 DOI: 10.1128/mcb.00647-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
mRNA cap 1 2'-O-ribose methylation is a widespread modification that is implicated in processing, trafficking, and translational control in eukaryotic systems. The eukaryotic enzyme has yet to be identified. In kinetoplastid flagellates trans-splicing of spliced leader (SL) to polycistronic precursors conveys a hypermethylated cap 4, including a cap 0 m7G and seven additional methylations on the first 4 nucleotides, to all nuclear mRNAs. We report the first eukaryotic cap 1 2'-O-ribose methyltransferase, TbMTr1, a member of a conserved family of viral and eukaryotic enzymes. Recombinant TbMTr1 methylates the ribose of the first nucleotide of an m7G-capped substrate. Knockdowns and null mutants of TbMTr1 in Trypanosoma brucei grow normally, with loss of 2'-O-ribose methylation at cap 1 on substrate SL RNA and U1 small nuclear RNA. TbMTr1-null cells have an accumulation of cap 0 substrate without further methylation, while spliced mRNA is modified efficiently at position 4 in the absence of 2'-O-ribose methylation at position 1; downstream cap 4 methylations are independent of cap 1. Based on TbMTr1-green fluorescent protein localization, 2'-O-ribose methylation at position 1 occurs in the nucleus. Accumulation of 3'-extended SL RNA substrate indicates a delay in processing and suggests a synergistic role for cap 1 in maturation.
Collapse
Affiliation(s)
- Jesse R Zamudio
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, 609 Charles E. Young Drive East, University of California at Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cheng G, Cohen L, Mikhli C, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E, Davis RE. In vivo translation and stability of trans-spliced mRNAs in nematode embryos. Mol Biochem Parasitol 2007; 153:95-106. [PMID: 17391777 PMCID: PMC3650844 DOI: 10.1016/j.molbiopara.2007.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/23/2022]
Abstract
Spliced leader trans-splicing adds a short exon, the spliced leader (SL), to pre-mRNAs to generate 5' ends of mRNAs. Addition of the SL in metazoa also adds a new cap to the mRNA, a trimethylguanosine (m(3)(2,2,7)GpppN) (TMG) that replaces the typical eukaryotic monomethylguanosine (m7GpppN)(m7G) cap. Both trans-spliced (m3(2,2,7)GpppN-SL-RNA) and not trans-spliced (m7GpppN-RNA) mRNAs are present in the same cells. Previous studies using cell-free systems to compare the overall translation of trans-spliced versus non-trans-spliced RNAs led to different conclusions. Here, we examine the contribution of m3(2,2,7)GpppG-cap and SL sequence and other RNA elements to in vivo mRNA translation and stability in nematode embryos. Although 70-90% of all nematode mRNAs have a TMG-cap, the TMG cap does not support translation as well as an m7G-cap. However, when the TMG cap and SL are present together, they synergistically interact and translation is enhanced, indicating both trans-spliced elements are necessary to promote efficient translation. The SL by itself does not act as a cap-independent enhancer of translation. The poly(A)-tail synergistically interacts with the mRNA cap enhancing translation and plays a greater role in facilitating translation of TMG-SL mRNAs. In general, recipient mRNA sequences between the SL and AUG and the 3' UTR do not significantly contribute to the translation of trans-spliced mRNAs. Overall, the combination of TMG cap and SL contribute to mRNA translation and stability in a manner typical of a eukaryotic m7G-cap and 5' UTRs, but they do not differentially enhance mRNA translation or stability compared to RNAs without the trans-spliced elements.
Collapse
Affiliation(s)
- Guofeng Cheng
- Departments of Pediatrics and Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Leah Cohen
- Department of Biology, City University of New York Graduate Center, CSI, 2800 Victory Boulevard, Staten Island, NY, 10314 and
| | - Claudette Mikhli
- Department of Biology, City University of New York Graduate Center, CSI, 2800 Victory Boulevard, Staten Island, NY, 10314 and
| | | | - Janusz Stepinski
- Departments of Biophysics, University of Warsaw, 02-089 Warsaw, Poland
| | | | - Richard E. Davis
- Departments of Pediatrics and Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Biology, City University of New York Graduate Center, CSI, 2800 Victory Boulevard, Staten Island, NY, 10314 and
| |
Collapse
|
45
|
Hernández G, Vazquez-Pianzola P. Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech Dev 2006; 122:865-76. [PMID: 15922571 DOI: 10.1016/j.mod.2005.04.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 04/06/2005] [Accepted: 04/07/2005] [Indexed: 02/04/2023]
Abstract
Protein synthesis in eukaryotic cells is fundamental for gene expression. This process involves the binding of an mRNA molecule to the small ribosomal subunit in a group of reactions catalyzed by eukaryotic translation initiation factors (eIF) eIF4. To date, the role of each of the four eIF4, i.e. eIF4E, eIF4G, eIF4A and eIF4B, is well established. However, with the advent of genome-wide sequencing projects of various organisms, families of genes for each translation initiation factor have been identified. Intriguingly, recent studies have now established that certain eIF4 proteins can promote or inhibit translation of specific mRNAs, and also that some of them are active in processes other than translation. In addition, there is evidence of tissue- and developmental-stage-specific expression for some of these proteins. These new findings point to an additional level of complexity in the translation initiation process. In this review, we analyze the latest advances concerning the functionality of members of the eIF4 families in eukaryotic organisms and discuss the implications of this in the context of our current understanding of regulation of the translation initiation process.
Collapse
Affiliation(s)
- Greco Hernández
- Max-Planck-Institut für Biophysikalische Chemie, Abt. Molekulare Biologie, Am Fassberg 11, 37077 Göttingen, Germany.
| | | |
Collapse
|
46
|
Slepenkov SV, Darzynkiewicz E, Rhoads RE. Stopped-flow kinetic analysis of eIF4E and phosphorylated eIF4E binding to cap analogs and capped oligoribonucleotides: evidence for a one-step binding mechanism. J Biol Chem 2006; 281:14927-38. [PMID: 16540463 DOI: 10.1074/jbc.m601653200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recruitment of eukaryotic mRNA to the 48 S initiation complex is rate-limiting for protein synthesis under normal conditions. Binding of the 5' -terminal cap structure of mRNA to eIF4E is a critical event during this process. Mammalian eIF4E is phosphorylated at Ser-209 by Mnk1 and Mnk2 kinases. We investigated the interaction of both eIF4E and phosphorylated eIF4E (eIF4E(P)) with cap analogs and capped oligoribonucleotides by stopped-flow kinetics. For m(7)GpppG, the rate constant of association, k(on), was dependent on ionic strength, decreasing progressively up to 350 mm KCl, but the rate constant of dissociation, k(off), was independent of ionic strength. Phosphorylation of eIF4E decreased k(on) by 2.1-2.3-fold at 50-100 mm KCl but had progressively less effect at higher ionic strengths, being negligible at 350 mm. Contrary to published evidence, eIF4E phosphorylation had no effect on k(off). Several observations supported a simple one-step binding mechanism, in contrast to published reports of a two-step mechanism. The kinetic function that best fit the data changed from single- to double-exponential as the eIF4E concentration was increased. However, measuring k(off) for dissociation of a pre-formed eIF4E.m(7)GpppG complex suggested that the double-exponential kinetics were caused by dissociation of eIF4E dimers, not a two-step mechanism. Addition of a 12-nucleotide chain to the cap structure increased affinity at high ionic strength for both eIF4E (24-fold) and eIF4E(P) (7-fold), primarily due to a decrease in k(off). This suggests that additional stabilizing interactions between capped oligoribonucleotides and eIF4E, which do not occur with cap analogs alone, act to slow dissociation.
Collapse
Affiliation(s)
- Sergey V Slepenkov
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|
47
|
Lall S, Piano F, Davis RE. Caenorhabditis elegans decapping proteins: localization and functional analysis of Dcp1, Dcp2, and DcpS during embryogenesis. Mol Biol Cell 2005; 16:5880-90. [PMID: 16207815 PMCID: PMC1289429 DOI: 10.1091/mbc.e05-07-0622] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/20/2005] [Accepted: 09/26/2005] [Indexed: 02/06/2023] Open
Abstract
Though posttranscriptional regulation is important for early embryogenesis, little is understood regarding control of mRNA decay during development. Previous work defined two major pathways by which normal transcripts are degraded in eukaryotes. However it is not known which pathways are key in mRNA decay during early patterning or whether developmental transcripts are turned over via specific pathways. Here we show that Caenorhabditis elegans Dcp2 is localized to distinct foci during embryogenesis, reminiscent of P-bodies, the sites of mRNA degradation in yeast and mammals. However the decapping enzyme of the 3' to 5' transcript decay system (DcpS) localizes throughout the cytoplasm, suggesting this degradation pathway is not highly organized. In addition we find that Dcp2 is localized to P-granules, showing that Dcp2 is stored and/or active in these structures. However RNAi of these decapping enzymes has no obvious effect on embryogenesis. In contrast we find that nuclear cap binding proteins (CBP-20 and 80), eIF4G, and PAB-1 are absolutely required for development. Together our data provides further evidence that pathways of general mRNA metabolism can be remarkably organized during development, with two different decapping enzymes localized in distinct cytoplasmic domains.
Collapse
Affiliation(s)
- Sabbi Lall
- Department of Biology, City University of New York Graduate Center, College of Staten Island, Staten Island CUNY, New York, NY 10314, USA
| | | | | |
Collapse
|
48
|
Joshi B, Lee K, Maeder DL, Jagus R. Phylogenetic analysis of eIF4E-family members. BMC Evol Biol 2005; 5:48. [PMID: 16191198 PMCID: PMC1260017 DOI: 10.1186/1471-2148-5-48] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 09/28/2005] [Indexed: 11/10/2022] Open
Abstract
Background Translation initiation in eukaryotes involves the recruitment of mRNA to the ribosome which is controlled by the translation factor eIF4E. eIF4E binds to the 5'-m7Gppp cap-structure of mRNA. Three dimensional structures of eIF4Es bound to cap-analogues resemble 'cupped-hands' in which the cap-structure is sandwiched between two conserved Trp residues (Trp-56 and Trp-102 of H. sapiens eIF4E). A third conserved Trp residue (Trp-166 of H. sapiens eIF4E) recognizes the 7-methyl moiety of the cap-structure. Assessment of GenBank NR and dbEST databases reveals that many organisms encode a number of proteins with homology to eIF4E. Little is understood about the relationships of these structurally related proteins to each other. Results By combining sequence data deposited in the Genbank databases, we have identified sequences encoding 411 eIF4E-family members from 230 species. These sequences have been deposited into an internet-accessible database designed for sequence comparisons of eIF4E-family members. Most members can be grouped into one of three classes. Class I members carry Trp residues equivalent to Trp-43 and Trp-56 of H. sapiens eIF4E and appear to be present in all eukaryotes. Class II members, possess Trp→Tyr/Phe/Leu and Trp→Tyr/Phe substitutions relative to Trp-43 and Trp-56 of H. sapiens eIF4E, and can be identified in Metazoa, Viridiplantae, and Fungi. Class III members possess a Trp residue equivalent to Trp-43 of H. sapiens eIF4E but carry a Trp→Cys/Tyr substitution relative to Trp-56 of H. sapiens eIF4E, and can be identified in Coelomata and Cnidaria. Some eIF4E-family members from Protista show extension or compaction relative to prototypical eIF4E-family members. Conclusion The expansion of sequenced cDNAs and genomic DNAs from all eukaryotic kingdoms has revealed a variety of proteins related in structure to eIF4E. Evolutionarily it seems that a single early eIF4E gene has undergone multiple gene duplications generating multiple structural classes, such that it is no longer possible to predict function from the primary amino acid sequence of an eIF4E-family member. The variety of eIF4E-family members provides a source of alternatives on the eIF4E structural theme that will benefit structure/function analyses and therapeutic drug design.
Collapse
Affiliation(s)
- Bhavesh Joshi
- Center of Marine Biotechnology, Suite 236 Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Kibwe Lee
- Center of Marine Biotechnology, Suite 236 Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Dennis L Maeder
- Center of Marine Biotechnology, Suite 236 Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Rosemary Jagus
- Center of Marine Biotechnology, Suite 236 Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
49
|
Li L, Wang CC. Identification in the ancient protist Giardia lamblia of two eukaryotic translation initiation factor 4E homologues with distinctive functions. EUKARYOTIC CELL 2005; 4:948-59. [PMID: 15879529 PMCID: PMC1140097 DOI: 10.1128/ec.4.5.948-959.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) binds to the m(7)GTP of capped mRNAs and is an essential component of the translational machinery that recruits the 40S small ribosomal subunit. We describe here the identification and characterization of two eIF4E homologues in an ancient protist, Giardia lamblia. Using m(7)GTP-Sepharose affinity column chromatography, a specific binding protein was isolated and identified as Giardia eIF4E2. The other homologue, Giardia eIF4E1, bound only to the m(2,2,7)GpppN structure. Although neither homologue can rescue the function of yeast eIF4E, a knockdown of eIF4E2 mRNA in Giardia by a virus-based antisense ribozyme decreased translation, which was shown to use m(7)GpppN-capped mRNA as a template. Thus, eIF4E2 is likely the cap-binding protein in a translation initiation complex. The same knockdown approach indicated that eIF4E1 is not required for translation in Giardia. Immunofluorescence assays showed wide distribution of both homologues in the cytoplasm. But eIF4E1 was also found concentrated and colocalized with the m(2,2,7)GpppN cap, 16S-like rRNA, and fibrillarin in the nucleolus-like structure in the nucleus. eIF4E1 depletion from Giardia did not affect mRNA splicing, but the protein was bound to Giardia small nuclear RNAs D and H known to have an m(2,2,7)GpppN cap, thus suggesting a novel function not yet observed among other eIF4Es in eukaryotes.
Collapse
Affiliation(s)
- Lei Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, N572C, Mission Bay Genentech Hall, 600 16th St., San Francisco, CA 94122-2280, USA
| | | |
Collapse
|
50
|
Dhalia R, Reis CRS, Freire ER, Rocha PO, Katz R, Muniz JRC, Standart N, de Melo Neto OP. Translation initiation in Leishmania major: characterisation of multiple eIF4F subunit homologues. Mol Biochem Parasitol 2005; 140:23-41. [PMID: 15694484 DOI: 10.1016/j.molbiopara.2004.12.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2004] [Revised: 11/25/2004] [Accepted: 12/07/2004] [Indexed: 10/26/2022]
Abstract
In eukaryotes protein synthesis initiates with the binding of the multimeric translation initiation complex eIF4F - eIF4E, eIF4A and eIF4G - to the monomethylated cap present on the 5' end of mRNAs. eIF4E interacts directly with the cap nucleotide, while eIF4A is a highly conserved RNA helicase and eIF4G acts as a scaffold for the complex with binding sites for both eIF4E and eIF4A. eIF4F binding to the mRNA recruits the small ribosomal subunit to its 5' end. Little is known in detail of protein synthesis in the protozoan parasites belonging to the family Trypanosomatidae. However, the presence of the highly modified cap structure, cap4, and the spliced leader sequence on the 5' ends of all mRNAs suggests possible differences in mRNA recruitment by ribosomes. We identified several potential eIF4F homologues by searching Leishmania major databases: four eIF4Es (LmEIF4E1-4), two eIF4As (LmEIF4A1-2) and five eIF4Gs (LmEIF4G1-5). We report the initial characterisation of LmEIF4E1-3, LmEIF4A1-2 and LmEIF4G3. First, the expression of these proteins in L. major promastigotes was quantitated by Western blotting using isoform specific antibodies. LmEIF4A1 and LmEIF4E3 are very abundant, LmEIF4G3 is moderately abundant and LmEIF4E1/LmEIF4E2/LmEIF4A2 are rare or not detected. In cap-binding assays, only LmEIF4E1 bound to the 7-methyl-GTP-Sepharose resin. Molecular modelling confirmed that LmEIF4E1 has all the structural features of a cap-binding protein. Finally, pull-down assays were used to investigate the potential interaction between the eIF4A (LmEIF4A1/LmEIF4A2) and eIF4G (LmEIF4G1-3) homologues. Only LmEIF4G3, via the HEAT domain, bound specifically both to LmEIF4A1 as well as to human eIF4A. Therefore for each factor, one of the L. major forms seems to fulfil, in part at least, the expected characteristics of a translational initiation factor.
Collapse
Affiliation(s)
- Rafael Dhalia
- Departamento de Biologia Celular, Universidade de Brasilia, Brasilia 70910-900, D.F., Brazil
| | | | | | | | | | | | | | | |
Collapse
|