1
|
Soriano Jerez EM, Gibbins JM, Hughes CE. Targeting platelet inhibition receptors for novel therapies: PECAM-1 and G6b-B. Platelets 2021; 32:761-769. [PMID: 33646086 DOI: 10.1080/09537104.2021.1882668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
While current oral antiplatelet therapies benefit many patients, they deregulate the hemostatic balance leaving patients at risk of systemic side-effects such as hemorrhage. Dual antiplatelet treatment is the standard approach, combining aspirin with P2Y12 blockers. These therapies mainly target autocrine activation mechanisms (TxA2, ADP) and, more recently, the use of thrombin or thrombin receptor antagonists have been added to the available approaches. Recent efforts to develop new classes of anti-platelet drugs have begun to focus on primary platelet activation pathways such as through the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor GPVI/FcRγ-chain complex. There are already encouraging results from targeting GPVI, with reduced aggregation and smaller arterial thrombi, without major bleeding complications, likely due to overlapping activation signaling pathways with other receptors such as the GPIb-V-IX complex. An alternative approach to reduce platelet activation could be to inhibit this signaling pathway by targeting the inhibitory pathways intrinsic to platelets. Stimulation of endogenous negative modulators could provide more specific inhibition of platelet function, but is this feasible? In this review, we explore the potential of the two major platelet immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing inhibitory receptors, G6b-B and PECAM-1, as antithrombotic targets.
Collapse
Affiliation(s)
- Eva M Soriano Jerez
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK.,Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Craig E Hughes
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| |
Collapse
|
2
|
Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events. Genes (Basel) 2021; 12:genes12020254. [PMID: 33578809 PMCID: PMC7916592 DOI: 10.3390/genes12020254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2021] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022] Open
Abstract
Infiltration of the endothelial layer of the blood-brain barrier by leukocytes plays a critical role in health and disease. When passing through the endothelial layer during the diapedesis process lymphocytes can either follow a paracellular route or a transcellular one. There is a debate whether these two processes constitute one mechanism, or they form two evolutionary distinct migration pathways. We used artificial intelligence, phylogenetic analysis, HH search, ancestor sequence reconstruction to investigate further this intriguing question. We found that the two systems share several ancient components, such as RhoA protein that plays a critical role in controlling actin movement in both mechanisms. However, some of the key components differ between these two transmigration processes. CAV1 genes emerged during Trichoplax adhaerens, and it was only reported in transcellular process. Paracellular process is dependent on PECAM1. PECAM1 emerged from FASL5 during Zebrafish divergence. Lastly, both systems employ late divergent genes such as ICAM1 and VECAM1. Taken together, our results suggest that these two systems constitute two different mechanical sensing mechanisms of immune cell infiltrations of the brain, yet these two systems are connected. We postulate that the mechanical properties of the cellular polarity is the main driving force determining the migration pathway. Our analysis indicates that both systems coevolved with immune cells, evolving to a higher level of complexity in association with the evolution of the immune system.
Collapse
|
3
|
Abu-Thuraia A, Goyette MA, Boulais J, Delliaux C, Apcher C, Schott C, Chidiac R, Bagci H, Thibault MP, Davidson D, Ferron M, Veillette A, Daly RJ, Gingras AC, Gratton JP, Côté JF. AXL confers cell migration and invasion by hijacking a PEAK1-regulated focal adhesion protein network. Nat Commun 2020; 11:3586. [PMID: 32681075 PMCID: PMC7368075 DOI: 10.1038/s41467-020-17415-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2018] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
Aberrant expression of receptor tyrosine kinase AXL is linked to metastasis. AXL can be activated by its ligand GAS6 or by other kinases, but the signaling pathways conferring its metastatic activity are unknown. Here, we define the AXL-regulated phosphoproteome in breast cancer cells. We reveal that AXL stimulates the phosphorylation of a network of focal adhesion (FA) proteins, culminating in faster FA disassembly. Mechanistically, AXL phosphorylates NEDD9, leading to its binding to CRKII which in turn associates with and orchestrates the phosphorylation of the pseudo-kinase PEAK1. We find that PEAK1 is in complex with the tyrosine kinase CSK to mediate the phosphorylation of PAXILLIN. Uncoupling of PEAK1 from AXL signaling decreases metastasis in vivo, but not tumor growth. Our results uncover a contribution of AXL signaling to FA dynamics, reveal a long sought-after mechanism underlying AXL metastatic activity, and identify PEAK1 as a therapeutic target in AXL positive tumors. AXL receptor tyrosine kinase has a role in metastasis but the mechanism is unclear. In this study, the authors show that AXL activation can control focal adhesion dynamics via PEAK1 and that AXL-mediated PEAK1 phosphorylation is required for metastasis of triple negative breast cancer cells in vivo.
Collapse
Affiliation(s)
- Afnan Abu-Thuraia
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Marie-Anne Goyette
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Carine Delliaux
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Chloé Apcher
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Céline Schott
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Rony Chidiac
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Halil Bagci
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada.,Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | | | - Dominique Davidson
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Mathieu Ferron
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada.,Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
| | - André Veillette
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada. .,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
4
|
Abraham V, Cao G, Parambath A, Lawal F, Handumrongkul C, Debs R, DeLisser HM. Involvement of TIMP-1 in PECAM-1-mediated tumor dissemination. Int J Oncol 2018; 53:488-502. [PMID: 29845213 PMCID: PMC6017270 DOI: 10.3892/ijo.2018.4422] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2017] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is expressed on the vascular endothelium and has been implicated in the late progression of metastatic tumors. The activity of PECAM-1 appears to be mediated by modulation of the tumor microenvironment (TME) and promotion of tumor cell proliferation, rather than through the stimulation of tumor angiogenesis. The present study aimed to extend those initial findings by indicating that the presence of functional PECAM-1 on the endothelium promotes a proliferative tumor cell phenotype in vivo, as well as in tumor cell (B16-F10 melanoma and 4T1 breast cancer cell lines) co-culture assays with mouse endothelial cells (ECs) or a surrogate EC line (REN-MP). The pro-proliferative effects were mediated by soluble endothelial-derived factors that were dependent on PECAM-1 homophilic ligand interactions, but which were independent of PECAM-1-dependent signaling. Further analysis of the conditioned media obtained from tumor/EC and tumor/REN-MP co-cultures identified TIMP metallopeptidase inhibitor-1 (TIMP-1) as a PECAM-1-regulated factor, the targeting of which in the tumor cell/REN-MP system inhibited tumor cell proliferation. In addition, TIMP-1 expression was decreased in metastatic tumors from the lungs of PECAM-1-null mice, thus providing evidence of the in vivo significance of co-culture studies. Taken together, these studies indicated that endothelial PECAM-1, through PECAM-1-dependent homophilic binding interactions, may induce release of TIMP-1 from the endothelium into the TME, thus leading to increased tumor cell proliferation.
Collapse
Affiliation(s)
- Valsamma Abraham
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Andrew Parambath
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fareedah Lawal
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Robert Debs
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Horace M DeLisser
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
6
|
Abraham V, Parambath A, Joe DS, DeLisser HM. Influence of PECAM-1 ligand interactions on PECAM-1-dependent cell motility and filopodia extension. Physiol Rep 2017; 4:4/22/e13030. [PMID: 27895229 PMCID: PMC5358002 DOI: 10.14814/phy2.13030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 01/31/2023] Open
Abstract
Platelet endothelial cell adhesion molecule (PECAM‐1) has been implicated in angiogenesis through processes that involve stimulation of endothelial cell motility. Previous studies suggest that PECAM‐1 tyrosine phosphorylation mediates the recruitment and then activation of the tyrosine phosphatase SHP‐2, which in turn promotes the turnover of focal adhesions and the extension of filopodia, processes critical to cell motility. While these studies have implicated PECAM‐1‐dependent signaling in PECAM‐1‐mediated cell motility, the involvement of PECAM‐1 ligand binding in cell migration is undefined. Therefore to investigate the role of PECAM‐1 binding interactions in cell motility, mutants of PECAM‐1 were generated in which either homophilic or heparin/glycosaminoglycan (GAG)‐mediated heterophilic binding had been disabled and then expressed in an endothelial cell surrogate. We found that the ability of PECAM‐1 to stimulate cell migration, promote filopodia formation and trigger Cdc42 activation were lost if PECAM‐1‐dependent homophilic or heparin/GAG‐dependent heterophilic ligand binding was disabled. We further observed that PECAM‐1 concentrated at the tips of extended filopodia, an activity that was diminished if homophilic, but not heparin/GAG‐mediated heterophilic binding had been disrupted. Similar patterns of activities were seen in mouse endothelial cells treated with antibodies that specifically block PECAM‐1‐dependent homophilic or heterophilic adhesion. Together these data provide evidence for the differential involvement of PECAM‐1‐ligand interactions in PECAM‐1‐dependent motility and the extension of filopodia.
Collapse
Affiliation(s)
- Valsamma Abraham
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Parambath
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Debria S Joe
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Horace M DeLisser
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Platelet Endothelial Cell Adhesion Molecule-1 and Oligodendrogenesis: Significance in Alcohol Use Disorders. Brain Sci 2017; 7:brainsci7100131. [PMID: 29035306 PMCID: PMC5664058 DOI: 10.3390/brainsci7100131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 12/11/2022] Open
Abstract
Alcoholism is a chronic relapsing disorder with few therapeutic strategies that address the core pathophysiology. Brain tissue loss and oxidative damage are key components of alcoholism, such that reversal of these phenomena may help break the addictive cycle in alcohol use disorder (AUD). The current review focuses on platelet endothelial cell adhesion molecule 1 (PECAM-1), a key modulator of the cerebral endothelial integrity and neuroinflammation, and a targetable transmembrane protein whose interaction within AUD has not been well explored. The current review will elaborate on the function of PECAM-1 in physiology and pathology and infer its contribution in AUD neuropathology. Recent research reveals that oligodendrocytes, whose primary function is myelination of neurons in the brain, are a key component in new learning and adaptation to environmental challenges. The current review briefly introduces the role of oligodendrocytes in healthy physiology and neuropathology. Importantly, we will highlight the recent evidence of dysregulation of oligodendrocytes in the context of AUD and then discuss their potential interaction with PECAM-1 on the cerebral endothelium.
Collapse
|
8
|
Unsworth AJ, Bye AP, Gibbins JM. Platelet-Derived Inhibitors of Platelet Activation. PLATELETS IN THROMBOTIC AND NON-THROMBOTIC DISORDERS 2017. [PMCID: PMC7123044 DOI: 10.1007/978-3-319-47462-5_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
|
9
|
Senda Y, Murata-Kamiya N, Hatakeyama M. C-terminal Src kinase-mediated EPIYA phosphorylation of Pragmin creates a feed-forward C-terminal Src kinase activation loop that promotes cell motility. Cancer Sci 2016; 107:972-80. [PMID: 27116701 PMCID: PMC4946704 DOI: 10.1111/cas.12962] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2016] [Revised: 04/16/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Pragmin is one of the few mammalian proteins containing the Glu‐Pro‐Ile‐Tyr‐Ala (EPIYA) tyrosine‐phosphorylation motif that was originally discovered in the Helicobacter pylori CagA oncoprotein. Following delivery into gastric epithelial cells by type IV secretion and subsequent tyrosine phosphorylation at the EPIYA motifs, CagA serves as an oncogenic scaffold/adaptor that promiscuously interacts with SH2 domain‐containing mammalian proteins such as the Src homology 2 (SH2) domain‐containing protein tyrosine phosphatase‐2 (SHP2) and the C‐terminal Src kinase (Csk), a negative regulator of Src family kinases. Like CagA, Pragmin also forms a physical complex with Csk. In the present study, we found that Pragmin directly binds to Csk by the tyrosine‐phosphorylated EPIYA motif. The complex formation potentiates kinase activity of Csk, which in turn phosphorylates Pragmin on tyrosine‐238 (Y238), Y343, and Y391. As Y391 of Pragmin comprises the EPIYA motif, Pragmin–Csk interaction creates a feed‐forward regulatory loop of Csk activation. Together with the finding that Pragmin and Csk are colocalized to focal adhesions, these observations indicate that the Pragmin–Csk interaction, triggered by Pragmin EPIYA phosphorylation, robustly stimulates the kinase activity of Csk at focal adhesions, which direct cell‐matrix adhesion that regulates cell morphology and cell motility. As a consequence, expression of Pragmin and/or Csk in epithelial cells induces an elongated cell shape with elevated cell scattering in a manner that is mutually dependent on Pragmin and Csk. Deregulation of the Pragmin–Csk axis may therefore induce aberrant cell migration that contributes to tumor invasion and metastasis.
Collapse
Affiliation(s)
- Yoshie Senda
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoko Murata-Kamiya
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Seminal CD38 Enhances Human Sperm Capacitation through Its Interaction with CD31. PLoS One 2015; 10:e0139110. [PMID: 26407101 PMCID: PMC4583300 DOI: 10.1371/journal.pone.0139110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Human sperm have to undergo a maturational process called capacitation in the female reproductive tract. Capacitation confers upon the sperm an ability to gain hypermotility and undergo acrosome reaction. Previous studies have suggested that seminal plasma proteins induce the capacitation of sperm in the female reproductive tract for the successful fertilization of the oocyte. However, the function of seminal plasma proteins in capacitation remains largely unclear. To the end, we found that soluble CD38 (sCD38) in seminal plasma increases the capacitation of sperm via specific interactions between sCD38 and the CD31 on the sperm. Upon the association of sCD38 with CD31, tyrosine kinase Src phosphorylates CD31, a process blocked by Src inhibitors. Shc, SHP-2, Grb2, and SOS, as well as Src kinase were found to associate with the phosphorylated CD31. The sCD38-induced phosphorylation of CD31 initiates a cascade reaction through the phosphorylation of Erk1/2, which results in the acrosome reaction, and sperm hypermotility. These processes were prevented by Src, Ras and MEK inhibitors. Taken together, these data indicate that the sCD38 present in seminal plasma plays a critical role in the capacitation of sperm.
Collapse
|
11
|
Abstract
Vascular development and maintenance of proper vascular function through various regulatory mechanisms are critical to our wellbeing. Delineation of the regulatory processes involved in development of the vascular system and its function is one of the most important topics in human physiology and pathophysiology. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), a cell adhesion molecule with proangiogenic and proinflammatory activity, has been the subject of numerous studies. In the present review, we look at the important roles that PECAM-1 and its isoforms play during angiogenesis, and its molecular mechanisms of action in the endothelium. In the endothelium, PECAM-1 not only plays a role as an adhesion molecule but also participates in intracellular signalling pathways which have an impact on various cell adhesive mechanisms and endothelial nitric oxide synthase (eNOS) expression and activity. In addition, recent studies from our laboratory have revealed an important relationship between PECAM-1 and endoglin expression. Endoglin is an essential molecule during angiogenesis, vascular development and integrity, and its expression and activity are compromised in the absence of PECAM-1. In the present review we discuss the roles that PECAM-1 isoforms may play in modulation of endothelial cell adhesive mechanisms, eNOS and endoglin expression and activity, and angiogenesis.
Collapse
|
12
|
Han J, Shuvaev VV, Davies PF, Eckmann DM, Muro S, Muzykantov VR. Flow shear stress differentially regulates endothelial uptake of nanocarriers targeted to distinct epitopes of PECAM-1. J Control Release 2015; 210:39-47. [PMID: 25966362 DOI: 10.1016/j.jconrel.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 01/01/2023]
Abstract
Targeting nanocarriers (NC) to endothelial cell adhesion molecules including Platelet-Endothelial Cell Adhesion Molecule-1 (PECAM-1 or CD31) improves drug delivery and pharmacotherapy of inflammation, oxidative stress, thrombosis and ischemia in animal models. Recent studies unveiled that hydrodynamic conditions modulate endothelial endocytosis of NC targeted to PECAM-1, but the specificity and mechanism of effects of flow remain unknown. Here we studied the effect of flow on endocytosis by human endothelial cells of NC targeted by monoclonal antibodies Ab62 and Ab37 to distinct epitopes on the distal extracellular domain of PECAM. Flow in the range of 1-8dyn/cm(2), typical for venous vasculature, stimulated the uptake of spherical Ab/NC (~180nm diameter) carrying ~50 vs 200 Ab62 and Ab37 per NC, respectively. Effect of flow was inhibited by disruption of cholesterol-rich plasmalemma domains and deletion of PECAM-1 cytosolic tail. Flow stimulated endocytosis of Ab62/NC and Ab37/NC via eliciting distinct signaling pathways mediated by RhoA/ROCK and Src Family Kinases, respectively. Therefore, flow stimulates endothelial endocytosis of Ab/NC in a PECAM-1 epitope specific manner. Using ligands of binding to distinct epitopes on the same target molecule may enable fine-tuning of intracellular delivery based on the hemodynamic conditions in the vascular area of interest.
Collapse
Affiliation(s)
- Jingyan Han
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA19104, USA; Vascular Biology Section, Department of Medicine, Boston University, Boston, MA 02421, USA
| | - Vladimir V Shuvaev
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Peter F Davies
- Department of Pathology & Lab Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104, USA
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Vladimir R Muzykantov
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA19104, USA.
| |
Collapse
|
13
|
Marcos-Ramiro B, García-Weber D, Millán J. TNF-induced endothelial barrier disruption: beyond actin and Rho. Thromb Haemost 2014; 112:1088-102. [PMID: 25078148 DOI: 10.1160/th14-04-0299] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2014] [Accepted: 06/16/2014] [Indexed: 11/05/2022]
Abstract
The decrease of endothelial barrier function is central to the long-term inflammatory response. A pathological alteration of the ability of endothelial cells to modulate the passage of cells and solutes across the vessel underlies the development of inflammatory diseases such as atherosclerosis and multiple sclerosis. The inflammatory cytokine tumour necrosis factor (TNF) mediates changes in the barrier properties of the endothelium. TNF activates different Rho GTPases, increases filamentous actin and remodels endothelial cell morphology. However, inhibition of actin-mediated remodelling is insufficient to prevent endothelial barrier disruption in response to TNF, suggesting that additional molecular mechanisms are involved. Here we discuss, first, the pivotal role of Rac-mediated generation of reactive oxygen species (ROS) to regulate the integrity of endothelial cell-cell junctions and, second, the ability of endothelial adhesion receptors such as ICAM-1, VCAM-1 and PECAM-1, involved in leukocyte transendothelial migration, to control endothelial permeability to small molecules, often through ROS generation. These adhesion receptors regulate endothelial barrier function in ways both dependent on and independent of their engagement by immune cells, and orchestrate the crosstalk between leukocyte transendothelial migration and endothelial permeability during inflammation.
Collapse
Affiliation(s)
| | | | - J Millán
- Jaime Millán, Centro de Biología Molecular Severo Ochoa, C/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain, Tel.: +34 911964713, Fax: +34 911964420, E-mail:
| |
Collapse
|
14
|
Jones CI, Sage T, Moraes LA, Vaiyapuri S, Hussain U, Tucker KL, Barrett NE, Gibbins JM. Platelet endothelial cell adhesion molecule-1 inhibits platelet response to thrombin and von Willebrand factor by regulating the internalization of glycoprotein Ib via AKT/glycogen synthase kinase-3/dynamin and integrin αIIbβ3. Arterioscler Thromb Vasc Biol 2014; 34:1968-76. [PMID: 24969778 DOI: 10.1161/atvbaha.114.304097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Platelet endothelial cell adhesion molecule-1 (PECAM-1) regulates platelet response to multiple agonists. How this immunoreceptor tyrosine-based inhibitory motif-containing receptor inhibits G protein-coupled receptor-mediated thrombin-induced activation of platelets is unknown. APPROACH AND RESULTS Here, we show that the activation of PECAM-1 inhibits fibrinogen binding to integrin αIIbβ3 and P-selectin surface expression in response to thrombin (0.1-3 U/mL) but not thrombin receptor-activating peptides SFLLRN (3×10(-7)-1×10(-5) mol/L) and GYPGQV (3×10(-6)-1×10(-4) mol/L). We hypothesized a role for PECAM-1 in reducing the tethering of thrombin to glycoprotein Ibα (GPIbα) on the platelet surface. We show that PECAM-1 signaling regulates the binding of fluorescein isothiocyanate-labeled thrombin to the platelet surface and reduces the levels of cell surface GPIbα by promoting its internalization, while concomitantly reducing the binding of platelets to von Willebrand factor under flow in vitro. PECAM-1-mediated internalization of GPIbα was reduced in the presence of both EGTA and cytochalasin D or latrunculin, but not either individually, and was reduced in mice in which tyrosines 747 and 759 of the cytoplasmic tail of β3 integrin were mutated to phenylalanine. Furthermore, PECAM-1 cross-linking led to a significant reduction in the phosphorylation of glycogen synthase kinase-3β Ser(9), but interestingly an increase in glycogen synthase kinase-3α pSer(21). PECAM-1-mediated internalization of GPIbα was reduced by inhibitors of dynamin (Dynasore) and glycogen synthase kinase-3 (CHIR99021), an effect that was enhanced in the presence of EGTA. CONCLUSIONS PECAM-1 mediates internalization of GPIbα in platelets through dual AKT/protein kinase B/glycogen synthase kinase-3/dynamin-dependent and αIIbβ3-dependent mechanisms. These findings expand our understanding of how PECAM-1 regulates nonimmunoreceptor signaling pathways and helps to explains how PECAM-1 regulates thrombosis.
Collapse
Affiliation(s)
- Chris I Jones
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom.
| | - Tanya Sage
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Leonardo A Moraes
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Sakthivel Vaiyapuri
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Umara Hussain
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Katherine L Tucker
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Natasha E Barrett
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Jonathan M Gibbins
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
15
|
Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS NANO 2014; 8:4100-32. [PMID: 24787360 PMCID: PMC4046791 DOI: 10.1021/nn500136z] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/08/2014] [Accepted: 04/30/2014] [Indexed: 05/18/2023]
Abstract
Targeted nanomedicine holds promise to find clinical use in many medical areas. Endothelial cells that line the luminal surface of blood vessels represent a key target for treatment of inflammation, ischemia, thrombosis, stroke, and other neurological, cardiovascular, pulmonary, and oncological conditions. In other cases, the endothelium is a barrier for tissue penetration or a victim of adverse effects. Several endothelial surface markers including peptidases (e.g., ACE, APP, and APN) and adhesion molecules (e.g., ICAM-1 and PECAM) have been identified as key targets. Binding of nanocarriers to these molecules enables drug targeting and subsequent penetration into or across the endothelium, offering therapeutic effects that are unattainable by their nontargeted counterparts. We analyze diverse aspects of endothelial nanomedicine including (i) circulation and targeting of carriers with diverse geometries, (ii) multivalent interactions of carrier with endothelium, (iii) anchoring to multiple determinants, (iv) accessibility of binding sites and cellular response to their engagement, (v) role of cell phenotype and microenvironment in targeting, (vi) optimization of targeting by lowering carrier avidity, (vii) endocytosis of multivalent carriers via molecules not implicated in internalization of their ligands, and (viii) modulation of cellular uptake and trafficking by selection of specific epitopes on the target determinant, carrier geometry, and hydrodynamic factors. Refinement of these aspects and improving our understanding of vascular biology and pathology is likely to enable the clinical translation of vascular endothelial targeting of nanocarriers.
Collapse
Affiliation(s)
- Melissa Howard
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Blaine J. Zern
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Aaron C. Anselmo
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir V. Shuvaev
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir Muzykantov
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Pérez-Quintero LA, Roncagalli R, Guo H, Latour S, Davidson D, Veillette A. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization. ACTA ACUST UNITED AC 2014; 211:727-42. [PMID: 24687958 PMCID: PMC3978279 DOI: 10.1084/jem.20132038] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
Abstract
Ewing's sarcoma-associated transcript 2 (EAT-2) is an Src homology 2 domain-containing intracellular adaptor related to signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), the X-linked lymphoproliferative gene product. Both EAT-2 and SAP are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this function by coupling SLAM family receptors to the protein tyrosine kinase Fyn and the exchange factor Vav, thereby promoting conjugate formation between NK cells and target cells. We used a variety of genetic, biochemical, and imaging approaches to define the molecular and cellular mechanisms by which EAT-2 controls NK cell activation. We found that EAT-2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase Cγ, calcium fluxes, and Erk kinase. These signals are triggered by one or two tyrosines located in the carboxyl-terminal tail of EAT-2 but not found in SAP. Unlike SAP, EAT-2 does not enhance conjugate formation. Rather, it accelerates polarization and exocytosis of cytotoxic granules toward hematopoietic target cells. Hence, EAT-2 promotes NK cell activation by molecular and cellular mechanisms distinct from those of SAP. These findings explain the cooperative and essential function of these two adaptors in NK cell activation.
Collapse
|
17
|
Küppers V, Vockel M, Nottebaum AF, Vestweber D. Phosphatases and kinases as regulators of the endothelial barrier function. Cell Tissue Res 2014; 355:577-86. [DOI: 10.1007/s00441-014-1812-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2013] [Accepted: 01/13/2014] [Indexed: 01/03/2023]
|
18
|
Abstract
Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions.
Collapse
|
19
|
Subramani J, Ghosh M, Rahman MM, Caromile LA, Gerber C, Rezaul K, Han DK, Shapiro LH. Tyrosine phosphorylation of CD13 regulates inflammatory cell-cell adhesion and monocyte trafficking. THE JOURNAL OF IMMUNOLOGY 2013; 191:3905-12. [PMID: 23997214 DOI: 10.4049/jimmunol.1301348] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
CD13 is a large cell surface peptidase expressed on the monocytes and activated endothelial cells that is important for homing to and resolving the damaged tissue at sites of injury. We showed previously that cross-linking of human monocytic CD13 with activating Abs induces strong adhesion to endothelial cells in a tyrosine kinase- and microtubule-dependent manner. In the current study, we examined the molecular mechanisms underlying these observations in vitro and in vivo. We found that cross-linking of CD13 on U937 monocytic cells induced phosphorylation of a number of proteins, including Src, FAK, and ERK, and inhibition of these abrogated CD13-dependent adhesion. We found that CD13 itself was phosphorylated in a Src-dependent manner, which was an unexpected finding because its 7-aa cytoplasmic tail was assumed to be inert. Furthermore, CD13 was constitutively associated with the scaffolding protein IQGAP1, and CD13 cross-linking induced complex formation with the actin-binding protein α-actinin, linking membrane-bound CD13 to the cytoskeleton, further supporting CD13 as an inflammatory adhesion molecule. Mechanistically, mutation of the conserved CD13 cytoplasmic tyrosine to phenylalanine abrogated adhesion; Src, FAK, and ERK phosphorylation; and cytoskeletal alterations upon Ab cross-linking. Finally, CD13 was phosphorylated in isolated murine inflammatory peritoneal exudate cells, and adoptive transfer of monocytic cell lines engineered to express the mutant CD13 were severely impaired in their ability to migrate into the inflamed peritoneum, confirming that CD13 phosphorylation is relevant to inflammatory cell trafficking in vivo. Therefore, this study identifies CD13 as a novel, direct activator of intracellular signaling pathways in pathophysiological conditions.
Collapse
Affiliation(s)
- Jaganathan Subramani
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Trinh TB, Xiao Q, Pei D. Profiling the substrate specificity of protein kinases by on-bead screening of peptide libraries. Biochemistry 2013; 52:5645-55. [PMID: 23848432 DOI: 10.1021/bi4008947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Abstract
A robust, high-throughput method has been developed to screen one-bead-one-compound peptide libraries to systematically profile the sequence specificity of protein kinases. Its ability to provide individual sequences of the preferred substrates permits the identification of sequence contextual effects and nonpermissive residues. Application of the library method to kinases Pim1, MKK6, and Csk revealed that Pim1 and Csk are highly active toward peptide substrates and recognize specific sequence motifs, whereas MKK6 has little activity or sequence selectivity against peptide substrates. Pim1 recognizes peptide substrates of the consensus RXR(H/R)X(S/T); it accepts essentially any amino acid at the S/T-2 and S/T+1 positions, but strongly disfavors acidic residues (Asp or Glu) at the S/T-2 position and a proline residue at the S/T+1 position. The selected Csk substrates show strong sequence covariance and fall into two classes with the consensus sequences of (D/E)EPIYϕXϕ and (D/E)(E/D)S(E/D/I)YϕXϕ (where X is any amino acid and ϕ is a hydrophobic amino acid). Database searches and in vitro kinase assays identified phosphatase PTP-PEST as a Pim1 substrate and phosphatase SHP-1 as a potential Csk substrate. Our results demonstrate that the sequence specificity of protein kinases is defined not only by favorable interactions between permissive residue(s) on the substrate and their cognate binding site(s) on the kinase but also by repulsive interactions between the kinase and nonpermissive residue(s).
Collapse
Affiliation(s)
- Thi B Trinh
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
21
|
Tourdot BE, Brenner MK, Keough KC, Holyst T, Newman PJ, Newman DK. Immunoreceptor tyrosine-based inhibitory motif (ITIM)-mediated inhibitory signaling is regulated by sequential phosphorylation mediated by distinct nonreceptor tyrosine kinases: a case study involving PECAM-1. Biochemistry 2013; 52:2597-608. [PMID: 23418871 DOI: 10.1021/bi301461t] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
Abstract
The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing nonreceptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton's tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals.
Collapse
Affiliation(s)
- Benjamin E Tourdot
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Alterations to blood-brain barrier (BBB) adhesion molecules and junctional integrity during neuroinflammation can promote central nervous system (CNS) pathology. The chemokine CCL2 is elevated during CNS inflammation and is associated with endothelial dysfunction. The effects of CCL2 on endothelial adherens junctions (AJs) have not been defined. We demonstrate that CCL2 transiently induces Src-dependent disruption of human brain microvascular endothelial AJ. β-Catenin is phosphorylated and traffics from the AJ to PECAM-1 (platelet endothelial cell adhesion molecule-1), where it is sequestered at the membrane. PECAM-1 is also tyrosine-phosphorylated, an event associated with recruitment of the phosphatase SHP-2 (Src homology 2 domain-containing protein phosphatase) to PECAM-1, β-catenin release from PECAM-1, and reassociation of β-catenin with the AJ. Surface localization of PECAM-1 is increased in response to CCL2. This may enable the endothelium to sustain CCL2-induced alterations in AJ and facilitate recruitment of leukocytes into the CNS. Our novel findings provide a mechanism for CCL2-mediated disruption of endothelial junctions that may contribute to BBB dysfunction and increased leukocyte recruitment in neuroinflammatory diseases.
Collapse
|
23
|
Marin EP, Derakhshan B, Lam TT, Davalos A, Sessa WC. Endothelial cell palmitoylproteomic identifies novel lipid-modified targets and potential substrates for protein acyl transferases. Circ Res 2012; 110:1336-44. [PMID: 22496122 PMCID: PMC3428238 DOI: 10.1161/circresaha.112.269514] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/15/2012] [Accepted: 04/02/2012] [Indexed: 11/16/2022]
Abstract
RATIONALE Protein S-palmitoylation is the posttranslational attachment of a saturated 16-carbon palmitic acid to a cysteine side chain via a thioester bond. Palmitoylation can affect protein localization, trafficking, stability, and function. The extent and roles of palmitoylation in endothelial cell (EC) biology is not well-understood, partly because of technological limits on palmitoylprotein detection. OBJECTIVE To develop a method using acyl-biotinyl exchange technology coupled with mass spectrometry to globally isolate and identify palmitoylproteins in ECs. METHODS AND RESULTS More than 150 putative palmitoyl proteins were identified in ECs using acyl-biotinyl exchange and mass spectrometry. Among the novel palmitoylproteins identified is superoxide dismutase-1, an intensively studied enzyme that protects all cells from oxidative damage. Mutation of cysteine-6 prevents palmitoylation, leads to reduction in superoxide dismutase-1 activity in vivo and in vitro, and inhibits nuclear localization, thereby supporting a functional role for superoxide dismutase-1 palmitoylation. Moreover, we used acyl-biotinyl exchange to search for substrates of particular protein acyl transferases in ECs. We found that palmitoylation of the cell adhesion protein platelet endothelial cell adhesion molecule-1 is dependent on the protein acyl transferase ZDHHC21. We show that knockdown of ZDHHC21 leads to reduced levels of platelet endothelial cell adhesion molecule-1 at the cell surface. CONCLUSIONS Our data demonstrate the utility of EC palmitoylproteomics to reveal new insights into the role of this important posttranslational lipid modification in EC biology.
Collapse
Affiliation(s)
- Ethan P. Marin
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520 USA
- Department of Nephrology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Behrad Derakhshan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - TuKiet T. Lam
- WM Keck Foundation Biotechnology Resource Laboratory, Keck MS and Proteomics Resources, Yale University, New Haven, CT, USA
| | - Alberto Davalos
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - William C. Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520 USA
| |
Collapse
|
24
|
Jones CI, Barrett NE, Moraes LA, Gibbins JM, Jackson DE. Endogenous inhibitory mechanisms and the regulation of platelet function. Methods Mol Biol 2012; 788:341-66. [PMID: 22130718 DOI: 10.1007/978-1-61779-307-3_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
Abstract
The response of platelets to changes in the immediate environment is always a balance between activatory and inhibitory signals, the cumulative effect of which is either activation or quiescence. This is true of platelets in free flowing blood and of their regulation of haemostasis and thrombosis. In this review, we consider the endogenous inhibitory mechanisms that combine to regulate platelet activation. These include those derived from the endothelium (nitric oxide, prostacyclin, CD39), inhibitory receptors on the surface of platelets (platelet endothelial cell adhesion molecule-1, carcinoembryonic antigen cell adhesion molecule 1, G6b-B - including evidence for the role of Ig-ITIM superfamily members in the negative regulation of ITAM-associated GPVI platelet-collagen interactions and GPCR-mediated signalling and in positive regulation of "outside-in" integrin α(IIb)β(3)-mediated signalling), intracellular inhibitory receptors (retinoic X receptor, glucocorticoid receptor, peroxisome proliferator-activated receptors, liver X receptor), and emerging inhibitory pathways (canonical Wnt signalling, Semaphorin 3A, endothelial cell specific adhesion molecule, and junctional adhesion molecule-A).
Collapse
Affiliation(s)
- Chris I Jones
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, The University of Reading, Reading, UK
| | | | | | | | | |
Collapse
|
25
|
Jones CI, Moraes LA, Gibbins JM. Regulation of platelet biology by platelet endothelial cell adhesion molecule-1. Platelets 2011; 23:331-5. [PMID: 22035359 DOI: 10.3109/09537104.2011.626091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1), an immunoreceptor tyrosine-based inhibitory motif containing receptor, plays diverse and apparently contradictory roles in regulating the response of platelets to stimuli; inhibiting platelet response to immunoreceptor tyrosine-based activation motif and G protein-coupled receptor signalling following stimulation with collagen, adenosine diphosphate, and thrombin, as well as enhancing integrin outside-in signalling. These dual, and opposing, roles suggest an important and complex role for PECAM-1 in orchestrating platelet response to vascular damage. Indeed, during thrombus formation, the influence of PECAM-1 on the multiple signalling pathways combines leading to a relatively large inhibitory effect on thrombus formation.
Collapse
Affiliation(s)
- Chris I Jones
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK.
| | | | | |
Collapse
|
26
|
Wang J, Wu Y, Hu H, Wang W, Lu Y, Mao H, Liu X, Liu Z, Chen BG. Syk protein tyrosine kinase involves PECAM-1 signaling through tandem immunotyrosine inhibitory motifs in human THP-1 macrophages. Cell Immunol 2011; 272:39-44. [PMID: 22000807 DOI: 10.1016/j.cellimm.2011.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2011] [Revised: 08/05/2011] [Accepted: 09/19/2011] [Indexed: 11/18/2022]
Abstract
Although recent evidence supports a functional relationship between platelet endothelial cell adhesion molecule (PECAM-1) and Syk tyrosine kinase, little is known about the interaction of Syk with PECAM-1. We report that down-regulation of Syk inhibits the spreading of human THP-1 macrophage cells. Moreover, our data indicate that Syk binds PECAM-1 through its immune tyrosine-based inhibitory motif (ITIM), and dual phosphorylation of the ITIM domain of PECAM-1 leads to activation of Syk. Our results indicate that the distance between the phosphotyrosines could be up to 22 amino acids in length, depending on the conformational flexibility, and that the dual ITIM tyrosine motifs of PECAM-1 facilitate immunoreceptor tyrosine-based activation motif-like signaling. The preferential binding of PECAM-1 to Src homology region 2 domain-containing phosphatase-2 or Syk may depend on their relative affinities, and could provide a mechanism by which signal transduction from PECAM-1 is internally regulated by both positive and negative signaling enzymes.
Collapse
Affiliation(s)
- Junchen Wang
- Department of Surgery and Pathology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New District, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Privratsky JR, Paddock CM, Florey O, Newman DK, Muller WA, Newman PJ. Relative contribution of PECAM-1 adhesion and signaling to the maintenance of vascular integrity. J Cell Sci 2011; 124:1477-85. [PMID: 21486942 DOI: 10.1242/jcs.082271] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
PECAM-1 (CD31) is a cellular adhesion and signaling receptor that is highly expressed at endothelial cell-cell junctions in confluent vascular beds. Previous studies have implicated PECAM-1 in the maintenance of vascular barrier integrity; however, the mechanisms behind PECAM-1-mediated barrier protection are still poorly understood. The goal of the present study, therefore, was to examine the pertinent biological properties of PECAM-1 (i.e. adhesion and/or signaling) that allow it to support barrier integrity. We found that, compared with PECAM-1-deficient endothelial cells, PECAM-1-expressing endothelial cell monolayers exhibit increased steady-state barrier function, as well as more rapid restoration of barrier integrity following thrombin-induced perturbation of the endothelial cell monolayer. The majority of PECAM-1-mediated barrier protection was found to be due to the ability of PECAM-1 to interact homophilically and become localized to cell-cell junctions, because a homophilic binding-crippled mutant form of PECAM-1 was unable to support efficient barrier function when re-expressed in cells. By contrast, cells expressing PECAM-1 variants lacking residues known to be involved in PECAM-1-mediated signal transduction exhibited normal to near-normal barrier integrity. Taken together, these studies suggest that PECAM-1-PECAM-1 homophilic interactions are more important than its signaling function for maintaining the integrity of endothelial cell junctions.
Collapse
Affiliation(s)
- Jamie R Privratsky
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53201, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Inhibition of platelet responsiveness is important to control pathologic thrombus formation. Platelet-endothelial cell adhesion molecule-1 (PECAM-1) and the Src family kinase Lyn inhibit platelet activation by the glycoprotein VI (GPVI) collagen receptor; however, it is not known whether PECAM-1 and Lyn function in the same or different inhibitory pathways. In these studies, we found that, relative to wild-type platelets, platelets derived from PECAM-1-deficient, Lyn-deficient, or PECAM-1/Lyn double-deficient mice were equally hyperresponsive to stimulation with a GPVI-specific agonist, indicating that PECAM-1 and Lyn participate in the same inhibitory pathway. Lyn was required for PECAM-1 tyrosine phosphorylation and subsequent binding of the Src homology 2 domain-containing phosphatase-2, SHP-2. These results support a model in which PECAM-1/SHP-2 complexes, formed in a Lyn-dependent manner, suppress GPVI signaling.
Collapse
|
29
|
Abstract
Filopodia are an important feature of actively motile cells, probing the pericellular environment for chemotactic factors and other molecular cues that enable and direct the movement of the cell. They also act as points of attachment to the extracellular matrix for the cell, generating tension that may act to pull the cell forward and/or stabilize the cell as it moves. Endothelial cell motility is a critical aspect of angiogenesis, but only a limited number of molecules have been identified as specific regulators of endothelial cell filopodia. Recent reports, however, provide evidence for the involvement of PECAM-1, an endothelial cell adhesion and signaling molecule, in the formation of endothelial cell filopodia. This commentary will focus on these studies and their suggestion that at least two PECAM-1-regulated pathways are involved in the processes that enable filopodial protrusions by endothelial cells. Developing a more complete understanding of the role of PECAM-1 in mediating various endothelial cell activities, such as the extension of filopodia, will be essential for exploiting the therapeutic potential of targeting PECAM-1.
Collapse
Affiliation(s)
- Horace M DeLisser
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Zhu JX, Cao G, Williams JT, Delisser HM. SHP-2 phosphatase activity is required for PECAM-1-dependent cell motility. Am J Physiol Cell Physiol 2010; 299:C854-65. [PMID: 20631249 DOI: 10.1152/ajpcell.00436.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in endothelial cell motility during angiogenesis. Although there is evidence that SHP-2 plays a role in PECAM-1-dependent cell motility, the molecular basis of the activity of SHP-2 in this process has not been defined. To investigate the requirement of SHP-2 in PECAM-1-dependent cell motility, studies were done in which various constructs of SHP-2 were expressed in cell transfectants expressing PECAM-1. We observed that the levels of PECAM-1 tyrosine phosphorylation and SHP-2 association with PECAM-1 were significantly increased in cells expressing a phosphatase-inactive SHP-2 mutant, suggesting that the level of PECAM-1 tyrosine phosphorylation, and thus SHP-2 binding are regulated in part by bound, catalytically active SHP-2. We subsequently found that expression of PECAM-1 stimulated wound-induced migration and the formation of filopodia (a morphological feature of motile cells). These activities were associated with increased mitogen-activated protein kinase (MAPK) activation and the dephosphorylation of paxillin (an event implicated in the activation of MAPK). The phosphatase-inactive SHP-2 mutant, however, suppressed these PECAM-1-dependent phenomena, whereas the activity of PECAM-1 expressing cells was not altered by expression of wild-type SHP-2 or SHP-2 in which the scaffold/adaptor function had been disabled. Pharmacological inhibition of SHP-2 phosphatase activity also suppressed PECAM-1-dependent motility. Furthermore, PECAM-1 expression also stimulates tube formation, but none of the SHP-2 constructs affected this process. These findings therefore suggest a model for the involvement of SHP-2 in PECAM-1-dependent motility in which SHP-2, recruited by its interaction with PECAM-1, targets paxillin to ultimately activate the MAPK pathway and downstream events required for cell motility.
Collapse
Affiliation(s)
- Jing-Xu Zhu
- Pulmonary, Allergy and Critical Care Division, SVM-Hill Pavilion, Rm. 410B, 380 South Univ. Ave., Philadelphia, PA 19104-4539, USA
| | | | | | | |
Collapse
|
31
|
Florey O, Durgan J, Muller W. Phosphorylation of leukocyte PECAM and its association with detergent-resistant membranes regulate transendothelial migration. THE JOURNAL OF IMMUNOLOGY 2010; 185:1878-86. [PMID: 20581150 DOI: 10.4049/jimmunol.1001305] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
Leukocyte migration across the endothelial lining is a critical step in the body's response to infection and inflammation. The homophilic interaction between endothelial PECAM and leukocyte PECAM is essential for this process. The molecular events that are triggered in the endothelial cell by PECAM engagement have been well characterized; however, the function of leukocyte PECAM remains to be elucidated. To study this, we first blocked leukocyte transmigration using anti-PECAM Ab and then specifically activated leukocyte PECAM. This was sufficient to overcome the block and promote transmigration, suggesting an active signaling role for leukocyte PECAM. Consistent with this, we found that ligation of leukocyte PECAM induces phosphorylation of two tyrosine residues on its cytoplasmic tail. By performing RNA interference-rescue experiments, we demonstrate that these phosphorylation events are indispensable for transendothelial migration. Finally, we show that leukocyte PECAM translocates to a detergent-resistant membrane (DRM) during transmigration. PECAM localized in DRMs displays reduced phosphorylation and does not support transmigration. Together, these data support a model whereby engagement of leukocyte PECAM induces its transient tyrosine phosphorylation and induction of downstream signals that drive transmigration. These signals are then downregulated following PECAM translocation to DRMs.
Collapse
Affiliation(s)
- Oliver Florey
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
32
|
|
33
|
Cao G, Fehrenbach ML, Williams JT, Finklestein JM, Zhu JX, Delisser HM. Angiogenesis in platelet endothelial cell adhesion molecule-1-null mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:903-15. [PMID: 19574426 DOI: 10.2353/ajpath.2009.090206] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Platelet endothelial cell adhesion molecule (PECAM)-1 has been previously implicated in endothelial cell migration; additionally, anti-PECAM-1 antibodies have been shown to inhibit in vivo angiogenesis. Studies were therefore performed with PECAM-1-null mice to further define the involvement of PECAM-1 in blood vessel formation. Vascularization of subcutaneous Matrigel implants as well as tumor angiogenesis were both inhibited in PECAM-1-null mice. Reciprocal bone marrow transplants that involved both wild-type and PECAM-1-deficient mice revealed that the impaired angiogenic response resulted from a loss of endothelial, but not leukocyte, PECAM-1. In vitro wound migration and single-cell motility by PECAM-1-null endothelial cells were also compromised. In addition, filopodia formation, a feature of motile cells, was inhibited in PECAM-1-null endothelial cells as well as in human endothelial cells treated with either anti-PECAM-1 antibody or PECAM-1 siRNA. Furthermore, the expression of PECAM-1 promoted filopodia formation and increased the protein expression levels of Cdc42, a Rho GTPase that is known to promote the formation of filopodia. In the developing retinal vasculature, numerous, long filamentous filopodia, emanating from endothelial cells at the tips of angiogenic sprouts, were observed in wild-type animals, but to a lesser extent in the PECAM-1-null mice. Together, these data further establish the involvement of endothelial PECAM-1 in angiogenesis and suggest that, in vivo, PECAM-1 may stimulate endothelial cell motility by promoting the formation of filopodia.
Collapse
Affiliation(s)
- Gaoyuan Cao
- Pulmonary, Allergy and Critical Care Division, SVM-Hill Pavilion, Room 410B, 380 South University Avenue, Philadelphia, PA 19104-3945, USA
| | | | | | | | | | | |
Collapse
|
34
|
Bergom C, Gao C, Newman PJ. Mechanisms of PECAM-1-mediated cytoprotection and implications for cancer cell survival. Leuk Lymphoma 2009; 46:1409-21. [PMID: 16194886 DOI: 10.1080/10428190500126091] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Defects in apoptotic pathways can promote cancer development and cause cancers to become resistant to chemotherapy. The cell adhesion and signaling molecule PECAM-1 has been shown to potently suppress apoptosis in a variety of cellular systems. PECAM-1 expression has been reported on a variety of human malignancies-especially hematopoietic and vascular cell cancers-but the significance of this expression has not been fully explored. The ability of PECAM-1 to inhibit apoptosis makes it an attractive candidate as a molecule that may promote cancer development and/or confer resistance to chemotherapeutic treatment. The exact mechanisms by which PECAM-1 mediates its cytoprotection have not been fully defined, but its anti-apoptotic effects have been shown to require both homophilic binding and intracellular signaling via its immunoreceptor tyrosine-based inhibitory motif (ITIM) domains. In this review, we will discuss the data regarding PECAM-1's anti-apoptotic effects and ways in which this cytoprotection may be clinically relevant to the development and/or treatment of hematologic malignancies that express this vascular cell-specific surface molecule.
Collapse
Affiliation(s)
- Carmen Bergom
- Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee, Milwaukee, WI, USA.
| | | | | |
Collapse
|
35
|
Korporaal SJA, Koekman CA, Verhoef S, van der Wal DE, Bezemer M, Van Eck M, Akkerman JWN. Downregulation of platelet responsiveness upon contact with LDL by the protein-tyrosine phosphatases SHP-1 and SHP-2. Arterioscler Thromb Vasc Biol 2008; 29:372-9. [PMID: 19096001 DOI: 10.1161/atvbaha.108.173278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The sensitivity of platelets to aggregating agents increases when low-density lipoprotein (LDL) binds to apolipoprotein E receptor 2' (apoER2'), triggering activation of p38MAPK and formation of thromboxane A2. LDL signaling is terminated by PECAM-1 through recruitment and activation of the Ser/Thr protein phosphatase PP2A, but platelets remain unresponsive to LDL when PECAM-1 activation disappears. We report a second mechanism that halts LDL signaling and in addition lowers platelet responsiveness to aggregating agents. METHODS AND RESULTS After a first stimulation with LDL, platelets remain unresponsive to LDL for 60 minutes, despite normal apoER2' activation by a second dose of LDL. A possible cause is persistent activation of the tyrosine phosphatases SHP-1 and SHP-2, which may not only block a second activation of p38MAPK, PECAM-1, and PP2A by LDL but also seem to reduce aggregation by TRAP, collagen, and ADP. CONCLUSION These findings reveal that p38MAPK phosphorylation and platelet activation by LDL are suppressed by two mechanisms: (1) short activation of PECAM-1/PP2A, and (2) prolonged activation of SHP-1 and SHP-2. Activation of SHP-1 and SHP-2 is accompanied by reduced responsiveness to aggregating agents, which--if present in vivo--would make LDL an aggregation inhibitor during prolonged contact with platelets.
Collapse
Affiliation(s)
- Suzanne J A Korporaal
- Department of Clinical Chemistry and Haematology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Chiu YJ, McBeath E, Fujiwara K. Mechanotransduction in an extracted cell model: Fyn drives stretch- and flow-elicited PECAM-1 phosphorylation. ACTA ACUST UNITED AC 2008; 182:753-63. [PMID: 18710921 PMCID: PMC2518713 DOI: 10.1083/jcb.200801062] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Mechanosensing followed by mechanoresponses by cells is well established, but the mechanisms by which mechanical force is converted into biochemical events are poorly understood. Vascular endothelial cells (ECs) exhibit flow- and stretch-dependent responses and are widely used as a model for studying mechanotransduction in mammalian cells. Platelet EC adhesion molecule 1 (PECAM-1) is tyrosine phosphorylated when ECs are exposed to flow or when PECAM-1 is directly pulled, suggesting that it is a mechanochemical converter. We show that PECAM-1 phosphorylation occurs when detergent-extracted EC monolayers are stretched, indicating that this phosphorylation is mechanically triggered and does not require the intact plasma membrane and soluble cytoplasmic components. Using kinase inhibitors and small interfering RNAs, we identify Fyn as the PECAM-1 kinase associated with the model. We further show that stretch- and flow-induced PECAM-1 phosphorylation in intact ECs is abolished when Fyn expression is down-regulated. We suggest that PECAM-1 and Fyn are essential components of a PECAM-1-based mechanosensory complex in ECs.
Collapse
Affiliation(s)
- Yi-Jen Chiu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, West Henrietta, NY 14586, USA
| | | | | |
Collapse
|
37
|
Kusano KI, Thomas TN, Fujiwara K. Phosphorylation and localization of protein-zero related (PZR) in cultured endothelial cells. ACTA ACUST UNITED AC 2008; 15:127-36. [PMID: 18568953 DOI: 10.1080/10623320802125250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Abstract
Protein-zero related (PZR) is an immunoglobulin V (IgV)-type immunoreceptor with two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PZR interacts with Src homology 2 domain-containing tyrosine phosphatase (SHP-2) via its tyrosine-phosphorylated ITIMs, for which c-Src is a putative kinase. Towards elucidating PZR function in endothelial cells (ECs), the authors cloned PZR from bovine aortic endothelial cells (BAECs) and characterized it. Mature bovine PZR had 94.8% and 92.7% sequence identity with canine and human proteins, respectively, and the two ITIM sequences were conserved among higher vertebrates. PZR was expressed in many cell types and was localized to cell contacts and intracellular granules in BAECs and mesothelioma (REN) cells. Coimmunoprecipitation revealed that PZR, Grb-2-associated binder-1 (Gab1), and platelet endothelial cell adhesion molecule-1 (PECAM-1) were three major SHP-2-binding proteins in BAECs. H(2)O(2) enhanced PZR tyrosine phosphorylation and PZR/SHP-2 interaction in ECs in a dose-and time-dependent manner. To see if tyrosine kinases other than Src are also capable of phosphorylating PZR, the authors cotransfected HEK293 cells with PZR and one of several tyrosine kinases and found that c-Src, c-Fyn, c-Lyn, Csk, and c-Abl, but not c-Fes, phosphorylated PZR and increased PZR/SHP-2 interaction. These results suggest that PZR is a cell adhesion protein that may be involved in SHP-2-dependent signaling at interendothelial cell contacts.
Collapse
Affiliation(s)
- Ken-ichi Kusano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14586, USA
| | | | | |
Collapse
|
38
|
Huang YT, Chen SU, Chou CH, Lee H. Sphingosine 1-phosphate induces platelet/endothelial cell adhesion molecule-1 phosphorylation in human endothelial cells through cSrc and Fyn. Cell Signal 2008; 20:1521-7. [PMID: 18502612 DOI: 10.1016/j.cellsig.2008.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2008] [Revised: 03/21/2008] [Accepted: 04/07/2008] [Indexed: 01/12/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a multifunctional phospholipid which acts through a specific family of G protein-coupled receptors. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) form trans-homophilic binding at lateral cell border. Upon stimulation, its cytoplasmic tyrosine residues could be phosphorylated and interact with various downstream signaling molecules. In this study, we demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in human umbilical cord vein cells (HUVECs). By pharmacological inhibitors, it was suggested that G(i) and Src family kinases were involved in PECAM-1 phosphorylation. Moreover, cSrc and Fyn siRNA significantly suppressed S1P-induced PECAM-1 phosphorylation. These results suggested that S1P-induced PECAM-1 phosphorylation through G(i) and subsequent cSrc and Fyn. Our findings provide further understanding of S1P and PECAM-1 signaling as well as their functions in endothelial cells.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Institute of Zoology, National Taiwan University, No 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC
| | | | | | | |
Collapse
|
39
|
DiMaio TA, Sheibani N. PECAM-1 isoform-specific functions in PECAM-1-deficient brain microvascular endothelial cells. Microvasc Res 2007; 75:188-201. [PMID: 18029285 DOI: 10.1016/j.mvr.2007.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2007] [Revised: 09/25/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is alternatively spliced generating eight isoforms that only differ in the length of their cytoplasmic domain. Multiple isoforms of PECAM-1 are present in the endothelium and their expression levels are regulated during vascular development and angiogenesis. However, the functional significance of PECAM-1 isoforms during these processes remains largely unknown. We recently showed that mouse brain endothelial (bEND) cells prepared from PECAM-1-deficient (PECAM-1-/-) mice differ in their cell adhesive and migratory properties compared to PECAM-1+/+ bEND cells. Here we demonstrate that the restoration of PECAM-1 expression in these cells affects their adhesive and migratory properties in an isoform-specific manner. Expression of Delta14&15 PECAM-1, the predominant isoform present in the mouse endothelium, in PECAM-1-/- bEND cells activated MAPK/ERKs, disrupted adherens junctions, and enhanced cell migration and capillary morphogenesis in Matrigel. In contrast, expression of Delta15 PECAM-1 in PECAM-1-/- bEND cells had minimal effects on their activation of MAPK/ERKs, migration, and capillary morphogenesis. The effects of PECAM-1 on cell adhesive and migratory properties were mediated in an isoform-specific manner, at least in part, through its interactions with intracellular signaling proteins, including SHP-2 and Src. These results suggest that the impact of PECAM-1 on EC adhesion, migration, and capillary morphogenesis is modulated by alternative splicing of its cytoplasmic domain.
Collapse
Affiliation(s)
- Terri A DiMaio
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792-4673, USA
| | | |
Collapse
|
40
|
Abstract
Migration of leukocytes into tissue is a key element of innate and adaptive immunity. While the capturing of leukocytes to the blood vessel wall is well understood, little is known about the mechanisms underlying the actual transmigration of leukocytes through the vessel wall (diapedesis). Even a basic question such as whether leukocytes migrate through openings between adjacent endothelial cells (junctional pathway) or through single endothelial cells (transcellular pathway) is still a matter of intensive debate. It is generally accepted that both pathways exist; however, whether they are of equal physiological significance is unclear. Several endothelial adhesion and signaling molecules have been identified, most of them at endothelial cell contacts, which participate in leukocyte diapedesis. A concept is evolving suggesting that transendothelial migration of leukocytes is a stepwise process. Blocking or eliminating some of the different adhesion and signaling proteins results in very different effects, such as trapping of leukocytes above endothelial cell contacts, in between endothelial cells, or between the endothelium and the underlying basement membrane. Other proteins are involved in the opening of endothelial cell contacts and yet others in their maintenance providing the barrier for extravasating leukocytes. The various molecular players and the functional steps involved in diapedesis are discussed.
Collapse
|
41
|
Udell CM, Samayawardhena LA, Kawakami Y, Kawakami T, Craig AWB. Fer and Fps/Fes participate in a Lyn-dependent pathway from FcepsilonRI to platelet-endothelial cell adhesion molecule 1 to limit mast cell activation. J Biol Chem 2006; 281:20949-20957. [PMID: 16731527 DOI: 10.1074/jbc.m604252200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Mast cells express the high affinity IgE receptor FcepsilonRI, which upon aggregation by multivalent antigens elicits signals that cause rapid changes within the mast cell and in the surrounding tissue. We previously showed that FcepsilonRI aggregation caused a rapid increase in phosphorylation of both Fer and Fps/Fes kinases in bone marrow-derived mast cells. In this study, we report that FcepsilonRI aggregation leads to increased Fer/Fps kinase activities and that Fer phosphorylation downstream of FcepsilonRI is independent of Syk, Fyn, and Gab2 but requires Lyn. Activated Fer/Fps readily phosphorylate the C terminus of platelet-endothelial cell adhesion molecule 1 (Pecam-1) on immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a non-ITIM residue (Tyr(700)) in vitro and in transfected cells. Mast cells devoid of Fer/Fps kinase activities display a reduction in FcepsilonRI aggregation-induced tyrosine phosphorylation of Pecam-1, with no defects in recruitment of Shp1/Shp2 phosphatases observed. Lyn-deficient mast cells display a dramatic reduction in Pecam-1 phosphorylation at Tyr(685) and a complete loss of Shp2 recruitment, suggesting a role as an initiator kinase for Pecam-1. Consistent with previous studies of Pecam-1-deficient mast cells, we observe an exaggerated degranulation response in mast cells lacking Fer/Fps kinases at low antigen dosages. Thus, Lyn and Fer/Fps kinases cooperate to phosphorylate Pecam-1 and activate Shp1/Shp2 phosphatases that function in part to limit mast cell activation.
Collapse
Affiliation(s)
- Christian M Udell
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Andrew W B Craig
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
42
|
Abstract
Major advances have been made over the last decade towards the elucidation of the molecular mechanisms involved in the endothelium-dependent regulation of vascular tone and blood flow. While the primary endothelium-derived vasodilator autacoid is nitric oxide, it is clear that epoxyeicosatrienoic acids and other endothelium-derived hyperpolarising factors, as well as endothelin-1 and reactive oxygen species, play a significant role in the regulation of vascular tone and gene expression. This review is intended as an overview of the signalling mechanisms that link haemodynamic stimuli (such as shear stress and cyclic stretch) and endothelial cell perturbation to the activation of enzymes generating vasoactive autacoids.
Collapse
Affiliation(s)
- R Busse
- Vascular Signalling Group, Institut für Kardiovaskuläre Physiologie, Klinikum der J.W. Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | |
Collapse
|
43
|
Fleming I, Fisslthaler B, Dixit M, Busse R. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J Cell Sci 2005; 118:4103-11. [PMID: 16118242 DOI: 10.1242/jcs.02541] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The application of fluid shear stress to endothelial cells elicits the formation of nitric oxide (NO) and phosphorylation of the endothelial NO synthase (eNOS). Shear stress also elicits the enhanced tyrosine phosphorylation of endothelial proteins, especially of those situated in the vicinity of cell-cell contacts. Since a major constituent of these endothelial cell-cell contacts is the platelet endothelial cell adhesion molecule-1 (PECAM-1) we assessed the role of PECAM-1 in the activation of eNOS.In human endothelial cells, shear stress induced the tyrosine phosphorylation of PECAM-1 and enhanced the association of PECAM-1 with eNOS. Endothelial cell stimulation with shear stress elicited the phosphorylation of Akt and eNOS as well as of the AMP-activated protein kinase (AMPK). While the shear-stress-induced tyrosine phosphorylation of PECAM-1 as well as the serine phosphorylation of Akt and eNOS were abolished by the pre-treatment of cells with the tyrosine kinase inhibitor PP1 the phosphorylation of AMPK was unaffected. Down-regulation of PECAM-1 using a siRNA approach attenuated the shear-stress-induced phosphorylation of Akt and eNOS, as well as the shear-stress-induced accumulation of cyclic GMP levels while the shear-stress-induced phosphorylation of AMPK remained intact. A comparable attenuation of Akt and eNOS (but not AMPK) phosphorylation and NO production was also observed in endothelial cells generated from PECAM-1-deficient mice.These data indicate that the shear-stress-induced activation of Akt and eNOS in endothelial cells is modulated by the tyrosine phosphorylation of PECAM-1 whereas the shear-stress-induced phosphorylation of AMPK is controlled by an alternative signaling pathway.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
44
|
Li ZJ, Wang ZZ, Zheng YZ, Xu B, Yang RC, Scadden DT, Han ZC. Kinetic expression of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) during embryonic stem cell differentiation. J Cell Biochem 2005; 95:559-70. [PMID: 15786495 DOI: 10.1002/jcb.20436] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is widely used as a marker during vasculogenesis and angiogenesis from embryonic stem (ES) cells. However, the expression of PECAM-1 isoforms in ES cells has not been determined. The present study was designed to determine the role of PECAM-1 isoforms during in vitro endothelial differentiation of ES cells. It was found that undifferentiated ES cells expressed high level of PECAM-1, which primarily located at cell-cell junction, but the expression of PECAM-1 was sharply down-regulated during early ES cell differentiation. In addition, undifferentiated ES cells were found the expressed all eight known alternatively spliced PECAM-1 isoforms, among them the expression of PECAM-1 isoforms lacking exon 15 or 14&15 was predominant. Quantitative analysis revealed a significant increase in the expression of PECAM-1 isoform lacking exon 12&14&15 as vascular development of ES cells. These results indicate a constitutive expression of PECAM-1 in undifferentiated murine ES cells and suggest a developmental role of PECAM-1 isoform changes during vasculogenesis and angiogenesis.
Collapse
Affiliation(s)
- Zong Jin Li
- State Key Laboratory of Experimental Hematology, National Research Center for Stem Cell Engineering and Technology, Institute of Hematology and Blood Disease Hospital, Tianjin 300020, PR China
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Apoptosis is a physiological process that controls tissue homeostasis, in combination with survival signals delivered by distinct receptors that bind hormones, growth factors or extracellular matrix components. The extrinsic pathway of apoptosis is due to the triggering of death receptors and the activation of the caspase cascade; the intrinsic pathway is due to withdrawal of growth factors and mainly related to mitochondrial metabolism. The choice between survival or apoptosis, which is the result of such different integrated environmental signals, is crucial for the maintainance of bone marrow reservoir of hematopoietic precursors (HPC). CD34+ HPC can receive multiple survival signals during homing and maturation, due to different interactions with adhesion molecules expressed on endothelial and bone marrow stromal cells, proteins of the extracellular matrix and chemokines or growth factors. Among them, the signal delivered via platelet endothelial cell adhesion molecule-1 (PECAM-1) seems to contribute to the resistance of this cell population to starvation, and it is related to the maintainance of mitochondrial metabolism. Indeed, this molecule, originally described as an adhesion receptor belonging to the immunoglobulin superfamily, capable of homophilic and heterophilic interactions, turned out to be a signalling molecule, containing an immunoreceptor tyrosine-based inhibitory motifs (ITIM) within its cytoplasmic domain. In particular, it has been shown that PECAM-1 binds to different kinases and phosphatases, including the phosphatidylinositide-3-kinase that phosphorylates Akt, which, in turn can upregulate transcription and function of antiapoptotic proteins, such as Bcl-2 and Bcl-x or A1, responsible for the rescue from mitochondrial apoptosis. The possible role of PECAM-1 engagement in the prevention of starvation-induced apoptosis of HPC precursors and in the maintainance of their survival is discussed.
Collapse
Affiliation(s)
- Maria R Zocchi
- Laboratory of Tumor Immunology, Scientific Institute San Raffaele, Milan Italy
| | | |
Collapse
|
46
|
Baumeister U, Funke R, Ebnet K, Vorschmitt H, Koch S, Vestweber D. Association of Csk to VE-cadherin and inhibition of cell proliferation. EMBO J 2005; 24:1686-95. [PMID: 15861137 PMCID: PMC1142580 DOI: 10.1038/sj.emboj.7600647] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2004] [Accepted: 03/15/2005] [Indexed: 11/09/2022] Open
Abstract
Vascular endothelial cadherin (VE-cadherin) mediates contact inhibition of cell growth in quiescent endothelial cell layers. Searching for proteins that could be involved in VE-cadherin signaling, we found the cytosolic C-terminal Src kinase (Csk), a negative regulator of Src family kinases. We show that Csk binds via its SH2 domain to the phosphorylated tyrosine 685 of VE-cadherin. VE-cadherin recruits Csk to cell contacts and both proteins can be co-precipitated from cell lysates of transfected cells and endothelial cells. Association of VE-cadherin and Csk in endothelial cells increased with increasing cell density. CHO cells expressing the tyrosine replacement mutant VE-cadherin-Y685F grow to higher cell densities than cells expressing wild-type VE-cadherin. Overexpression of Csk in these cells under an inducible promoter inhibits cell proliferation in the presence and absence of VE-cadherin, but not in the presence of VE-cadherin-Y685F. Reduction of Csk expression by RNA interference enhances endothelial cell proliferation. Our results suggest that the phosphorylated tyrosine residue 685 of VE-cadherin and probably the binding of Csk to this site are involved in inhibition of cell growth triggered by cell density.
Collapse
Affiliation(s)
- Ulf Baumeister
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Ruth Funke
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Klaus Ebnet
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | | | - Stefan Koch
- Max-Planck-Institute of Molecular Biomedicine, Münster, Germany
| | - Dietmar Vestweber
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
- Max-Planck-Institute of Molecular Biomedicine, Münster, Germany
- Max-Planck-Institute of Molecular Biomedicine, Von-Esmarch-Strasse 56, 48149 Münster, Germany. Tel.: +49 251 83 5 86 17; Fax: +49 251 83 5 86 16; E-mail:
| |
Collapse
|
47
|
Masuda M, Kogata N, Mochizuki N. [Crucial roles of PECAM-1 in shear stress sensing of vascular endothelial cells]. Nihon Yakurigaku Zasshi 2005; 124:311-8. [PMID: 15502396 DOI: 10.1254/fpj.124.311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
Abstract
Fluid shear stress (FSS) induces many forms of responses, including phosphorylation of ERK in endothelial cells (ECs). We have earlier reported that FSS and hyper-osmotic shock rapidly induce tyrosine phosphorylation of PECAM-1 (CD31). The phosphorylated PECAM-1 acts as a plasma membrane anchoring site for SHP2, a protein tyrosine phosphatase involved in the signal transmission from receptor tyrosine kinases to ERK. Osmotic shock also induces transient ERK activation in ECs. The osmotic-shock-induced ERK activation but not p38 MAP kinase activation was dependent on the PECAM-1 engagement and was blocked by its downregulation. When magnetic beads coated with antibodies against the extracellular domain of PECAM-1 were attached to ECs and tugged by magnetic force, PECAM-1 associated with the beads was tyrosine phosphorylated. ERK was also phosphorylated in these cells. Binding of the beads by itself or pulling on the cell surface using poly-L-lysine coated beads did not induce phosphorylation of PECAM-1 and ERK. These results suggest that PECAM-1 is a mechanotransduction molecule.
Collapse
Affiliation(s)
- Michitaka Masuda
- Department of Structural Analysis, National Cardiovascular Center Research Institute
| | | | | |
Collapse
|
48
|
Fukuda Y, Aoyama Y, Wada A, Igarashi Y. Identification of PECAM-1 association with sphingosine kinase 1 and its regulation by agonist-induced phosphorylation. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:12-21. [PMID: 14984734 DOI: 10.1016/j.bbalip.2003.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2003] [Revised: 11/24/2003] [Accepted: 11/25/2003] [Indexed: 02/08/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator generated from sphingosine by sphingosine kinase (SPHK). S1P acts both extracellularly and intracellularly as a signaling molecule, although its intracellular targets are still undefined. Intracellular level of S1P is under strict regulatory control of SPHK regulation, S1P degradation, and S1P dephosphorylation. Therefore, clarifying the mechanisms regulating SPHK activity may help us understand when and where S1P is generated. In this study, we performed yeast two-hybrid screening to search for SPHK1a-binding molecules that may be involved in the regulation of the kinase localization or activity. Platelet endothelial cell adhesion molecule-1 (PECAM-1) was identified as a protein potentially associating with SPHK1a. Their association was confirmed by co-immunoprecipitation analysis using HEK293 cells overexpressing PECAM-1 and SPHK1a. Moreover, the kinase activity appeared to be reduced in stable PECAM-1-expressing cells. PECAM-1 is expressed on the cell surface of vascular cells, and several stimuli are known to induce phosphorylation of its tyrosine residues. We found that such phosphorylation attenuated its association with SPHK1a. This association/dissociation of SPHK with PECAM-1, regulated by the phosphorylated state of the membrane protein, may be involved in the control of localized kinase activity in certain cell types.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita, Sapporo 60-0812, Japan
| | | | | | | |
Collapse
|
49
|
O'Brien CD, Cao G, Makrigiannakis A, DeLisser HM. Role of immunoreceptor tyrosine-based inhibitory motifs of PECAM-1 in PECAM-1-dependent cell migration. Am J Physiol Cell Physiol 2004; 287:C1103-13. [PMID: 15201144 DOI: 10.1152/ajpcell.00573.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Platelet endothelial cell adhesion molecule (PECAM-1), a transmembrane glycoprotein, has been implicated in angiogenesis, with recent evidence indicating the involvement of PECAM-1 in endothelial cell motility. The cytoplasmic domain of PECAM-1 contains two tyrosine residues, Y663 and Y686, that each fall within an immunoreceptor tyrosine-based inhibitory motif (ITIM). When phosphorylated, these residues together mediate the binding of the protein tyrosine phosphatase SHP-2. Because SHP-2 has been shown to be involved in the turnover of focal adhesions, a phenomenon required for efficient cell motility, the association of this phosphatase with PECAM-1 via its ITIMs may represent a mechanism by which PECAM-1 might facilitate cell migration. Studies were therefore done with cell transfectants expressing wild-type PECAM or mutant PECAM-1 in which residues Y663 and Y686 were mutated. These mutations eliminated PECAM-1 tyrosine phosphorylation and the association of PECAM-1 with SHP-2 but did not impair the ability of the molecule to localize at intercellular junctions or to bind homophilically. However, in vitro cell motility and tube formation stimulated by the expression of wild-type PECAM-1 were abrogated by the mutation of these tyrosine residues. Importantly, during wound-induced migration, the number of focal adhesions as well as the level of tyrosine phosphorylated paxillin detected in cells expressing wild-type PECAM-1 were markedly reduced compared with control cells or transfectants with mutant PECAM-1. These data suggest that, in vivo, the binding of SHP-2 to PECAM-1, via PECAM-1's ITIM domains, promotes the turnover of focal adhesions and, hence, endothelial cell motility.
Collapse
Affiliation(s)
- Christopher D O'Brien
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | | | | | | |
Collapse
|
50
|
Abstract
The maintenance of vascular function is of paramount importance to an organism's existence. PECAM-1 (CD31), first thought of as a marker for endothelia, has been shown to be an important scaffolding molecule involved in several signaling pathways. Recent studies have demonstrated an even wider range of functions for this versatile molecule including participation in maintenance of adherens junction integrity and permeability, organization of the intermediate filament cytoskeleton, regulation of catenin localization and transcriptional activities, participation in STAT isoform signaling, control of apoptotic events, and modulation of cardiac cushion development.
Collapse
Affiliation(s)
- Neta Ilan
- Department of Vascular Biology, Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel
| | | |
Collapse
|