1
|
Ramírez-Cortés F, Ménová P. Hepatocyte targeting via the asialoglycoprotein receptor. RSC Med Chem 2024:d4md00652f. [PMID: 39628900 PMCID: PMC11609720 DOI: 10.1039/d4md00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
This review highlights the potential of asialoglycoprotein receptor (ASGPR)-mediated targeting in advancing liver-specific treatments and underscores the ongoing progress in the field. First, we provide a comprehensive examination of the nature of ASGPR ligands, both natural and synthetic. Next, we explore various drug delivery strategies leveraging ASGPR, with a particular emphasis on the delivery of therapeutic nucleic acids such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs). An in-depth analysis of the current status of RNA interference (RNAi) and ASO-based therapeutics is included, detailing approved therapies and those in various stages of clinical development (phases 1 to 3). Afterwards, we give an overview of other ASGPR-targeted conjugates, such as those with peptide nucleic acids or aptamers. Finally, targeted protein degradation of extracellular proteins through ASGPR is briefly discussed.
Collapse
Affiliation(s)
| | - Petra Ménová
- University of Chemistry and Technology, Prague Technická 5 16628 Prague 6 Czech Republic
| |
Collapse
|
2
|
Ye W, Tang Q, Zhou T, Zhou C, Fan C, Wang X, Wang C, Zhang K, Liao G, Zhou W. Design, synthesis and biological evaluation of the positional isomers of the galactose conjugates able to target hepatocellular carcinoma cells via ASGPR-mediated cellular uptake and cytotoxicity. Eur J Med Chem 2024; 264:115988. [PMID: 38039790 DOI: 10.1016/j.ejmech.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Galactose as a recognizing motif for asialoglycoprotein receptor (ASGPR) is a widely accepted vector to deliver cytotoxic agents in the therapy of hepatocellular carcinoma (HCC), however, the individual hydroxyl group of galactose (Gal) contributed to recognizing ASGPR is obscure and remains largely unanswered in the design of glycoconjugates. Herein, we designed and synthesized five positional isomers of Gal-anthocyanin Cy5.0 conjugates and three Gal-doxorubicin (Dox) isomers, respectively. The fluorescence intensity of Gal-Cy5.0 conjugates accumulated in cancer cells hinted the optimal modification sites of positions C2 and C6. Comparing to the cytotoxicity of other conjugates, C2-Gal-Dox (11) was the most potent. Moreover, Gal-Dox conjugates significantly the toxicity of Dox. A progressively lower internalization capacity and siRNA technology implied the cellular uptake and cytotoxicity directly related to the ASGPR expression level. Accordingly, position C2 of galactose may be the best substitution site via ASGPR mediation in the design of anti-HCC glycoconjugates.
Collapse
Affiliation(s)
- Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, Guangdong, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Tiantian Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Cui Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuangchuang Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Guochao Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, Guangdong, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
3
|
Donahue TC, Ou C, Yang Q, Flinko R, Zhang X, Zong G, Lewis GK, Wang LX. Synthetic Site-Specific Antibody-Ligand Conjugates Promote Asialoglycoprotein Receptor-Mediated Degradation of Extracellular Human PCSK9. ACS Chem Biol 2023; 18:1611-1623. [PMID: 37368876 PMCID: PMC10530246 DOI: 10.1021/acschembio.3c00229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Targeted degradation using cell-specific lysosome targeting receptors is emerging as a new therapeutic strategy for the elimination of disease-associated proteins. The liver-specific human asialoglycoprotein receptor (ASGPR) is a particularly attractive lysosome targeting receptor leveraged for targeted protein degradation (TPD). However, the efficiency of different glycan ligands for ASGPR-mediated lysosomal delivery remains to be further characterized. In this study, we applied a chemoenzymatic Fc glycan remodeling method to construct an array of site-specific antibody-ligand conjugates carrying natural bi- and tri-antennary N-glycans as well as synthetic tri-GalNAc ligands. Alirocumab, an anti-PCSK9 (proprotein convertase subtilisin/kexin type 9) antibody, and cetuximab (an anti-EGFR antibody) were chosen to demonstrate the ASGPR-mediated degradation of extracellular and membrane-associated proteins, respectively. It was found that the nature of the glycan ligands and the length of the spacer in the conjugates are critical for the receptor binding and the receptor-mediated degradation of PCSK9, which blocks low-density lipoprotein receptor (LDLR) function and adversely affects clearance of low-density lipoprotein cholesterol. Interestingly, the antibody-tri-GalNAc conjugates showed a clear hook effect for its binding to ASGPR, while antibody conjugates carrying the natural N-glycans did not. Both the antibody-tri-antennary N-glycan conjugate and the antibody-tri-GalNAc conjugate could significantly decrease extracellular PCSK9, as shown in the cell-based assays. However, the tri-GalNAc conjugate showed a clear hook effect in the receptor-mediated degradation of PCSK9, while the antibody conjugate carrying the natural N-glycans did not. The cetuximab-tri-GalNAc conjugates also showed a similar hook effect on degradation of the membrane-associated protein, epidermal growth factor receptor (EGFR). These results suggest that the two types of ligands may involve a distinct mode of interactions in the receptor binding and target-degradation processes. Interestingly, the alirocumab-tri-GalNAc conjugate was also found to upregulate LDLR levels in comparison with the antibody alone. This study showcases the potential of the targeted degradation strategy against PCSK9 for reducing low-density lipoprotein cholesterol, a risk factor for heart disease and stroke.
Collapse
Affiliation(s)
- Thomas C Donahue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Qiang Yang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Robin Flinko
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
5
|
Kandasamy P, Mori S, Matsuda S, Erande N, Datta D, Willoughby JLS, Taneja N, O'Shea J, Bisbe A, Manoharan RM, Yucius K, Nguyen T, Indrakanti R, Gupta S, Gilbert JA, Racie T, Chan A, Liu J, Hutabarat R, Nair JK, Charisse K, Maier MA, Rajeev KG, Egli M, Manoharan M. Metabolically Stable Anomeric Linkages Containing GalNAc-siRNA Conjugates: An Interplay among ASGPR, Glycosidase, and RISC Pathways. J Med Chem 2023; 66:2506-2523. [PMID: 36757090 DOI: 10.1021/acs.jmedchem.2c01337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Conjugation of synthetic triantennary N-acetyl-d-galactosamine (GalNAc) to small interfering RNA (siRNA) mediates binding to the asialoglycoprotein receptor (ASGPR) on the surface of hepatocytes, facilitating liver-specific uptake and siRNA-mediated gene silencing. The natural β-glycosidic bond of the GalNAc ligand is rapidly cleaved by glycosidases in vivo. Novel GalNAc ligands with S-, and C-glycosides with both α- and β-anomeric linkages, N-glycosides with β-anomeric linkage, and the O-glycoside with α-anomeric linkage were synthesized and conjugated to siRNA either on-column during siRNA synthesis or through a high-throughput, post-synthetic method. Unlike natural GalNAc, modified ligands were resistant to glycosidase activity. The siRNAs conjugated to newly designed ligands had similar affinities for ASGPR and similar silencing activity in mice as the parent GalNAc-siRNA conjugate. These data suggest that other factors, such as protein-nucleic acid interactions and loading of the antisense strand into the RNA-induced silencing complex (RISC), are more critical to the duration of action than the stereochemistry and stability of the anomeric linkage between the GalNAc moiety of the ligand conjugated to the sense strand of the siRNA.
Collapse
Affiliation(s)
| | - Shohei Mori
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Namrata Erande
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Dhrubajyoti Datta
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | | | - Nate Taneja
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Jonathan O'Shea
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Kristina Yucius
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Tuyen Nguyen
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Ramesh Indrakanti
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Swati Gupta
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Jason A Gilbert
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Tim Racie
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Amy Chan
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Ju Liu
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Renta Hutabarat
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Jayaprakash K Nair
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Martin A Maier
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | | | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| |
Collapse
|
6
|
Maciag JJ, Chantraine C, Mills KB, Yadav R, Yarawsky AE, Chaton CT, Vinod D, Fitzkee NC, Mathelié-Guinlet M, Dufrêne YF, Fey PD, Horswill AR, Herr AB. Mechanistic basis of staphylococcal interspecies competition for skin colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525635. [PMID: 36747832 PMCID: PMC9900903 DOI: 10.1101/2023.01.26.525635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Staphylococci, whether beneficial commensals or pathogens, often colonize human skin, potentially leading to competition for the same niche. In this multidisciplinary study we investigate the structure, binding specificity, and mechanism of adhesion of the Aap lectin domain required for Staphylococcus epidermidis skin colonization and compare its characteristics to the lectin domain from the orthologous Staphylococcus aureus adhesin SasG. The Aap structure reveals a legume lectin-like fold with atypical architecture, showing specificity for N-acetyllactosamine and sialyllactosamine. Bacterial adhesion assays using human corneocytes confirmed the biological relevance of these Aap-glycan interactions. Single-cell force spectroscopy experiments measured individual binding events between Aap and corneocytes, revealing an extraordinarily tight adhesion force of nearly 900 nN and a high density of receptors at the corneocyte surface. The SasG lectin domain shares similar structural features, glycan specificity, and corneocyte adhesion behavior. We observe cross-inhibition of Aap-and SasG-mediated staphylococcal adhesion to corneocytes. Together, these data provide insights into staphylococcal interspecies competition for skin colonization and suggest potential avenues for inhibition of S. aureus colonization.
Collapse
Affiliation(s)
- Joseph J. Maciag
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Constance Chantraine
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Krista B. Mills
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Rahul Yadav
- Department of Chemistry, Mississippi State University, Mississippi State, MS
| | - Alexander E. Yarawsky
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Catherine T. Chaton
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Divya Vinod
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Medical Sciences Undergraduate Program, University of Cincinnati, Cincinnati, OH
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS
| | - Marion Mathelié-Guinlet
- Institut de Chimie et Biologie des Membranes et des Nano-Objets, CNRS UMR 5248, University of Bordeaux, Pessac, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
7
|
Abbina S, Abbasi U, Gill A, Leitch H, Kizhakkedathu JN. Active transport nanochelators for the reduction of liver iron burden in iron overload. J Control Release 2022; 350:857-869. [PMID: 36058353 DOI: 10.1016/j.jconrel.2022.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
Liver dysfunction and failure account for a major portion of premature deaths in patients suffering from various iron associated pathogeneses, particularly primary and secondary iron overload disorders, despite intensive treatment. The liver is a central player in iron homeostasis and a major iron storage organ, and currently, there are no active approaches for the excretion of excess liver iron. Herein, we report a new method for the rapid reduction of iron burden in iron overload diseases by developing a new class of liver targeted nanochelators with favorable pharmacokinetics and biodistribution. The new nanochelators bypass the reticuloendothelial system and specifically target hepatocytes without non-specific accumulation in other organs. The targeted nanochelators bound and neutralized excess iron in the liver and from the vasculature and, eventually leading to rapid hepatobiliary excretion of labile iron. Further, these rapidly excreted nanochelators did not induce toxicity in the liver, were highly cytocompatible in both iron overload and non-loaded conditions, and were promising in mitigating iron triggered free radical oxidative damage. These studies provide key insights into the development of organ targeted nanochelating systems and the rapid reduction of iron burden in vivo. This methodology allows for further development of nanotherapeutics for specific iron overload diseases.
Collapse
Affiliation(s)
- Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC., Canada; Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC., Canada
| | - Usama Abbasi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC., Canada; Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC., Canada
| | - Arshdeep Gill
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC., Canada; Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Heather Leitch
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC., Canada; Hematology, St. Paul's Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC., Canada; Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC., Canada; Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada; The School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20:5790-5812. [DOI: 10.1016/j.csbj.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
|
9
|
Timmer BJJ, Mooibroek TJ. A Simple Strategy to Obtain Synthetic Ca
2+
‐Dependent Lectin Mimics. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brian J. J. Timmer
- Van ‘t Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Tiddo J. Mooibroek
- Van ‘t Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
10
|
Gabba A, Bogucka A, Luz JG, Diniz A, Coelho H, Corzana F, Cañada FJ, Marcelo F, Murphy PV, Birrane G. Crystal Structure of the Carbohydrate Recognition Domain of the Human Macrophage Galactose C-Type Lectin Bound to GalNAc and the Tumor-Associated Tn Antigen. Biochemistry 2021; 60:1327-1336. [PMID: 33724805 DOI: 10.1021/acs.biochem.1c00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human macrophage galactose lectin (MGL) is an endocytic type II transmembrane receptor expressed on immature monocyte-derived dendritic cells and activated macrophages and plays a role in modulating the immune system in response to infections and cancer. MGL contains an extracellular calcium-dependent (C-type) carbohydrate recognition domain (CRD) that specifically binds terminal N-acetylgalactosamine glycan residues such as the Tn and sialyl-Tn antigens found on tumor cells, as well as other N- and O-glycans displayed on certain viruses and parasites. Even though the glycan specificity of MGL is known and several binding glycoproteins have been identified, the molecular basis for substrate recognition has remained elusive due to the lack of high-resolution structures. Here we present crystal structures of the MGL CRD at near endosomal pH and in several complexes, which reveal details of the interactions with the natural ligand, GalNAc, the cancer-associated Tn-Ser antigen, and a synthetic GalNAc mimetic ligand. Like the asialoglycoprotein receptor, additional calcium atoms are present and contribute to stabilization of the MGL CRD fold. The structure provides the molecular basis for preferential binding of N-acetylgalactosamine over galactose and prompted the re-evaluation of the binding modes previously proposed in solution. Saturation transfer difference nuclear magnetic resonance data acquired using the MGL CRD and interpreted using the crystal structure indicate a single binding mode for GalNAc in solution. Models of MGL1 and MGL2, the mouse homologues of MGL, explain how these proteins might recognize LewisX and GalNAc, respectively.
Collapse
MESH Headings
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Humans
- Lectins, C-Type/chemistry
- Lectins, C-Type/metabolism
- Acetylgalactosamine/metabolism
- Acetylgalactosamine/chemistry
- Crystallography, X-Ray
- Models, Molecular
- Protein Domains
- Binding Sites
- Protein Binding
- Animals
Collapse
Affiliation(s)
- Adele Gabba
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
- School of Chemistry, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Agnieszka Bogucka
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
- School of Chemistry, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - John G Luz
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ana Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Helena Coelho
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química Universidad de La Rioja, 26006 Logroño, Spain
| | - Francisco Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Filipa Marcelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Gabriel Birrane
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
11
|
ASGR1 and Its Enigmatic Relative, CLEC10A. Int J Mol Sci 2020; 21:ijms21144818. [PMID: 32650396 PMCID: PMC7404283 DOI: 10.3390/ijms21144818] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
The large family of C-type lectin (CLEC) receptors comprises carbohydrate-binding proteins that require Ca2+ to bind a ligand. The prototypic receptor is the asialoglycoprotein receptor-1 (ASGR1, CLEC4H1) that is expressed primarily by hepatocytes. The early work on ASGR1, which is highly specific for N-acetylgalactosamine (GalNAc), established the foundation for understanding the overall function of CLEC receptors. Cells of the immune system generally express more than one CLEC receptor that serve diverse functions such as pathogen-recognition, initiation of cellular signaling, cellular adhesion, glycoprotein turnover, inflammation and immune responses. The receptor CLEC10A (C-type lectin domain family 10 member A, CD301; also called the macrophage galactose-type lectin, MGL) contains a carbohydrate-recognition domain (CRD) that is homologous to the CRD of ASGR1, and thus, is also specific for GalNAc. CLEC10A is most highly expressed on immature DCs, monocyte-derived DCs, and alternatively activated macrophages (subtype M2a) as well as oocytes and progenitor cells at several stages of embryonic development. This receptor is involved in initiation of TH1, TH2, and TH17 immune responses and induction of tolerance in naïve T cells. Ligand-mediated endocytosis of CLEC receptors initiates a Ca2+ signal that interestingly has different outcomes depending on ligand properties, concentration, and frequency of administration. This review summarizes studies that have been carried out on these receptors.
Collapse
|
12
|
Reshitko GS, Yamansarov EY, Evteev SA, Lopatukhina EV, Shkil' DO, Saltykova IV, Lopukhov AV, Kovalev SV, Lobov AN, Kislyakov IV, Burenina OY, Klyachko NL, Garanina AS, Dontsova OA, Ivanenkov YA, Erofeev AS, Gorelkin PV, Beloglazkina EK, Majouga AG. Synthesis and Evaluation of New Trivalent Ligands for Hepatocyte Targeting via the Asialoglycoprotein Receptor. Bioconjug Chem 2020; 31:1313-1319. [PMID: 32379426 DOI: 10.1021/acs.bioconjchem.0c00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the asialoglycoprotein receptor (also known as the "Ashwell-Morell receptor" or ASGPR) was discovered as the first cellular mammalian lectin, numerous drug delivery systems have been developed and several gene delivery systems associated with multivalent ligands for liver disease targeting are undergoing clinical trials. The success of these systems has facilitated the further study of new ligands with comparable or higher affinity and less synthetic complexity. Herein, we designed two novel trivalent ligands based on the esterification of tris(hydroxymethyl) aminomethane (TRIS) followed by the azide-alkyne Huisgen cycloaddition with azido N-acetyl-d-galactosamine. The presented triazolyl glycoconjugates exhibited good binding to ASGPR, which was predicted using in silico molecular docking and assessed by a surface plasmon resonance (SPR) technique. Moreover, we demonstrated the low level of in vitro cytotoxicity, as well as the optimal spatial geometry and the required amphiphilic balance, for new, easily accessible ligands. The conjugate of a new ligand with Cy5 dye exhibited selective penetration into HepG2 cells in contrast to the ASGPR-negative PC3 cell line.
Collapse
Affiliation(s)
- Galina S Reshitko
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Emil Yu Yamansarov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow, 119049, Russian Federation
| | - Sergei A Evteev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Elena V Lopatukhina
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Dmitry O Shkil'
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Irina V Saltykova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Anton V Lopukhov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Sergey V Kovalev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Alexander N Lobov
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russian Federation
| | - Ivan V Kislyakov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Olga Yu Burenina
- Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russian Federation
| | - Natalia L Klyachko
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.,Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russian Federation
| | - Anastasiia S Garanina
- National University of Science and Technology MISiS, Moscow, 119049, Russian Federation
| | - Olga A Dontsova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.,Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russian Federation
| | - Yan A Ivanenkov
- Moscow Institute of Physics and Technology (State University), Dolgoprudny City, Moscow Region 141700, Russian Federation.,Institute of Biochemistry and Genetics, Russian Academy of Science (IBG RAS) of the Ufa Federal Research Centre, Ufa, 450054, Russian Federation
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow, 119049, Russian Federation
| | - Peter V Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow, 119049, Russian Federation
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow, 119049, Russian Federation.,Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| |
Collapse
|
13
|
|
14
|
Raposo CD, Costa R, Petrova KT, Brito C, Scotti MT, Cardoso MM. Development of Novel Galactosylated PLGA Nanoparticles for Hepatocyte Targeting Using Molecular Modelling. Polymers (Basel) 2020; 12:E94. [PMID: 31947904 PMCID: PMC7023654 DOI: 10.3390/polym12010094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 02/02/2023] Open
Abstract
Doxorubicin-loaded PLGA nanoparticles conjugated with a new galactose-based ligand for the specific recognition by human hepatoma cellular carcinoma cells (Hep G2) were successfully produced. The new targeting compound was selected using molecular docking combined with quantum chemical calculations for modelling and comparing molecular interactions among the H1 subunit of the asialoglycoprotein receptor containing the carbohydrate recognition domain and the ligand. The ligand, bis(1-O-ethyl-β-D-galactopyranosyl)amine, was synthetized, characterized, and subsequently linked to PLGA. Unloaded (PLGA-di-GAL NP) and doxorubicin-loaded (DOX-PLGA-di-GAL NP) nanoparticles were prepared using an emulsion method and characterized. The produced DOX-PLGA-di-GAL NP are spherical in shape with a size of 258 ± 47 nm, a zeta potential of -62.3 mV, and a drug encapsulation efficiency of 83%. The in vitro drug release results obtained show a three-phase release profile. In vitro cell studies confirmed the interaction between Hep G2 cells and PLGA-di-GAL NP. Cell cytotoxicity tests showed that unloaded NP are nontoxic and that DOX-PLGA-di-GAL NP caused a decrease of around 80% in cellular viability. The strategy used in this work to design new targeting compounds represents a promising tool to develop effective hepatocyte targeting drug delivery systems and can be applied to other tissues/organs.
Collapse
Affiliation(s)
- Cláudia D. Raposo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Rita Costa
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Krasimira T. Petrova
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Catarina Brito
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marcus T. Scotti
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba Campus I, João Pessoa-PB 58051-900, Brazil
| | - M. Margarida Cardoso
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| |
Collapse
|
15
|
Huang KW, Lai YT, Chern GJ, Huang SF, Tsai CL, Sung YC, Chiang CC, Hwang PB, Ho TL, Huang RL, Shiue TY, Chen Y, Wang SK. Galactose Derivative-Modified Nanoparticles for Efficient siRNA Delivery to Hepatocellular Carcinoma. Biomacromolecules 2018; 19:2330-2339. [PMID: 29808997 DOI: 10.1021/acs.biomac.8b00358] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful siRNA therapy requires suitable delivery systems with targeting moieties such as small molecules, peptides, antibodies, or aptamers. Galactose (Gal) residues recognized by the asialoglycoprotein receptor (ASGPR) can serve as potent targeting moieties for hepatocellular carcinoma (HCC) cells. However, efficient targeting to HCC via galactose moieties rather than normal liver tissues in HCC patients remains a challenge. To achieve more efficient siRNA delivery in HCC, we synthesized various galactoside derivatives and investigated the siRNA delivery capability of nanoparticles modified with those galactoside derivatives. In this study, we assembled lipid/calcium/phosphate nanoparticles (LCP NPs) conjugated with eight types of galactoside derivatives and demonstrated that phenyl β-d-galactoside-decorated LCP NPs (L4-LCP NPs) exhibited a superior siRNA delivery into HCC cells compared to normal hepatocytes. VEGF siRNAs delivered by L4-LCP NPs downregulated VEGF expression in HCC in vitro and in vivo and led to a potent antiangiogenic effect in the tumor microenvironment of a murine orthotopic HCC model. The efficient delivery of VEGF siRNA by L4-LCP NPs that resulted in significant tumor regression indicates that phenyl galactoside could be a promising HCC-targeting ligand for therapeutic siRNA delivery to treat liver cancer.
Collapse
Affiliation(s)
- Kuan-Wei Huang
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Yu-Tsung Lai
- Department of Chemistry , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Guann-Jen Chern
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Shao-Feng Huang
- Department of Chemistry , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Chia-Lung Tsai
- Department of Chemistry , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Yun-Chieh Sung
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Cheng-Chin Chiang
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Pi-Bei Hwang
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Ting-Lun Ho
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Rui-Lin Huang
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Ting-Yun Shiue
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry , National Tsing Hua University , Hsinchu 30013 , Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , Hsinchu 30013 , Taiwan
| |
Collapse
|
16
|
Petrov RA, Maklakova SY, Ivanenkov YA, Petrov SA, Sergeeva OV, Yamansarov EY, Saltykova IV, Kireev II, Alieva IB, Deyneka EV, Sofronova AA, Aladinskaia AV, Trofimenko AV, Yamidanov RS, Kovalev SV, Kotelianski VE, Zatsepin TS, Beloglazkina EK, Majouga AG. Synthesis and biological evaluation of novel mono- and bivalent ASGP-R-targeted drug-conjugates. Bioorg Med Chem Lett 2017; 28:382-387. [PMID: 29269214 DOI: 10.1016/j.bmcl.2017.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022]
Abstract
Asialoglycoprotein receptor (ASGP-R) is a promising biological target for drug delivery into hepatoma cells. Nevertheless, there are only few examples of small-molecule conjugates of ASGP-R selective ligand equipped by a therapeutic agent for the treatment of hepatocellular carcinoma (HCC). In the present work, we describe a convenient and versatile synthetic approach to novel mono- and multivalent drug-conjugates containing N-acetyl-2-deoxy-2-aminogalactopyranose and anticancer drug - paclitaxel (PTX). Several molecules have demonstrated high affinity towards ASGP-R and good stability under physiological conditions, significant in vitro anticancer activity comparable to PTX, as well as good internalization via ASGP-R-mediated endocytosis. Therefore, the conjugates with the highest potency can be regarded as a promising therapeutic option against HCC.
Collapse
Affiliation(s)
- Rostislav A Petrov
- Lomonosov Moscow State University, Chemistry Dept, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Svetlana Yu Maklakova
- Lomonosov Moscow State University, Chemistry Dept, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Yan A Ivanenkov
- Lomonosov Moscow State University, Chemistry Dept, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation; Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation; National University of Science and Technology MISiS, 9 Leninskiy pr, Moscow 119049, Russian Federation; Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences (IBG RAS), Prosp. Oktybrya 71, Ufa, Bashkortostan 450054, Russian Federation.
| | - Stanislav A Petrov
- Lomonosov Moscow State University, Chemistry Dept, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Olga V Sergeeva
- Lomonosov Moscow State University, Chemistry Dept, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation; Skolkovo Institute of Science and Technology, 100 Novaya St., 143025 Skolkovo, Russian Federation
| | - Emil Yu Yamansarov
- Lomonosov Moscow State University, Chemistry Dept, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Irina V Saltykova
- Lomonosov Moscow State University, Chemistry Dept, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Igor I Kireev
- Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Leninskye Gory, House 1, Building 40, Moscow 119992, Russian Federation
| | - Irina B Alieva
- Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Leninskye Gory, House 1, Building 40, Moscow 119992, Russian Federation
| | - Ekaterina V Deyneka
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation
| | - Alina A Sofronova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, Russia
| | - Anastasiia V Aladinskaia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation
| | - Alexandre V Trofimenko
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation
| | - Renat S Yamidanov
- Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences (IBG RAS), Prosp. Oktybrya 71, Ufa, Bashkortostan 450054, Russian Federation
| | - Sergey V Kovalev
- Lomonosov Moscow State University, Chemistry Dept, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Victor E Kotelianski
- Skolkovo Institute of Science and Technology, 100 Novaya St., 143025 Skolkovo, Russian Federation
| | - Timofey S Zatsepin
- Lomonosov Moscow State University, Chemistry Dept, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation; Skolkovo Institute of Science and Technology, 100 Novaya St., 143025 Skolkovo, Russian Federation
| | - Elena K Beloglazkina
- Lomonosov Moscow State University, Chemistry Dept, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Alexander G Majouga
- Lomonosov Moscow State University, Chemistry Dept, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation; National University of Science and Technology MISiS, 9 Leninskiy pr, Moscow 119049, Russian Federation; Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russian Federation
| |
Collapse
|
17
|
Korin E, Bejerano T, Cohen S. GalNAc bio-functionalization of nanoparticles assembled by electrostatic interactions improves siRNA targeting to the liver. J Control Release 2017; 266:310-320. [DOI: 10.1016/j.jconrel.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 02/01/2023]
|
18
|
Sanhueza CA, Baksh MM, Thuma B, Roy MD, Dutta S, Préville C, Chrunyk BA, Beaumont K, Dullea R, Ammirati M, Liu S, Gebhard D, Finley JE, Salatto CT, King-Ahmad A, Stock I, Atkinson K, Reidich B, Lin W, Kumar R, Tu M, Menhaji-Klotz E, Price DA, Liras S, Finn MG, Mascitti V. Efficient Liver Targeting by Polyvalent Display of a Compact Ligand for the Asialoglycoprotein Receptor. J Am Chem Soc 2017; 139:3528-3536. [PMID: 28230359 PMCID: PMC6991140 DOI: 10.1021/jacs.6b12964] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A compact and stable bicyclic bridged ketal was developed as a ligand for the asialoglycoprotein receptor (ASGPR). This compound showed excellent ligand efficiency, and the molecular details of binding were revealed by the first X-ray crystal structures of ligand-bound ASGPR. This analogue was used to make potent di- and trivalent binders of ASGPR. Extensive characterization of the function of these compounds showed rapid ASGPR-dependent cellular uptake in vitro and high levels of liver/plasma selectivity in vivo. Assessment of the biodistribution in rodents of a prototypical Alexa647-labeled trivalent conjugate showed selective hepatocyte targeting with no detectable distribution in nonparenchymal cells. This molecule also exhibited increased ASGPR-directed hepatocellular uptake and prolonged retention compared to a similar GalNAc derived trimer conjugate. Selective release in the liver of a passively permeable small-molecule cargo was achieved by retro-Diels-Alder cleavage of an oxanorbornadiene linkage, presumably upon encountering intracellular thiol. Therefore, the multicomponent construct described here represents a highly efficient delivery vehicle to hepatocytes.
Collapse
Affiliation(s)
- Carlos A. Sanhueza
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Avenue, Atlanta, Georgia 30332, United States
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael M. Baksh
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Avenue, Atlanta, Georgia 30332, United States
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Benjamin Thuma
- Pfizer Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Marc D. Roy
- Pfizer Drug Safety R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sanjay Dutta
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Cathy Préville
- Pfizer Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Boris A. Chrunyk
- Pfizer Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kevin Beaumont
- Pfizer Medicine Design, Main Street, Cambridge, Massachusetts 02139, United States
| | - Robert Dullea
- Pfizer CVMET Biology, Main Street, Cambridge, Massachusetts 02139, United States
| | - Mark Ammirati
- Pfizer Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Shenping Liu
- Pfizer Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - David Gebhard
- Pfizer Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - James E. Finley
- Pfizer Drug Safety R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | | | - Amanda King-Ahmad
- Pfizer Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ingrid Stock
- Pfizer Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Karen Atkinson
- Pfizer Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Benjamin Reidich
- Pfizer CVMET Biology, Main Street, Cambridge, Massachusetts 02139, United States
| | - Wen Lin
- Pfizer Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Rajesh Kumar
- Pfizer Medicinal Sciences, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Meihua Tu
- Pfizer Medicine Design, Main Street, Cambridge, Massachusetts 02139, United States
| | - Elnaz Menhaji-Klotz
- Pfizer Medicine Design, Main Street, Cambridge, Massachusetts 02139, United States
| | - David A. Price
- Pfizer Medicine Design, Main Street, Cambridge, Massachusetts 02139, United States
| | - Spiros Liras
- Pfizer Medicine Design, Main Street, Cambridge, Massachusetts 02139, United States
| | - M. G. Finn
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Avenue, Atlanta, Georgia 30332, United States
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Vincent Mascitti
- Pfizer Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
19
|
Huang X, Leroux JC, Castagner B. Well-Defined Multivalent Ligands for Hepatocytes Targeting via Asialoglycoprotein Receptor. Bioconjug Chem 2016; 28:283-295. [DOI: 10.1021/acs.bioconjchem.6b00651] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiangang Huang
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Bastien Castagner
- Department
of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
20
|
Crowley ST, Rice KG. "Evolving nanoparticle gene delivery vectors for the liver: What has been learned in 30 years". J Control Release 2015; 219:457-470. [PMID: 26439664 DOI: 10.1016/j.jconrel.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Nonviral gene delivery to the liver has been under evolution for nearly 30years. Early demonstrations established relatively simple nonviral vectors could mediate gene expression in HepG2 cells which understandably led to speculation that these same vectors would be immediately successful at transfecting primary hepatocytes in vivo. However, it was soon recognized that the properties of a nonviral vector resulting in efficient transfection in vitro were uncorrelated with those needed to achieve efficient nonviral transfection in vivo. The discovery of major barriers to liver gene transfer has set the field on a course to design biocompatible vectors that demonstrate increased DNA stability in the circulation with correlating expression in liver. The improved understanding of what limits nonviral vector gene transfer efficiency in vivo has resulted in more sophisticated, low molecular weight vectors that allow systematic optimization of nanoparticle size, charge and ligand presentation. While the field has evolved DNA nanoparticles that are stable in the circulation, target hepatocytes, and deliver DNA to the cytosol, breaching the nucleus remains the last major barrier to a fully successful nonviral gene transfer system for the liver. The lessons learned along the way are fundamentally important to the design of all systemically delivered nanoparticle nonviral gene delivery systems.
Collapse
Affiliation(s)
- Samuel T Crowley
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA.
| |
Collapse
|
21
|
Zacco E, Hütter J, Heier JL, Mortier J, Seeberger PH, Lepenies B, Koksch B. Tailored Presentation of Carbohydrates on a Coiled Coil-Based Scaffold for Asialoglycoprotein Receptor Targeting. ACS Chem Biol 2015; 10:2065-72. [PMID: 26057877 DOI: 10.1021/acschembio.5b00435] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The coiled-coil folding motif represents an ideal scaffold for the defined presentation of ligands due to the possibility of positioning them at specific distances along the axis. We created a coiled-coil glycopeptide library to characterize the distances between the carbohydrate-binding sites of the asialoglycoprotein receptors (ASGPR) on hepatocytes. The components of the glycopeptide library vary for the number of displayed ligands (galactose), their position on the peptide sequence, and the space between peptide backbone and carbohydrate. We determined the binding of the glycopeptides to the hepatocytes, and we established the optimal distance and orientation of the galactose moieties for interaction with the ASGPR using flow cytometry. We confirmed that the binding occurs through endocytosis mediated by ASGPR via inhibition studies with cytochalasin D; fluorescence microscopy studies display the uptake of the carrier peptides inside the cell. Thus, this study demonstrates that the coiled-coil motif can be used as reliable scaffold for the rational presentation of ligands.
Collapse
Affiliation(s)
- Elsa Zacco
- Institute of Chemistry
and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Julia Hütter
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Jason L. Heier
- Institute of Chemistry
and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Jérémie Mortier
- Institute of Chemistry
and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luisestrasse
2, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry
and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
22
|
Rehman Z, Fahim A, Sadia H. Deciphering the mystery of hepatitis B virus receptors: A historical perspective. Virusdisease 2015; 26:97-104. [PMID: 26396975 DOI: 10.1007/s13337-015-0260-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus is one of the major reasons of viral hepatitis with an estimated 350 million infected patients worldwide. Although, the virus was discovered and cloned more than three decades ago, its entry mechanism has still been in investigation. Numerous potential candidates have been proposed and investigated rigorously to reveal HBV entry mechanism and to unveil the first door of viral entry to hepatocytes. This review provides a short account of role of receptors for entry of HBV into hepatocytes. The viral preS1 region of large surface protein is involved in the attachment of HBV to hepatocytes. The putative attachment site of HBV is located at amino acids 21-47 of preS1. So far, several proteins have been proposed to interact with these different regions of the preS1 domain which includes human immunoglobulin A receptor, glyceraldehyde-3-phosphate dehydrogenase, interleukin-6, a 31-kDa protein, HBV binding factor, asialoglycoprotein receptor, nascent polypeptide-associated complex α polypeptide, lipoprotein lipase, hepatocyte-associated heparan sulfate proteoglycans, glucose-regulated protein 75. However, none of them have appeared to be generally accepted as a true receptor for the virus until recently when sodium taurocholate cotransporting polypeptide identified as HBV entry receptor. Current review provides scientific historical perspective of various candidates known to be interacting with preS1 of HBV for their possible role in viral entry.
Collapse
Affiliation(s)
- Zaira Rehman
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Ammad Fahim
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Hajra Sadia
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
23
|
Mannose-recognition mutant of the galactose/N-acetylgalactosamine-specific C-type lectin CEL-I engineered by site-directed mutagenesis. Biochim Biophys Acta Gen Subj 2015; 1850:1457-65. [PMID: 25869490 DOI: 10.1016/j.bbagen.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/27/2015] [Accepted: 04/06/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND CEL-I is a galactose/N-acetylgalactosamine-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. Its carbohydrate-binding site contains a QPD (Gln-Pro-Asp) motif, which is generally recognized as the galactose specificity-determining motif in the C-type lectins. In our previous study, replacement of the QPD motif by an EPN (Glu-Pro-Asn) motif led to a weak binding affinity for mannose. Therefore, we examined the effects of an additional mutation in the carbohydrate-binding site on the specificity of the lectin. METHODS Trp105 of EPN-CEL-I was replaced by a histidine residue using site-directed mutagenesis, and the binding affinity of the resulting mutant, EPNH-CEL-I, was examined by sugar-polyamidoamine dendrimer assay, isothermal titration calorimetry, and glycoconjugate microarray analysis. Tertiary structure of the EPNH-CEL-I/mannose complex was determined by X-ray crystallographic analysis. RESULTS Sugar-polyamidoamine dendrimer assay and glycoconjugate microarray analysis revealed a drastic change in the specificity of EPNH-CEL-I from galactose/N-acetylgalactosamine to mannose. The association constant of EPNH-CEL-I for mannose was determined to be 3.17×10(3) M(-1) at 25°C. Mannose specificity of EPNH-CEL-I was achieved by stabilization of the binding of mannose in a correct orientation, in which the EPN motif can form proper hydrogen bonds with 3- and 4-hydroxy groups of the bound mannose. CONCLUSIONS Specificity of CEL-I can be engineered by mutating a limited number of amino acid residues in addition to the QPD/EPN motifs. GENERAL SIGNIFICANCE Versatility of the C-type carbohydrate-recognition domain structure in the recognition of various carbohydrate chains could become a promising platform to develop novel molecular recognition proteins.
Collapse
|
24
|
Asialoglycoprotein receptor mediated hepatocyte targeting — Strategies and applications. J Control Release 2015; 203:126-39. [DOI: 10.1016/j.jconrel.2015.02.022] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
|
25
|
Liu Y, Liu J, Pang X, Liu T, Ning Z, Cheng G. The roles of direct recognition by animal lectins in antiviral immunity and viral pathogenesis. Molecules 2015; 20:2272-95. [PMID: 25642837 PMCID: PMC6272511 DOI: 10.3390/molecules20022272] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/21/2015] [Indexed: 11/24/2022] Open
Abstract
Lectins are a group of proteins with carbohydrate recognition activity. Lectins are categorized into many families based on their different cellular locations as well as their specificities for a variety of carbohydrate structures due to the features of their carbohydrate recognition domain (CRD) modules. Many studies have indicated that the direct recognition of particular oligosaccharides on viral components by lectins is important for interactions between hosts and viruses. Herein, we aim to globally review the roles of this recognition by animal lectins in antiviral immune responses and viral pathogenesis. The different classes of mammalian lectins can either recognize carbohydrates to activate host immunity for viral elimination or can exploit those carbohydrates as susceptibility factors to facilitate viral entry, replication or assembly. Additionally, some arthropod C-type lectins were recently identified as key susceptibility factors that directly interact with multiple viruses and then facilitate infection. Summarization of the pleiotropic roles of direct viral recognition by animal lectins will benefit our understanding of host-virus interactions and could provide insight into the role of lectins in antiviral drug and vaccine development.
Collapse
Affiliation(s)
- Yang Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Jianying Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Xiaojing Pang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Tao Liu
- Center for Reproductive Medicine, Tai'an Central Hospital, Tai'an 271000, China.
| | - Zhijie Ning
- Ji'nan Infectious Diseases Hospital, Ji'nan 250021, China.
| | - Gong Cheng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Marcelo F, Garcia-Martin F, Matsushita T, Sardinha J, Coelho H, Oude-Vrielink A, Koller C, André S, Cabrita EJ, Gabius HJ, Nishimura SI, Jiménez-Barbero J, Cañada FJ. Delineating Binding Modes of Gal/GalNAc and Structural Elements of the Molecular Recognition of Tumor-Associated Mucin Glycopeptides by the Human Macrophage Galactose-Type Lectin. Chemistry 2014; 20:16147-55. [DOI: 10.1002/chem.201404566] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 01/05/2023]
|
27
|
Barreto-Bergter E, Figueiredo RT. Fungal glycans and the innate immune recognition. Front Cell Infect Microbiol 2014; 4:145. [PMID: 25353009 PMCID: PMC4196476 DOI: 10.3389/fcimb.2014.00145] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/25/2014] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides such as α- and β-glucans, chitin, and glycoproteins extensively modified with both N- and O-linked carbohydrates are the major components of fungal surfaces. The fungal cell wall is an excellent target for the action of antifungal agents, since most of its components are absent from mammalian cells. Recognition of these carbohydrate-containing molecules by the innate immune system triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. This review will discuss the structure of surface fungal glycoconjugates and polysaccharides and their recognition by innate immune receptors.
Collapse
Affiliation(s)
- Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Rodrigo T Figueiredo
- Instituto de Ciências Biomédicas/Unidade de Xerém, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Jégouzo SAF, Quintero-Martínez A, Ouyang X, dos Santos Á, Taylor ME, Drickamer K. Organization of the extracellular portion of the macrophage galactose receptor: a trimeric cluster of simple binding sites for N-acetylgalactosamine. Glycobiology 2013; 23:853-64. [PMID: 23507965 PMCID: PMC3671775 DOI: 10.1093/glycob/cwt022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The properties of the human macrophage galactose receptor have been investigated. Specificity for N-acetylgalactosamine (GalNAc) residues with exposed 3- and 4-hydroxyl groups explains virtually all of the results obtained from a recently expanded array of synthetic glycans and is consistent with a model for the structure of the binding site. This simple interaction is sufficient to explain the ability of the receptor to bind to tumor-cell glycans bearing Tn and sialyl-Tn antigens, but not to more elaborate O-linked glycans that predominate on normal cells. This specificity also allows for binding of parasite glycans and screening of an array of bacterial outer membrane oligosaccharides confirms that the receptor binds to a subset of these structures with appropriately exposed GalNAc residues. A key feature of the receptor is the clustering of binding sites in the extracellular portion of the protein, which retains the trimeric structure observed in the cell membrane. Chemical crosslinking, gel filtration, circular dichroism analysis and differential scanning calorimetry demonstrate that this trimeric structure of the receptor is stabilized by an α-helical coiled coil that extends from the surface of the membrane to the globular carbohydrate-recognition domains. The helical neck domains form independent trimerization domains. Taken together, these results indicate that the macrophage galactose receptor shares many of the features of serum mannose-binding protein, in which clusters of monosaccharide-binding sites serve as detectors for a simple epitope that is not common on endogenous cell surface glycans but that is abundant on the surfaces of tumor cells and certain pathogens.
Collapse
Affiliation(s)
- Sabine A F Jégouzo
- Department of Life Sciences, Imperial College, Sir Ernst Chain Building, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
29
|
Sørensen ALT, Clausen H, Wandall HH. Carbohydrate clearance receptors in transfusion medicine. Biochim Biophys Acta Gen Subj 2012; 1820:1797-808. [PMID: 22846227 DOI: 10.1016/j.bbagen.2012.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Complex carbohydrates play important functions for circulation of proteins and cells. They provide protective shields and refraction from non-specific interactions with negative charges from sialic acids to enhance circulatory half-life. For recombinant protein therapeutics carbohydrates are especially important to enhance size and reduce glomerular filtration loss. Carbohydrates are, however, also ligands for a large number of carbohydrate-binding lectins exposed to the circulatory system that serve as scavenger receptors for the innate immune system, or have more specific roles in targeting of glycoproteins and cells. SCOPE OF REVIEW Here we provide an overview of the common lectin receptors that play roles for circulating glycoproteins and cells, and present a discussion of ways to engineer glycosylation of recombinant biologics and cells to improve therapeutic effects. MAJOR CONCLUSIONS While the pharmaceutical industry has learned how to exploit carbohydrates to improve pharmacokinetic properties of recombinant therapeutics, our understanding of how to improve cell-based therapies by manipulation of complex carbohydrates is still at its infancy. Progress with the latter has recently been achieved with cold-stored platelets, where exposure of uncapped glycans lead to rapid clearance from circulation by several lectin-mediated pathways. GENERAL SIGNIFICANCE Understanding lectin-mediated clearance pathways is essential for progress in development of biological pharmaceuticals.
Collapse
|
30
|
Onizuka T, Shimizu H, Moriwaki Y, Nakano T, Kanai S, Shimada I, Takahashi H. NMR study of ligand release from asialoglycoprotein receptor under solution conditions in early endosomes. FEBS J 2012; 279:2645-56. [PMID: 22613667 DOI: 10.1111/j.1742-4658.2012.08643.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Asialoglycoprotein receptor (ASGP-R) is an endocytic C-type lectin receptor in hepatocytes that clears plasma glycoconjugates containing a terminal galactose or N-acetylgalactosamine. The carbohydrate recognition domain (CRD) of ASGP-R has three Ca(2+) binding sites (sites 1, 2 and 3), with Ca(2+) at site 2 being directly involved in ligand binding. Following endocytosis, the ligands are released from ASGP-R in endosomes to allow receptor recycling to the cell membrane. Although dissociation of the receptor-ligand complex is mediated by the acidic environment within the mature endosomes, many of these complexes also dissociate in the early time of endocytosis, where pH is approximately neutral. To investigate the mechanism of ligand release from ASGP-R in early endosomes, we examined the binding mode of Ca(2+) and ligands to ASGP-R CRD by NMR. We demonstrate that sites 1 and 2 of ASGP-R are high affinity Ca(2+) binding sites, site 3 is low affinity, and that Ca(2+) ions bind to sites 1 and 2 cooperatively. The pH and Ca(2+) concentration dependences of Ca(2+) binding states indicated that early endosome conditions favor apo-ASGP-R CRD, allowing ligand release. Our results elucidated that the cooperative binding mode of Ca(2+) makes it possible for ASGP-R to be more sensitive to Ca(2+) concentrations in early endosomes, and plays an important role in the efficient release of ligand from ASGP-R. In our proposed mechanism, ASGP-R can rapidly release Ca(2+) and its ligand even at nearly neutral pH. Sequence comparisons of endocytic C-type lectin receptors suggest that this mechanism is common in their family.
Collapse
Affiliation(s)
- Takuo Onizuka
- Research and Development Department, Japan Biological Informatics Consortium, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Mamidyala SK, Dutta S, Chrunyk BA, Préville C, Wang H, Withka JM, McColl A, Subashi TA, Hawrylik SJ, Griffor MC, Kim S, Pfefferkorn JA, Price DA, Menhaji-Klotz E, Mascitti V, Finn M. Glycomimetic Ligands for the Human Asialoglycoprotein Receptor. J Am Chem Soc 2012; 134:1978-81. [DOI: 10.1021/ja2104679] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sreeman K. Mamidyala
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Sanjay Dutta
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Boris A. Chrunyk
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cathy Préville
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Hong Wang
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jane M. Withka
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Alexander McColl
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Timothy A. Subashi
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Steven J. Hawrylik
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew C. Griffor
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sung Kim
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jeffrey A. Pfefferkorn
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - David A. Price
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Elnaz Menhaji-Klotz
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Vincent Mascitti
- Pfizer Global Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - M.G. Finn
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
32
|
Gabius HJ, André S, Jiménez-Barbero J, Romero A, Solís D. From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 2011; 36:298-313. [PMID: 21458998 DOI: 10.1016/j.tibs.2011.01.005] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/05/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
Lectins are carbohydrate-binding proteins which lack enzymatic activity on their ligand and are distinct from antibodies and free mono- and oligosaccharide sensor/transport proteins. Emerging insights into the functional dimension of lectin binding to cellular glycans have strongly contributed to the shaping of the 'sugar code'. Fittingly, over a dozen folds and a broad spectrum of binding site architecture, ranging from shallow grooves to deep pockets, have developed sugar-binding capacity. A central question is how the exquisite target specificity of endogenous lectins for certain cellular glycans can be explained. In this regard, affinity regulation is first systematically dissected into six levels. Experimentally, the strategic combination of methods to monitor distinct aspects of the lectin-glycan interplay offers a promising perspective to answer this question.
Collapse
Affiliation(s)
- Hans-Joachim Gabius
- Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, München, Germany.
| | | | | | | | | |
Collapse
|
33
|
Stefanescu R, Born R, Moise A, Ernst B, Przybylski M. Epitope structure of the carbohydrate recognition domain of asialoglycoprotein receptor to a monoclonal antibody revealed by high-resolution proteolytic excision mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:148-157. [PMID: 21472553 DOI: 10.1007/s13361-010-0010-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.
Collapse
Affiliation(s)
- Raluca Stefanescu
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
34
|
Taylor ME, Drickamer K. Structural insights into what glycan arrays tell us about how glycan-binding proteins interact with their ligands. Glycobiology 2009; 19:1155-62. [PMID: 19528664 PMCID: PMC2757572 DOI: 10.1093/glycob/cwp076] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 05/25/2009] [Accepted: 05/25/2009] [Indexed: 01/11/2023] Open
Abstract
Screening of glycan arrays represents a powerful, high-throughput approach to defining oligosaccharide ligands for glycan-binding receptors, commonly referred to as lectins. Correlating results from such arrays with structural analysis of receptor-ligand complexes provide one way to validate the arrays. Using examples drawn from the family of proteins that contain C-type carbohydrate-recognition domains, this review illustrates how information from the arrays reflects the way that selectivity and affinity for glycan ligands is achieved. A range of binding profiles is observed, from very restricted binding to a small set of structurally similar ligands to binding of broad classes of ligands with related terminal sugars and even to failure to bind any of the glycans on an array. These outcomes provide insights into the importance of multiple factors in defining the selectivity of these receptors, including the presence of conformationally defined units in some oligosaccharide ligands, local and extended interactions between glycans and the surfaces of receptors, and steric factors that exclude binding of some ligands.
Collapse
Affiliation(s)
| | - Kurt Drickamer
- Division of Molecular Biosciences, Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
35
|
Stokmaier D, Khorev O, Cutting B, Born R, Ricklin D, Ernst TO, Böni F, Schwingruber K, Gentner M, Wittwer M, Spreafico M, Vedani A, Rabbani S, Schwardt O, Ernst B. Design, synthesis and evaluation of monovalent ligands for the asialoglycoprotein receptor (ASGP-R). Bioorg Med Chem 2009; 17:7254-64. [DOI: 10.1016/j.bmc.2009.08.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 11/25/2022]
|
36
|
Sakakura M, Oo-Puthinan S, Moriyama C, Kimura T, Moriya J, Irimura T, Shimada I. Carbohydrate binding mechanism of the macrophage galactose-type C-type lectin 1 revealed by saturation transfer experiments. J Biol Chem 2008; 283:33665-73. [PMID: 18790731 DOI: 10.1074/jbc.m804067200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Macrophage galactose-type C-type lectins 1 and 2 (MGL1/2) are expressed on the surfaces of macrophages and immature dendritic cells. Despite the high similarity between the primary sequences of MGL1 and MGL2, they display different ligand specificities. MGL1 shows high affinity for the LewisX trisaccharide, whereas MGL2 shows affinity for N-acetylgalactosamine. To elucidate the structural basis for the ligand specificities of the MGLs, we performed NMR analyses of the MGL1-LewisX complex. To identify the LewisX binding site on MGL1, a saturation transfer experiment for the MGL1-LewisX complex where sugar-CH/CH2-selective saturation was applied was carried out. To obtain sugar moiety-specific information on the interface between MGL1 and the LewisX trisaccharide, saturation transfer experiments where each of galactose-H5-, fucose-CH3-, and N-acetylglucosamine-CH3-selective saturations was applied to the MGL1-LewisX complex were performed. Based on these results, we present a LewisX binding mode on MGL1 where the galactose moiety is bound to the primary sugar binding site, including Asp-94, Trp-96, and Asp-118, and the fucose moiety interacts with the secondary sugar binding site, including Ala-89 and Thr-111. Ala-89 and Thr-111 in MGL1 are replaced with arginine and serine in MGL2, respectively. The hydrophobic environment formed by a small side chain of Ala-89 and a methyl group of Thr-111 is a requisite for the accommodation of the fucose moiety of the LewisX trisaccharide within the sugar binding site of MGL1.
Collapse
Affiliation(s)
- Masayoshi Sakakura
- Laboratories of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Hill AD, Reilly PJ. A Gibbs free energy correlation for automated docking of carbohydrates. J Comput Chem 2008; 29:1131-41. [PMID: 18074341 DOI: 10.1002/jcc.20873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thermodynamic information can be inferred from static atomic configurations. To model the thermodynamics of carbohydrate binding to proteins accurately, a large binding data set has been assembled from the literature. The data set contains information from 262 unique protein-carbohydrate crystal structures for which experimental binding information is known. Hydrogen atoms were added to the structures and training conformations were generated with the automated docking program AutoDock 3.06, resulting in a training set of 225,920 all-atom conformations. In all, 288 formulations of the AutoDock 3.0 free energy model were trained against the data set, testing each of four alternate methods of computing the van der Waals, solvation, and hydrogen-bonding energetic components. The van der Waals parameters from AutoDock 1 produced the lowest errors, and an entropic model derived from statistical mechanics produced the only models with five physically and statistically significant coefficients. Eight models predict the Gibbs free energy of binding with an error of less than 40% of the error of any similar models previously published.
Collapse
Affiliation(s)
- Anthony D Hill
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
38
|
Oo-puthinan S, Maenuma K, Sakakura M, Denda-Nagai K, Tsuiji M, Shimada I, Nakamura-Tsuruta S, Hirabayashi J, Bovin NV, Irimura T. The amino acids involved in the distinct carbohydrate specificities between macrophage galactose-type C-type lectins 1 and 2 (CD301a and b) of mice. Biochim Biophys Acta Gen Subj 2008; 1780:89-100. [DOI: 10.1016/j.bbagen.2007.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 10/16/2007] [Accepted: 10/24/2007] [Indexed: 11/15/2022]
|
39
|
Powlesland AS, Fisch T, Taylor ME, Smith DF, Tissot B, Dell A, Pöhlmann S, Drickamer K. A novel mechanism for LSECtin binding to Ebola virus surface glycoprotein through truncated glycans. J Biol Chem 2007; 283:593-602. [PMID: 17984090 DOI: 10.1074/jbc.m706292200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
LSECtin is a member of the C-type lectin family of glycan-binding receptors that is expressed on sinusoidal endothelial cells of the liver and lymph nodes. To compare the sugar and pathogen binding properties of LSECtin with those of related but more extensively characterized receptors, such as DC-SIGN, a soluble fragment of LSECtin consisting of the C-terminal carbohydrate-recognition domain has been expressed in bacteria. A biotin-tagged version of the protein was also generated and complexed with streptavidin to create tetramers. These forms of the carbohydrate-recognition domain were used to probe a glycan array and to characterize binding to oligosaccharide and glycoprotein ligands. LSECtin binds with high selectivity to glycoproteins terminating in GlcNAcbeta1-2Man. The inhibition constant for this disaccharide is 3.5 microm, making it one of the best low molecular weight ligands known for any C-type lectin. As a result of the selective binding of this disaccharide unit, the receptor recognizes glycoproteins with a truncated complex and hybrid N-linked glycans on glycoproteins. Glycan analysis of the surface glycoprotein of Ebola virus reveals the presence of such truncated glycans, explaining the ability of LSECtin to facilitate infection by Ebola virus. High mannose glycans are also present on the viral glycoprotein, which explains why DC-SIGN also binds to this virus. Thus, multiple receptors interact with surface glycoproteins of enveloped viruses that bear different types of relatively poorly processed glycans.
Collapse
Affiliation(s)
- Alex S Powlesland
- Division of Molecular Biosciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Tanja Fisch
- Institute of Virology and Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maureen E Taylor
- Division of Molecular Biosciences, Imperial College, London SW7 2AZ, United Kingdom
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Bérangère Tissot
- Division of Molecular Biosciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Anne Dell
- Division of Molecular Biosciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Stefan Pöhlmann
- Institute of Virology and Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, 91054 Erlangen, Germany; Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Kurt Drickamer
- Division of Molecular Biosciences, Imperial College, London SW7 2AZ, United Kingdom.
| |
Collapse
|
40
|
Abstract
Metal complexation is a key mediator or modifier of enzyme structure and function. In addition to divalent and polyvalent metals, group IA metals Na+and K+play important and specific roles that assist function of biological macromolecules. We examine the diversity of monovalent cation (M+)-activated enzymes by first comparing coordination in small molecules followed by a discussion of theoretical and practical aspects. Select examples of enzymes that utilize M+as a cofactor (type I) or allosteric effector (type II) illustrate the structural basis of activation by Na+and K+, along with unexpected connections with ion transporters. Kinetic expressions are derived for the analysis of type I and type II activation. In conclusion, we address evolutionary implications of Na+binding in the trypsin-like proteases of vertebrate blood coagulation. From this analysis, M+complexation has the potential to be an efficient regulator of enzyme catalysis and stability and offers novel strategies for protein engineering to improve enzyme function.
Collapse
Affiliation(s)
- Michael J Page
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
41
|
Millar CM, Brown SA. Oligosaccharide structures of von Willebrand factor and their potential role in von Willebrand disease. Blood Rev 2006; 20:83-92. [PMID: 16507387 DOI: 10.1016/j.blre.2005.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Oligosaccharides make up approximately 20% of the mass of VWF and although their structures are well established, their functional role remains unclear. Modification of the VWF oligosaccharide structures has been shown to result in increased plasma clearance of the protein. A mutation which alters cell type-specific expression of the Galgt2 glycosyltransferase gene in the RIIIS/J mouse results in an autosomal dominant partial quantitative deficiency of VWF. Increased plasma clearance of VWF has been demonstrated in some individuals with a partial quantitative deficiency of the protein and it is possible that variation in VWF glycosylation may contribute towards this. ABH antigens occur within the oligosaccharide component of VWF and may account for the variation in plasma VWF:Ag levels observed between individuals of different ABO blood groups. The structures and functional roles of the oligosaccharide side chains of VWF and possible pathogenetic mechanisms by which they may contribute towards VWD are reviewed in this article.
Collapse
Affiliation(s)
- Carolyn M Millar
- The Katharine Dormandy Haemophilia Centre and Haemostasis Unit, Royal Free and University College Medical School, Pond Street, London NW3 2QG, UK.
| | | |
Collapse
|
42
|
Abstract
The superfamily of proteins containing C-type lectin-like domains (CTLDs) is a large group of extracellular Metazoan proteins with diverse functions. The CTLD structure has a characteristic double-loop ('loop-in-a-loop') stabilized by two highly conserved disulfide bridges located at the bases of the loops, as well as a set of conserved hydrophobic and polar interactions. The second loop, called the long loop region, is structurally and evolutionarily flexible, and is involved in Ca2+-dependent carbohydrate binding and interaction with other ligands. This loop is completely absent in a subset of CTLDs, which we refer to as compact CTLDs; these include the Link/PTR domain and bacterial CTLDs. CTLD-containing proteins (CTLDcps) were originally classified into seven groups based on their overall domain structure. Analyses of the superfamily representation in several completely sequenced genomes have added 10 new groups to the classification, and shown that it is applicable only to vertebrate CTLDcps; despite the abundance of CTLDcps in the invertebrate genomes studied, the domain architectures of these proteins do not match those of the vertebrate groups. Ca2+-dependent carbohydrate binding is the most common CTLD function in vertebrates, and apparently the ancestral one, as suggested by the many humoral defense CTLDcps characterized in insects and other invertebrates. However, many CTLDs have evolved to specifically recognize protein, lipid and inorganic ligands, including the vertebrate clade-specific snake venoms, and fish antifreeze and bird egg-shell proteins. Recent studies highlight the functional versatility of this protein superfamily and the CTLD scaffold, and suggest further interesting discoveries have yet to be made.
Collapse
Affiliation(s)
- Alex N Zelensky
- Computational Proteomics and Therapy Design Group, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
43
|
Westerlind U, Westman J, Törnquist E, Smith CIE, Oscarson S, Lahmann M, Norberg T. Ligands of the asialoglycoprotein receptor for targeted gene delivery, part 1: Synthesis of and binding studies with biotinylated cluster glycosides containing N-acetylgalactosamine. Glycoconj J 2005; 21:227-41. [PMID: 15486455 DOI: 10.1023/b:glyc.0000045095.86867.c0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In order to develop the non-viral Bioplex vector system for targeted delivery of genes to hepatocytes, we have evaluated the structure-function relationship for a number of synthetic ligands designed for specific interaction with the hepatic lectin ASGPr. Biotinylated ligand derivatives containing two, three or six beta-linked N-acetylgalactosamine (GalNAc) residues were synthesized, bound to fluorescent-labeled streptavidin and tested for binding and uptake to HepG2 cells using flow cytometry analysis (FACS). Uptake efficiency increased with number of displayed GalNAc units per ligand, in a receptor dependent manner. Thus, a derivative displaying six GalNAc units showed the highest uptake efficacy both in terms of number of internalizing cells and increased amount of material taken up per each cell. However, this higher efficiency was shown to be due not so much to higher number of sugar units, but to higher accessibility of the sugar units for interaction with the receptor (longer spacer). Improving the flexibility and accessibility of a trimeric GalNAc ligand through use of a longer spacer markedly influenced the uptake efficiency, while increasing the number of GalNAc units per ligand above three only provided a minor contribution to the overall affinity. We hereby report the details of the chemical synthesis of the ligands and the structure-function studies in vitro.
Collapse
Affiliation(s)
- Ulrika Westerlind
- Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, S-750 07 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
44
|
Sugawara H, Kusunoki M, Kurisu G, Fujimoto T, Aoyagi H, Hatakeyama T. Characteristic Recognition of N-Acetylgalactosamine by an Invertebrate C-type Lectin, CEL-I, Revealed by X-ray Crystallographic Analysis. J Biol Chem 2004; 279:45219-25. [PMID: 15319425 DOI: 10.1074/jbc.m408840200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CEL-I is a C-type lectin, purified from the sea cucumber Cucumaria echinata, that shows a high specificity for N-acetylgalactosamine (GalNAc). We determined the crystal structures of CEL-I and its complex with GalNAc at 2.0 and 1.7 A resolution, respectively. CEL-I forms a disulfide-linked homodimer and contains two intramolecular disulfide bonds, although it lacks one intramolecular disulfide bond that is widely conserved among various C-type carbohydrate recognition domains (CRDs). Although the sequence similarity of CEL-I with other C-type CRDs is low, the overall folding of CEL-I was quite similar to those of other C-type CRDs. The structure of the complex with GalNAc revealed that the basic recognition mode of GalNAc was very similar to that for the GalNAc-binding mutant of the mannose-binding protein. However, the acetamido group of GalNAc appeared to be recognized more strongly by the combination of hydrogen bonds to Arg115 and van der Waals interaction with Gln70. Mutational analyses, in which Gln70 and/or Arg115 were replaced by alanine, confirmed that these residues contributed to GalNAc recognition in a cooperative manner.
Collapse
Affiliation(s)
- Hajime Sugawara
- Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Golubev AM, Nagem RAP, Brandão Neto JR, Neustroev KN, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Savel'ev AN, Polikarpov I. Crystal structure of alpha-galactosidase from Trichoderma reesei and its complex with galactose: implications for catalytic mechanism. J Mol Biol 2004; 339:413-22. [PMID: 15136043 DOI: 10.1016/j.jmb.2004.03.062] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 03/15/2004] [Accepted: 03/23/2004] [Indexed: 11/18/2022]
Abstract
The crystal structures of alpha-galactosidase from the mesophilic fungus Trichoderma reesei and its complex with the competitive inhibitor, beta-d-galactose, have been determined at 1.54 A and 2.0 A resolution, respectively. The alpha-galactosidase structure was solved by the quick cryo-soaking method using a single Cs derivative. The refined crystallographic model of the alpha-galactosidase consists of two domains, an N-terminal catalytic domain of the (beta/alpha)8 barrel topology and a C-terminal domain which is formed by an antiparallel beta-structure. The protein contains four N-glycosylation sites located in the catalytic domain. Some of the oligosaccharides were found to participate in inter-domain contacts. The galactose molecule binds to the active site pocket located in the center of the barrel of the catalytic domain. Analysis of the alpha-galactosidase- galactose complex reveals the residues of the active site and offers a structural basis for identification of the putative mechanism of the enzymatic reaction. The structure of the alpha-galactosidase closely resembles those of the glycoside hydrolase family 27. The conservation of two catalytic Asp residues, identified for this family, is consistent with a double-displacement reaction mechanism for the alpha-galactosidase. Modeling of possible substrates into the active site reveals specific hydrogen bonds and hydrophobic interactions that could explain peculiarities of the enzyme kinetics.
Collapse
Affiliation(s)
- A M Golubev
- Petersburg Nuclear Physics Institute, Gatchina, St Petersburg, 188300, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Uchida T, Yamasaki T, Eto S, Sugawara H, Kurisu G, Nakagawa A, Kusunoki M, Hatakeyama T. Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of domain structure for its membrane pore-formation mechanism. J Biol Chem 2004; 279:37133-41. [PMID: 15194688 DOI: 10.1074/jbc.m404065200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CEL-III is a Ca(2+)-dependent and galactose-specific lectin purified from the sea cucumber, Cucumaria echinata, which exhibits hemolytic and hemagglutinating activities. Six molecules of CEL-III are assumed to oligomerize to form an ion-permeable pore in the cell membrane. We have determined the crystal structure of CELIII by using single isomorphous replacement aided by anomalous scattering in lead at 1.7 A resolution. CEL-III consists of three distinct domains as follows: the N-terminal two carbohydrate-binding domains (1 and 2), which adopt beta-trefoil folds such as the B-chain of ricin and are members of the (QXW)(3) motif family; and domain 3, which is a novel fold composed of two alpha-helices and one beta-sandwich. CEL-III is the first Ca(2+)-dependent lectin structure with two beta-trefoil folds. Despite sharing the structure of the B-chain of ricin, CEL-III binds five Ca(2+) ions at five of the six subdomains in both domains 1 and 2. Considering the relatively high similarity among the five subdomains, they are putative binding sites for galactose-related carbohydrates, although it remains to be elucidated whether bound Ca(2+) is directly involved in interaction with carbohydrates. The paucity of hydrophobic interactions in the interfaces between the domains and biochemical data suggest that these domains rearrange upon carbohydrate binding in the erythrocyte membrane. This conformational change may be responsible for oligomerization of CEL-III molecules and hemolysis in the erythrocyte membranes.
Collapse
Affiliation(s)
- Tatsuya Uchida
- Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Gestwicki JE, Cairo CW, Borrok MJ, Kiessling LL. Visualization and characterization of receptor clusters by transmission electron microscopy. Methods Enzymol 2003; 362:301-12. [PMID: 12968372 DOI: 10.1016/s0076-6879(03)01021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jason E Gestwicki
- Departments of Chemistry and Biochemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
48
|
Radaev S, Sun PD. Structure and function of natural killer cell surface receptors. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:93-114. [PMID: 12471063 DOI: 10.1146/annurev.biophys.32.110601.142347] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since mid-1990, with cloning and identification of several families of natural killer (NK) receptors, research on NK cells began to receive appreciable attention. Determination of structures of NK cell surface receptors and their ligand complexes led to a fast growth in our understanding of the activation and ligand recognition by these receptors as well as their function in innate immunity. Functionally, NK cell surface receptors are divided into two groups, the inhibitory and the activating receptors. Structurally, they belong to either the immunoglobulin (Ig)-like receptor superfamily or the C-type lectin-like receptor (CTLR) superfamily. Their ligands are either members of class I major histocompatibility complexes (MHC) or homologs of class I MHC molecules. The inhibitory form of NK receptors provides the protective immunity through recognizing class I MHC molecules with self-peptides on healthy host cells. The activating, or the noninhibitory, NK receptors mediate the killing of tumor or virally infected cells through their specific ligand recognition. The structures of activating and inhibitory NK cell surface receptors and their complexes with the ligands determined to date, including killer immunoglobulin-like receptors (KIRs) and their complexes with HLA molecules, CD94, Ly49A, and its complex with H-2Dd, and NKG2D receptors and their complexes with class I MHC homologs, are reviewed here.
Collapse
MESH Headings
- Antigen-Antibody Complex/chemistry
- Antigen-Antibody Complex/immunology
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, Ly/chemistry
- Antigens, Ly/immunology
- HLA Antigens/chemistry
- HLA Antigens/immunology
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/immunology
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/chemistry
- Lectins, C-Type/immunology
- Macromolecular Substances
- Models, Molecular
- NK Cell Lectin-Like Receptor Subfamily D
- Protein Binding
- Protein Conformation
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/immunology
- Receptors, KIR
- Receptors, NK Cell Lectin-Like
- Receptors, Natural Killer Cell
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Sergei Radaev
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA.
| | | |
Collapse
|
49
|
Hamzavi R, Dolle F, Tavitian B, Dahl O, Nielsen PE. Modulation of the pharmacokinetic properties of PNA: preparation of galactosyl, mannosyl, fucosyl, N-acetylgalactosaminyl, and N-acetylglucosaminyl derivatives of aminoethylglycine peptide nucleic acid monomers and their incorporation into PNA oligomers. Bioconjug Chem 2003; 14:941-54. [PMID: 13129397 DOI: 10.1021/bc034022x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of N-(2-aminoethyl)-alpha-amino acid thymine peptide nucleic acid (PNA) monomers bearing glycosylated side chains in the alpha-amino acid position have been synthesized. These include PNA monomers where glycine has been replaced by serine and threonine (O-glycosylated), derivatives of lysine and nor-alanine (C-glycosylated), and amide derivatives of aspartic acid (N-glycosylated). The Boc and Fmoc derivatives of these monomers were used for incorporation in PNA oligomers. Twelve PNA decamers containing the glycosylated units in one, two, or three positions were prepared, and the thermal stability (T(m)) of their complexes with a complementary RNA was determined. Incorporation of the glycosyl monomers reduced the duplex stability by 0-6 degrees C per substitution. A cysteine was attached to the amino terminus of eight of the PNA decamers (Cys-CTCATACTCT-NH(2)) for easy conjugation to a [(18)F]radiolabeled N-(4-fluorobenzyl)-2-bromoacetamide. The in vivo biodistribution of these PNA oligomers was determined in rat 2 h after intravenous administration. Most of the radioactivity was recovered in the kidneys and in the urine. However, N-acetylgalactosamine (and to a lesser extent galactose and mannose)-modified PNAs were effectively targeting the liver (40-fold over unmodified PNA). Thus, the pharmacodistribution in rats of PNA oligomers can be profoundly changed by glycosylation. These results could be of great significance for PNA drug development, as they should allow modulation and fine-tuning of the pharmacokinetic profile of a drug lead.
Collapse
Affiliation(s)
- Ramin Hamzavi
- Department of Medical Biochemistry and Genetics, University of Copenhagen, The Panum Institute, Blegdamsvej 3c, DK-2200 N Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
50
|
Zhang N, Xu B, Mou C, Yang W, Wei J, Lu L, Zhu J, Du J, Wu X, Ye L, Fu Z, Lu Y, Lin J, Sun Z, Su J, Dong M, Xu A. Molecular profile of the unique species of traditional Chinese medicine, Chinese seahorse (Hippocampus kuda Bleeker). FEBS Lett 2003; 550:124-34. [PMID: 12935898 DOI: 10.1016/s0014-5793(03)00855-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A cDNA library of male Chinese seahorse (Hippocampus kuda Bleeker) was constructed to investigate the molecular profile of seahorse as one of the most famous traditional Chinese medicine materials, and to reveal immunological and physiological mechanisms of seahorse as one of the most primitive vertebrates at molecular level. A total of 3372 expressed sequence tags (ESTs) consisting of 1911 unique genes (345 clusters and 1566 singletons) were examined in the present study. Identification of the genes related to immune system, paternal brooding and physiological regulation provides not only valuable insights into the molecular mechanism of immune system in teleost fish but also plausible explanations for pharmacological activities of Chinese seahorse. Furthermore, the occurrence of high prevalent C-type lectins suggested that a lectin-complement pathway might exert a more dominant function in the innate immune system of teleost than mammal. Carbohydrate recognition domain (CRD) without a collagen-like region in the lectins of seahorse was likely an ancient characteristic of lectins similar to invertebrates.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Biochemistry, The Open Laboratory for Marine Functional Genomics of State High-Tech Development, Guangzhou Center for Bioinformatics, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|