1
|
Lu L, Shi Y, Wei B, Li W, Yu X, Zhao Y, Yu D, Sun M. YTHDF3 modulates the Cbln1 level by recruiting BTG2 and is implicated in the impaired cognition of prenatal hypoxia offspring. iScience 2024; 27:108703. [PMID: 38205248 PMCID: PMC10776956 DOI: 10.1016/j.isci.2023.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The "Fetal Origins of Adult Disease (FOAD)" hypothesis holds that adverse factors during pregnancy can increase the risk of chronic diseases in offspring. Here, we investigated the effects of prenatal hypoxia (PH) on brain structure and function in adult offspring and explored the role of the N6-methyladenosine (m6A) pathway. The results suggest that abnormal cognition in PH offspring may be related to the dysregulation of the m6A pathway, specifically increased levels of YTHDF3 in the hippocampus. YTHDF3 interacts with BTG2 and is involved in the decay of Cbln1 mRNA, leading to the down-regulation of Cbln1 expression. Deficiency of Cbln1 may contribute to abnormal synaptic function, which in turn causes cognitive impairment in PH offspring. This study provides a scientific clues for understanding the mechanisms of impaired cognition in PH offspring and provides a theoretical basis for the treatment of cognitive impairment in offspring exposed to PH.
Collapse
Affiliation(s)
- Likui Lu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Weisheng Li
- Department of Gynaecology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
| | - Xi Yu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Yan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic, Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
- Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Delage L, Lambert M, Bardel É, Kundlacz C, Chartoire D, Conchon A, Peugnet AL, Gorka L, Auberger P, Jacquel A, Soussain C, Destaing O, Delecluse HJ, Delecluse S, Merabet S, Traverse-Glehen A, Salles G, Bachy E, Billaud M, Ghesquières H, Genestier L, Rouault JP, Sujobert P. BTG1 inactivation drives lymphomagenesis and promotes lymphoma dissemination through activation of BCAR1. Blood 2023; 141:1209-1220. [PMID: 36375119 DOI: 10.1182/blood.2022016943] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding the functional role of mutated genes in cancer is required to translate the findings of cancer genomics into therapeutic improvement. BTG1 is recurrently mutated in the MCD/C5 subtype of diffuse large B-cell lymphoma (DLBCL), which is associated with extranodal dissemination. Here, we provide evidence that Btg1 knock out accelerates the development of a lethal lymphoproliferative disease driven by Bcl2 overexpression. Furthermore, we show that the scaffolding protein BCAR1 is a BTG1 partner. Moreover, after BTG1 deletion or expression of BTG1 mutations observed in patients with DLBCL, the overactivation of the BCAR1-RAC1 pathway confers increased migration ability in vitro and in vivo. These modifications are targetable with the SRC inhibitor dasatinib, which opens novel therapeutic opportunities in BTG1 mutated DLBCL.
Collapse
Affiliation(s)
- Lorric Delage
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Mireille Lambert
- Université de Paris, Institut Cochin, INSERM U1016, Plateforme BioMecan'IC, Biomécanique de la cellule, Paris, France
| | - Émilie Bardel
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Cindy Kundlacz
- Institut de Génomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Dimitri Chartoire
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Axel Conchon
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Anne-Laure Peugnet
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Lucas Gorka
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Patrick Auberger
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Arnaud Jacquel
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Carole Soussain
- Institut Curie, Site de Saint-Cloud, Hematologie, et INSERM U932 Institut Curie, PSL Research University, Paris, France
| | - Olivier Destaing
- Centre de Recherche UGA, INSERM U1209, Institute for Advanced Biosciences, Grenoble, France
| | | | | | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Alexandra Traverse-Glehen
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Gilles Salles
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Emmanuel Bachy
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Marc Billaud
- INSERM Unité Mixte de Recherche (UMR)-U1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Hervé Ghesquières
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Laurent Genestier
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Jean-Pierre Rouault
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
- INSERM Unité Mixte de Recherche (UMR)-U1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Pierre Sujobert
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| |
Collapse
|
3
|
Mlynarczyk C, Teater M, Pae J, Chin CR, Wang L, Arulraj T, Barisic D, Papin A, Hoehn KB, Kots E, Ersching J, Bandyopadhyay A, Barin E, Poh HX, Evans CM, Chadburn A, Chen Z, Shen H, Isles HM, Pelzer B, Tsialta I, Doane AS, Geng H, Rehman MH, Melnick J, Morgan W, Nguyen DTT, Elemento O, Kharas MG, Jaffrey SR, Scott DW, Khelashvili G, Meyer-Hermann M, Victora GD, Melnick A. BTG1 mutation yields supercompetitive B cells primed for malignant transformation. Science 2023; 379:eabj7412. [PMID: 36656933 PMCID: PMC10515739 DOI: 10.1126/science.abj7412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/12/2022] [Indexed: 01/21/2023]
Abstract
Multicellular life requires altruistic cooperation between cells. The adaptive immune system is a notable exception, wherein germinal center B cells compete vigorously for limiting positive selection signals. Studying primary human lymphomas and developing new mouse models, we found that mutations affecting BTG1 disrupt a critical immune gatekeeper mechanism that strictly limits B cell fitness during antibody affinity maturation. This mechanism converted germinal center B cells into supercompetitors that rapidly outstrip their normal counterparts. This effect was conferred by a small shift in MYC protein induction kinetics but resulted in aggressive invasive lymphomas, which in humans are linked to dire clinical outcomes. Our findings reveal a delicate evolutionary trade-off between natural selection of B cells to provide immunity and potentially dangerous features that recall the more competitive nature of unicellular organisms.
Collapse
Affiliation(s)
- Coraline Mlynarczyk
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Matt Teater
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juhee Pae
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Christopher R. Chin
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biomedicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Ling Wang
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Theinmozhi Arulraj
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Darko Barisic
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Antonin Papin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Ekaterina Kots
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jonatan Ersching
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Arnab Bandyopadhyay
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ersilia Barin
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Hui Xian Poh
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chiara M. Evans
- Molecular Pharmacology Program and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Hao Shen
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Hannah M. Isles
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Benedikt Pelzer
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ioanna Tsialta
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ashley S. Doane
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Muhammad Hassan Rehman
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine–Qatar, Doha, Qatar
| | - Jonah Melnick
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Wyatt Morgan
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Diu T. T. Nguyen
- Molecular Pharmacology Program and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Michael G. Kharas
- Molecular Pharmacology Program and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samie R. Jaffrey
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - George Khelashvili
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Kots E, Mlynarczyk C, Melnick A, Khelashvili G. Conformational transitions in BTG1 antiproliferative protein and their modulation by disease mutants. Biophys J 2022; 121:3753-3764. [PMID: 35459639 PMCID: PMC9617077 DOI: 10.1016/j.bpj.2022.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/15/2022] [Indexed: 12/01/2022] Open
Abstract
B cell translocation gene 1 (BTG1) protein belongs to the BTG/transducer of ERBB2 (TOB) family of antiproliferative proteins whose members regulate various key cellular processes such as cell cycle progression, apoptosis, and differentiation. Somatic missense mutations in BTG1 are found in ∼70% of a particularly malignant and disseminated subtype of diffuse large B cell lymphoma (DLBCL). Antiproliferative activity of BTG1 has been linked to its ability to associate with transcriptional cofactors and various enzymes. However, molecular mechanisms underlying these functional interactions and how the disease-linked mutations in BTG1 affect these mechanisms are currently unknown. To start filling these knowledge gaps, here, using atomistic molecular dynamics (MD) simulations, we explored structural, dynamic, and kinetic characteristics of BTG1 protein, and studied how various DLBCL mutations affect these characteristics. We focused on the protein region formed by α2 and α4 helices, as this interface has been reported not only to serve as a binding hotspot for several cellular partners but also to harbor sites for the majority of known DLBCL mutations. Markov state modeling analysis of extensive MD simulations revealed that the α2-α4 interface in the wild-type (WT) BTG1 undergoes conformational transitions between closed and open metastable states. Importantly, we show that some of the mutations in this region that are observed in DLBCL, such as Q36H, F40C, Q45P, E50K (in α2), and A83T and A84E (in α4), either overstabilize one of these two metastable states or give rise to new conformations in which these helices are distorted (i.e., kinked or unfolded). Based on these results, we conclude that the rapid interconversion between the closed and open conformations of the α2-α4 interface is an essential component of the BTG1 functional dynamics that can prime the protein for functional associations with its binding partners. Disruption of the native dynamic equilibrium by DLBCL mutants leads to the ensemble of conformations in BTG1 that are unlikely structurally and/or kinetically to enable productive functional interactions with the binding proteins.
Collapse
Affiliation(s)
- Ekaterina Kots
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Coraline Mlynarczyk
- Division of Hematology/Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Ari Melnick
- Division of Hematology/Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
5
|
Wang R, Wang R, Tian J, Wang J, Tang H, Wu T, Wang H. BTG2 as a tumor target for the treatment of luminal A breast cancer. Exp Ther Med 2022; 23:339. [PMID: 35401805 PMCID: PMC8988138 DOI: 10.3892/etm.2022.11269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
As one of the most common breast cancer subtypes, luminal A breast cancer is sensitive to endocrine-based therapy and insensitive to chemotherapy. Patients with luminal A subtype of breast cancer have a relatively good prognosis compared with that of patients with other subtypes of breast cancer. However, with the increased incidence in endocrine resistance and severe side effects, simple endocrine therapy has become unsuitable for the treatment of luminal A breast cancer. Therefore, identifying novel therapeutic targets for luminal A breast cancer may accelerate the development of an effective therapeutic strategy. The bioinformatical analysis of the current study, which included KEGG and GO analyses of the GSE20437 dataset containing 24 healthy and 18 breast cancer tissue samples, identified key target genes associated with breast cancer. Moreover, survival analysis results revealed that a low expression of BTG2 was significantly associated with the low survival rate of patients with breast cancer, indicated that B-cell translocation gene 2 (BTG2) may be a potential target in breast cancer. However, BTG2 may be cancer type-dependent, as overexpression of BTG2 has been demonstrated to suppress the proliferation of pancreatic and lung cancer cells, but promote the proliferation of bladder cancer cells. Since the association between BTG2 and luminal A-subtype breast cancer remains unclear, it is important to understand the biological function of BTG2 in luminal A breast cancer. Based on the expression levels of estrogen receptor, progesterone receptor and human epidermal growth factor receptor, MCF-7 cells were selected in the present study as a luminal A breast cancer cell type. MTT, Transwell invasion and wound healing assays revealed that overexpression of BTG2 suppressed the levels of MCF-7 cell proliferation, migration and invasion. In addition, the downregulation of BTG2 at the mRNA and protein level was also confirmed in luminal A breast tumor tissue, which was consistent with the results in vitro. These results indicated that BTG2 may act as an effective target for the treatment of luminal A breast cancer.
Collapse
Affiliation(s)
- Runzhi Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong 266021, P.R. China
| | - Ronghua Wang
- Department of Pharmacy, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Jinjun Tian
- Department of Pharmacy, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Jian Wang
- Department of Breast Center, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Huaxiao Tang
- Department of Pathology, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Tao Wu
- Department of Pharmacy, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Hui Wang
- Department of Pharmacy, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| |
Collapse
|
6
|
Cho IJ, Kim D, Kim EO, Jegal KH, Kim JK, Park SM, Zhao R, Ki SH, Kim SC, Ku SK. Cystine and Methionine Deficiency Promotes Ferroptosis by Inducing B-Cell Translocation Gene 1. Antioxidants (Basel) 2021; 10:antiox10101543. [PMID: 34679678 PMCID: PMC8532826 DOI: 10.3390/antiox10101543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/26/2022] Open
Abstract
Ferroptosis is a type of programmed necrosis triggered by iron-dependent lipid peroxidation. We investigated the role of B-cell translocation gene 1 (BTG1) in cystine and methionine deficiency (CST/Met (−))-mediated cell death. CST/Met (−) depleted reduced and oxidized glutathione in hepatocyte-derived cells, increased prostaglandin-endoperoxide synthase 2 expression, and promoted reactive oxygen species accumulation and lipid peroxidation, as well as necrotic cell death. CST/Met (−)-mediated cell death and lipid peroxidation was specifically inhibited by pretreatment with ferroptosis inhibitors. In parallel with cell death, CST/Met (−) blocked global protein translation and increased the expression of genes associated with the integrated stress response. Moreover, CST/Met (−) significantly induced BTG1 expression. Using a BTG1 promoter-harboring reporter gene and siRNA, activating transcription factor 4 (ATF4) was identified as an essential transcription factor for CST/Met (−)-mediated BTG1 induction. Although knockout of BTG1 in human HAP1 cells did not affect the accumulation of reactive oxygen species induced by CST/Met (−), BTG1 knockout significantly decreased the induction of genes associated with the integrated stress response, and reduced lipid peroxidation and cell death in response to CST/Met (−). The results demonstrate that CST/Met (−) induces ferroptosis by activating ATF4-dependent BTG1 induction.
Collapse
Affiliation(s)
- Il-Je Cho
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
| | - Doyeon Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
| | - Eun-Ok Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
| | - Kyung-Hwan Jegal
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Jae-Kwang Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
| | - Sang-Mi Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
| | - Rongjie Zhao
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar 161006, China;
| | - Sung-Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 61452, Korea;
| | - Sang-Chan Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
- Correspondence: (S.-C.K.); (S.-K.K.); Tel.: +82-53-819-1862 (S.-C.K.); +82-53-819-1549 (S.-K.K.)
| | - Sae-Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
- Correspondence: (S.-C.K.); (S.-K.K.); Tel.: +82-53-819-1862 (S.-C.K.); +82-53-819-1549 (S.-K.K.)
| |
Collapse
|
7
|
Amine H, Ripin N, Sharma S, Stoecklin G, Allain FH, Séraphin B, Mauxion F. A conserved motif in human BTG1 and BTG2 proteins mediates interaction with the poly(A) binding protein PABPC1 to stimulate mRNA deadenylation. RNA Biol 2021; 18:2450-2465. [PMID: 34060423 PMCID: PMC8632095 DOI: 10.1080/15476286.2021.1925476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antiproliferative BTG/Tob proteins interact directly with the CAF1 deadenylase subunit of the CCR4-NOT complex. This binding requires the presence of two conserved motifs, boxA and boxB, characteristic of the BTG/Tob APRO domain. Consistently, these proteins were shown to stimulate mRNA deadenylation and decay in several instances. Two members of the family, BTG1 and BTG2, were reported further to associate with the protein arginine methyltransferase PRMT1 through a motif, boxC, conserved only in this subset of proteins. We recently demonstrated that BTG1 and BTG2 also contact the first RRM domain of the cytoplasmic poly(A) binding protein PABPC1. To decipher the mode of interaction of BTG1 and BTG2 with partners, we performed nuclear magnetic resonance experiments as well as mutational and biochemical analyses. Our data demonstrate that, in the context of an APRO domain, the boxC motif is necessary and sufficient to allow interaction with PABPC1 but, unexpectedly, that it is not required for BTG2 association with PRMT1. We show further that the presence of a boxC motif in an APRO domain endows it with the ability to stimulate deadenylation in cellulo and in vitro. Overall, our results identify the molecular interface allowing BTG1 and BTG2 to activate deadenylation, a process recently shown to be necessary for maintaining T-cell quiescence.
Collapse
Affiliation(s)
- Hamza Amine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Nina Ripin
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Switzerland
| | - Sahil Sharma
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Research Center (DKFZ)-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Georg Stoecklin
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Research Center (DKFZ)-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Frédéric H Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zürich, Switzerland
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Fabienne Mauxion
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
8
|
Golriz Khatami S, Domingo-Fernández D, Mubeen S, Hoyt CT, Robinson C, Karki R, Iyappan A, Kodamullil AT, Hofmann-Apitius M. A Systems Biology Approach for Hypothesizing the Effect of Genetic Variants on Neuroimaging Features in Alzheimer's Disease. J Alzheimers Dis 2021; 80:831-840. [PMID: 33554913 PMCID: PMC8075382 DOI: 10.3233/jad-201397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Neuroimaging markers provide quantitative insight into brain structure and function in neurodegenerative diseases, such as Alzheimer's disease, where we lack mechanistic insights to explain pathophysiology. These mechanisms are often mediated by genes and genetic variations and are often studied through the lens of genome-wide association studies. Linking these two disparate layers (i.e., imaging and genetic variation) through causal relationships between biological entities involved in the disease's etiology would pave the way to large-scale mechanistic reasoning and interpretation. OBJECTIVE We explore how genetic variants may lead to functional alterations of intermediate molecular traits, which can further impact neuroimaging hallmarks over a series of biological processes across multiple scales. METHODS We present an approach in which knowledge pertaining to single nucleotide polymorphisms and imaging readouts is extracted from the literature, encoded in Biological Expression Language, and used in a novel workflow to assist in the functional interpretation of SNPs in a clinical context. RESULTS We demonstrate our approach in a case scenario which proposes KANSL1 as a candidate gene that accounts for the clinically reported correlation between the incidence of the genetic variants and hippocampal atrophy. We find that the workflow prioritizes multiple mechanisms reported in the literature through which KANSL1 may have an impact on hippocampal atrophy such as through the dysregulation of cell proliferation, synaptic plasticity, and metabolic processes. CONCLUSION We have presented an approach that enables pinpointing relevant genetic variants as well as investigating their functional role in biological processes spanning across several, diverse biological scales.
Collapse
Affiliation(s)
- Sepehr Golriz Khatami
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
| | - Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
| | - Christine Robinson
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Reagon Karki
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Anandhi Iyappan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
9
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
10
|
Almasmoum HA, Airhihen B, Seedhouse C, Winkler GS. Frequent loss of BTG1 activity and impaired interactions with the Caf1 subunit of the Ccr4-Not deadenylase in non-Hodgkin lymphoma. Leuk Lymphoma 2020; 62:281-290. [PMID: 33021411 DOI: 10.1080/10428194.2020.1827243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in the highly similar genes B-cell translocation gene 1 (BTG1) and BTG2 are identified in approximately 10-15% of non-Hodgkin lymphoma cases, which may suggest a direct involvement of BTG1 and BTG2 in malignant transformation. However, it is unclear whether or how disease-associated mutations impair the function of these genes. Therefore, we selected 16 BTG1 variants based on in silico analysis. We then evaluated (i) the ability of these variants to interact with the known protein-binding partners CNOT7 and CNOT8, which encode the Caf1 catalytic subunit of the Ccr4-Not deadenylase complex; (ii) the activity of the variant proteins in cell cycle progression; (iii) translational repression; and (iv) mRNA degradation. Based on these analyses, we conclude that mutations in BTG1 may contribute to malignant transformation and tumor cell proliferation by interfering with its anti-proliferative activity and ability to interact with CNOT7 and CNOT8.
Collapse
Affiliation(s)
- Hibah Ali Almasmoum
- School of Pharmacy, The University of Nottingham, University Park, Nottingham, UK.,Department of Haematology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK.,Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Blessing Airhihen
- School of Pharmacy, The University of Nottingham, University Park, Nottingham, UK
| | - Claire Seedhouse
- Department of Haematology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | | |
Collapse
|
11
|
Ceccarelli M, D'Andrea G, Micheli L, Tirone F. Deletion of Btg1 Induces Prmt1-Dependent Apoptosis and Increased Stemness in Shh-Type Medulloblastoma Cells Without Affecting Tumor Frequency. Front Oncol 2020; 10:226. [PMID: 32231994 PMCID: PMC7082329 DOI: 10.3389/fonc.2020.00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
About 30% of medulloblastomas (MBs), a tumor of the cerebellum, arise from cerebellar granule cell precursors (GCPs) undergoing transformation following activation of the Sonic hedgehog (Shh) pathway. To study this process, we generated a new MB model by crossing Patched1 heterozygous (Ptch1+/−) mice, which develop spontaneous Shh-type MBs, with mice lacking B-cell translocation gene 1 (Btg1), a regulator of cerebellar development. In MBs developing in Ptch1+/− mice, deletion of Btg1 does not alter tumor and lesion frequencies, nor affect the proliferation of neoplastic precursor cells. However, in both tumors and lesions arising in Ptch1+/− mice, ablation of Btg1 increases by about 25% the apoptotic neoplastic precursor cells, as judged by positivity to activated caspase-3. Moreover, although Btg1 ablation in early postnatal GCPs, developing in the external granule cell layer, leads to a significant increase of proliferation, and decrease of differentiation, relative to wild-type, no synergy occurs with the Ptch1+/− mutation. However, Btg1 deletion greatly increases apoptosis in postnatal GCPs, with strong synergy between Btg1-null and Ptch1+/− mutations. That pronounced increase of apoptosis observed in Ptch1+/−/Btg1 knockout young or neoplastic GCPs may be responsible for the lack of effect of Btg1 ablation on tumorigenesis. This increased apoptosis may be a consequence of increased expression of protein arginine methyltransferase 1 (Prmt1) protein that we observe in Btg1 knockout/Ptch1+/− MBs. In fact, apoptotic genes, such as BAD, are targets of Prmt1. Moreover, in Btg1-null MBs, we observed a two-fold increase of cells positive to CD15, which labels tumor stem cells, raising the possibility of activation of quiescent tumor cells, known for their role in long-term resistance to treatment and relapses. Thus, Btg1 appears to play a role in cerebellar tumorigenesis by regulating the balance between apoptosis and proliferation during MB development, also influencing the number of tumor stem cells.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
12
|
Hwang SS, Lim J, Yu Z, Kong P, Sefik E, Xu H, Harman CCD, Kim LK, Lee GR, Li HB, Flavell RA. mRNA destabilization by BTG1 and BTG2 maintains T cell quiescence. Science 2020; 367:1255-1260. [DOI: 10.1126/science.aax0194] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/22/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
T cells maintain a quiescent state prior to activation. As inappropriate T cell activation can cause disease, T cell quiescence must be preserved. Despite its importance, the mechanisms underlying the “quiescent state” remain elusive. Here, we identify BTG1 and BTG2 (BTG1/2) as factors responsible for T cell quiescence. BTG1/2-deficient T cells show an increased proliferation and spontaneous activation due to a global increase in messenger RNA (mRNA) abundance, which reduces the threshold to activation. BTG1/2 deficiency leads to an increase in polyadenylate tail length, resulting in a greater mRNA half-life. Thus, BTG1/2 promote the deadenylation and degradation of mRNA to secure T cell quiescence. Our study reveals a key mechanism underlying T cell quiescence and suggests that low mRNA abundance is a crucial feature for maintaining quiescence.
Collapse
Affiliation(s)
- Soo Seok Hwang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jaechul Lim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhibin Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
- Yale Center for ImmunoMetabolism, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Philip Kong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hao Xu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Christian C. D. Harman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project for Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Republic of Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Hua-Bing Li
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
- Yale Center for ImmunoMetabolism, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
13
|
Zhang N, Jiang T, Wang Y, Hu L, Bu Y. BTG4 is A Novel p53 Target Gene That Inhibits Cell Growth and Induces Apoptosis. Genes (Basel) 2020; 11:genes11020217. [PMID: 32093041 PMCID: PMC7074044 DOI: 10.3390/genes11020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023] Open
Abstract
BTG4 is the last cloned and poorly studied member of BTG/Tob family. Studies have suggested that BTG4 is critical for the degradation of maternal mRNAs in mice during the process of maternal-to-zygotic transition, and downregulated in cancers, such as gastric cancer. However, the regulatory mechanism of BTG4 and its function in cancers remain elusive. In this study, we have for the first time identified the promoter region of the human BTG4 gene. Serial luciferase reporter assay demonstrated that the core promoter of BTG4 is mainly located within the 388 bp region near its transcription initiation site. Transcription factor binding site analysis revealed that the BTG4 promoter contains binding sites for canonical transcription factors, such as Sp1, whereas its first intron contains two overlapped consensus p53 binding sites. However, overexpression of Sp1 has negligible effects on BTG4 promoter activity, and site-directed mutagenesis assay further suggested that Sp1 is not a critical transcription factor for the transcriptional regulation of BTG4. Of note, luciferase assay revealed that one of the intronic p53 binding sites is highly responsive to p53. Both exogenous p53 overexpression and adriamycin-mediated endogenous p53 activation result in the transcriptional upregulation of BTG4. In addition, BTG4 is downregulated in lung and colorectal cancers, and overexpression of BTG4 inhibits cell growth and induces apoptosis in cancer cells. Taken together, our results strongly suggest that BTG4 is a novel p53-regulated gene and probably functions as a tumor suppressor in lung and colorectal cancers.
Collapse
Affiliation(s)
- Na Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Tinghui Jiang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Lanyue Hu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Correspondence: ; Tel.: +86-23-68485991
| |
Collapse
|
14
|
Yan W, Li SX, Gao H, Yang W. Identification of B-cell translocation gene 1-controlled gene networks in diffuse large B-cell lymphoma: A study based on bioinformatics analysis. Oncol Lett 2019; 17:2825-2835. [PMID: 30854058 PMCID: PMC6365947 DOI: 10.3892/ol.2019.9900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
B-cell translocation gene 1 (BTG1) is a member of the BTG/transducer of Erb family. The present study evaluated the impact of BTG1 gene expression on the clinical outcome of diffuse large B-cell lymphoma (DLBCL) and investigated potential mechanisms using the Gene Expression Omnibus (GEO) database. The gene expression profile datasets GSE31312, GSE10846, GSE65420 and GSE87371 were downloaded from the GEO database. BTG1 expression and clinicopathological data were obtained from the GSE31312 dataset. In 498 cases, the expression of BTG1 in DLBCL was associated with treatment response (χ2=19.020; P<0.001) and International Prognostic Index score (χ2=5.320; P=0.025). Using the Kaplan-Meier method, it was identified that the expression of BTG1 was associated with overall survival (OS) and progression-free survival (PFS) times. Univariate and multivariate Cox regression analysis demonstrated that BTG1 was an independent predictive factor for OS and PFS. From the overlapping analysis of 407 BTG1-associated genes and 22,187 DLBCL-associated genes, 401 genes were identified as BTG1-associated DLBCL genes. Pathway analysis revealed that BTG1-associated DLBCL genes were associated with cancer progression and DLBCL signaling pathways. Subsequently, a protein-protein interaction network was constructed of the BTG1-associated genes, which consisted of 235 genes and 601 interactions. Additionally, 24 genes with high degrees in the network were identified as hub genes, which included genes associated with ‘ribosome’ [ribosomal protein (RP) L11, RPL3, RPS29, RPL19, RPL15 and RPL12], ‘cell cycle’ (ubiquitin carboxyl extension protein 52, ATM and Ras homolog family member H), ‘mitogen-activated protein kinase pathway’ (mitogen-activated protein kinase 1), ‘histone modification’ (ASH1-like protein) and ‘transcription/translation’ (eukaryotic translation initiation factor 3 subunit E, eukaryotic translation elongation factor 1 δ, transcription termination factor 1, cAMP responsive element binding protein 1 and RNA polymerase II subunit F). In conclusion, BTG1 may serve as a predictive biomarker for DLBCL prognosis. Additionally, bioinformatics analysis indicated that BTG1 may exhibit key functions in the progression and development of DLBCL.
Collapse
Affiliation(s)
- Wei Yan
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Shawn Xiang Li
- International College, China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Hongyu Gao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| |
Collapse
|
15
|
Yuniati L, Scheijen B, van der Meer LT, van Leeuwen FN. Tumor suppressors BTG1 and BTG2: Beyond growth control. J Cell Physiol 2018; 234:5379-5389. [PMID: 30350856 PMCID: PMC6587536 DOI: 10.1002/jcp.27407] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/22/2018] [Indexed: 01/21/2023]
Abstract
Since the identification of B‐cell translocation gene 1 (BTG1) and BTG2 as antiproliferation genes more than two decades ago, their protein products have been implicated in a variety of cellular processes including cell division, DNA repair, transcriptional regulation and messenger RNA stability. In addition to affecting differentiation during development and in the adult, BTG proteins play an important role in maintaining homeostasis under conditions of cellular stress. Genomic profiling of B‐cell leukemia and lymphoma has put BTG1 and BTG2 in the spotlight, since both genes are frequently deleted or mutated in these malignancies, pointing towards a role as tumor suppressors. Moreover, in solid tumors, reduced expression of BTG1 or BTG2 is often correlated with malignant cell behavior and poor treatment outcome. Recent studies have uncovered novel roles for BTG1 and BTG2 in genotoxic and integrated stress responses, as well as during hematopoiesis. This review summarizes what is currently known about the roles of BTG1 and BTG2 in these and other cellular processes. In addition, we will highlight the molecular mechanisms and biological consequences of BTG1 and BTG2 deregulation during cancer progression and elaborate on the potential clinical implications of these findings.
Collapse
Affiliation(s)
- Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Abstract
Transcription factor IKZF1 (IKAROS) acts as a critical regulator of lymphoid differentiation and is frequently deleted or mutated in B-cell precursor acute lymphoblastic leukemia. IKZF1 gene defects are associated with inferior treatment outcome in both childhood and adult B-cell precursor acute lymphoblastic leukemia and occur in more than 70% of BCR-ABL1-positive and BCR-ABL1-like cases of acute lymphoblastic leukemia. Over the past few years, much has been learned about the tumor suppressive function of IKZF1 during leukemia development and the molecular pathways that relate to its impact on treatment outcome. In this review, we provide a concise overview on the role of IKZF1 during normal lymphopoiesis and the pathways that contribute to leukemia pathogenesis as a consequence of altered IKZF1 function. Furthermore, we discuss different mechanisms by which IKZF1 alterations impose therapy resistance on leukemic cells, including enhanced cell adhesion and modulation of glucocorticoid response.
Collapse
Affiliation(s)
- René Marke
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands .,Department of Pathology, Radboud University Medical Center; Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| |
Collapse
|
17
|
Chapat C, Chettab K, Simonet P, Wang P, De La Grange P, Le Romancer M, Corbo L. Alternative splicing of CNOT7 diversifies CCR4-NOT functions. Nucleic Acids Res 2017; 45:8508-8523. [PMID: 28591869 PMCID: PMC5737658 DOI: 10.1093/nar/gkx506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
The CCR4-associated factor CAF1, also called CNOT7, is a catalytic subunit of the CCR4–NOT complex, which has been implicated in all aspects of the mRNA life cycle, from mRNA synthesis in the nucleus to degradation in the cytoplasm. In human cells, alternative splicing of the CNOT7 gene yields a second CNOT7 transcript leading to the formation of a shorter protein, CNOT7 variant 2 (CNOT7v2). Biochemical characterization indicates that CNOT7v2 interacts with CCR4–NOT subunits, although it does not bind to BTG proteins. We report that CNOT7v2 displays a distinct expression profile in human tissues, as well as a nuclear sub-cellular localization compared to CNOT7v1. Despite a conserved DEDD nuclease domain, CNOT7v2 is unable to degrade a poly(A) tail in vitro and preferentially associates with the protein arginine methyltransferase PRMT1 to regulate its activity. Using both in vitro and in cellulo systems, we have also demonstrated that CNOT7v2 regulates the inclusion of CD44 variable exons. Altogether, our findings suggest a preferential involvement of CNOT7v2 in nuclear processes, such as arginine methylation and alternative splicing, rather than mRNA turnover. These observations illustrate how the integration of a splicing variant inside CCR4–NOT can diversify its cell- and tissue-specific functions.
Collapse
Affiliation(s)
- Clément Chapat
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Kamel Chettab
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Pierre Simonet
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Peng Wang
- McGill University, Department of Biochemistry, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
| | | | - Muriel Le Romancer
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Laura Corbo
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| |
Collapse
|
18
|
Kim JY, Do SI, Bae GE, Kim HS. B-cell translocation gene 1 is downregulated by promoter methylation in ovarian carcinoma. J Cancer 2017; 8:2669-2675. [PMID: 28928854 PMCID: PMC5604197 DOI: 10.7150/jca.21037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
A better understanding of tumor biology is important in the identification of molecules that are downregulated in malignancy and in determining their role in tumor suppression. B-cell translocation gene 1 (BTG1) has been shown to act as a tumor suppressor in several types of human malignancy. In this study, we analyzed BTG1 expression in ovarian carcinoma cell lines, and we investigated the mechanism underlying the observed alterations. The methylation status of the BTG1 promoter region was determined by methylation-specific polymerase chain reaction, and the effect of demethylation on BTG1 expression was analyzed. BTG1 protein expression in ovarian high-grade serous carcinoma tissue samples was evaluated using immunohistochemistry. BTG1 mRNA and protein expression were reduced in ovarian carcinoma cells. In BTG1-silenced ovarian cancer cells, the BTG1 promoter was highly methylated. Treatment with 5-aza-deoxycytidine significantly elevated BTG1 mRNA and protein expression. Immunostaining demonstrated that BTG1 expression was significantly lower in ovarian carcinoma tissue samples than nonpathological ovaries and fallopian tubes. We demonstrated that BTG1 silencing in ovarian carcinoma occurs through epigenetic repression and is involved in the ovarian carcinogenesis. Our data suggest that BTG1 is a potential therapeutic target for patients with ovarian carcinoma.
Collapse
Affiliation(s)
- Ji-Ye Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung-Im Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Go Eun Bae
- Department of Pathology, The Catholic University of Korea Incheon St. Mary's Hospital, Incheon, Republic of Korea.,Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Das S, Sarkar D, Das B. The interplay between transcription and mRNA degradation in Saccharomyces cerevisiae. MICROBIAL CELL 2017; 4:212-228. [PMID: 28706937 PMCID: PMC5507684 DOI: 10.15698/mic2017.07.580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cellular transcriptome is shaped by both the rates of mRNA synthesis in the nucleus and mRNA degradation in the cytoplasm under a specified condition. The last decade witnessed an exciting development in the field of post-transcriptional regulation of gene expression which underscored a strong functional coupling between the transcription and mRNA degradation. The functional integration is principally mediated by a group of specialized promoters and transcription factors that govern the stability of their cognate transcripts by “marking” them with a specific factor termed “coordinator.” The “mark” carried by the message is later decoded in the cytoplasm which involves the stimulation of one or more mRNA-decay factors, either directly by the “coordinator” itself or in an indirect manner. Activation of the decay factor(s), in turn, leads to the alteration of the stability of the marked message in a selective fashion. Thus, the integration between mRNA synthesis and decay plays a potentially significant role to shape appropriate gene expression profiles during cell cycle progression, cell division, cellular differentiation and proliferation, stress, immune and inflammatory responses, and may enhance the rate of biological evolution.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Debasish Sarkar
- Present Address: Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002, USA
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
20
|
Liu R, Cheng Q, Wang X, Chen H, Wang W, Zhang H, Wang L, Song L. The B-cell translocation gene 1 (CgBTG1) identified in oyster Crassostrea gigas exhibit multiple functions in immune response. FISH & SHELLFISH IMMUNOLOGY 2017; 61:68-78. [PMID: 27940367 DOI: 10.1016/j.fsi.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
B-cell translocation gene 1 (BTG1) is a member of the anti-proliferative gene family, which plays important roles in regulation of cell cycle. In the present study, a B-cell translocation gene 1 molecule homologue (designed CgBTG1) are identified and characterized in oyster Crassostrea gigas. CgBTG1 contains a conserved BTG domain with Box A and Box B motifs, and it shares high similarities with both BTG1 and BTG2 proteins in vertebrates. CgBTG1 mRNA is predominantly expressed in hemocytes, and its expression level in hemocytes is significantly up-regulated at 6 h (5.40-fold, p < 0.01) post Vibrio splendidus stimulation. The apoptosis rate of oyster hemocytes is significantly decreased (p < 0.05) after CgBTG1 interfered by dsRNA (dsCgBTG1). This is indicated that CgBTG1 participated in the regulation of oyster hemocytes apoptosis. Furthermore, CgBTG1 could also induce the apoptosis of cancer cells (HeLa, A549 and BEL7402) in vitro. Compared with normal oysters, both vessel-like structures and muscle fibers in CgBTG1 interfered oysters are severely damaged after V. splendidus challenge in paraffin section, considering that CgBTG1 possessed an analogous feature of angiogenesis for maintenance of vessel-like structures in adductor muscle of oyster. The results suggests that CgBTG1 is a multi-functional molecule involved in the immune response of C. gigas against pathogen infection, which provides more clues for intensive studies of BTG family proteins in invertebrates.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi Cheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
21
|
Micheli L, Ceccarelli M, Farioli-Vecchioli S, Tirone F. Control of the Normal and Pathological Development of Neural Stem and Progenitor Cells by the PC3/Tis21/Btg2 and Btg1 Genes. J Cell Physiol 2015; 230:2881-90. [DOI: 10.1002/jcp.25038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| |
Collapse
|
22
|
Liu C, Tao T, Xu B, Lu K, Zhang L, Jiang L, Chen S, Liu D, Zhang X, Cao N, Chen M. BTG1 potentiates apoptosis and suppresses proliferation in renal cell carcinoma by interacting with PRMT1. Oncol Lett 2015; 10:619-624. [PMID: 26622543 PMCID: PMC4513370 DOI: 10.3892/ol.2015.3293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 02/10/2015] [Indexed: 12/11/2022] Open
Abstract
B-cell translocation gene 1 (BTG1) is a member of the BTG/transducer of Erb family. BTG1 regulates cell cycle progression, inhibits proliferation, promotes apoptosis and stimulates cellular differentiation in multiple cell types. However, the functions of BTG1 in renal cell carcinoma (RCC) remain unclear. Therefore, the present study investigated the role of BTG1 in RCC tissue samples and 786-O RCC cells. RCC tissues and cells exhibited significantly weaker BTG1 protein and mRNA expression compared with para-carcinoma control tissues (P<0.05). Upregulated BTG1 expression induced significant G0/G1 cell cycle arrest, apoptosis and inhibition of cell proliferation in 786-O cells (P<0.05). Furthermore, BTG1 interacted with protein arginine N-methyltransferase 1 (PRMT1), and blocking the action of PRMT1 in 786-O cells resulted in inhibition of BTG1 function. These findings indicate that BTG1 may inhibit cell growth and promote apoptosis by interacting with PRMT1 in RCC; the identification of this mechanism may aid in the production of novel therapies for RCC.
Collapse
Affiliation(s)
- Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Tao Tao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Kai Lu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Lei Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Liang Jiang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dachuang Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaowen Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Nihao Cao
- Department of Urology, Haimen City People's Hospital, Haimen, Jiangsu 226100, P.R. China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
23
|
The enzyme activities of Caf1 and Ccr4 are both required for deadenylation by the human Ccr4-Not nuclease module. Biochem J 2015; 469:169-76. [PMID: 25944446 PMCID: PMC4613498 DOI: 10.1042/bj20150304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/06/2015] [Indexed: 01/02/2023]
Abstract
In eukaryotic cells, the shortening and removal of the poly(A) tail (deadenylation) of cytoplasmic mRNA is a key event in regulated mRNA degradation. A major enzyme involved in deadenylation is the Ccr4-Not deadenylase complex, which can be recruited to its target mRNA by RNA-binding proteins or the miRNA repression complex. In addition to six non-catalytic components, the complex contains two enzymatic subunits with ribonuclease activity: Ccr4 and Caf1 (Pop2). In vertebrates, each deadenylase subunit is encoded by two paralogues: Caf1, which can interact with the anti-proliferative protein BTG2, is encoded by CNOT7 and CNOT8, whereas Ccr4 is encoded by the highly similar genes CNOT6 and CNOT6L. Currently, it is unclear whether the catalytic subunits work co-operatively or whether the nuclease components have unique roles in deadenylation. We therefore developed a method to express and purify a minimal human BTG2-Caf1-Ccr4 nuclease sub-complex from bacterial cells. By using chemical inhibition and well-characterized inactivating amino acid substitutions, we demonstrate that the enzyme activities of Caf1 and Ccr4 are both required for deadenylation in vitro. These results indicate that Caf1 and Ccr4 cooperate in mRNA deadenylation and suggest that the enzyme activities of Caf1 and Ccr4 are regulated via allosteric interactions within the nuclease module.
Collapse
|
24
|
Chen Y, Wang C, Wu J, Li L. BTG/Tob family members Tob1 and Tob2 inhibit proliferation of mouse embryonic stem cells via Id3 mRNA degradation. Biochem Biophys Res Commun 2015; 462:208-14. [PMID: 25951976 DOI: 10.1016/j.bbrc.2015.04.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 02/06/2023]
Abstract
The mammalian BTG/Tob family is a group of proteins with anti-proliferative ability, and there are six members including BTG1, BTG2/PC3/Tis21, BTG3/ANA, BTG4/PC3B, Tob1/Tob and Tob2. Among them, Tob subfamily members, specifically Tob1/Tob and Tob2, have the most extensive C-terminal regions. As previously reported, overexpression of BTG/Tob proteins is associated with the inhibition of G1 to S-phase cell cycle progression and decreased cell proliferation in a variety of cell types. Tob subfamily proteins have similar anti-proliferative effects on cell cycle progression in cultured tumor cells. An important unresolved question is whether or not they have function in rapidly proliferating cells, such as embryonic stem cells (ESCs). Tob1 and Tob2 were expressed ubiquitously in mouse ESCs (mESCs), suggesting a possible role in early embryonic development and mESCs. To address the above question and explore the possible functions of the Tob subfamily in ESCs, we established ESCs from different genotypic knockout inner cell mass (ICM). We found that Tob1(-/-), Tob2(-/-), and Tob1/2 double knockout (DKO, Tob1(-/-) & Tob2(-/-)) ESCs grew faster than wild type (WT) ESCs without losing pluripotency, and we provide a possible mechanistic explanation for these observations: Tob1 and Tob2 inhibit the cell cycle via degradation of Id3 mRNA, which is a set of directly targeted genes of BMP4 signaling in mESCs that play critical roles in the maintenance of ESC properties. Together, our data suggest that BTG/Tob family protein Tob1 and Tob2 regulation cell proliferation does not compromise the basic properties of mESCs.
Collapse
Affiliation(s)
- Yuanfan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191, China; SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120, China
| | - Chenchen Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191, China; SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120, China
| | - Jenny Wu
- SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120, China
| | - Lingsong Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191, China; SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120, China.
| |
Collapse
|
25
|
López-Rosas I, Marchat LA, Olvera BG, Guillen N, Weber C, Hernández de la Cruz O, Ruíz-García E, Astudillo-de la Vega H, López-Camarillo C. Proteomic analysis identifies endoribouclease EhL-PSP and EhRRP41 exosome protein as novel interactors of EhCAF1 deadenylase. J Proteomics 2014; 111:59-73. [PMID: 24998979 DOI: 10.1016/j.jprot.2014.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/31/2014] [Accepted: 06/20/2014] [Indexed: 01/17/2023]
Abstract
UNLABELLED In higher eukaryotic cells mRNA degradation initiates by poly(A) tail shortening catalyzed by deadenylases CAF1 and CCR4. In spite of the key role of mRNA turnover in gene expression regulation, the underlying mechanisms remain poorly understood in parasites. Here, we aimed to study the function of EhCAF1 and identify associated proteins in Entamoeba histolytica. By biochemical assays, we evidenced that EhCAF1 has both RNA binding and deadenylase activities in vitro. EhCAF1 was located in cytoplasmic P-bodies that increased in number and size after cellular stress induced by DNA damage, heat shock, and nitric oxide. Using pull-down assays and ESI-MS/MS mass spectrometry, we identified 15 potential EhCAF1-interacting proteins, including the endoribonuclease EhL-PSP. Remarkably, EhCAF1 colocalized with EhL-PSP in cytoplasmic P-bodies in trophozoites. Bioinformatic analysis of EhL-PSP network proteins predicts a potential interaction with EhRRP41 exosome protein. Consistently, we evidenced that EhL-PSP colocalizes and physically interacts with EhRRP41. Strikingly, EhRRP41 did not coimmunoprecipitate EhCAF1, suggesting the existence of two EhL-PSP-containing complexes. In conclusion, our results showed novel interactions between mRNA degradation proteins and evidenced for the first time that EhCAF1 is a functional deadenylase that interacts with EhL-PSP endoribonuclease in P-bodies, while EhL-PSP interacts with EhRRP41 exosome protein in this early-branched eukaryote. BIOLOGICAL SIGNIFICANCE This study provides evidences for the functional deadenylase activity of EhCAF1 and shows a link between different mRNA degradation proteins in E. histolytica. By proteomic tools and pull down assays, we evidenced that EhCAF1 interacts with the putative endoribonuclease EhL-PSP, which in turn interacts with exosome EhRRP41 protein. Our data suggest for the first time the presence of two complexes, one containing the endoribonuclease EhL-PSP and the deadenylase EhCAF1 in P-bodies; and another containing the endoribonuclease EhL-PSP and the exosome EhRRP41 exoribonuclease. Overall, these results provide novel data that may help to understand mRNA decay mechanisms in this parasite.
Collapse
Affiliation(s)
- Itzel López-Rosas
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico; Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Laurence A Marchat
- Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico; Institutional Program of Molecular Biomedicine, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Beatriz Gallo Olvera
- Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico; Institutional Program of Molecular Biomedicine, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Nancy Guillen
- Unit of Cell Biology for Parasitism, Pasteur Institute, Paris, France; INSERM U786, Paris, France
| | - Christian Weber
- Unit of Cell Biology for Parasitism, Pasteur Institute, Paris, France; INSERM U786, Paris, France
| | | | - Erika Ruíz-García
- Translational Medicine Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Horacio Astudillo-de la Vega
- Laboratory of Translational Cancer Research and Cellular Therapy, Oncology Hospital, Medical Center Siglo XXI, Mexico City, Mexico
| | - César López-Camarillo
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico.
| |
Collapse
|
26
|
Takahashi M, Hayashida T, Okazaki H, Miyao K, Jinno H, Kitagawa Y. Loss of B-cell translocation gene 2 expression in estrogen receptor-positive breast cancer predicts tamoxifen resistance. Cancer Sci 2014; 105:675-82. [PMID: 24698107 PMCID: PMC4317889 DOI: 10.1111/cas.12410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 02/01/2023] Open
Abstract
B-cell translocation gene 2 (BTG2), a gene suppressed in a subset of aggressive breast cancer, is repressed by estrogen. BTG2 inhibits the expression of HER ligands and promotes AKT activation, which plays an essential role in the tamoxifen resistance of estrogen receptor (ER)-positive breast cancer. To determine if BTG2 expression modifies tamoxifen efficacy, a cohort of 60 patients treated with adjuvant tamoxifen monotherapy was analyzed. We found that increased BTG2 expression showed better clinical survival and was the only independent prognostic factor for disease-free survival (hazard ratio, 0.691; 95% confidence interval, 0.495–0.963; P = 0.029). Tamoxifen suppressed the human epidermal growth factor receptor 2 (HER2)-Akt signaling in BTG2 expressing ER-positive breast cancer cells with a correlated increase in sensitivity, whereas BTG2 knockdown abrogated this sensitivity. Consistent with this observation, tamoxifen significantly suppressed the growth ratio, tumor weight and Ki-67 expression in BTG2 expressing breast cancer xenografts in mice. These studies demonstrate that BTG2 is a significant factor in tamoxifen response, acting through modification of AKT activation in ER-positive/HER2-negative breast cancer.
Collapse
Affiliation(s)
- Maiko Takahashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The last one and half a decade witnessed an outstanding re-emergence of attention and remarkable progress in the field of protein methylation. In the present article, we describe the early discoveries in research and review the role protein methylation played in the biological function of the antiproliferative gene, BTG2/TIS21/PC3.
Collapse
Affiliation(s)
- Woon Ki Paik
- Professor Emeritus, Temple University School of Medicine, Philadelphia, PA, USA
| | - Sangduk Kim
- Professor Emeritus, Temple University School of Medicine, Philadelphia, PA, USA
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
28
|
Endo F, Nishizuka SS, Kume K, Ishida K, Katagiri H, Ishida K, Sato K, Iwaya T, Koeda K, Wakabayashi G. A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines. PLoS One 2014; 9:e90155. [PMID: 24587255 PMCID: PMC3937424 DOI: 10.1371/journal.pone.0090155] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023] Open
Abstract
Despite of remarkable improvement of postoperative 5-FU–based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeutic efficacy of 5-FU. We recently identified NF-κB as a candidate relapse prediction biomarker in gastric cancer. To evaluate the biological significance of NF-κB in the context of 5-FU–based chemotherapy, we analyzed the NF-κB-dependent biological response upon 5-FU treatment in gastric cancer cell lines. Seven genes induced by 5-FU treatment in an NF-κB-dependent manner were identified, five of which are known p53 targets. Knockdown of RELA, which encodes the p65 subunit of NF-κB, decreased both p53 and p53 target protein levels. In contrast, NF-κB was not affected by TP53 knockdown. We also demonstrated that cell lines bearing Pro/Pro homozygosity in codon72 of p53 exon4, which is important for NF-κB binding to p53, are more resistant to 5-FU than those with Arg/Arg homozygosity. We conclude that NF-κB plays an important role in the response to 5-FU treatment in gastric cancer cell lines, with a possible compensatory function of p53. These results suggest that NF-κB is a potential 5-FU-chemosensitivity prediction marker that may reflect 5-FU-induced stress-response pathways, including p53.
Collapse
Affiliation(s)
- Fumitaka Endo
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Satoshi S. Nishizuka
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
- MIAST (Medical Innovation by Advanced Science and Technology) project, Iwate Medical University, Morioka, Japan
- Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan
- * E-mail:
| | - Kohei Kume
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
- MIAST (Medical Innovation by Advanced Science and Technology) project, Iwate Medical University, Morioka, Japan
- Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan
| | - Kazushige Ishida
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hirokatsu Katagiri
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Kaoru Ishida
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Kei Sato
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Takeshi Iwaya
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Keisuke Koeda
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Go Wakabayashi
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
29
|
Zhao Y, Gou WF, Chen S, Takano Y, Xiu YL, Zheng HC. BTG1 expression correlates with the pathogenesis and progression of ovarian carcinomas. Int J Mol Sci 2013; 14:19670-80. [PMID: 24084718 PMCID: PMC3821579 DOI: 10.3390/ijms141019670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022] Open
Abstract
BTG (B-cell translocation gene) can inhibit cell proliferation, metastasis, and angiogenesis and regulate cell cycle progression and differentiation in a variety of cell types. We aimed to clarify the role of BTG1 in ovarian carcinogenesis and progression. A BTG1-expressing plasmid was transfected into ovarian carcinoma cells and their phenotypes and related proteins were examined. BTG1 mRNA expression was detected in ovarian normal tissue (n = 17), ovarian benign tumors (n = 12), and ovarian carcinoma (n = 64) using real-time RT-PCR. Ectopic BTG1 expression resulted in lower growth rate, high cisplatin sensitivity, G1 arrest, apoptosis, and decreased migration and invasion. Phosphoinositide 3-kinase, protein kinase B, Bcl-xL, survivin, vascular endothelial growth factor, and matrix metalloproteinase-2 mRNA and protein expression was reduced in transfectants as compared to control cells. There was higher expression of BTG1 mRNA in normal tissue than in carcinoma tissue (p = 0.001) and in benign tumors than in carcinoma tissue (p = 0.027). BTG1 mRNA expression in International Federation of Gynecology and Obstetrics (FIGO) stage I/II ovarian carcinomas was higher than that in FIGO stage III/IV ovarian carcinomas (p = 0.038). Altered BTG1 expression might play a role in the pathogenesis and progression of ovarian carcinoma by modulating proliferation, migration, invasion, the cell cycle, and apoptosis.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Y.Z.); (S.C.); (Y.-L.X.)
| | - Wen-Feng Gou
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; E-Mail:
| | - Shuo Chen
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Y.Z.); (S.C.); (Y.-L.X.)
| | - Yasuo Takano
- Clinical Cancer Institute, Kanagawa Cancer Center, Yokohama 241-0815, Japan; E-Mail:
| | - Yin-Ling Xiu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Y.Z.); (S.C.); (Y.-L.X.)
| | - Hua-Chuan Zheng
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-187-0406-7718
| |
Collapse
|
30
|
Tirone F, Farioli-Vecchioli S, Micheli L, Ceccarelli M, Leonardi L. Genetic control of adult neurogenesis: interplay of differentiation, proliferation and survival modulates new neurons function, and memory circuits. Front Cell Neurosci 2013; 7:59. [PMID: 23734097 PMCID: PMC3653098 DOI: 10.3389/fncel.2013.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/15/2013] [Indexed: 01/23/2023] Open
Abstract
Within the hippocampal circuitry, the basic function of the dentate gyrus is to transform the memory input coming from the enthorinal cortex into sparse and categorized outputs to CA3, in this way separating related memory information. New neurons generated in the dentate gyrus during adulthood appear to facilitate this process, allowing a better separation between closely spaced memories (pattern separation). The evidence underlying this model has been gathered essentially by ablating the newly adult-generated neurons. This approach, however, does not allow monitoring of the integration of new neurons into memory circuits and is likely to set in motion compensatory circuits, possibly leading to an underestimation of the role of new neurons. Here we review the background of the basic function of the hippocampus and of the known properties of new adult-generated neurons. In this context, we analyze the cognitive performance in mouse models generated by us and others, with modified expression of the genes Btg2 (PC3/Tis21), Btg1, Pten, BMP4, etc., where new neurons underwent a change in their differentiation rate or a partial decrease of their proliferation or survival rate rather than ablation. The effects of these modifications are equal or greater than full ablation, suggesting that the architecture of circuits, as it unfolds from the interaction between existing and new neurons, can have a greater functional impact than the sheer number of new neurons. We propose a model which attempts to measure and correlate the set of cellular changes in the process of neurogenesis with the memory function.
Collapse
Affiliation(s)
- Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa LuciaRome, Italy
| | | | | | | | | |
Collapse
|
31
|
hCAF1/CNOT7 regulates interferon signalling by targeting STAT1. EMBO J 2013; 32:688-700. [PMID: 23386060 DOI: 10.1038/emboj.2013.11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/04/2013] [Indexed: 12/12/2022] Open
Abstract
Stringent regulation of the interferon (IFN) signalling pathway is essential for maintaining the immune response to pathogens and tumours. The transcription factor STAT1 is a crucial mediator of this response. Here, we show that hCAF1/CNOT7 regulates class I and II IFN pathways at different crucial steps. In resting cells, hCAF1 can control STAT1 trafficking by interacting with the latent form of STAT1 in the cytoplasm. IFN treatment induces STAT1 release, suggesting that hCAF1 may shield cytoplasmic STAT1 from undesirable stimulation. Consistently, hCAF1 silencing enhances STAT1 basal promoter occupancy associated with increased expression of a subset of STAT1-regulated genes. Consequently, hCAF1 knockdown cells exhibit an increased protection against viral infection and reduced viral replication. Furthermore, hCAF1 participates in the extinction of the IFN signal, through its deadenylase activity, by speeding up the degradation of some STAT1-regulated mRNAs. Since abnormal and unbalanced JAK/STAT activation is associated with immune disorders and cancer, hCAF1 could play a major role in innate immunity and oncogenesis, contributing to tumour escape.
Collapse
|
32
|
Choi KS, Kim JY, Lim SK, Choi YW, Kim YH, Kang SY, Park TJ, Lim IK. TIS21(/BTG2/PC3) accelerates the repair of DNA double strand breaks by enhancing Mre11 methylation and blocking damage signal transfer to the Chk2(T68)-p53(S20) pathway. DNA Repair (Amst) 2012; 11:965-75. [PMID: 23089312 DOI: 10.1016/j.dnarep.2012.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 11/15/2022]
Abstract
DNA double strand breaks (DSBs) occur more frequently in TIS21(-/-) mouse embryo fibroblasts than that in wild type MEFs (wt-MEFs). Therefore, the role TIS21 plays in the DNA damage response was investigated. Adenoviral transduction of Huh7 tumor cells with the TIS21 gene accelerated the repair of DSBs induced by etoposide treatment as evaluated by clearance of γH2AX foci and the Comet assay. TIS21 increased methylation of Mre11 and protein arginine methyltransferase 1 (PRMT1) activity, leading to Mre11 activation in vitro and in vivo, as determined by immunoprecipitation and radiolabeling analyses. When downstream DNA damage response mediators were evaluated in various human cancer cells lines, TIS21 was found to strongly inhibit Chk2(T68) and p53(S20) phosphorylation by p-ATM(S1981) but not p53(S15). The loss of Chk2 activation after etoposide treatment reduced apoptosis in the cells by downregulating the expression of E2F1 and Bax. These data suggest that TIS21 regulates DSB repair and apoptosis. Expression of TIS21 promoted the repair of DSBs and reduced apoptosis by blocking the damage signal from p-ATM(S1981) to Chk2(T68)-p53(S20)via the activation of Mre11 and PRMT1.
Collapse
Affiliation(s)
- Kyu-Sung Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Division of Cell Transformation and Restoration, Ajou University, School of Medicine, Suwon 443-721, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Petit AP, Wohlbold L, Bawankar P, Huntzinger E, Schmidt S, Izaurralde E, Weichenrieder O. The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex. Nucleic Acids Res 2012; 40:11058-72. [PMID: 22977175 PMCID: PMC3510486 DOI: 10.1093/nar/gks883] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The CCR4–NOT complex plays a crucial role in post-transcriptional mRNA regulation in eukaryotic cells. It catalyzes the removal of mRNA poly(A) tails, thereby repressing translation and committing mRNAs to decay. The conserved core of the complex consists of a catalytic module comprising two deadenylases (CAF1/POP2 and CCR4a/b) and the NOT module, which contains at least NOT1, NOT2 and NOT3. NOT1 bridges the interaction between the two modules and therefore, acts as a scaffold protein for the assembly of the complex. Here, we present the crystal structures of the CAF1-binding domain of human NOT1 alone and in complex with CAF1. The NOT1 domain comprises five helical hairpins that adopt an MIF4G (middle portion of eIF4G) fold. This NOT1 MIF4G domain binds CAF1 through a pre-formed interface and leaves the CAF1 catalytic site fully accessible to RNA substrates. The conservation of critical structural and interface residues suggests that the NOT1 MIF4G domain adopts a similar fold and interacts with CAF1 in a similar manner in all eukaryotes. Our findings shed light on the assembly of the CCR4–NOT complex and provide the basis for dissecting the role of the NOT module in mRNA deadenylation.
Collapse
Affiliation(s)
- Alain-Pierre Petit
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
BTG2 suppresses cancer cell migration through inhibition of Src-FAK signaling by downregulation of reactive oxygen species generation in mitochondria. Clin Exp Metastasis 2012; 29:901-13. [PMID: 22562501 DOI: 10.1007/s10585-012-9479-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
BTG2 is a tumor suppressor gene. It is frequently downregulated in human cancer tissues, and its loss is associated with cancer cell metastasis, suggesting that the suppression of BTG2 plays a critical role in cancer cell migration and invasion. Here, we report that re-expression of BTG2 decreased cell migration and invasion in A549 and PC3 cancer cells. Furthermore, BTG2 expression was correlated with downregulation of focal adhesion kinase (FAK) Tyr576 and Tyr925 residues phosphorylation, while Tyr397 which is the autophosphorylation site was not influenced by BTG2 expression. c-Src phosphorylation which is the upstream of FAK was not influenced, whereas c-Src kinase activity was significantly decreased by BTG2 expression. BTG2 overexpression increased Src reduction state and inhibited reactive oxygen species (ROS) generation by being localized in mitochondria. Mitochondria-target BTG2 also inhibited cell migration via downregulation of Src-FAK signaling. In conclusion, our study reveals that BTG2 negatively regulated cancer cell migration by inhibiting Src activity through downregulation of ROS generation in mitochondria.
Collapse
|
35
|
Waanders E, Scheijen B, van der Meer LT, van Reijmersdal SV, van Emst L, Kroeze Y, Sonneveld E, Hoogerbrugge PM, van Kessel AG, van Leeuwen FN, Kuiper RP. The origin and nature of tightly clustered BTG1 deletions in precursor B-cell acute lymphoblastic leukemia support a model of multiclonal evolution. PLoS Genet 2012; 8:e1002533. [PMID: 22359517 PMCID: PMC3280973 DOI: 10.1371/journal.pgen.1002533] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
Recurrent submicroscopic deletions in genes affecting key cellular pathways are a hallmark of pediatric acute lymphoblastic leukemia (ALL). To gain more insight into the mechanism underlying these deletions, we have studied the occurrence and nature of abnormalities in one of these genes, the B-cell translocation gene 1 (BTG1), in a large cohort of pediatric ALL cases. BTG1 was found to be exclusively affected by genomic deletions, which were detected in 65 out of 722 B-cell precursor ALL (BCP-ALL) patient samples (9%), but not in 109 T-ALL cases. Eight different deletion sizes were identified, which all clustered at the telomeric site in a hotspot region within the second (and last) exon of the BTG1 gene, resulting in the expression of truncated BTG1 read-through transcripts. The presence of V(D)J recombination signal sequences at both sites of virtually all deletions strongly suggests illegitimate RAG1/RAG2-mediated recombination as the responsible mechanism. Moreover, high levels of histone H3 lysine 4 trimethylation (H3K4me3), which is known to tether the RAG enzyme complex to DNA, were found within the BTG1 gene body in BCP-ALL cells, but not T-ALL cells. BTG1 deletions were rarely found in hyperdiploid BCP-ALLs, but were predominant in other cytogenetic subgroups, including the ETV6-RUNX1 and BCR-ABL1 positive BCP-ALL subgroups. Through sensitive PCR-based screening, we identified multiple additional BTG1 deletions at the subclonal level in BCP-ALL, with equal cytogenetic distribution which, in some cases, grew out into the major clone at relapse. Taken together, our results indicate that BTG1 deletions may act as “drivers” of leukemogenesis in specific BCP-ALL subgroups, in which they can arise independently in multiple subclones at sites that are prone to aberrant RAG1/RAG2-mediated recombination events. These findings provide further evidence for a complex and multiclonal evolution of ALL. Recent studies have alluded to the existence of a complex clonal cellular architecture in acute lymphoblastic leukemia (ALL), where multiple subclones contribute to leukemogenesis. Here, we show that in pediatric B-cell precursor ALL (BCP-ALL) monoallelic deletions in the tumor suppressor BTG1 locus, which were found to occur in 9% of the patients studied, result in truncations of the gene rather than in complete allelic losses. Using both genetic and epigenetic approaches, we show that these deletions most likely originate from illegitimate RAG recombination. Sensitive backtracking using deletion-spanning PCRs revealed that these BTG1 deletions occur in specific BCP-ALL subtypes, with frequencies higher than previously anticipated, often in one minor subclone or in multiple independent subclones within individual patients. Subclones that carry a BTG1 deletion at diagnosis can evolve into the major clone at relapse. These findings link a mechanism of tumor suppressor gene deletion to the multiclonal evolution of ALL.
Collapse
Affiliation(s)
- Esmé Waanders
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Evidence providing new insights into TOB-promoted deadenylation and supporting a link between TOB's deadenylation-enhancing and antiproliferative activities. Mol Cell Biol 2012; 32:1089-98. [PMID: 22252318 DOI: 10.1128/mcb.06370-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mammalian TOB1 and TOB2 proteins have emerged as key players in repressing cell proliferation. Accumulating evidence indicates that TOBs regulate mRNA deadenylation. A recruitment model was proposed in which TOBs promote deadenylation by recruiting CAF1-CCR4 deadenylase complex to the 3' end of mRNAs by simultaneously binding CAF1 and PABP. However, the exact molecular mechanism underlying TOB-promoted deadenylation remains unclear. It is also unclear whether TOBs' antiproliferative and deadenylation-promoting activities are connected. Here, we combine biochemical analyses with a functional assay directly monitoring deadenylation and mRNA decay to characterize the effects of tethering TOBs or their mutant derivatives to mRNAs. The results provide direct evidence supporting the recruitment model and reveal a link between TOBs' antiproliferative and deadenylation-promoting activities. We also find that TOBs' actions in deadenylation are independent of the phosphorylation state of three serines known to regulate antiproliferative actions, suggesting that TOBs arrest cell growth through at least two different mechanisms. TOB1 and TOB2 were interchangeable in the properties tested here, indicating considerable functional redundancy between the two proteins. We propose that their multiple modes of modulating mRNA turnover and arresting cell growth permit the TOB proteins to coordinate their diverse roles in controlling cell growth and differentiation.
Collapse
|
37
|
Zhang Z, Chen C, Wang G, Yang Z, San J, Zheng J, Li Q, Luo X, Hu Q, Li Z, Wang D. Aberrant expression of the p53-inducible antiproliferative gene BTG2 in hepatocellular carcinoma is associated with overexpression of the cell cycle-related proteins. Cell Biochem Biophys 2011; 61:83-91. [PMID: 21327578 DOI: 10.1007/s12013-011-9164-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We previously reported that the abnormal BTG2 expression was related to genesis/development of hepatocellular carcinoma (HCC). The aim of this study was to evaluate the BTG2 expression in HCC compared with p53, cyclin D1, and cyclin E. For this purpose, modified diethylnitrosamine (DEN)-induced primary HCC rat model was established. Target proteins and mRNAs were measured by western blot and RT-PCR/northern blot, respectively. In rat liver, expression of BTG2 and other proteins was determined by western blot, and BTG2 mRNA in HCC/normal tissues was detected by high-flux tissue microarray (TMA) and in situ hybridization (ISH). BTG2 mRNA/protein expression was increased in fetal liver, 7701, and LO2 cell lines but decreased in HepG2 cells. BTG2/p53 were expressed early after DEN treatment, peaked at 5 weeks and decreased gradually thereafter. Cyclin-D1/Cyclin-E expression increased significantly with the tumor progression. BTG2 mRNA was expressed in 71.19% HCC by ISH and correlated with differentiation. Expression of p53/cyclin D1/cyclin E was positive in 82.35/94.12/76.47% BTG2 mRNA-negative tissues, respectively. BTG2 protein expression was lost in 32.2% (19/59) HCC tissues, and the mRNA/protein expression correlated significantly with the increasing tumor grade (P < 0.05). In conclusion, BTG2 expression is commonly impaired in HCC which may be a factor involved in deregulation of cyclin-D1/cyclin-E expression during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Zhimin Zhang
- Cancer Center, Institute of Surgical Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mo XY, Lan J, Jiao QZ, Xiong YZ, Zuo B, Li FE, Xu DQ, Lei MG. Molecular characterization, expression pattern and association analysis of the porcine BTG2 gene. Mol Biol Rep 2010; 38:4389-96. [PMID: 21116848 DOI: 10.1007/s11033-010-0566-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
B-cell translocation gene 2 (BTG2), a member of the B-cell translocation gene family with anti-proliferative properties, have been characterized to be involved in cell growth, differentiation and survival. In this study, we cloned the full length sequences of cDNA and genomic DNA of BTG2 gene from the porcine skeletal muscle. Spatial expression analysis showed that the porcine BTG2 gene is expressed predominantly in muscle. Temporal expression analysis in longissimus dorsi muscle demonstrated that the expression of BTG2 gene has the highest expression at 60 days old in Large White while with a peak expression at 120 days old in Meishan. Temporal analysis also revealed that the expression of BTG2 gene is generally higher in Large White than in Meishan at all the developmental stages tested (65 days of conception and 3, 35, 60, 120, and 180 days of postnatal). A single nucleotide polymorphism (G417C) in the intron of BTG2 gene was then detected by PCR-RFLP in Large White × Meishan F2 resource population and association analysis suggested that this polymorphic site had significant association (P < 0.05) with the buttock fat thickness, fat percentage, lean muscle percentage, ratio of lean to fat and carcass length.
Collapse
Affiliation(s)
- X Y Mo
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
The structural basis for deadenylation by the CCR4-NOT complex. Protein Cell 2010; 1:443-52. [PMID: 21203959 DOI: 10.1007/s13238-010-0060-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022] Open
Abstract
The CCR4-NOT complex is a highly conserved, multifunctional machinery controlling mRNA metabolism. Its components have been implicated in several aspects of mRNA and protein expression, including transcription initiation, elongation, mRNA degradation, ubiquitination, and protein modification. In this review, we will focus on the role of the CCR4-NOT complex in mRNA degradation. The complex contains two types of deadenylase enzymes, one belonging to the DEDD-type family and one belonging to the EEP-type family, which shorten the poly(A) tails of mRNA. We will review the present state of structure-function analyses into the CCR4-NOT deadenylases and summarize current understanding of their roles in mRNA degradation. We will also review structural and functional work on the Tob/BTG family of proteins, which are known to interact with the CCR4-NOT complex and which have been reported to suppress deadenylase activity in vitro.
Collapse
|
40
|
Teyssier C, Le Romancer M, Sentis S, Jalaguier S, Corbo L, Cavaillès V. Protein arginine methylation in estrogen signaling and estrogen-related cancers. Trends Endocrinol Metab 2010; 21:181-9. [PMID: 20005732 DOI: 10.1016/j.tem.2009.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/13/2009] [Accepted: 11/13/2009] [Indexed: 12/18/2022]
Abstract
Estrogen signaling pathways regulate multiple cellular processes including proliferation and differentiation, and dysregulation of these pathways underlies several human pathologies. Post-translational modifications (PTMs) play an important role in estrogen signaling. This review focuses on recent findings pertinent to arginine methylation of non-histone proteins and their implications in estrogen signaling. We describe protein arginine methyltransferases and demethylases, the role of methylarginine proteins in estrogen action and crosstalk with other PTMs such as phosphorylation and lysine methylation. The relationships between various PTMs form a specific code that is likely to play an important role in hormone signaling. In addition, dysregulation of arginine methylation or of enzymes responsible for these modifications could be key events in estrogen-dependent cancers such as breast cancer.
Collapse
|
41
|
|
42
|
|
43
|
Mauxion F, Chen CYA, Séraphin B, Shyu AB. BTG/TOB factors impact deadenylases. Trends Biochem Sci 2009; 34:640-7. [PMID: 19828319 DOI: 10.1016/j.tibs.2009.07.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 07/19/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
BTG/TOB factors are a family of antiproliferative proteins whose expression is altered in numerous cancers. They have been implicated in cell differentiation, development and apoptosis. Although proposed to affect transcriptional regulation, these factors interact with CAF1, a subunit of the main eukaryotic deadenylase, and with poly(A)-binding-proteins, strongly suggesting a role in post-transcriptional regulation of gene expression. The recent determination of the structures of BTG2, TOB1 N-terminal domain (TOB1N138) and TOB1N138-CAF1 complexes support a role for BTG/TOB proteins in mRNA deadenylation, a function corroborated by recently published functional characterizations. We highlight molecular mechanisms by which BTG/TOB proteins influence deadenylation and discuss the need for a better understanding of BTG/TOB physiological functions.
Collapse
Affiliation(s)
- Fabienne Mauxion
- Equipe Labellisée La Ligue, Centre de Génétique Moléculaire, CNRS FRE3144, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
44
|
Horiuchi M, Takeuchi K, Noda N, Muroya N, Suzuki T, Nakamura T, Kawamura-Tsuzuku J, Takahasi K, Yamamoto T, Inagaki F. Structural basis for the antiproliferative activity of the Tob-hCaf1 complex. J Biol Chem 2009; 284:13244-55. [PMID: 19276069 PMCID: PMC2676056 DOI: 10.1074/jbc.m809250200] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/09/2009] [Indexed: 01/29/2023] Open
Abstract
The Tob/BTG family is a group of antiproliferative proteins containing two highly homologous regions, Box A and Box B. These proteins all associate with CCR4-associated factor 1 (Caf1), which belongs to the ribonuclease D (RNase D) family of deadenylases and is a component of the CCR4-Not deadenylase complex. Here we determined the crystal structure of the complex of the N-terminal region of Tob and human Caf1 (hCaf1). Tob exhibited a novel fold, whereas hCaf1 most closely resembled the catalytic domain of yeast Pop2 and human poly(A)-specific ribonuclease. Interestingly, the association of hCaf1 was mediated by both Box A and Box B of Tob. Cell growth assays using both wild-type and mutant proteins revealed that deadenylase activity of Caf1 is not critical but complex formation is crucial to cell growth inhibition. Caf1 tethers Tob to the CCR4-Not deadenylase complex, and thereby Tob gathers several factors at its C-terminal region, such as poly(A)-binding proteins, to exert antiproliferative activity.
Collapse
Affiliation(s)
- Masataka Horiuchi
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
TIS21/BTG2/PC3 and cyclin D1 are key determinants of nuclear diacylglycerol kinase-ζ-dependent cell cycle arrest. Cell Signal 2009; 21:801-9. [DOI: 10.1016/j.cellsig.2009.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Tzachanis D, Boussiotis VA. Tob, a member of the APRO family, regulates immunological quiescence and tumor suppression. Cell Cycle 2009; 8:1019-25. [PMID: 19270514 DOI: 10.4161/cc.8.7.8033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cellular quiescence is a state characterized by decreased cell size and metabolic activity. Quiescence acts to reduce the resources, energy and space. Quiescence might also protect cells from accumulating metabolic damage that could result in malignancy. Recent studies have shown that cell quiescence is an actively maintained rather than a default state in the absence of signals. Quiescence factors represent potential tumor suppressor genes because alterations in their expression or function contribute to progression of malignancies. There is growing evidence that quiescence is under active transcriptional control. The regulation of cell proliferation involves dozens of extracellular signals and intracellular factors of various types. In the present review we will focus on the role of Tob, a member of the APRO family members in regulating cellular quiescence and inhibition of cellular proliferation.
Collapse
Affiliation(s)
- Dimitrios Tzachanis
- Department of Medicine, Division of Hematology and Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
47
|
Yang X, Morita M, Wang H, Suzuki T, Yang W, Luo Y, Zhao C, Yu Y, Bartlam M, Yamamoto T, Rao Z. Crystal structures of human BTG2 and mouse TIS21 involved in suppression of CAF1 deadenylase activity. Nucleic Acids Res 2008; 36:6872-81. [PMID: 18974182 PMCID: PMC2588512 DOI: 10.1093/nar/gkn825] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BTG2 is the prototypical member of the TOB family and is known to be involved in cell growth, differentiation and DNA repair. As a transcriptional co-regulator, BTG2 interacts with CCR4-associated factor 1 (CAF1) and POP2 (CALIF), which are key components of the general CCR4/NOT multi-subunit transcription complex, and which are reported to play distinct roles as nucleases involved in mRNA deadenylation. Here we report the crystal structures of human BTG2 and mouse TIS21 to 2.3 Å and 2.2 Å resolution, respectively. The structures reveal the putative CAF1 binding site. CAF1 deadenylase assays were performed with wild-type BTG2 and mutants that disrupt the interaction with CAF1. The results reveal the suppressive role of BTG2 in the regulation of CAF1 deadenylase activity. Our study provides insights into the formation of the BTG2-CAF1 complex and the potential role of BTG2 in the regulation of CAF1.
Collapse
Affiliation(s)
- Xiuna Yang
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kamaid A, Giráldez F. Btg1 and Btg2 gene expression during early chick development. Dev Dyn 2008; 237:2158-69. [PMID: 18651656 DOI: 10.1002/dvdy.21616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Btg/Tob genes encode for a new family of proteins with antiproliferative functions, which are also able to stimulate cell differentiation. Btg1 and Btg2 are the most closely related members in terms of gene sequence. We analyzed their expression patterns in avian embryos by in situ hybridization, from embryonic day 1 to 3. Btg1 was distinctively expressed in the Hensen's node, the notochord, the cardiogenic mesoderm, the lens vesicle, and in the apical ectodermal ridge and mesenchyme of the limb buds. On the other hand, Btg2 expression domains included the neural plate border, presomitic mesoderm, trigeminal placode, and mesonephros. Both genes were commonly expressed in the myotome, epibranchial placodes, and dorsal neural tube. The results suggest that Btg1 and Btg2 are involved in multiple developmental processes. Overlapping expression of Btg1 and Btg2 may imply redundant functions, but unique expression patterns suggest also differential regulation and function.
Collapse
Affiliation(s)
- Andrés Kamaid
- Developmental Biology Group, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain.
| | | |
Collapse
|
49
|
Miyasaka T, Morita M, Ito K, Suzuki T, Fukuda H, Takeda S, Inoue JI, Semba K, Yamamoto T. Interaction of antiproliferative protein Tob with the CCR4-NOT deadenylase complex. Cancer Sci 2008; 99:755-61. [PMID: 18377426 PMCID: PMC11158977 DOI: 10.1111/j.1349-7006.2008.00746.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tob protein, when overexpressed, suppresses growth of NIH3T3 cells, presumably by regulating expression of various growth-related genes. However, the molecular mechanisms underlying Tob-mediated regulation of gene expression have been obscure. To address this issue we established stable Tob-expressing cell lines and used a proteomics approach to identify Tob-interacting proteins. We found that Tob associates with the CCR4-NOT complex. The carboxyl-terminal half of Tob interacted with Cnot1, a core protein of the CCR4-NOT complex. We further showed that the deadenylase activity associated with the complex was suppressed in vitro by Tob. These results suggest that the antiproliferative activity of Tob is shown post-transcriptionally by controlling the stability of the target mRNAs in addition to its involvement in transcriptional regulation, reported previously.
Collapse
Affiliation(s)
- Takashi Miyasaka
- Division of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mauxion F, Faux C, Séraphin B. The BTG2 protein is a general activator of mRNA deadenylation. EMBO J 2008; 27:1039-48. [PMID: 18337750 DOI: 10.1038/emboj.2008.43] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 02/18/2008] [Indexed: 12/11/2022] Open
Abstract
BTG2 is a prototype member of the BTG/Tob family of antiproliferative proteins, originally identified as a primary response gene induced by growth factors and tumour promoters. Its expression has been linked to diverse cellular processes such as cell-cycle progression, differentiation or apoptosis. BTG2 has also been shown to interact with the Pop2/Caf1 deadenylase. Here, we demonstrate that BTG2 is a general activator of mRNA decay, thereby contributing to gene expression control. Detailed characterizations of BTG2 show that it enhances deadenylation of all transcripts tested. Our results demonstrate that Caf1 nuclease activity is required for efficient deadenylation in mammalian cells and that the deadenylase activities of both Caf1 and its Ccr4 partner are required for Btg2-induced poly(A) degradation. General activation of deadenylation may represent a new mode of global regulation of gene expression, which could be important to allow rapid resetting of protein production during development or after specific stresses. This may constitute a common function for BTG/Tob family members.
Collapse
Affiliation(s)
- Fabienne Mauxion
- CNRS, Equipe Labellisée La Ligue, Centre de Génétique Moléculaire, UPR 2167, Gif-sur-Yvette, France.
| | | | | |
Collapse
|