1
|
Logez C, Berger S, Legros C, Banères JL, Cohen W, Delagrange P, Nosjean O, Boutin JA, Ferry G, Simonin F, Wagner R. Recombinant human melatonin receptor MT1 isolated in mixed detergents shows pharmacology similar to that in mammalian cell membranes. PLoS One 2014; 9:e100616. [PMID: 24959712 PMCID: PMC4069108 DOI: 10.1371/journal.pone.0100616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023] Open
Abstract
The human melatonin MT1 receptor—belonging to the large family of G protein-coupled receptors (GPCRs)—plays a key role in circadian rhythm regulation and is notably involved in sleep disorders and depression. Structural and functional information at the molecular level are highly desired for fine characterization of this receptor; however, adequate techniques for isolating soluble MT1 material suitable for biochemical and biophysical studies remain lacking. Here we describe the evaluation of a panel of constructs and host systems for the production of recombinant human MT1 receptors, and the screening of different conditions for their solubilization and purification. Our findings resulted in the establishment of an original strategy using a mixture of Fos14 and CHAPS detergents to extract and purify a recombinant human MT1 from Pichia pastoris membranes. This procedure enabled the recovery of relatively pure, monomeric and ligand-binding active MT1 receptor in the near-milligram range. A comparative study based on extensive ligand-binding characterization highlighted a very close correlation between the pharmacological profiles of MT1 purified from yeast and the same receptor present in mammalian cell membranes. The high quality of the purified MT1 was further confirmed by its ability to activate its cognate Gαi protein partner when reconstituted in lipid discs, thus opening novel paths to investigate this receptor by biochemical and biophysical approaches.
Collapse
Affiliation(s)
- Christel Logez
- CNRS UMR7242/Laboratoire d'excellence MEDALIS, Institut de Recherche de l'ESBS, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Sylvie Berger
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Céline Legros
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean-Louis Banères
- CNRS UMR 5247, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier 1 and Montpellier 2, Faculté de Pharmacie, Montpellier, France
| | - William Cohen
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Philippe Delagrange
- Unité de Recherches et Découvertes en Neurosciences, Institut de Recherche Servier, Croissy-sur-Seine, France
| | - Olivier Nosjean
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean A. Boutin
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
- * E-mail:
| | - Gilles Ferry
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Frédéric Simonin
- CNRS UMR7242/Laboratoire d'excellence MEDALIS, Institut de Recherche de l'ESBS, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| | - Renaud Wagner
- CNRS UMR7242/Laboratoire d'excellence MEDALIS, Institut de Recherche de l'ESBS, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| |
Collapse
|
2
|
High-level expression, purification and characterization of a constitutively active thromboxane A2 receptor polymorphic variant. PLoS One 2013; 8:e76481. [PMID: 24086743 PMCID: PMC3781061 DOI: 10.1371/journal.pone.0076481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 08/27/2013] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) exhibit some level of basal signaling even in the absence of a bound agonist. This basal or constitutive signaling can have important pathophysiological roles. In the past few years, a number of high resolution crystal structures of GPCRs have been reported, including two crystal structures of constitutively active mutants (CAM) of the dim-light receptor, rhodopsin. The structural characterizations of CAMs are impeded by the lack of proper expression systems. The thromboxane A2 receptor (TP) is a GPCR that mediates vasoconstriction and promotes thrombosis in response to the binding of thromboxane. Here, we report on the expression and purification of a genetic variant and CAM in TP, namely A160T, using tetracycline-inducible HEK293S-TetR and HEK293S (GnTI¯)-TetR cell lines. Expression of the TP and the A160T genes in these mammalian cell lines resulted in a 4-fold increase in expression to a level of 15.8 ±0.3 pmol of receptor/mg of membrane protein. The receptors expressed in the HEK293S (GnTI(-))-TetR cell line showed homogeneous glycosylation. The functional yield of the receptors using a single step affinity purification was 45 µg/10⁶ cells. Temperature- dependent secondary structure changes of the purified TP and A160T receptors were characterized using circular dichroism (CD) spectropolarimetry. The CD spectra shows that the loss of activity or thermal sensitivity that was previously observed for the A160T mutant, is not owing to large unfolding of the protein but rather to a more subtle effect. This is the first study to report on the successful high-level expression, purification, and biophysical characterization of a naturally occurring, diffusible ligand activated GPCR CAM.
Collapse
|
3
|
Lipid mediators and human leukemic blasts. JOURNAL OF ONCOLOGY 2010; 2011. [PMID: 20953410 PMCID: PMC2952803 DOI: 10.1155/2011/389021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022]
Abstract
Some of the most potent inflammatory mediators share a lipid origin. They regulate a wide spectrum of cellular processes including cell proliferation and apoptosis. However, the precise roles and ways (if any) in which these compounds impact the growth and apoptosis of leukemic blasts remain incompletely resolved. In spite of this, significant advances have been recently made. Here we briefly review the current knowledge about the production of lipid mediators (prostaglandins, leukotrienes, platelet-activating factor) by leukemic blasts, the enzymatic activities (phospholipase A2, cyclooxygenases, lipoxygenases) involved in their productions and their effects (through specific membrane bound receptors) on the growth, and apoptosis of leukemic blasts.
Collapse
|
4
|
Abstract
During recent decades there have been major advances in the fields of thrombosis and haemostasis, in part through development of powerful molecular and genetic technologies. Nevertheless, genetic modification of megakaryocytes and generation of mutant platelets in vitro remains a highly specialized area of research. Developments are hampered by the low frequency of megakaryocytes and their progenitors, a poor efficiency of transfection and a lack of understanding with regard to the mechanism by which megakaryocytes release platelets. Current methods used in the generation of genetically modified megakaryocytes and platelets include mutant mouse models, cell line studies and use of viruses to transform primary megakaryocytes or haematopoietic precursor cells. This review summarizes the advantages, limitations and technical challenges of such methods, with a particular focus on recent successes and advances in this rapidly progressing field including the potential for use in gene therapy for treatment of patients with platelet disorders.
Collapse
Affiliation(s)
- Caroline Pendaries
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | |
Collapse
|
5
|
Fiancette R, Vincent C, Donnard M, Turlure P, Bordessoule D, Trimoreau F, Denizot Y. No effect of PGI2 and TXB2 on the proliferation of immature forms of leukemic blasts. Leuk Res 2008; 33:596-8. [PMID: 18799214 DOI: 10.1016/j.leukres.2008.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 08/04/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
|
6
|
Ruan KH, Cervantes V, Wu J. A simple, quick, and high-yield preparation of the human thromboxane A2 receptor in full size for structural studies. Biochemistry 2008; 47:6819-26. [PMID: 18529068 PMCID: PMC2581465 DOI: 10.1021/bi702501g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human thromboxane A2 receptor (TP), a G protein-coupled receptor (GPCR), is one of the most promising targets for developing the next generation of anti-thrombosis and hypertension drugs. However, obtaining a sufficient amount of the full-sized and active membrane protein has been the major obstacle for structural elucidation that reveals the molecular mechanisms of the receptor activation and drug designs. Here we report an approach for the simple, quick, and high-yield preparation of the purified and active full-sized TP in an amount suitable for structural studies. Glycosylated human TP was highly expressed in Sf-9 cells using an optimized baculovirus (BV) expression system. The active receptor was extracted and solubilized by different detergents for comparison and was finally purified to a nearly single band with a ratio of 1:0.9 +/- 0.05 (ligand:receptor molecule) in ligand binding using a Ni column with a relatively low yield. However, a high-yield purification (milligram quantity) of the TP protein, from a modulate scale of transfected Sf-9 cell culture, has been achieved by quick and simple purification steps, which include DNA digestion, dodecyl-maltoside detergent extraction, centrifugation, and FPLC purification. The purity and quantity of the purified TP, using the high-yield approach, were suitable for protein structural studies as evidenced by SDS-PAGE, Western blot analyses, ligand binding assays, and a feasibility test using high-resolution one-dimensional and two-dimensional (1)H NMR spectroscopic analyses. These studies provide a basis for the high-yield expression and purification of the GPCR for the structural and functional characterization using biophysics approaches.
Collapse
MESH Headings
- Animals
- Baculoviridae/genetics
- Cell Line
- Chlorocebus aethiops
- Cloning, Molecular
- DNA, Complementary/genetics
- Gene Expression
- Genetic Vectors/genetics
- Humans
- Ligands
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Protein Binding
- Protein Processing, Post-Translational
- Receptors, Thromboxane A2, Prostaglandin H2/chemistry
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/isolation & purification
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Spodoptera
- Time Factors
Collapse
Affiliation(s)
- Ke-He Ruan
- Department of Pharmacological and Pharmaceutical Sciences, Center for Experimental Therapeutics and PharmacoInformatics, University of Houston, Houston, Texas 77204-5037, USA.
| | | | | |
Collapse
|
7
|
Alves ID, Sachon E, Bolbach G, Millstine L, Lavielle S, Sagan S. Analysis of an Intact G-Protein Coupled Receptor by MALDI-TOF Mass Spectrometry: Molecular Heterogeneity of the Tachykinin NK-1 Receptor. Anal Chem 2007; 79:2189-98. [PMID: 17295451 DOI: 10.1021/ac062415u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integral membrane proteins are among the most challenging targets for biomedical research as most important cellular functions are tied to these proteins. To analyze intrinsically their structure/function, their transduction mechanism, or both, these proteins are commonly expressed in cultured cells as recombinant proteins. However, it is not possible to check whether these recombinant proteins are homogeneously or heterogeneously expressed. Owing to difficulties in their purification, very few mass spectrometry studies have been performed with those proteins and even less with G-protein coupled receptors. Here we have set up a procedure that is highly compatible with MALDI-TOF mass spectrometry to analyze an intact histidine-tagged G-protein coupled, namely, the tachykinin NK-1 receptor expressed in CHO cells, solubilized and purified using cobalt or nickel chelating magnetic beads. The metal-chelating magnetic beads containing the receptor were directly spotted on the MALDI plate for analysis. SDS-PAGE, combined with in-gel digestion analyzed by mass spectrometry, Western blot ((His)6 and FLAG M2 tags), photoaffinity labeling with a radioactive agonist, and Edman sequencing, confirmed the identity of the purified protein as the human tachykinin NK-1 receptor. Mass spectrometry study of both the glycosylated and deglycosylated intact protein forms revealed the existence of several receptor species that is tempting to correlate with the unusual pharmacological behavior of the receptor.
Collapse
Affiliation(s)
- Isabel D Alves
- Synthèse, Structure et Fonction de Molécules Bioactives, and Plateforme de Protéomique et de Spectrométrie de Masse, Université Pierre et Marie Curie-Paris 6, UMR 7613 CNRS, Paris, France. alves@ ccr.jussieu.fr
| | | | | | | | | | | |
Collapse
|
8
|
Moussa O, Yordy JS, Abol-Enein H, Sinha D, Bissada NK, Halushka PV, Ghoneim MA, Watson DK. Prognostic and functional significance of thromboxane synthase gene overexpression in invasive bladder cancer. Cancer Res 2006; 65:11581-7. [PMID: 16357168 DOI: 10.1158/0008-5472.can-05-1622] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thromboxane synthase (TXAS) is one of the enzymes downstream from cyclooxygenase-2 and catalyzes the synthesis of thromboxane A(2) (TXA(2)). TXAS was among the genes we identified based on its overexpression in invasive bladder tumors. TXAS is overexpressed in common forms of bladder tumors: 69 of 97 (71.1%) transitional cell carcinoma (TCC), 38 of 53 (71.6%) squamous cell carcinoma, and 5 of 11 (45.5%) adenocarcinoma relative to nontumor tissue. Overall, 112 of 161 (69.5%) invasive tumors exhibited elevated expression. Significantly, patients with tumors having >4-fold levels of TXAS expression showed significant statistical evidence of lower overall survival expressed by the estimated hazard ratio of 2.74 with P = 0.009 in Cox's regression analysis. TXAS mRNA expression was found to be an independent prognostic marker for patients with bladder cancer. Treatment of bladder cancer cell lines (T24 and TCC-SUP) with TXAS inhibitors and TXA(2) (TP) receptor antagonists reduced cell growth, migration, and invasion, whereas TP agonists stimulated cell migration and invasion. The positive correlation between elevated TXAS expression and shorter patient survival supports a potential role for TXAS-regulated pathways in tumor invasion and metastases and suggests that modulation of the TXAS pathway may offer a novel therapeutic approach.
Collapse
MESH Headings
- Adenocarcinoma/enzymology
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adult
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Transitional Cell/enzymology
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/pathology
- Cell Movement
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Thromboxane/agonists
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/metabolism
- Survival Rate
- Thromboxane-A Synthase/antagonists & inhibitors
- Thromboxane-A Synthase/genetics
- Thromboxane-A Synthase/metabolism
- Urinary Bladder Neoplasms/enzymology
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Omar Moussa
- Department of Pathology and Laboratory Medicine, Biochemistry Medical University of South Carolina, Charleston, 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Daniels MJ, Yeager M. Phosphorylation of Aquaporin PvTIP3;1 Defined by Mass Spectrometry and Molecular Modeling†. Biochemistry 2005; 44:14443-54. [PMID: 16262244 DOI: 10.1021/bi050565d] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The water channel protein PvTIP3;1 (alpha-TIP) is a member of the Major Intrinsic Protein membrane channel family. The in vitro activity of this aquaporin is dependent on phosphorylation, and the protein is phosphorylated in vivo by a membrane-associated Ca(2+)-dependent kinase. Mutagenesis studies have implicated three serine residues as kinase targets, but only phosphorylation of Ser7 has been observed in vivo. An atomic model of PvTIP3;1 generated by homology modeling suggested that Ser7 is the only residue that would be sterically accessible to kinases. To further explain the phosphorylation of PvTIP3;1, we overexpressed this aquaporin in the methylotrophic yeast Pichia pastoris and purified the hexahistidine-tagged protein by immobilized metal affinity chromatography. Mass spectrometry confirmed that a fraction of recombinant PvTIP3;1 was phosphorylated. Phosphatase and kinase treatments indicated that Ser7 was the only residue that could be phosphorylated. In addition, mass spectrometry indicated that the native and expressed proteins are N-terminally acetylated. This is the first demonstration that a full-length, recombinant aquaporin can be produced in yeast and authentically phosphorylated in vitro. Characterization of phosphorylation-mediated gating in PvTIP3;1 will serve as a paradigm for understanding gating mechanisms of other channels.
Collapse
Affiliation(s)
- Mark J Daniels
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
10
|
Cabrera DM, Janech MG, Morinelli TA, Miller DH. A thromboxane A(2) system in the Atlantic stingray, Dasyatis sabina. Gen Comp Endocrinol 2003; 130:157-64. [PMID: 12568793 DOI: 10.1016/s0016-6480(02)00586-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thromboxane B(2)(TXB(2)) is the stable metabolite of thromboxane A(2)(TXA(2)) and thromboxane B(2)-like immunoreactivity (iTXB(2)) has been identified in the plasma of the Atlantic stingray, Dasyatis sabina (0.57+/-0.03 ng/ml). Plasma levels of iTXB(2) increase if the blood is allowed to clot (3.0+/-0.27 ng/ml). When clotting occurs in the presence of indomethacin, this increase is partially inhibited (1.5+/-0.17 ng/ml), indicating the presence of a cyclooxygenase activity. Radioligand binding analysis using the TXA(2) analog [125I]BOP in isolated kidney membranes revealed a receptor of K(d)=2.88+/-0.51 nM and B(max)=25.6+/-5.9 fmol/mg protein. [125I]BOP binding was displaced by the TXA(2) receptor (TP receptor) agonists U46619 (IC(50)=106.4+/-15.7 nM) and U44069 (IC(50)=88.7+/-13.0 nM), and the antagonist SQ29548 (IC(50)=51.0+/-12.9 nM). Binding was also displaced stereoselectively by the antagonists (-)L657925 (IC(50)=18.9+/-3.8 nM) and (+)L657926 (IC(50)=2025+/-280 nM). Tissue bath studies revealed that U46619, a stable TXA(2) mimetic, elicited concentration-dependent contractions in the ventral aorta which were inhibited in a concentration-dependent manner by the TP receptor antagonist SQ29548. Using a human TP receptor riboprobe, Northern blotting of mRNA isolated from the stingray kidney identified transcripts of 2.8 and 6kb. The 2.8kb transcript is similar to a 2.8kb transcript found in human cells or tissues, but the 6kb transcript may be unique. These data indicate the presence of a TXB(2)-like substance in the blood, a TP receptor in the kidney, TXA(2) biological activity in the ventral aorta, and expression of a TP receptor-like gene.
Collapse
Affiliation(s)
- David M Cabrera
- Grice Marine Laboratory, College of Charleston, Charleston, South Carolina, USA
| | | | | | | |
Collapse
|
11
|
Mouillac B, Sen T, Durroux T, Gaibelet G, Barberis C. Expression of human vasopressin and oxytocin receptors in Escherichia coli. PROGRESS IN BRAIN RESEARCH 2002; 139:163-77. [PMID: 12436934 DOI: 10.1016/s0079-6123(02)39015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
In order to produce large amounts of human vasopressin and oxytocin receptors compatible with direct structural biology approaches such as X-ray crystallography, NMR or mass spectrometry, we have expressed these neurohypophysial hormone receptors in Escherichia coli. To facilitate the level of expression, the coding sequence for the V1a vasopressin receptor and the oxytocin receptor were first optimized for bacterial expression. The resulting 'bacterial receptor cDNAs' were then subcloned into pET/T7-driven prokaryotic expression vectors. Different constructs have been prepared: each cDNA was incorporated alone or in fusion with a T7 tag sequence or a glutathione-S-transferase tag sequence at the N-terminus end. Moreover, a 6 x His tag sequence has been added at the C-terminus end for one-step purification of the receptors. Screening of BL21(DE3) and BL21(DE3)pLysS bacterial strains transformed with the different constructions was achieved by Coomassie blue-stained SDS-polyacrylamide gels and by 6 x His antibody Western blotting. Several clones were selected for purification of the receptors. Expression levels of the receptors are now encouraging and will be optimized for further structural and functional studies. Moreover, at the same time, the construction of the bacterial-optimized sequence of the V2 vasopressin receptor and its expression will be performed.
Collapse
Affiliation(s)
- Bernard Mouillac
- INSERM U469, 141 rue de la Cardonille, 34094 Montpellier, France.
| | | | | | | | | |
Collapse
|
12
|
Caughey GE, Cleland LG, Gamble JR, James MJ. Up-regulation of endothelial cyclooxygenase-2 and prostanoid synthesis by platelets. Role of thromboxane A2. J Biol Chem 2001; 276:37839-45. [PMID: 11483590 DOI: 10.1074/jbc.m010606200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet-vascular endothelial cell interactions are central to the maintenance of vascular homeostasis. Thromboxane A2 (TXA2) and prostacyclin (prostaglandin (PG)I2) are the major products of cyclooxygenase (COX) metabolism by platelets and the vascular endothelium, respectively. Here we report the effects of platelet-endothelial interactions on human umbilical vein endothelial cells (HUVECs) COX-2 expression and prostanoid synthesis. Co-incubation of platelets with HUVECs resulted in a dose-dependent induction in COX-2 expression. This was accompanied by a relatively small increase in thromboxane B2 synthesis (2 ng) by comparison to the production of 6-keto-PGF1alpha and PGE2, which increased by approximately 14 and 12 ng, respectively. Abrogation of platelet-HUVEC interactions excluded direct cell-cell contact as a required event. Preincubation of HUVECs with SQ29548, a TXA2 receptor antagonist, dose-dependently inhibited platelet-induced COX-2 expression and prostanoid synthesis. Similarly, if platelet TXA2 synthesis was inhibited no induction of COX-2 was observed. Furthermore, a TXA2 analog, carbocyclic TXA2, induced HUVEC COX-2 expression and the synthesis of 6-keto-PGF1alpha and PGE2. This was also associated with an increase in the expression and activity of PGI synthase and PGE synthase but not TX synthase. Platelet co-incubation (or TXA2) also selectively activated the p44/42 mitogen-activated protein kinase pathway to regulate HUVEC COX-2 expression. Thus it seems that platelet-derived TXA2 can act in a paracrine manner to up-regulate endothelial COX-2 expression and PGI2 synthesis. These observations are of particular importance given the recent observations regarding selective COX-2 inhibitors and the suppression of PGI2 synthesis.
Collapse
Affiliation(s)
- G E Caughey
- Rheumatology Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia.
| | | | | | | |
Collapse
|
13
|
Minshall RD, Pavcnik D, Halushka PV, Hermsmeyer K. Progesterone regulation of vascular thromboxane A(2) receptors in rhesus monkeys. Am J Physiol Heart Circ Physiol 2001; 281:H1498-507. [PMID: 11557538 DOI: 10.1152/ajpheart.2001.281.4.h1498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that progesterone regulates thromboxane A(2) receptor (TxA(2)R) density in primate vascular muscle and that TxA(2)R density correlates with coronary reactivity in vivo and in vitro. Reactivity to serotonin + U-46619 was determined by angiography in surgically postmenopausal [ovariectomized (Ovx)] rhesus monkeys without progesterone replacement and after 2-wk progesterone treatment (1-2 ng/ml). In untreated Ovx animals, 100 micromol/l serotonin + 1 micromol/l U-46619 (syringe concentrations) provoked vasospasm-like constrictions in six of six monkeys; zero of six progesterone-treated monkeys developed vasospasms. Sustained Ca(2+) responses in vascular muscle cells isolated from Ovx coronaries (208 +/- 63% of basal 20 min after stimulation) treated with serotonin + U-46619 contrasted with transient Ca(2+) responses (143 +/- 18% of basal and decreasing 5 min after stimulation) in progesterone-treated monkeys. The maximum density of [1S-(1I,2J(5Z),3I(1E,3R*),4I)]-7-[3-(3-hydroxy-4-(4'-[(125)I]iodophenoxy)- 1-butenyl)-7-oxabicyclo[2.2.1]heptan-2-yl]-5-heptenoic acid ([(125)I]-BOP) binding was greater (P < 0.01) in carotid arteries and aortic membranes from Ovx (109 +/- 11 fmol/mg) compared with progesterone-treated (43 +/- 15 fmol/mg) monkeys. TxA(2)R immunolabeling revealed greater coronary TxA(2)R labeling in Ovx compared with progesterone-treated monkeys. The results suggest that progesterone can decrease arterial TxA(2)R in Ovx monkeys.
Collapse
Affiliation(s)
- R D Minshall
- Division of Reproductive Sciences, Oregon Regional Primate Research Center, Beaverton 97006, USA
| | | | | | | |
Collapse
|
14
|
Piatibratov M, Hou S, Brooun A, Yang J, Chen H, Alam M. Expression and fast-flow purification of a polyhistidine-tagged myoglobin-like aerotaxis transducer. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1524:149-54. [PMID: 11113561 DOI: 10.1016/s0304-4165(00)00151-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A Co(2+)-affinity, fast-flow perfusion chromatography method to purify a polyhistidine-tagged myoglobin-like aerotaxis transducer HemAT-Hs has been developed. The method relies upon a six-histidine affinity tag fused to the C-terminus and N-terminus of HemAT-Hs for expression in the native host, an extremely halophilic Archaeon Halobacterium salinarum, and in the heterologous host Escherichia coli, respectively. The His-tagged HemAT-Hs can be purified rapidly using either low or high ionic strength buffers. Purified His-tagged HemAT-Hs in high or low salt buffers demonstrated no difference in spectral characteristics and retained reversible oxygen binding capacity. This fast-flow Co(2+)-affinity perfusion chromatography provides a simple method for preparation of halophilic heme containing soluble proteins for biophysical and structural studies.
Collapse
Affiliation(s)
- M Piatibratov
- Department of Microbiology, Snyder Hall 207, 2538 The Mall, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- P V Halushka
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Medicine, Division of Clinical Pharmacology, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425, USA.
| |
Collapse
|