1
|
Ai Y, Ding Q, Wan Z, Tyagi S, Indeglia A, Murphy M, Tian B. Regulation of alternative polyadenylation isoforms of Timp2 is an effector event of RAS signaling in cell transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.613909. [PMID: 39386512 PMCID: PMC11463442 DOI: 10.1101/2024.09.26.613909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Alternative polyadenylation (APA) generates mRNA isoforms with different lengths of the 3' untranslated region (3' UTR). The tissue inhibitor of metalloproteinase 2 (TIMP2) plays a key role in extracellular matrix remodeling under various developmental and disease conditions. Both human and mouse genes encoding TIMP2 contain two highly conserved 3'UTR APA sites, leading to mRNA isoforms that differ substantially in 3'UTR size. APA of Timp2 is one of the most significantly regulated events in multiple cell differentiation lineages. Here we show that Timp2 APA is highly regulated in transformation of NIH3T3 cells by the oncogene HRAS G12V . Perturbations of isoform expression with long 3'UTR isoform-specific knockdown or genomic removal of the alternative UTR (aUTR) region indicate that the long 3'UTR isoform contributes to the secreted Timp2 protein much more than the short 3'UTR isoform. The short and long 3'UTR isoforms differ in subcellular localization to endoplasmic reticulum (ER). Strikingly, Timp2 aUTR enhances secreted protein expression but no effect on intracellular proteins in reporter assays. Furthermore, downregulation of Timp2 long isoform mitigates gene expression changes elicited by HRAS G12V . Together, our data indicate that regulation of Timp2 protein expression through APA isoform changes is an integral part of RAS-mediated cell transformation and 3'UTR isoforms of Timp2 can have distinct impacts on expression of secreted vs. intracellular proteins.
Collapse
|
2
|
Metkari AS, Fowler EW, Witt RL, Jia X. Matrix Degradability Contributes to the Development of Salivary Gland Progenitor Cells with Secretory Functions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:32148-32161. [PMID: 37364369 PMCID: PMC10529452 DOI: 10.1021/acsami.3c03064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Synthetic matrices that are cytocompatible, cell adhesive, and cell responsive are needed for the engineering of implantable, secretory salivary gland constructs to treat radiation induced xerostomia or dry mouth. Here, taking advantage of the bioorthogonality of the Michael-type addition reaction, hydrogels with comparable stiffness but varying degrees of degradability (100% degradable, 100DEG; 50% degradable, 50DEG; and nondegradable, 0DEG) by cell-secreted matrix metalloproteases (MMPs) were synthesized using thiolated HA (HA-SH), maleimide (MI)-conjugated integrin-binding peptide (RGD-MI), and MI-functionalized peptide cross-linkers that are protease degradable (GIW-bisMI) or nondegradable (GIQ-bisMI). Organized multicellular structures developed readily in all hydrogels from dispersed primary human salivary gland stem cells (hS/PCs). As the matrix became progressively degradable, cells proliferated more readily, and the multicellular structures became larger, less spherical, and more lobular. Immunocytochemical analysis showed positive staining for stem/progenitor cell markers CD44 and keratin 5 (K5) in all three types of cultures and positive staining for the acinar marker α-amylase under 50DEG and 100DEG conditions. Quantitatively at the mRNA level, the expression levels of key stem/progenitor markers KIT, KRT5, and ETV4/5 were significantly increased in the degradable gels as compared to the nondegradable counterparts. Western blot analyses revealed that imparting matrix degradation led to >3.8-fold increase in KIT expression by day 15. The MMP-degradable hydrogels also promoted the development of a secretary phenotype, as evidenced by the upregulation of acinar markers α-amylase (AMY), aquaporin-5 (AQP5), and sodium-potassium chloride cotransporter 1 (SLC12A2). Collectively, we show that cell-mediated matrix remodeling is necessary for the development of regenerative pro-acinar progenitor cells from hS/PCs.
Collapse
Affiliation(s)
- Apoorva S. Metkari
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Robert L. Witt
- Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, Delaware, USA
| |
Collapse
|
3
|
Itoh Y, Ng M, Wiberg A, Inoue K, Hirata N, Paiva KBS, Ito N, Dzobo K, Sato N, Gifford V, Fujita Y, Inada M, Furniss D. A common SNP risk variant MT1-MMP causative for Dupuytren's disease has a specific defect in collagenolytic activity. Matrix Biol 2021; 97:20-39. [PMID: 33592276 DOI: 10.1016/j.matbio.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Dupuytren's Disease (DD) is a common fibroproliferative disease of the palmar fascia. We previously identified a causal association with a non-synonymous variant (rs1042704, p.D273N) in MMP14 (encoding MT1-MMP). In this study, we investigated the functional consequences of this variant, and demonstrated that the variant MT1-MMP (MT1-N273) exhibits only 17% of cell surface collagenolytic activity compared to the ancestral enzyme (MT1-D273). Cells expressing both MT1-D273 and MT1-N273 in a 1:1 ratio, mimicking the heterozygous state, possess 38% of the collagenolytic activity compared to the cells expressing MT1-D273, suggesting that MT1-N273 acts in a dominant negative manner. Consistent with the above observation, patient-derived DD myofibroblasts with the alternate allele demonstrated around 30% of full collagenolytic activity detected in ancestral G/G genotype cells, regardless of the heterozygous (G/A) or homozygous (A/A) state. Small angle X-ray scattering analysis of purified soluble Fc-fusion enzymes allowed us to construct a 3D-molecular envelope of MT1-D273 and MT1-N273, and demonstrate altered flexibility and conformation of the ectodomains due to D273 to N substitution. Taking together, rs1042704 significantly reduces collagen catabolism in tissue, which tips the balance of homeostasis of collagen in tissue, contributing to the fibrotic phenotype of DD. Since around 30% of the worldwide population have at least one copy of the low collagenolytic alternate allele, further investigation of rs1042704 across multiple pathologies is needed.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| | - Michael Ng
- Botnar Research Centre, NDORMS, University of Oxford, Oxford OX3 7HE, UK
| | - Akira Wiberg
- Botnar Research Centre, NDORMS, University of Oxford, Oxford OX3 7HE, UK
| | - Katsuaki Inoue
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxford, UK
| | - Narumi Hirata
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Katiucia Batista Silva Paiva
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Noriko Ito
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Kim Dzobo
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Nanami Sato
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK; Institute for Genetic Medicine, Division of Molecular Oncology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Valentina Gifford
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Yasuyuki Fujita
- Institute for Genetic Medicine, Division of Molecular Oncology, Hokkaido University, Sapporo, Hokkaido, Japan; Department of Molecular Oncology, Kyoto University Medical School, Kyoto, Japan
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Dominic Furniss
- Botnar Research Centre, NDORMS, University of Oxford, Oxford OX3 7HE, UK.
| |
Collapse
|
4
|
Han KY, Chang JH, Azar DT. Proteomics-Based Characterization of the Effects of MMP14 on the Protein Content of Exosomes from Corneal Fibroblasts. Protein Pept Lett 2021; 27:979-988. [PMID: 32268857 DOI: 10.2174/0929866527666200408142827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Exosomes secreted by corneal fibroblasts contain matrix metalloproteinase (MMP) 14, which is known to influence pro-MMP2 accumulation on exosomes. Accordingly, we hypothesized that the enzymatic activity of MMP14 may alter the protein content of corneal fibroblast- secreted exosomes. OBJECTIVE The aim of this study was to investigate the effects of MMP14 on the composition and biological activity of corneal fibroblast-derived exosomes. METHODS Knock out of the catalytic domain (ΔExon4) of MMP14 in corneal fibroblasts was used to determine the effect of MMP14 expression on the characteristics of fibroblast-secreted exosomes. The amount of secreted proteins and their size distribution were measured using Nano Tracking Analysis. Proteins within exosomes from wild-type (WT) and ΔExon4-deficient fibroblasts were identified by liquid chromatography-tandem mass spectrometry (MS/MS) proteomics analysis. The proteolytic effects of MMP14 were evaluated in vitro via MS identification of eliminated proteins. The biological functions of MMP14-carrying exosomes were investigated via fusion to endothelial cells and flow cytometric assays. RESULTS Exosomes isolated from WT and ΔExon4-deficient fibroblasts exhibited similar size distributions and morphologies, although WT fibroblasts secreted a greater amount of exosomes. The protein content, however, was higher in ΔExon4-deficient fibroblast-derived exosomes than in WT fibroblast-derived exosomes. Proteomics analysis revealed that WT-derived exosomes included proteins that regulated cell migration, and ΔExon4 fibroblast-derived exosomes contained additional proteins that were cleaved by MMP14. CONCLUSION Our findings suggest that MMP14 expression influences the protein composition of exosomes secreted by corneal fibroblasts, and through those biological components, MMP14 in corneal fibroblasts derived-exosomes may regulate corneal angiogenesis.
Collapse
Affiliation(s)
- Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
5
|
Aventurado CA, Billones JB, Vasquez RD, Castillo AL. In Ovo and In Silico Evaluation of the Anti-Angiogenic Potential of Syringin. Drug Des Devel Ther 2020; 14:5189-5204. [PMID: 33268982 PMCID: PMC7701684 DOI: 10.2147/dddt.s271952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Cancer is considered as one of the deadliest human diseases today. Angiogenesis, the propagation of new blood vessels from pre-existing vasculature, is a critical step in the progression of cancer as it is essential in the growth and metastasis of tumors. Hence, suppression of angiogenesis is a promising approach in cancer therapy. Syringin, a phenylpropanoid glycoside with a molecular formula of C17H24O9, has been found to exhibit chemopreventive effects. However, its anti-angiogenic activity and the underlying mechanism of action are still unknown. METHODS In this work, in ovo chorioallantoic membrane (CAM) assay has been conducted to evaluate the effect of syringin on neovascularization. Additionally, reverse molecular docking studies have been performed in order to identify the probable enzyme targets in the angiogenesis pathway. RESULTS Treatment with syringin showed significant dose-dependent inhibition of blood vessel length and junctions in the CAM of duck eggs; the anti-angiogenic activity of syringin at 100 µM and 200 µM is comparable with 200 µM of the positive control celecoxib. The results of reverse docking studies indicate that syringin binds the strongest to dihydrofolate reductase (DHFR) and, to some extent, with transforming growth factor-beta receptor type 1 (TGF-βR1), vascular endothelial growth factor receptor 2 (VEGFR2), and matrix metalloproteinase-2 (MMP-2). Furthermore, ADMET models revealed that syringin potentially possesses excellent pharmacokinetic and toxicity profiles. CONCLUSION This study demonstrates the potential of syringin as an anti-angiogenic agent and elicits further investigations to establish its application in cancer suppression.
Collapse
Affiliation(s)
| | - Junie B Billones
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Ross D Vasquez
- The Graduate School, University of Santo Tomas, Manila1015, Philippines
- Faculty of Pharmacy, University of Santo Tomas, Manila1015, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila1015, Philippines
| | - Agnes L Castillo
- The Graduate School, University of Santo Tomas, Manila1015, Philippines
- Faculty of Pharmacy, University of Santo Tomas, Manila1015, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila1015, Philippines
| |
Collapse
|
6
|
Schneider MC, Lalitha Sridhar S, Vernerey FJ, Bryant SJ. Spatiotemporal neocartilage growth in matrix-metalloproteinase-sensitive poly(ethylene glycol) hydrogels under dynamic compressive loading: an experimental and computational approach. J Mater Chem B 2020; 8:2775-2791. [PMID: 32155233 PMCID: PMC7695218 DOI: 10.1039/c9tb02963j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enzyme-sensitive hydrogels containing encapsulated chondrocytes are a promising platform for cartilage tissue engineering. However, the growth of neotissue is closely coupled to the degradation of the hydrogel and is further complicated due to the encapsulated cells serving as the enzyme source for hydrogel degradation. To better understand these coupled processes, this study combined experimental and computational methods to analyze the transition from hydrogel to neotissue in a biomimetic MMP-sensitive poly(ethylene glycol) (PEG) hydrogel with encapsulated chondrocytes. A physics-based computational model that describes spatial heterogeneities in cell distribution was used. Experimentally, cell-laden hydrogels were cultured for six weeks under free swelling or subjected daily to one-hour of dynamic compressive loading. Extracellular matrix (ECM) synthesis rates were used as model inputs, and the model was fit to the experimentally determined construct modulus over time for the free swelling condition. Experimentally, ECM accumulation comprising collagen II and aggrecan increased over time concomitant with hydrogel degradation observed by a loss in PEG. Simulations demonstrated rapid degradation in regions of high cell density (i.e., cell clusters) reaching complete degradation by day 13, which facilitated localized ECM growth. Regions of low cell density degraded more slowly, had limited ECM, and led to the decrease in construct modulus during the first two weeks. The primary difference between the two culture environments was greater ECM accumulation in the clusters under free swelling, which facilitated a faster recovery in construct modulus. By 6 weeks the compressive modulus increased 2.5-fold to 107 kPa under free swelling, but dropped 1.6-fold to 26 kPa under loading. In summary, this biomimetic MMP-sensitive hydrogel supports neocartilage growth by facilitating rapid ECM growth within cell clusters, which was followed by slower growth in the rest of the hydrogel. Subtle temporal differences in hydrogel degradation and ECM accumulation, however, had a significant impact on the evolving mechanical properties.
Collapse
Affiliation(s)
- Margaret C Schneider
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave., Boulder, Colorado 80309-0596, USA.
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, Colorado 80309-0596, USA.
| | - Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, Colorado 80309-0596, USA. and Materials Science and Engineering Program, University of Colorado, 3415 Colorado Ave., Boulder, Colorado 80309-0596, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave., Boulder, Colorado 80309-0596, USA. and Materials Science and Engineering Program, University of Colorado, 3415 Colorado Ave., Boulder, Colorado 80309-0596, USA and Biofrontiers Institute, University of Colorado, 3415 Colorado Ave., Boulder, Colorado 80309-0596, USA
| |
Collapse
|
7
|
Rajagopalan P, Jain AP, Nanjappa V, Patel K, Mangalaparthi KK, Babu N, Cavusoglu N, Roy N, Soeur J, Breton L, Pandey A, Gowda H, Chatterjee A, Misra N. Proteome-wide changes in primary skin keratinocytes exposed to diesel particulate extract—A role for antioxidants in skin health. J Dermatol Sci 2019; 96:114-124. [DOI: 10.1016/j.jdermsci.2019.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Matuszczak E, Komarowska MD, Sankiewicz A, Ołdak Ł, Gorodkiewicz E, Debek W, Milewski R, Tylicka M, Hermanowicz A. Plasma concentration of MMP-1 and MMP-2 in boys with cryptorchidism and its lack of correlation with INSL3 and inhibin B. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:412-418. [PMID: 31295049 DOI: 10.1080/00365513.2019.1637534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The matrix metalloproteinases are enzymes capable of remodeling of extracellular matrix, and modulate the behavior of cells. Maturation of gubernaculum and spermatogenesis demand proper equilibrium of metalloproteinases and their inhibitors. The aim of this survey was to investigate the levels of matrix metalloproteinase type 1 (MMP-1) and matrix metalloproteinase type 2 (MMP-2) in the plasma of children with unilateral cryptorchidism along with levels of Insulin-like Peptide 3 (INSL3) and inhibin B. INSL3 have a role in gubernaculum development. Inhibin B is produced by Sertoli cells, and its levels reflect the status of the testis germinative epithelium. Fifty boys with an undescended testicle, aged 1-4 years (median = 2.4 years) were enrolled into the study. Fifty boys with inguinal hernia aged 1-4 years, served as controls (median age = 2.1 years). Investigators assessed the MMP-1 and MMP-2 concentrations using Surface Plasmon Resonance Imaging. The levels of INSL-3 and inhibin B were assessed using commercial enzyme-linked immunosorbent assay ELISA. The median concentration of MMP-1 and MMP-2 in the blood plasma of patients with unilateral cryptorchidism, was nearly 2-folds higher than in controls. The great area under the ROC curve with the cut off value of 0.865 for MMP-1, and 0.819 for MMP-2, indicates the high clinical sensitivity and specificity of the test of plasma levels of MMP-1 and MMP-2 for boys with cryptorchidism. The increased plasma levels of MMP-1 and MMP-2, probably reflect the level of apoptosis of the germ cells in undescended testicles, in response to the heat stress during the period of prepubertal testis development. In the group of cryptorchid boys, we found slightly lower concentrations of INSL3, without statistical significance and without correlation with MMP-1 and MMP-2 levels. There were no significant differences in the levels of inhibin B in the group of boys with cryptorchidism and boys with inguinal hernia and it also did not correlate with MMP-1 and MMP-2 concentrations.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok , Bialystok , Poland
| | | | - Anna Sankiewicz
- Department of Electrochemistry, University of Bialystok , Bialystok , Poland
| | - Łukasz Ołdak
- Department of Electrochemistry, University of Bialystok , Bialystok , Poland
| | - Ewa Gorodkiewicz
- Department of Electrochemistry, University of Bialystok , Bialystok , Poland
| | - Wojciech Debek
- Department of Pediatric Surgery, Medical University of Bialystok , Bialystok , Poland
| | - Robert Milewski
- Department of Medical Statistics, University of Bialystok , Bialystok , Poland
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok , Bialystok , Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery, Medical University of Bialystok , Bialystok , Poland
| |
Collapse
|
9
|
Campbell WA, Deshmukh A, Blum S, Todd L, Mendonca N, Weist J, Zent J, Hoang TV, Blackshaw S, Leight J, Fischer AJ. Matrix-metalloproteinase expression and gelatinase activity in the avian retina and their influence on Müller glia proliferation. Exp Neurol 2019; 320:112984. [PMID: 31251936 DOI: 10.1016/j.expneurol.2019.112984] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/15/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022]
Abstract
Gelatinases are a class of matrix metalloproteinases (MMPs) that degrade the extracellular matrix (ECM) to regulate intercellular signaling and cell migration. Gelatinase activity is tightly regulated via proteolytic activation and through the expression of tissue inhibitors of matrix metalloproteinases (TIMPs). Gelatinase activity has been implicated in retinal pathophysiology in different animal models and human disease. However, the role of gelatinases in retinal regeneration remains uncertain. In this study we investigated the dynamic changes in gelatinase activity in response to excitotoxic damage and how this enzymatic activity influenced the formation of Müller glia progenitor cells (MGPCs) in the avian retina. This study used hydrogels containing a gelatinase-degradable fluorescent peptide to measure gelatinase activity in vitro and dye quenched gelatin to localize enzymatic activity in situ. These data were corroborated by using single cell RNA sequencing (scRNA-seq). Gelatinase mRNA, specifically MMP2, was detected in oligodendrocytes and Non-Astrocytic Inner Retinal Glia (NIRG). Total retinal gelatinase activity was reduced following NMDA-treatment, and sustained inhibition of MMP2 prior to damage or growth factor treatment increased the formation of proliferating MGPCs and c-fos signaling. We observed that microglia, Müller glia (MG), and NIRG cells were involved in regulating changes in gelatinase activity through TIMP2 and TIMP3. Collectively, these findings implicate MMP2 in reprogramming of Muller glia into MGPCs.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Ameya Deshmukh
- Department of Biomedical Engineering, College of Engineering, The comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Sydney Blum
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Ninoshka Mendonca
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Jessica Weist
- Department of Biomedical Engineering, College of Engineering, The comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Joshua Zent
- Department of Biomedical Engineering, College of Engineering, The comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jennifer Leight
- Department of Biomedical Engineering, College of Engineering, The comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America.
| |
Collapse
|
10
|
A potential key mechanism in ascending aortic aneurysm development: Detection of a linear relationship between MMP-14/TIMP-2 ratio and active MMP-2. PLoS One 2019; 14:e0212859. [PMID: 30794673 PMCID: PMC6386481 DOI: 10.1371/journal.pone.0212859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/12/2019] [Indexed: 01/16/2023] Open
Abstract
Objectives Elevated matrix metalloproteinase-2 (MMP-2) tissue levels have been associated with ascending thoracic aortic aneurysm (aTAA). As MMP-2 activation is controlled by interactions among matrix metalloproteinase-14 (MMP-14), a tissue inhibitor of metalloproteinases-2 (TIMP-2) and Pro-MMP-2 in cell culture, this activation process might also play a role in aTAA. Methods Via gelatin zymography we analyzed tissue levels of MMP-2 isoforms (Pro-MMP-2, active MMP-2, total MMP-2) and via enzyme-linked immunosorbent assay (ELISA,) MMP-14,TIMP-2 and total MMP-2 tissue levels in N = 42 patients with aTAA. As controls, MMP-14 and TIMP-2 aortic tissue levels in N = 9 patients undergoing coronary artery bypass surgery were measured via ELISA, and levels of MMP-2 isoforms in N = 11 patients via gelatin zymography. Results Active MMP-2 was significantly higher in aTAA than in controls. Patients with aTAA exhibited significantly lower Pro-MMP-2 and TIMP-2 levels. Total MMP-2 and MMP-14 did not differ significantly between groups. Regression analysis revealed a linear relationship between TIMP-2 and the MMP-14/TIMP-2 ratio, as well as active MMP-2 in aTAA. Aneurysmatic tissue can be accurately distinguished from control aortic tissue (AUC = 1) by analyzing the active MMP-2/Pro-MMP-2 ratio with a cutoff value of 0.11, whereas MMP-14 and TIMP-2 roles are negligible in ROC analysis. Conclusion A larger amount of MMP-2 is activated in aTAA than in control aortic tissue–a factor that seems to be a central process in aneurysm development. When active MMP-2 exceeds 10% compared to Pro-MMP-2, we conclude that it originates from aneurysmatic tissue, which we regard as a starting point for further studies of aTAA biomarkers. The tissue's MMP-14/TIMP-2 ratio may regulate the degree of Pro-MMP-2 activation as a determining factor, while the enzymatic activities of MMP-14 and TIMP-2 do not seem to play a key role in aneurysm development.
Collapse
|
11
|
Scilabra SD, Pigoni M, Pravatá V, Schätzl T, Müller SA, Troeberg L, Lichtenthaler SF. Increased TIMP-3 expression alters the cellular secretome through dual inhibition of the metalloprotease ADAM10 and ligand-binding of the LRP-1 receptor. Sci Rep 2018; 8:14697. [PMID: 30279425 PMCID: PMC6168507 DOI: 10.1038/s41598-018-32910-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 08/06/2018] [Indexed: 01/21/2023] Open
Abstract
The tissue inhibitor of metalloproteinases-3 (TIMP-3) is a major regulator of extracellular matrix turnover and protein shedding by inhibiting different classes of metalloproteinases, including disintegrin metalloproteinases (ADAMs). Tissue bioavailability of TIMP-3 is regulated by the endocytic receptor low-density-lipoprotein receptor-related protein-1 (LRP-1). TIMP-3 plays protective roles in disease. Thus, different approaches have been developed aiming to increase TIMP-3 bioavailability, yet overall effects of increased TIMP-3 in vivo have not been investigated. Herein, by using unbiased mass-spectrometry we demonstrate that TIMP-3-overexpression in HEK293 cells has a dual effect on shedding of transmembrane proteins and turnover of soluble proteins. Several membrane proteins showing reduced shedding are known as ADAM10 substrates, suggesting that exogenous TIMP-3 preferentially inhibits ADAM10 in HEK293 cells. Additionally identified shed membrane proteins may be novel ADAM10 substrate candidates. TIMP-3-overexpression also increased extracellular levels of several soluble proteins, including TIMP-1, MIF and SPARC. Levels of these proteins similarly increased upon LRP-1 inactivation, suggesting that TIMP-3 increases soluble protein levels by competing for their binding to LRP-1 and their subsequent internalization. In conclusion, our study reveals that increased levels of TIMP-3 induce substantial modifications in the cellular secretome and that TIMP-3-based therapies may potentially provoke undesired, dysregulated functions of ADAM10 and LRP-1.
Collapse
Affiliation(s)
- Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany. .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany.
| | - Martina Pigoni
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Veronica Pravatá
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Tobias Schätzl
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| |
Collapse
|
12
|
All-Trans Retinoic Acid Enhances Matrix Metalloproteinase 2 Expression and Secretion in Human Myeloid Leukemia THP-1 Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5971080. [PMID: 30225259 PMCID: PMC6129365 DOI: 10.1155/2018/5971080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
All-trans retinoic acid (ATRA) is an effective drug for the induction therapy of acute promyelocytic leukemia. However, the treatment is associated with adverse events such as retinoic acid syndrome (RAS) in some patients, whose histologic characteristics included organ infiltration by leukemic cells. Matrix metalloproteinase 2 (MMP-2) is often upregulated in tumor cells and plays a role in tumor cell migration and invasion by degrading the extracellular matrix. In this study, we examined the possible modulatory effects of ATRA on MMP-2 expression and secretion in human myeloid leukemia cell line THP-1. The cells were treated with various concentrations of ATRA, and MMP-2 expression and secretion were examined. MMP-2 expression and secretion started to increase with ATRA concentration as low as 0.1 nM and gradually increased thereafter. Agonists of retinoic acid receptor (RAR) or retinoid X receptor (RXR) alone could enhance MMP-2 secretion, and RAR or RXR antagonists alone could reverse ATRA-induced MMP-2 secretion. ATRA increased intracellular calcium ion levels, and a calcium-channel blocker inhibited ATRA-induced MMP-2 secretion. Dexamethasone suppressed ATRA-induced MMP-2 secretion. Our results suggest that ATRA enhances MMP-2 expression and secretion in human myeloid leukemia THP-1 cells in a calcium ion dependent manner through RAR/RXR signaling pathways, and this enhanced expression and secretion may be associated with the possible mechanisms of RAS.
Collapse
|
13
|
Rajagopalan P, Jain AP, Nanjappa V, Patel K, Mangalaparthi KK, Babu N, Cavusoglu N, Roy N, Soeur J, Breton L, Pandey A, Gowda H, Chatterjee A, Misra N. Proteome-wide changes in primary skin keratinocytes exposed to diesel particulate extract-A role for antioxidants in skin health. J Dermatol Sci 2018; 91:239-249. [PMID: 29857962 DOI: 10.1016/j.jdermsci.2018.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/02/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Skin acts as a protective barrier against direct contact with pollutants but inhalation and systemic exposure have indirect effect on keratinocytes. Exposure to diesel exhaust has been linked to increased oxidative stress. OBJECTIVE To investigate global proteomic alterations in diesel particulate extract (DPE)/its vapor exposed skin keratinocytes. METHODS We employed Tandem Mass Tag (TMT)-based proteomics to study effect of DPE/DPE vapor on primary skin keratinocytes. RESULTS We observed an increased expression of oxidative stress response protein NRF2, upon chronic exposure of primary keratinocytes to DPE/its vapor which includes volatile components such as polycyclic aromatic hydrocarbons (PAHs). Mass spectrometry-based quantitative proteomics led to identification 4490 proteins of which 201 and 374 proteins were significantly dysregulated (≥1.5 fold, p≤0.05) in each condition, respectively. Proteins involved in cellular processes such as cornification (cornifin A), wound healing (antileukoproteinase) and differentiation (suprabasin) were significantly downregulated in primary keratinocytes exposed to DPE/DPE vapor. These results were corroborated in 3D skin models chronically exposed to DPE/DPE vapor. Bioinformatics analyses indicate that DPE and its vapor affect distinct molecular processes in skin keratinocytes. Components of mitochondrial oxidative phosphorylation machinery were seen to be exclusively overexpressed upon chronic DPE vapor exposure. In addition, treatment with an antioxidant like vitamin E partially restores expression of proteins altered upon exposure to DPE/DPE vapor. CONCLUSIONS Our study highlights distinct adverse effects of chronic exposure to DPE/DPE vapor on skin keratinocytes and the potential role of vitamin E in alleviating adverse effects of environmental pollution.
Collapse
Affiliation(s)
| | - Ankit P Jain
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.
| | | | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.
| | | | - Niraj Babu
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India; Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| | - Nükhet Cavusoglu
- L'Oréal Research and Innovation, Aulnay sous bois, 93600, France.
| | - Nita Roy
- L'Oréal India Pvt. Ltd., Beary's Global Research Triangle, Bangalore 560067, India.
| | - Jeremie Soeur
- L'Oréal Research and Innovation, Aulnay sous bois, 93600, France.
| | - Lionel Breton
- L'Oréal Research and Innovation, Aulnay sous bois, 93600, France.
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.
| | - Namita Misra
- L'Oréal Research and Innovation, Aulnay sous bois, 93600, France; L'Oréal India Pvt. Ltd., Beary's Global Research Triangle, Bangalore 560067, India.
| |
Collapse
|
14
|
Nagai H, Hasegawa S, Uchida F, Terabe T, Ishibashi Kanno N, Kato K, Yamagata K, Sakai S, Kawashiri S, Sato H, Yanagawa T, Bukawa H. MicroRNA-205-5p suppresses the invasiveness of oral squamous cell carcinoma by inhibiting TIMP‑2 expression. Int J Oncol 2018; 52:841-850. [PMID: 29393341 DOI: 10.3892/ijo.2018.4260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/07/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) play important roles in carcinogenesis. The miRNA, miR-205-5p, has been reported to suppress the growth of various types of tumor; however, its functional contribution to oral squamous cell carcinoma (OSCC) is not yet clear. Thus, this study was conducted to determine the miRNA expression signatures in OSCC and to investigate the functional role of miR‑205‑5p in OSCC cells. We measured miR‑205‑5p expression by RT-qPCR, and examined the function of miR‑205‑5p by transfecting a miR‑205‑5p mimic or inhibitor into OSCC cells and measuring cell proliferation, migration and invasiveness. Genes targeted by miR‑205‑5p were identified using the TargetScan database and verified by western blot analysis, luciferase reporter assay and ELISA. We found that miR‑205‑5p was significantly downregulated in OSCC cell lines and tissue specimens. Following transfection of miR‑205‑5p mimic or inhibitor into the cancer cell lines, miR‑205‑5p overexpression significantly suppressed cancer cell migration and invasion. We further demonstrated that miR‑205‑5p directly targeted and regulated the tissue inhibitor of metalloproteinases‑2 (TIMP‑2) gene. The silencing of TIMP‑2 suppressed cancer cell invasion and the activation of pro‑matrix metalloproteinase‑2 (pro‑MMP‑2). These results suggest that TIMP‑2 promotes tumor progression, and that miR‑205‑5p directly regulates TIMP‑2, thereby suppressing pro‑MMP‑2 activation and inhibiting OSCC cell invasiveness. Our data describing the pathways regulated by miR‑205‑5p provide new insight into the mechanisms responsible for OSCC development and metastasis.
Collapse
Affiliation(s)
- Hiroki Nagai
- Department of Oral and Maxillofacial Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Shogo Hasegawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Fumihiko Uchida
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Takehito Terabe
- Department of Oral and Maxillofacial Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Naomi Ishibashi Kanno
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Koroku Kato
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Kenji Yamagata
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Satoshi Sakai
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Hiroshi Sato
- Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroki Bukawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
15
|
Nam JH, Cho H, Kang H, Lee J, Jung M, Chang Y, Kim K, Hoe H. A Mercaptoacetamide‐Based Class II Histone Deacetylase Inhibitor Suppresses Cell Migration and Invasion in Monomorphic Malignant Human Glioma Cells by Inhibiting FAK/STAT3 Signaling. J Cell Biochem 2017; 118:4672-4685. [DOI: 10.1002/jcb.26133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/11/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Jin Han Nam
- Department of Neural Development and DiseaseKorea Brain Research Institute (KBRI)61, Cheomdan‐ro, Dong‐guDaegu41068Korea
| | - Hyun‐Ji Cho
- Department of Neural Development and DiseaseKorea Brain Research Institute (KBRI)61, Cheomdan‐ro, Dong‐guDaegu41068Korea
| | - Hyejin Kang
- Department of Neural Development and DiseaseKorea Brain Research Institute (KBRI)61, Cheomdan‐ro, Dong‐guDaegu41068Korea
| | - Ju‐Young Lee
- Department of Neural Development and DiseaseKorea Brain Research Institute (KBRI)61, Cheomdan‐ro, Dong‐guDaegu41068Korea
| | - Mira Jung
- Department of Radiation MedicineLombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDistrict Of Columbia, DC20057‐1464
| | - Young‐Chae Chang
- Research Institute of Biomedical Engineering and Department of MedicineCatholic University of Daegu School of MedicineDaegu42472Korea
| | - Keetae Kim
- Department of New BiologyDGISTDaegu42988Korea
| | - Hyang‐Sook Hoe
- Department of Neural Development and DiseaseKorea Brain Research Institute (KBRI)61, Cheomdan‐ro, Dong‐guDaegu41068Korea
| |
Collapse
|
16
|
Golubtsova NN, Vasilieva OV, Petrov VV, Filippov FN, Gunin AG. Age-related changes of angiomotin and endostatin content in human skin. ADVANCES IN GERONTOLOGY 2016. [DOI: 10.1134/s2079057016020065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Tissue Inhibitor of Metalloproteinase-2 Suppresses Collagen Synthesis in Cultured Keloid Fibroblasts. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e520. [PMID: 26495233 PMCID: PMC4596445 DOI: 10.1097/gox.0000000000000503] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/27/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Keloids are defined as a kind of dermal fibroproliferative disorder resulting from the accumulation of collagen. In the remodeling of extracellular matrix, the balance between matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) is as critical as the proper production of extracellular matrix. We investigate the role of TIMPs and MMPs in the pathogenesis of keloids and examine the therapeutic potential of TIMP-2. METHODS The expression of TIMPs and MMPs in most inflamed parts of cultured keloid fibroblasts (KFs) and peripheral normal skin fibroblasts (PNFs) in the same individuals and the reactivity of KFs to cyclic mechanical stretch were analyzed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (n = 7). To evaluate the effect of treating KFs with TIMP-2, collagen synthesis was investigated by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, and microscopic analysis was used to examine the treatment effects of TIMP-2 on ex vivo cultures of keloid tissue (n = 6). RESULTS TIMP-2 was downregulated in cultured KFs compared with PNFs in the same individuals, and the reduction in TIMP-2 was exacerbated by cyclic mechanical stretch. Administration of TIMP-2 (200 or 300 ng/mL) significantly suppressed expression of Col1A2 and Col3A1 mRNA and collagen type I protein in KFs. TIMP-2 also significantly reduced the skin dermal and collagen bundle thickness in ex vivo cultures of keloid tissue. CONCLUSION These results indicated that downregulation of TIMP-2 in KFs is a crucial event in the pathogenesis of keloids, and the TIMP-2 would be a promising candidate for the treatment of keloids.
Collapse
|
18
|
Electrical Stimulation Modulates the Expression of Multiple Wound Healing Genes in Primary Human Dermal Fibroblasts. Tissue Eng Part A 2015; 21:1982-90. [DOI: 10.1089/ten.tea.2014.0687] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
19
|
Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol 2015; 44-46:207-23. [PMID: 25794647 DOI: 10.1016/j.matbio.2015.03.004] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) form a subgroup of the matrix metalloproteinase (MMP) family, and there are 6 MT-MMPs in humans. MT-MMPs are further sub-classified into type I transmembrane-type (MT1, -MT2-, MT3- and MT5-MMPs) and glycosylphosphatidylinositol (GPI)-anchored type (MT4- and MT6-MMPs). In either case MT-MMPs are tethered to the plasma membrane, and this cell surface expression provides those enzymes with unique functionalities affecting various cellular behaviours. Among the 6 MT-MMPs, MT1-MMP is the most investigated enzyme and many of its roles and regulations have been revealed to date, but the potential roles and regulatory mechanisms of other MT-MMPs are gradually getting clearer as well. Further investigations of MT-MMPs are likely to reveal novel pathophysiological mechanisms and potential therapeutic strategies for different diseases in the future.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.
| |
Collapse
|
20
|
Expression of the matrix metalloproteases 2, 14, 24, and 25 and tissue inhibitor 3 as potential molecular markers in advanced human gastric cancer. DISEASE MARKERS 2014; 2014:285906. [PMID: 24669030 PMCID: PMC3942291 DOI: 10.1155/2014/285906] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 11/27/2013] [Indexed: 01/08/2023]
Abstract
Background. During progression of gastric cancer (GC), degradation of the extracellular matrix is mediated by the matrix metalloproteases (MMPs) and their tissue inhibitors (TIMPs): changes in the expression of these have been related to unfavorable prognosis in GC. Objective. To analyze the expression of certain MMPs and TIMPs in chronic superficial gastritis (SG) and GC. Methods. The expression of MMPs and TIMPs was determined using qRT-PCR; the expression was classified, using threshold cycle (CT) values, as very high (CT ≤ 25), high (CT = 26–30), moderate (CT = 31–35), low (CT = 36–39), or not detected (CT = 40). Strength of association was estimated between the proteins, which were detected by Western blot, and the risk of developing GC. Results. We found a high expression of MMP1, MMP2, MMP14, TIMP1, and TIMP3; moderate one of MMP9 and MMP25, and low one of MMP13 and MMP24 in both tissues. In absolute mRNA levels, significant differences were found in expression of MMP2, MMP24, and MMP25, which are overexpressed in GC compared with SG. The presence of the proteins MMP-14 and TIMP-3 was associated with the risk of developing GC. Conclusions. We consider that MMP2, MMP24, and MMP25 and the proteins MMP-14 and TIMP-3 could be candidates for prognostic molecular markers in GC.
Collapse
|
21
|
Woskowicz AM, Weaver SA, Shitomi Y, Ito N, Itoh Y. MT-LOOP-dependent localization of membrane type I matrix metalloproteinase (MT1-MMP) to the cell adhesion complexes promotes cancer cell invasion. J Biol Chem 2013; 288:35126-37. [PMID: 24165131 DOI: 10.1074/jbc.m113.496067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Localization of membrane type I matrix metalloproteinase (MT1-MMP) to the leading edge is thought to be a crucial step during cancer cell invasion. However, its mechanisms and functional impact on cellular invasion have not been clearly defined. In this report, we have identified the MT-LOOP, a loop region in the catalytic domain of MT1-MMP ((163)PYAYIREG(170)), as an essential region for MT1-MMP to promote cellular invasion. Deletion of the MT-LOOP effectively inhibited functions of MT1-MMP on the cell surface, including proMMP-2 activation, degradation of gelatin and collagen films, and cellular invasion into a collagen matrix. This is not due to loss of the catalytic function of MT1-MMP but due to inefficient localization of the enzyme to β1-integrin-rich cell adhesion complexes at the plasma membrane. We also found that an antibody that specifically recognizes the MT-LOOP region of MT1-MMP (LOOPAb) inhibited MT1-MMP functions, fully mimicking the phenotype of the MT-LOOP deletion mutant. We therefore propose that the MT-LOOP region is an interface for molecular interactions that mediate enzyme localization to cell adhesion complexes and regulate MT1-MMP functions. Our findings have revealed a novel mechanism regulating MT1-MMP during cellular invasion and have identified the MT-LOOP as a potential exosite target region to develop selective MT1-MMP inhibitors.
Collapse
Affiliation(s)
- Anna M Woskowicz
- From the Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Burrows GG, Van't Hof W, Newell LF, Reddy A, Wilmarth PA, David LL, Raber A, Bogaerts A, Pinxteren J, Deans RJ, Maziarz RT. Dissection of the human multipotent adult progenitor cell secretome by proteomic analysis. Stem Cells Transl Med 2013; 2:745-57. [PMID: 23981727 DOI: 10.5966/sctm.2013-0031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in acute graft versus host disease clinical trials with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Our previous studies documented that MAPCs secrete factors that play a role in regulating T-cell activity. Here we expand our studies using a proteomics approach to characterize and quantify MAPC secretome components secreted over 72 hours in vitro under steady-state conditions and in the presence of the inflammatory triggers interferon-γ and lipopolysaccharide, or a tolerogenic CD74 ligand, RTL1000. MAPCs differentially responded to each of the tested stimuli, secreting molecules that regulate the biological activity of the extracellular matrix (ECM), including proteins that make up the ECM itself, proteins that regulate its construction/deconstruction, and proteins that serve to attach and detach growth factors from ECM components for redistribution upon appropriate stimulation. MAPCs secreted a wide array of proteases, some detectable in their zymogen forms. MAPCs also secreted protease inhibitors that would regulate protease activity. MAPCs secreted chemokines and cytokines that could provide molecular guidance cues to various cell types, including neutrophils, macrophages, and T cells. In addition, MAPCs secreted factors involved in maintenance of a homeostatic environment, regulating such diverse programs as innate immunity, angiogenesis/angiostasis, targeted delivery of growth factors, and the matrix-metalloprotease cascade.
Collapse
|
23
|
Imakawa K, Yasuda J, Kobayashi T, Miyazawa T. Changes in Gene Expression Associated with Conceptus Implantation to the Maternal Endometrium. ACTA ACUST UNITED AC 2013. [DOI: 10.1274/jmor.30.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Fields J, Cisneros IE, Borgmann K, Ghorpade A. Extracellular regulated kinase 1/2 signaling is a critical regulator of interleukin-1β-mediated astrocyte tissue inhibitor of metalloproteinase-1 expression. PLoS One 2013; 8:e56891. [PMID: 23457635 PMCID: PMC3572966 DOI: 10.1371/journal.pone.0056891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 01/17/2013] [Indexed: 11/21/2022] Open
Abstract
Astrocytes are essential for proper central nervous system (CNS) function and are intricately involved in neuroinflammation. Despite evidence that immune-activated astrocytes contribute to many CNS pathologies, little is known about the inflammatory pathways controlling gene expression. Our laboratory identified altered levels of tissue inhibitor of metalloproteinase (TIMP)-1 in brain lysates from human immunodeficiency virus (HIV)-1 infected patients, compared to age-matched controls, and interleukin (IL)-1β as a key regulator of astrocyte TIMP-1. Additionally, CCAAT enhancer binding protein (C/EBP)β levels are elevated in brain specimens from HIV-1 patients and the transcription factor contributes to astrocyte TIMP-1 expression. In this report we sought to identify key signaling pathways necessary for IL-1β-mediated astrocyte TIMP-1 expression and their interaction with C/EBPβ. Primary human astrocytes were cultured and treated with mitogen activated protein kinase-selective small molecule inhibitors, and IL-1β. TIMP-1 and C/EBPβ mRNA and protein expression were evaluated at 12 and 24 h post-treatment, respectively. TIMP-1 promoter-driven luciferase plasmids were used to evaluate TIMP-1 promoter activity in inhibitor-treated astrocytes. These data show that extracellular regulated kinase (ERK) 1/2-selective inhibitors block IL-1β-induced astrocyte TIMP-1 expression, but did not decrease C/EBPβ expression in parallel. The p38 kinase (p38K) inhibitors partially blocked both IL-1β-induced astrocyte TIMP-1 expression and C/EBPβ expression. The ERK1/2-selective inhibitor abrogated IL-1β-mediated increases in TIMP-1 promoter activity. Our data demonstrate that ERK1/2 activation is critical for IL-1β-mediated astrocyte TIMP-1 expression. ERK1/2-selective inhibition may elicit a compensatory response in the form of enhanced IL-1β-mediated astrocyte C/EBPβ expression, or, alternatively, ERK1/2 signaling may function to moderate IL-1β-mediated astrocyte C/EBPβ expression. Furthermore, p38K activation contributes to IL-1β-induced astrocyte TIMP-1 and C/EBPβ expression. These data suggest that ERK1/2 signals downstream of C/EBPβ to facilitate IL-1β-induced astrocyte TIMP-1 expression. Astrocyte ERK1/2 and p38K signaling may serve as therapeutic targets for manipulating CNS TIMP-1 and C/EBPβ levels, respectively.
Collapse
Affiliation(s)
- Jerel Fields
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Irma E. Cisneros
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Kathleen Borgmann
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anuja Ghorpade
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
25
|
CD133 affects the invasive ability of HCT116 cells by regulating TIMP-2. THE AMERICAN JOURNAL OF PATHOLOGY 2012. [PMID: 23195431 DOI: 10.1016/j.ajpath.2012.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CD133 is widely expressed in colorectal cancer (CRC) tissues and cell lines. This protein has been used as a marker of CRC cancer stem cells, although the function and mechanism of CD133 in CRC invasion and metastasis remain unclear. In our study, we examined the role of CD133 in CRC invasion in vitro and investigated the mechanism involved in CD133-related invasion. CD133(high) and CD133(low) HCT116 cells were isolated, and the proliferation and invasive ability of these two subpopulations were tested. CD133(high) HCT116 cells exhibited greater proliferation and invasion compared with CD133(low) HCT116 cells. CD133 knockdown (using CD133 small-interfering [si]RNA) inhibited the invasive activity of CD133si-HCT116 cells. For the first time, we found that the expression of tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) was down-regulated in CD133si-HCT116 cells. In addition, for the TIMP-2si-HCT116 cells (transfected with TIMP-2 siRNA), in vitro invasion was significantly decreased, whereas the expression of CD133 remained unchanged. Finally, the metalloproteinase 2 and MEK/ERK signaling pathways were examined, and no significant change was observed after the knockdown of CD133 or TIMP-2 in HCT116 cells. In conclusion, we demonstrated that CD133 plays an important role in HCT116 cell invasion, and for the first time, we found that CD133 knockdown significantly down-regulated TIMP-2 expression, which suggests that CD133 affects the invasive ability of HCT116 cells by regulating TIMP-2.
Collapse
|
26
|
Wang L, Chen S, Zhang M, Li N, Chen Y, Su W, Liu Y, Lu D, Li S, Yang Y, Li Z, Stupack D, Qu P, Hu H, Xiang R. Legumain: a biomarker for diagnosis and prognosis of human ovarian cancer. J Cell Biochem 2012; 113:2679-86. [PMID: 22441772 DOI: 10.1002/jcb.24143] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Legumain is a member of the asparaginyl endopeptidase family that is over-expressed in response to hypoxic stress on mammary adenocarcinoma, colorectal cancer, proliferating endothelial cells, and tumor-associated macrophages (TAMs). Here, we demonstrate that elevated expression of legumain in ovarian cancer by a proteomic approach using isobaric tags for relative and absolute quantification (iTRAQ) followed by liquid chromatography-mass spectrometry (LC-MS/MS). To investigate the relationship between legumain expression and ovarian cancer development, we tested legumain expression in malignant human ovarian tumors (n = 60), borderline ovarian tumors (n = 20), benign ovarian tumors (n = 20), and normal ovary samples (n = 20) using immunohistochemical assay (IHC). A correlation between legumain expression, and clinocopathologic and biological variables was also established. Importantly, increased legumain expression was validated by real-time PCR and Western blots, correlated positively with an increased malignancy of ovarian tumors (P < 0.01). In fact, patients with strong legumain expression had a worse prognosis (P = 0.03). In addition, results of in vitro experiments revealed that over-expression of legumain correlates with increased cell migration and invasion of ovarian cancer cells. Although legumain's functional role and clinical utility remain to be established, our results indicated that a sensitive assay for early expression of legumain may serve as both a potential biomarker and a molecular target for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lina Wang
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Is matrix metalloproteinase required in postnatal testicular tubules for germ cell maturation? J Pediatr Surg 2012; 47:1724-9. [PMID: 22974613 DOI: 10.1016/j.jpedsurg.2012.03.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/26/2012] [Accepted: 03/20/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND/AIM Cryptorchidism may cause infertility by failed transformation of neonatal gonocytes into adult dark spermatogonia, the putative stem cells for spermatogenesis. Gonocytes migrate centrifugally to the tubular basement membrane to become adult dark spermatogonia. Regulation of this transformation remains unknown. We aimed to investigate neonatal rodent testis matrix metalloproteinase (MMP) production to see whether MMPs loosen extracellular matrix between Sertoli cells to facilitate gonocyte movement. METHODS Sprague-Dawley rat testes (n = 4-6 per group) were collected at embryonic day 19 (E19) and postnatal (P) days P0 to 10 for immunohistochemistry. Immunofluorescent confocal images were captured for presence of membrane type 1 MMP (MT1-MMP), matrix metalloproteinase 2 (MMP2), tissue inhibitor of metalloproteinase 2 (TIMP2), mouse VASA homologue, anti-Müllerian hormone, and androgen receptor in tissue sections. Testicular proteins were analyzed by immunoblotting. RESULTS Membrane type 1 MMP was strongly present in gonocytes at E19 then decreased, whereas it increased in testicular somatic cells from P0 to P10. Testicular protein levels of MT1-MMP, MMP2, and androgen receptor were constant from E19 to P10. Anti-Müllerian hormone protein sharply decreased after P2, whereas TIMP2 gradually increased from E19 to P10. Gonocytes migrated to basement membrane at P2 to P6. CONCLUSION Membrane type 1 MMP, MMP2, and TIMP2 were present in testis from E19 to P10 during gonocyte migration and transformation into spermatogenic stem cells. Increased knowledge about germ cell development may aid efforts to improve fertility in cryptorchidism.
Collapse
|
28
|
Lee KS, Shin JS, Nam KS. Inhibitory effect of starfish polysaccharides on metastasis in HT-29 human colorectal adenocarcinoma. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0099-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Mazzoni A, Breschi L, Carrilho M, Nascimento FD, Orsini G, Ruggeri A, Gobbi P, Manzoli L, Tay FR, Pashley DH, Tjäderhane L. A review of the nature, role, and function of dentin non-collagenous proteins. Part II: enzymes, serum proteins, and growth factors. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00268.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Hauser-Davis RA, Lima AA, Ziolli RL, Campos RC. First-time report of metalloproteinases in fish bile and their potential as bioindicators regarding environmental contamination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 110-111:99-106. [PMID: 22281778 DOI: 10.1016/j.aquatox.2011.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 05/31/2023]
Abstract
Gallbladder bile from 2 fish species, mullet (Mugil liza) and tilapias (Tilapia rendalli), contain substantial matrix metalloproteinases (MMPs). Extensive purification studies were conducted in order to obtain workable samples for SDS-PAGE and zymography analysis. Proteinase activities were assayed by gelatin substrate zymography. Several protein bands were observed, corresponding to molecular weights of 200, 136, 43, 36, 34, 29, 23 and 14 kDa in mullet bile and 179, 97, 79, 61, 54, 45, 36, 33 and 21 kDa in tilapia bile. Specific inhibitor studies were conducted, in which MMPS were inhibited by EDTA and 1,10 phenanthroline, but not by serine and cysteine protease inhibitors, such as phenylmethylsulfonyl fluoride (PMSF) and transepoxysuccinyl-l-leucylamido-l-guanidino butane (E-64), confirming the proteinase identities as MMPs. Differences in proteinase expression were observed in fish from a contaminated and reference site. Some studies regarding MMPs in different fish tissues exist, however this is the first study conducted in fish bile, and their involvement in detoxification processes and organism protection against the effects of aquatic contaminants may be a possibility.
Collapse
Affiliation(s)
- R A Hauser-Davis
- Pontifícia Universidade Católica - Rio de Janeiro (PUC-Rio), Chemistry Department, Bioanalytics Laboratory, Rua Marquês de São Vicente, 225, Gávea, CEP: 22453-900, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
31
|
Chen H, Yuan Y, Zhang C, Luo A, Ding F, Ma J, Yang S, Tian Y, Tong T, Zhan Q, Liu Z. Involvement of S100A14 protein in cell invasion by affecting expression and function of matrix metalloproteinase (MMP)-2 via p53-dependent transcriptional regulation. J Biol Chem 2012; 287:17109-17119. [PMID: 22451655 DOI: 10.1074/jbc.m111.326975] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S100 proteins have been implicated in tumorigenesis and metastasis. As a member of S100 proteins, the role of S100A14 in carcinogenesis has not been fully understood. Here, we showed that ectopic overexpression of S100A14 promotes motility and invasiveness of esophageal squamous cell carcinoma cells. We investigated the underlying mechanisms and found that the expression of matrix metalloproteinase (MMP)-2 is obviously increased after S100A14 gene overexpression. Inhibition of MMP2 by a specific MMP2 inhibitor at least partly reversed the invasive phenotype of cells overexpressing S100A14. By serendipity, we found that S100A14 could affect p53 transactivity and stability. Thus, we further investigated whether the effect of MMP2 by S100A14 is dependent on p53. A series of biochemical assays showed that S100A14 requires functional p53 to affect MMP2 transcription, and p53 potently transrepresses the expression of MMP2. Finally, RT-quantitative PCR analysis of human breast cancer specimens showed a significant correlation between S100A14 mRNA expression and MMP2 mRNA expression in cases with wild-type p53 but not in cases with mutant p53. Collectively, our data strongly suggest that S100A14 promotes cell motility and invasiveness by regulating the expression and function of MMP2 in a p53-dependent manner.
Collapse
Affiliation(s)
- Hongyan Chen
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yi Yuan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunpeng Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Aiping Luo
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fang Ding
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianlin Ma
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shouhui Yang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanyan Tian
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tong Tong
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
32
|
Boosani CS, Sudhakar YA. Proteolytically Derived Endogenous Angioinhibitors Originating from the Extracellular Matrix. Pharmaceuticals (Basel) 2011; 4:1551-1577. [PMID: 22267953 PMCID: PMC3260939 DOI: 10.3390/ph4121551] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, a neovascularization process induced from the existing parent blood vessels, is a prerequisite for many physiological and pathological conditions. Under physiological conditions it is regulated by a balance between endogenous angioinhibitors and angioactivators, and an imbalance between them would lead to pathological conditions such as cancer, age-related macular degeneration (AMD), diabetic retinopathy, cardiovascular diseases, etc. Several proteolytically generated endogenous molecules have been identified which exhibit angioinhibition and/or antitumor activities. These angioinhibitors interact with endothelial and tumor cells by binding to distinct integrins and initiate many of their intracellular signaling mechanisms regulating the cell survival and or apoptotic pathways. The present review will focus on the extracellular matrix derived angioinhibitors, and their mechanisms of actions that point to the clinical significance and therapeutic implications.
Collapse
Affiliation(s)
- Chandra Shekhar Boosani
- Cell Signaling, Retinal and Tumor Angiogenesis Laboratory, Department of Genetics, Boys Town National Research Hospital, Omaha, NE 68131, USA; E-Mail:
| | - Yakkanti A. Sudhakar
- Cell Signaling, Retinal and Tumor Angiogenesis Laboratory, Department of Genetics, Boys Town National Research Hospital, Omaha, NE 68131, USA; E-Mail:
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-402-498-6681; Fax: +1-402-498-6331
| |
Collapse
|
33
|
Hua H, Li M, Luo T, Yin Y, Jiang Y. Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci 2011; 68:3853-68. [PMID: 21744247 PMCID: PMC11114831 DOI: 10.1007/s00018-011-0763-x] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/31/2011] [Accepted: 06/21/2011] [Indexed: 02/05/2023]
Abstract
Proteases are crucial for development, tissue remodeling, and tumorigenesis. Matrix metalloproteinases (MMPs) family, in particular, consists of more than 20 members with unique substrates and diverse function. The expression and activity of MMPs in a variety of human cancers have been intensively studied. MMPs have well-recognized roles in the late stage of tumor progression, invasion, and metastasis. However, increasing evidence demonstrates that MMPs are involved earlier in tumorigenesis, e.g., in malignant transformation, angiogenesis, and tumor growth both at the primary and metastatic sites. Recent studies also suggest that MMPs play complex roles in tumor progression. While most MMPs promote tumor progression, some of them may protect the host against tumorigenesis in a context-dependent manner. MMPs have been chosen as promising targets for cancer therapy on the basis of their aberrant up-regulation in malignant tumors and their ability to promote cancer metastasis. Although preclinical studies testing the efficacy of MMP suppression in tumor models were so encouraging, the results of clinical trials in cancer patients have been rather disappointing. Here, we review the complex roles of MMPs and their endogenous inhibitors such as tissue inhibitors of metalloproteinase in tumorigenesis and strategies in suppressing MMPs.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minjing Li
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Luo
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yancun Yin
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Dimerization of MT1-MMP during cellular invasion detected by fluorescence resonance energy transfer. Biochem J 2011; 440:319-26. [DOI: 10.1042/bj20110424] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Homodimerization of the membrane-bound collagenase MT1-MMP [membrane-type 1 MMP (matrix metalloproteinase)] is crucial for its collagenolytic activity. However, it is not clear whether this dimerization is regulated during cellular invasion into three-dimensional collagen matrices. To address this question, we established a fluorescence resonance energy transfer system to detect MT1-MMP dimerization and analysed the process in cells invading through three-dimensional collagen. Our data indicate that dimerization occurs dynamically and constantly at the leading edge of migrating cells, but not the trailing edge. We found that polarized dimerization was not due to ECM (extracellular matrix) attachment, but was rather controlled by reorganization of the actin cytoskeleton by the small GTPases, Cdc42 (cell division cycle 42) and Rac1. Our data indicate that cell-surface collagenolytic activity is regulated co-ordinately with cell migration events to enable penetration of the matrix physical barrier.
Collapse
|
35
|
Kanca H, Walter I, Miller I, Schäfer-Somi S, Izgur H, Aslan S. Expression and activity of matrix metalloproteinases in the uterus of bitches after spontaneous and induced abortion. Reprod Domest Anim 2011; 46:197-204. [PMID: 20477983 DOI: 10.1111/j.1439-0531.2010.01619.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aim of this study was to determine the intrauterine activity of matrix metalloproteinases (MMP)-2 and -9 after cessation of the local effect of progesterone. For this purpose, pregnancy was terminated in 10 bitches at mid-gestation with the progesterone receptor antagonist aglepristone (10 mg/kg body weight, sc, Alizine®; Virbac, France) at two subsequent days (group IRA = induced resorption/abortion). The IRA group was divided into two subgroups (Group I, n = 5, days 25-35 of pregnancy; group II, n = 5, days 36-45). Five further bitches were introduced with beginning abortion (group SRA = spontaneous resorption/abortion). Seven healthy bitches between day 25 and 45 of gestation served as controls. After ovariohysterectomy at the end of abortion and between days 25 and 45 of gestation, respectively, the distribution and activity of collagenases were investigated by immunohistochemistry and gelatin zymography. At placental sites, MMP-2 activity in the endometrium was significantly lower in IRA groups than in the SRA group (33.7 ± 11.8% and 39.3 ± 5.4% vs 52.2 ± 10.2%, p < 0.05); however, MMP-2 expression was lowest in the control group (control: 21.4 ± 6.3%; p < 0.01) and similarly in the myometrium (controls: 13.1 ± 2.5%; p < 0.05). MMP-9 activity was also lower in the endometrium and myometrium of the control group in comparison to SRA and IRA groups (11.8 ± 3.2%; p < 0.01 and 28.4 ± 32.8%; p < 0.05). At interplacental sites, the amount of active collagenases in the myometrium was significantly lower in the control group. It is concluded that the blockade of the biological progesterone effect was associated with an increase in activity of both collagenases.
Collapse
Affiliation(s)
- H Kanca
- Faculty of Veterinary Medicine, Department of Obstetrics and Gynaecology, University of Ankara, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
36
|
Fernandez CA, Roy R, Lee S, Yang J, Panigrahy D, Van Vliet KJ, Moses MA. The anti-angiogenic peptide, loop 6, binds insulin-like growth factor-1 receptor. J Biol Chem 2010; 285:41886-95. [PMID: 20940305 DOI: 10.1074/jbc.m110.166439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs), the endogenous inhibitors of matrix metalloproteinases, have been shown to possess biological functions that are independent of their ability to inhibit matrix metalloproteinases. We have previously shown that the C-terminal domain of TIMP-2 and, in particular, Loop 6 inhibit capillary endothelial cell proliferation and angiogenesis both in vitro and in vivo. To elucidate the mechanism by which Loop 6 inhibits angiogenesis, we sought to determine whether its biological effects were the result of a known TIMP-2 protein-protein interaction or of a receptor-mediated event. In this study, we identify insulin-like growth factor-1 receptor as a binding partner of Loop 6/TIMP-2 and characterize this interaction on the endothelial cell surface and the consequences of this interaction on downstream receptor signaling.
Collapse
Affiliation(s)
- Cecilia A Fernandez
- Vascular Biology Program, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Jourdan-LeSaux C, Zhang J, Lindsey ML. Extracellular matrix roles during cardiac repair. Life Sci 2010; 87:391-400. [PMID: 20670633 PMCID: PMC2946433 DOI: 10.1016/j.lfs.2010.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 02/06/2023]
Abstract
The cardiac extracellular matrix (ECM) provides a platform for cells to maintain structure and function, which in turn maintains tissue function. In response to injury, the ECM undergoes remodeling that involves synthesis, incorporation, and degradation of matrix proteins, with the net outcome determined by the balance of these processes. The major goals of this review are a) to serve as an initial resource for students and investigators new to the cardiac ECM remodeling field, and b) to highlight a few of the key exciting avenues and methodologies that have recently been explored. While we focus on cardiac injury and responses of the left ventricle (LV), the mechanisms reviewed here have pathways in common with other wound healing models.
Collapse
Affiliation(s)
- Claude Jourdan-LeSaux
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| | - Jianhua Zhang
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| | - Merry L. Lindsey
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| |
Collapse
|
38
|
Kim S, Oh JH, Lee Y, Lee J, Cho KH, Chung JH. Induction of tissue inhibitor of matrix metalloproteinase-2 by cholesterol depletion leads to the conversion of proMMP-2 into active MMP-2 in human dermal fibroblasts. Exp Mol Med 2010; 42:38-46. [PMID: 19887895 DOI: 10.3858/emm.2010.42.1.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cholesterol is one of major components of cell membrane and plays a role in vesicular trafficking and cellular signaling. We investigated the effects of cholesterol on matrix metalloproteinase-2 (MMP-2) activation in human dermal fibroblasts. We found that tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) expression and active form MMP-2 (64 kD) were dose-dependently increased by methyl-beta-cyclodextrin (MbetaCD), a cholesterol depletion agent. In contrast, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation were suppressed by cholesterol repletion. Then we investigated the regulatory mechanism of TIMP-2 expression by cholesterol depletion. We found that the phosphorylation of JNK as well as ERK was significantly increased by cholesterol depletion. Moreover, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation was significantly decreased by MEK inhibitor U0126, and JNK inhibitor SP600125, respectively. While a low dose of recombinant TIMP-2 (100 ng/ml) increased the level of active MMP-2 (64 kD), the high dose of TIMP-2 (>or=200 ng/ml) decreased the level of active MMP-2 (64 kD). Taken together, we suggest that the induction of TIMP-2 by cholesterol depletion leads to the conversion of proMMP-2 (72 kD) into active MMP-2 (64 kD) in human dermal fibroblasts.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Institute of Dermatological Science, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
39
|
Naruse K, Lash GE, Innes BA, Otun HA, Searle RF, Robson SC, Bulmer JN. Localization of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors for MMPs (TIMPs) in uterine natural killer cells in early human pregnancy. Hum Reprod 2008; 24:553-61. [PMID: 19088110 DOI: 10.1093/humrep/den408] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Invasion by extravillous trophoblast into uterine decidua and myometrium with remodeling of spiral arteries is essential for normal human pregnancy and is tightly regulated. Uterine natural killer (uNK) cells appear to be a major maternal regulator of placentation through the secretion of growth factors, cytokines and proteinases. METHOD Matrix metalloproteinase (MMP)-2 and MMP-9 activity in placental bed biopsies was studied using in situ gelatin zymography. Expression by uNK cells of MMP-2, MMP-9 and their tissue inhibitors, TIMP-1, TIMP-2 and TIMP-3, was localized in the placental bed by immunohistochemistry. Levels of MMP-2, MMP-9, TIMP-1, TIMP-2 and TIMP-3 secreted into 24 h cell culture supernatants of isolated uNK and unseparated (total) decidual cells (8-10 and 12-14 weeks gestation, n = 10 each group) were determined by gelatin gel zymography or western blot as appropriate. RESULTS Gelatinase activity in situ appeared greater in decidua than myometrium. uNK cells showed strong immunostaining for MMP-2 and TIMP-2. MMP-9 activity was lower in uNK cells than total decidual supernatants (8-10 weeks: P = 0.0003; 12-14 weeks: P = 0.0012). In contrast, there was no difference in MMP-2 secreted by either uNK cell or total decidual cultures. CONCLUSIONS uNK cells from early human pregnancy decidua possess innate protease activity, especially MMP-2, providing further evidence for a role for these cells in regulation of trophoblast invasion and spiral artery remodeling in early placentation.
Collapse
Affiliation(s)
- Katsuhiko Naruse
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Zymography is an electrophoretic technique enabling visualization of the number and approximate size of peptidases in a sample on the basis of their hydrolysis of a protein substrate within the gel. The technique is particularly useful for analyzing the peptidase composition of complex biological samples because visualization depends directly on proteolytic activity. This unit presents a representative zymography protocol for the study of matrix metallopeptidases (MMPs).
Collapse
|
41
|
Novak U, Kaye AH. Brain tumour invasion: Many cooks can spoil the broth. J Clin Neurosci 2008; 6:455-63. [PMID: 18639180 DOI: 10.1016/s0967-5868(99)90000-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/1999] [Accepted: 05/11/1999] [Indexed: 01/10/2023]
Affiliation(s)
- U Novak
- Department of Surgery, University of Melbourne, The Royal Melbourne Hospital, Parkville 3050, Australia
| | | |
Collapse
|
42
|
Troeberg L, Fushimi K, Khokha R, Emonard H, Ghosh P, Nagase H. Calcium pentosan polysulfate is a multifaceted exosite inhibitor of aggrecanases. FASEB J 2008; 22:3515-24. [PMID: 18632849 DOI: 10.1096/fj.08-112680] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Degradation of the cartilage proteoglycan aggrecan is a key early event in the development of osteoarthritis. Adamalysin with thrombospondin motifs (ADAMTS) -4 and ADAMTS-5 are considered to be the main enzymes responsible for aggrecan breakdown, making them attractive drugs targets. Here we show that calcium pentosan polysulfate (CaPPS), a chemically sulfated xylanopyranose from beechwood, is a multifaceted exosite inhibitor of the aggrecanases and protects cartilage against aggrecan degradation. CaPPS interacts with the noncatalytic spacer domain of ADAMTS-4 and the cysteine-rich domain of ADAMTS-5, blocking activity against their natural substrate aggrecan with inhibitory concentration 50 values of 10-40 nM but only weakly inhibiting hydrolysis of a nonglycosylated recombinant protein substrate. In addition, CaPPS increased cartilage levels of tissue inhibitor of metalloproteinases-3 (TIMP-3), an endogenous inhibitor of ADAMTS-4 and -5. This was due to the ability of CaPPS to block endocytosis of TIMP-3 mediated by low-density lipoprotein receptor-related protein. CaPPS also increased the affinity of TIMP-3 for ADAMTS-4 and -5 by more than 100-fold, improving the efficacy of TIMP-3 as an aggrecanase inhibitor. Studies with TIMP-3-null mouse cartilage indicated that CaPPS inhibition of aggrecan degradation is TIMP-3 dependent. These unique properties make CaPPS a prototypic disease-modifying agent for osteoarthritis.
Collapse
Affiliation(s)
- Linda Troeberg
- Kennedy Institute of Rheumatology Division, Imperial College London, 65 Aspenlea Rd, Hammersmith, London, W6 8LH, UK
| | | | | | | | | | | |
Collapse
|
43
|
Stetler-Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci Signal 2008; 1:re6. [PMID: 18612141 DOI: 10.1126/scisignal.127re6] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the past 20 years, the tissue inhibitors of metalloproteinases (TIMPs) have been implicated in direct regulation of cell growth and apoptosis. However, the mechanisms of these effects have been controversial. Recent work by several laboratories has identified specific signaling pathways and cell surface binding partners for members of the TIMP family. TIMP-2 binding to the integrin alpha(3)beta(1) is the first description of a cell surface receptor for a TIMP family member. TIMP-2 has been shown to induce gene expression, to promote G(1) cell cycle arrest, and to inhibit cell migration. TIMP-1 binding to CD63 inhibits cell growth and apoptosis. These new findings suggest that TIMPs are multifunctional and can act either directly through cell surface receptors or indirectly through modulation of protease activity to direct cell fate. The emerging concept is that TIMPs function in a contextual fashion so that the mechanism of action depends on the tissue microenvironment.
Collapse
Affiliation(s)
- William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Cell and Cancer Biology Branch, Vascular Biology Faculty, Center for Cancer Research, National Cancer Institute (NCI), NIH, Advanced Technology Center, Bethesda, MD 20892-4605, USA.
| |
Collapse
|
44
|
Sudhakar A, Boosani CS. Inhibition of tumor angiogenesis by tumstatin: insights into signaling mechanisms and implications in cancer regression. Pharm Res 2008; 25:2731-9. [PMID: 18551250 PMCID: PMC7275098 DOI: 10.1007/s11095-008-9634-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 05/15/2008] [Indexed: 01/16/2023]
Abstract
Growing tumors develop additional new blood vessels to meet the demand for adequate nutrients and oxygen, a process called angiogenesis. Cancer is a highly complex disease promoted by excess angiogenesis; interfering with this process poses for an attractive approach for controlling tumor growth. This hypothesis led to the identification of endogenous angiogenesis inhibitors generated from type IV collagen, a major component of vascular basement membrane (VBM). Type IV collagen and the angiogenesis inhibitors derived from it are involved in complex roles, than just the molecular construction of basement membranes. Protease degradation of collagens in VBM occurs in various physiological and pathological conditions and produces several peptides. Some of these peptides are occupied in the regulation of functions conflicting from those of their original integral molecules. Tumstatin (alpha3(IV)NC1), a proteolytic C-terminal non-collagenous (NC1) domain from type IV collagen alpha3 chain has been highlighted recently because of its potential role in anti-angiogenesis, however its biological actions are not limited to these processes. alpha3(IV)NC1 inhibits proliferation by promoting endothelial cell apoptosis and suppresses diverse tumor angiogenesis, thus making it a potential candidate for future cancer therapy. The present review surveys the physiological functions of type IV collagen and discovery of alpha3(IV)NC1 as an antiangiogenic protein with a comprehensive overview of the knowledge gained by us towards understanding its signaling mechanisms.
Collapse
Affiliation(s)
- Akulapalli Sudhakar
- Cell Signaling and Tumor Angiogenesis Laboratory, Department of Genetics, Boys Town National Research Hospital, Omaha, NE 68131, USA.
| | | |
Collapse
|
45
|
Brennan FM, Green P, Amjadi P, Robertshaw HJ, Alvarez-Iglesias M, Takata M. Interleukin-10 regulates TNF-alpha-converting enzyme (TACE/ADAM-17) involving a TIMP-3 dependent and independent mechanism. Eur J Immunol 2008; 38:1106-17. [PMID: 18383040 DOI: 10.1002/eji.200737821] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
IL-10 is a potent anti-inflammatory molecule, which regulates TNF-alpha at multiple levels. We investigated whether IL-10 also modulated the activity of the TNF-alpha-converting enzyme (TACE). Using an ex vivo fluorogenic assay we observed that LPS rapidly induced TACE activity in monocytes coinciding with release of soluble TNF-alpha. In the presence of IL-10, TNF-alpha production and activation of surface TACE was significantly inhibited. Paradoxically, both LPS with or without IL-10 led to accumulation of surface TACE (albeit catalytically inactive) over a 24 h period. We investigated whether this was mediated through induction of endogenous tissue inhibitor metalloproteinase-3 (TIMP-3). We found that the inhibition of TACE activity at 2 h by IL-10 was not TIMP-3 dependent but that the late accumulation of surface TACE was prevented with TIMP-3 antibodies. Furthermore, induction of endogenous TIMP-3 was observed by western blotting in both LPS- and in LPS with IL-10-treated monocytes from 6 to 8 h of culture. These results indicate that IL-10 further regulates TNF-alpha by modulating TACE activation at early time points and by contributing to the induction of TIMP-3, the natural inhibitor of active TACE, at later time points. These observations add to our understanding of inflammation and the importance of homeostatic regulators of these events.
Collapse
Affiliation(s)
- Fionula M Brennan
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, UK.
| | | | | | | | | | | |
Collapse
|
46
|
Stetler-Stevenson WG. The tumor microenvironment: regulation by MMP-independent effects of tissue inhibitor of metalloproteinases-2. Cancer Metastasis Rev 2008; 27:57-66. [PMID: 18058195 DOI: 10.1007/s10555-007-9105-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteolytic remodeling of the extracellular matrix is an important component of disease progression in many chronic disease states and is the initiating event in the formation of the tumor microenvironment in cancer. It is the balance of extracellular matrix degrading enzymes, the matrix metalloproteinases (MMPs) and their endogenous inhibitors that determine the extent of tissue remodeling. Unchecked MMP activity can result in significant tissue damage, facilitate disease progression and is associated with host responses to pathologic injury such as angiogenesis and inflammation. The tissue inhibitors of metalloproteinases (TIMPs) have been shown to regulate MMP activity. However, recent findings demonstrate that the tissue inhibitor of metalloproteinases-2 (TIMP-2) inhibits the mitogenic response of human microvascular endothelial cells to growth factors, such as VEGF-A and FGF-2 in vitro and angiogenesis in vivo. The mechanism of this effect is independent of metalloproteinase inhibition. Our lab is the first to demonstrate a cell-surface signaling receptor for a member of the TIMP family and suggest that TIMP-2 functions to regulate cellular responses to growth factors. These new findings are discussed in terms of a model of TIMP-2 regulation of cellular functions in the tumor microenvironment.
Collapse
|
47
|
Itoh Y, Ito N, Nagase H, Seiki M. The second dimer interface of MT1-MMP, the transmembrane domain, is essential for ProMMP-2 activation on the cell surface. J Biol Chem 2008; 283:13053-62. [PMID: 18337248 DOI: 10.1074/jbc.m709327200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of proMMP-2 and cell surface collagenolysis are important activities of membrane-type 1 matrix metalloproteinase (MT1-MMP) to promote cell migration in tissue, and these activities are regulated by homodimerization of MT1-MMP on the cell surface. In this study, we have identified the transmembrane domain as a second dimer interface of MT1-MMP in addition to the previously identified hemopexin domain. Our analyses indicate that these two modes of dimerization have different roles; transmembrane-dependent dimerization is critical for proMMP-2 activation, whereas hemopexin-dependent dimerization is important for degradation of collagen on the cell surface. Our finding provides new insight into the potential molecular arrangement of MT1-MMP contributing to its function on the cell surface.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Department of Matrix Biology, Imperial College London, Hammersmith, London W6 8LH, UK.
| | | | | | | |
Collapse
|
48
|
Lorenzl S, Buerger K, Hampel H, Beal MF. Profiles of matrix metalloproteinases and their inhibitors in plasma of patients with dementia. Int Psychogeriatr 2008; 20:67-76. [PMID: 17697439 DOI: 10.1017/s1041610207005790] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are elevated in the brain tissue of patients with dementia and may play a role in the pathophysiology of dementia. MMP-9 and tissue inhibitors of MMPs (TIMPs) are elevated in postmortem brain tissue of patients with Alzheimer's disease (AD). In a previous study we showed that circulating levels of MMP-9 are elevated in AD patients. The aim of the present study was to examine circulating levels of MMP-1, MMP-2, MMP-9, TIMP-1 and TIMP-2 in the plasma of patients with mild cognitive impairment (MCI), AD, vascular dementia (VaD), dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD), to determine, whether plasma profiles of MMPs and TIMPs differ in various types of dementia. METHODS Gelatinolytic activity (MMP-2 and MMP-9) was measured in all plasma samples by zymography. Levels of MMP-2, MMP-9, MMP-1 as well as TIMP-1 and TIMP-2 were measured by ELISA. RESULTS We found constitutive expression of MMP-1, -2 and -9 as well as TIMP-1 and -2 in all the samples investigated. As shown previously, MMP-9 was significantly elevated in the plasma of AD patients (p = 0.004) as compared to controls and MCI patients. Plasma levels of TIMP-1 were significantly lower in VD samples as compared to all other groups. Levels of TIMP-2 were significantly lower in patients with FTD as compared to AD, VaD and MCI patients. There were no significant changes of MMP-1 and MMP-2 levels in the samples. CONCLUSION These findings suggest that circulating levels of MMP-9, TIMP-1 and TIMP-2 and changes in the MMP/TIMP balance in plasma differ in various types of dementia.
Collapse
Affiliation(s)
- Stefan Lorenzl
- Department of Neurology and Neurosience, Weill Medical College of Cornell University, New York, USA.
| | | | | | | |
Collapse
|
49
|
Beceriklisoy HB, Walter I, Schäfer-Somi S, Miller I, Kanca H, Izgür H, Aslan S. Matrix metalloproteinase (MMP)-2 and MMP-9 activity in the canine uterus before and during placentation. Reprod Domest Anim 2008; 42:654-9. [PMID: 17976075 DOI: 10.1111/j.1439-0531.2006.00838.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to demonstrate the presence and localization of MMP-2 and -9 by means of RT-PCR and immunohistochemistry (IHC) within the canine uterus from the pre-implantation stage until mid-gestation and to determine MMP-2 and -9 activities by means of zymography. For this purpose, samples of the uterus and salpinx from bitches were obtained after ovariohysterectomy. Pre-implantation stages (5-12 days after mating, n = 11) were determined by verifying embryos after flushing the uterus. Further groups were determined as implantation (15-19 days after mating, n = 9), post-implantation (20-30 days after mating, n = 9) and placental stages (30-45 days after mating, n = 3). A non-pregnant group (17-30 days after mating, n = 4) served as control. MMP-2 and -9 positive cells were detected in all specimens from pregnant and nonpregnant bitches, however, with different distributions. MMP-2 was present in endothelium and smooth muscles of blood vessels and the myometrium of pregnant and nonpregnant bitches, additionally in the surface epithelium of the oviduct. The latter also stained positive for MMP-9. During placentation, MMP-2 was detected mainly in fetal blood vessels and trophoblastic cells. Higher MMP-2 activity was observed in the endometrium and myometrium of all pregnant groups compared with the nonpregnant group (p < 0.05). The pregnant groups did not differ significantly from each other (p > 0.05). MMP-9 was present in blood vessels, smooth muscle cells and epithelia, such as maternal surface epithelial cells, uterine crypts and glands. During placentation, the deep uterine glands and the epithelium of the glandular chambers were immunoreactive to MMP-9. Highest MMP-9 activities were reached in the endometrium of the pre-implantation group (23.2% of total MMP-9) and placental parts (33.3%).
Collapse
Affiliation(s)
- H B Beceriklisoy
- Department for Obstetrics and Gynecology, Graduate School of Health Sciences Institute, Faculty of Veterinary Medicine, University of Ankara, Diskapi, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
50
|
Itoh Y, Ito N, Nagase H, Evans RD, Bird SA, Seiki M. Cell surface collagenolysis requires homodimerization of the membrane-bound collagenase MT1-MMP. Mol Biol Cell 2006; 17:5390-9. [PMID: 17050733 PMCID: PMC1679699 DOI: 10.1091/mbc.e06-08-0740] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pericellular degradation of interstitial collagens is a crucial event for cells to migrate through the dense connective tissue matrices, where collagens exist as insoluble fibers. A key proteinase that participates in this process is considered to be membrane-type 1 matrix metalloproteinase (MT1-MMP or MMP-14), but little is known about the mechanism by which it cleaves the insoluble collagen. Here we report that homodimerization of MT1-MMP through its hemopexin (Hpx) domain is essential for cleaving type I collagen fibers at the cell surface. When dimerization was blocked by coexpressing either a membrane-bound or a soluble form of the Hpx domain, cell surface collagenolytic activity was inhibited in a dose-dependent manner. When MMP-13, a soluble collagenase active as a monomer in solution, was expressed as a membrane-anchored form on the cell surface, homodimerization was also required to cleave collagen. Our results introduce a new concept in that pericellular collagenolysis is regulated by correct molecular assembly of the membrane-anchored collagenase, thereby governing the directionality of the cell to migrate in tissue.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Department of Matrix Biology, Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, London W6 8LH, United Kingdom.
| | | | | | | | | | | |
Collapse
|