1
|
Mechanistic insights on the reduction of glutathione disulfide by protein disulfide isomerase. Proc Natl Acad Sci U S A 2017; 114:E4724-E4733. [PMID: 28559343 DOI: 10.1073/pnas.1618985114] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We explore the enzymatic mechanism of the reduction of glutathione disulfide (GSSG) by the reduced a domain of human protein disulfide isomerase (hPDI) with atomistic resolution. We use classical molecular dynamics and hybrid quantum mechanics/molecular mechanics calculations at the mPW1N/6-311+G(2d,2p):FF99SB//mPW1N/6-31G(d):FF99SB level. The reaction proceeds in two stages: (i) a thiol-disulfide exchange through nucleophilic attack of the Cys53-thiolate to the GSSG-disulfide followed by the deprotonation of Cys56-thiol by Glu47-carboxylate and (ii) a second thiol-disulfide exchange between the Cys56-thiolate and the mixed disulfide intermediate formed in the first step. The Gibbs activation energy for the first stage was 18.7 kcal·mol-1, and for the second stage, it was 7.2 kcal·mol-1, in excellent agreement with the experimental barrier (17.6 kcal·mol-1). Our results also suggest that the catalysis by protein disulfide isomerase (PDI) and thiol-disulfide exchange is mostly enthalpy-driven (entropy changes below 2 kcal·mol-1 at all stages of the reaction). Hydrogen bonds formed between the backbone of His55 and Cys56 and the Cys56-thiol result in an increase in the Gibbs energy barrier of the first thiol-disulfide exchange. The solvent plays a key role in stabilizing the leaving glutathione thiolate formed. This role is not exclusively electrostatic, because an explicit inclusion of several water molecules at the density-functional theory level is a requisite to form the mixed disulfide intermediate. In the intramolecular oxidation of PDI, a transition state is only observed if hydrogen bond donors are nearby the mixed disulfide intermediate, which emphasizes that the thermochemistry of thiol-disulfide exchange in PDI is influenced by the presence of hydrogen bond donors.
Collapse
|
2
|
Chen YT, Wen L, Ho KC, Juang RH, Lin CT. Lemon protein disulfide isomerase: cDNA cloning and biochemical characterization. BOTANICAL STUDIES 2013; 54:34. [PMID: 28510871 PMCID: PMC5432843 DOI: 10.1186/1999-3110-54-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/12/2013] [Indexed: 06/07/2023]
Abstract
BACKGROUND Protein disulfide isomerases (PDIs), a family of structurally related enzymes, aid in protein folding by catalyzing disulfide bonds formation, breakage, or isomerization in newly synthesized proteins and thus. RESULTS A ClPDI cDNA (1828 bp, GenBank accession HM641784) encoding a putative PDI from Citrus limonum was cloned by polymerase chain reaction (PCR). The DNA sequence encodes a protein of 500 amino acids with a calculated molecular mass of 60.5 kDa. The deduced amino acid sequence is conserved among the reported PDIs. A 3-D structural model of the ClPDI has been created based on the known crystal structure of Homo sapiens (PDB ID: 3F8U_A). The enzyme has two putative active sites comprising the redox-active disulfides between residues 60-63 and 405-408 (motif CGHC). To further characterize the ClPDI, the coding region was subcloned into an expression vector pET-20b (+), transformed into E. coli Rosetta (DE3)pLysS, and recombinant protein expressed. The recombinant ClPDI was purified by a nickel Sepharose column. PDI's activity was assayed based on the ability of the enzyme to isomerize scrambled RNase A (sRNase A) to active enzyme. The KM, kcat and kcat/KM values were 8.3 × 10-3 μM, 3.0 × 10-5 min-1, and 3.6 × 10-1 min-1 mM-1. The enzyme was most active at pH 8. CONCLUSIONS The advantage of this enzyme over the PDI from all other sources is its low KM. The potential applications of this PDI in health and beauty may worth pursuing.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Institute of Genomics and Bioinformatics, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Lisa Wen
- Department of Chemistry, Western Illinois University, 1 University Circle, Macomb, IL 61455-1390 USA
| | - Kuo-Chuan Ho
- Institute of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 202 Taiwan
| | - Rong-Huay Juang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 106 Taiwan
| | - Chi-Tsai Lin
- Institute of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 202 Taiwan
| |
Collapse
|
3
|
Chemical stress on protein disulfide isomerases and inhibition of their functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:121-66. [PMID: 21875564 DOI: 10.1016/b978-0-12-386037-8.00003-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein disulfide isomerase (PDI) is a folding assistant in the endoplasmic reticulum (ER) of eukaryotic cells. PDI has multiple roles, acting as a chaperone, a binding partner of other proteins, and a hormone reservoir as well as a disulfide isomerase in the formation of disulfide bonds. PDI only interacts covalently with the cysteines of its substrates, but also binds a variety of peptides/proteins and small chemical ligands such as thyroid hormone. Oxidative stress and nitrosative stress can cause damage to chaperones, protein misfolding, and neurodegenerative disease, by affecting the functional integrity of PDI. There are 20 putative PDI-family members in the ER of human cells, but their functional differentiation is far from complete. This review discusses recent advances in our understanding of the mammalian PDI family of enzymes and focuses on their functional properties and interaction with substrates and small chemical ligands.
Collapse
|
4
|
Lin TY. Protein–protein interaction as a powering source of oxidoreductive reactivity. MOLECULAR BIOSYSTEMS 2010; 6:1454-62. [DOI: 10.1039/b927132e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Hatahet F, Ruddock LW. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 2009; 11:2807-50. [PMID: 19476414 DOI: 10.1089/ars.2009.2466] [Citation(s) in RCA: 498] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disulfide bond formation is probably involved in the biogenesis of approximately one third of human proteins. A central player in this essential process is protein disulfide isomerase or PDI. PDI was the first protein-folding catalyst reported. However, despite more than four decades of study, we still do not understand much about its physiological mechanisms of action. This review examines the published literature with a critical eye. This review aims to (a) provide background on the chemistry of disulfide bond formation and rearrangement, including the concept of reduction potential, before examining the structure of PDI; (b) detail the thiol-disulfide exchange reactions that are catalyzed by PDI in vitro, including a critical examination of the assays used to determine them; (c) examine oxidation and reduction of PDI in vivo, including not only the role of ERo1 but also an extensive assessment of the role of glutathione, as well as other systems, such as peroxide, dehydroascorbate, and a discussion of vitamin K-based systems; (d) consider the in vivo reactions of PDI and the determination and implications of the redox state of PDI in vivo; and (e) discuss other human and yeast PDI-family members.
Collapse
Affiliation(s)
- Feras Hatahet
- Department of Biochemistry, University of Oulu , Oulu, Finland
| | | |
Collapse
|
6
|
Bulaj G, Olivera BM. Folding of conotoxins: formation of the native disulfide bridges during chemical synthesis and biosynthesis of Conus peptides. Antioxid Redox Signal 2008; 10:141-55. [PMID: 17961068 DOI: 10.1089/ars.2007.1856] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Conopeptides from >700 species of predatory marine Conus snails provide an impressive molecular diversity of cysteine-rich peptides. Most of the estimated 50,000-100,000 distinct conopeptides range in size from 10 to 50 amino acid residues, often with multiple posttranslational modifications. The great majority contain from two to four disulfide bridges. As the biosynthetic and chemical production of this impressive repertoire of disulfide-rich peptides has been investigated, particularly the formation of native disulfide bridges, differences between in vivo and in vitro oxidative folding have become increasingly evident. In this article, we provide an overview of the molecular diversity of conotoxins with an emphasis on the cysteine patterns and disulfide frameworks. The conotoxin folding studies reviewed include regioselective and direct oxidation strategies, recombinant expression, optimization of folding methods, mechanisms of in vitro folding, and preliminary data on the biosynthesis of conotoxins in venom ducts. Despite these studies, how the cone snails efficiently produce properly folded conotoxins remains unanswered. As chemists continue to master oxidative folding techniques, insights gleaned from how conotoxins are folded in vivo will likely lead to the development of the new folding methods, as well as shed some light on fundamental mechanisms relevant to the protein folding problem.
Collapse
Affiliation(s)
- Grzegorz Bulaj
- Department of Medicinal Chemistry, College of Pharmacy, Salt Lake City, Utah 84108, USA.
| | | |
Collapse
|
7
|
Raturi A, Vacratsis P, Seslija D, Lee L, Mutus B. A direct, continuous, sensitive assay for protein disulphide-isomerase based on fluorescence self-quenching. Biochem J 2006; 391:351-7. [PMID: 15960611 PMCID: PMC1276934 DOI: 10.1042/bj20050770] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PDI (protein disulphide-isomerase) activity is generally monitored by insulin turbidity assay or scrambled RNase assay, both of which are performed by UV-visible spectroscopy. In this paper, we present a sensitive fluorimetric assay for continuous determination of disulphide reduction activity of PDI. This assay utilizes the pseudo-substrate diabz-GSSG [where diabz stands for di-(o-aminobenzoyl)], which is formed by the reaction of isatoic anhydride with the two free N-terminal amino groups of GSSG. The proximity of two benzoyl groups leads to quenching of the diabz-GSSG fluorescence by approx. 50% in comparison with its non-disulphide-linked form, abz-GSH (where abz stands for o-aminobenzoyl). Therefore the PDI-dependent disulphide reduction can be monitored by the increase in fluorescence accompanying the loss of proximity-quenching upon conversion of diabz-GSSG into abz-GSH. The apparent K(m) of PDI for diabz-GSSG was estimated to be approx. 15 muM. Unlike the insulin turbidity assay and scrambled RNase assay, the diabz-GSSG-based assay was shown to be effective in determining a single turnover of enzyme in the absence of reducing agents with no appreciable blank rates. The assay is simple to perform and very sensitive, with an estimated detection limit of approx. 2.5 nM PDI, enabling its use for the determination of platelet surface PDI activity in crude sample preparations.
Collapse
Affiliation(s)
- Arun Raturi
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada N9B 3P4
| | - Panayiotis O. Vacratsis
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada N9B 3P4
| | - Dana Seslija
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada N9B 3P4
| | - Lana Lee
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada N9B 3P4
| | - Bulent Mutus
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada N9B 3P4
- To whom correspondence should be addressed (email )
| |
Collapse
|
8
|
Stevens SM, Prokai-Tatrai K, Prokai L. Screening of Combinatorial Libraries for Substrate Preference by Mass Spectrometry. Anal Chem 2004; 77:698-701. [PMID: 15649074 DOI: 10.1021/ac0489925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a rapid screening method for monitoring enzyme specificity using both combinatorial chemistry and mass spectrometry where, as an example, the substrate specificity of peptidylglycine alpha-amidating enzyme was determined and compared against a conventional quantitative technique. Whereas alternative methods for library screening are generally limited to certain enzymes and can present difficulties in the synthesis or derivatization of potential substrates, the approach we call chirality-based isotope labeling for a library of substrates (CHILLS) does not fall short to such limitations, since we exploit the inherent stereospecificity of enzymes to determine preferred substrates. Additionally, the CHILLS method generates accurate results, as compared to typical screening procedures that require tedious method development, because the synthesized library contains a structurally similar internal standard for each individual library component in order to quantitate the progress of enzymatic reactions.
Collapse
Affiliation(s)
- Stanley M Stevens
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610-0485, USA
| | | | | |
Collapse
|
9
|
Christiansen C, St Hilaire PM, Winther JR. Fluorometric polyethyleneglycol–peptide hybrid substrates for quantitative assay of protein disulfide isomerase. Anal Biochem 2004; 333:148-55. [PMID: 15351291 DOI: 10.1016/j.ab.2004.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Indexed: 12/31/2022]
Abstract
In eukaryotic cells the enzyme protein disulfide isomerase (PDI) is responsible for the formation and reshuffling of disulfide bonds in secretory proteins. The reaction carried out by PDI involves interaction with a highly complex mixture of polypeptide molecules that are in the process of folding. This means that PDI activity is typically measured in the context of a globular protein folding pathway. The absence of small, well-defined substrates for the quantitation of both oxidation and reduction reactions constitutes an inherent problem in the analysis of PDI activity. We describe a new type of substrate for PDI where two cysteine-containing oligopeptides are connected by an onameric ethylene glycol linker. We term such hybrid compounds PEGtides. The oligopeptides are each marked with a fluorescent aminobenzoic acid and a quenching nitrotyrosine group, respectively. The reversible formation of an intramolecular disulfide bond between fluorophore-containing and quencher-containing peptide segments results in a redox-dependent fluorescence signal. We find a model compound of this type to be a highly sensitive substrate for PDI both in oxidation and in reduction assays under steady state conditions. These aspects should make substrates of this type generally applicable for assaying PDI and other thiol-disulfide exchange enzymes.
Collapse
Affiliation(s)
- Camilla Christiansen
- Carlsberg Laboratory, Department of Physiology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen, Denmark
| | | | | |
Collapse
|
10
|
Cline DJ, Thorpe C, Schneider JP. Structure-based design of a fluorimetric redox active peptide probe. Anal Biochem 2004; 325:144-50. [PMID: 14715295 DOI: 10.1016/j.ab.2003.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Structure-based iterative design was used to prepare a disulfide-containing nonapeptide as a fluorimetric probe for chemical and biochemical disulfide forming and breaking reactions. The peptide is composed entirely of natural amino acids and exhibits a marked (42%) change in fluorescence between its oxidized and its reduced states. The probe is easily synthesized and highly water soluble and exhibits well-behaved kinetics on reduction with the reductant tris-carboxyethylphosphine. The reduced peptide is an excellent substrate of the enzyme quiescin-sulfhydryl oxidase and may find utility in the characterization of other disulfide oxidoreductases.
Collapse
Affiliation(s)
- Daniel J Cline
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716-2522, USA
| | | | | |
Collapse
|
11
|
Abstract
Protein disulfide isomerase (PDI) catalyzes the formation of native disulfide pairings in secretory proteins. The ability of PDI to act as a disulfide isomerase makes it an essential enzyme in eukaryotes. PDI also fulfills other important roles. Recent studies have emphasized the importance of PDI as an oxidant in the endoplasmic reticulum. Intriguing questions remain regarding how PDI is able to catalyze both isomerization and oxidation in vivo. Studies of PDI and its homologues have led to the development of small-molecule folding catalysts that are able to accelerate disulfide isomerization in vitro and in vivo. PDI will continue to provide both an inspiration for the design of such artificial foldases and a benchmark with which to gauge the success of those designs. Here, we review current understanding of the chemistry and biology of PDI, its homologues, and small molecules that mimic its catalytic activity.
Collapse
Affiliation(s)
- Elizabeth A Kersteen
- Department of Biochemistry, University of Wisconsin--Madison, Madison, WI 53706, USA
| | | |
Collapse
|
12
|
Frickel EM, Riek R, Jelesarov I, Helenius A, Wuthrich K, Ellgaard L. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci U S A 2002; 99:1954-9. [PMID: 11842220 PMCID: PMC122301 DOI: 10.1073/pnas.042699099] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lectin chaperone calreticulin (CRT) assists the folding and quality control of newly synthesized glycoproteins in the endoplasmic reticulum (ER). It interacts with ERp57, a thiol-disulfide oxidoreductase that promotes the formation of disulfide bonds in glycoproteins bound by CRT. Here, we investigated the interaction between CRT and ERp57 by using biochemical techniques and NMR spectroscopy. We found that ERp57 binds to the P-domain of calreticulin, an independently folding domain comprising residues 189-288. Isothermal titration calorimetry showed that the dissociation constant of the CRT(189-288)/ERp57 complex is (9.1 +/- 3.0) x 10(-6) M at 8 degrees C. Transverse relaxation-optimized NMR spectroscopy provided data on the thermodynamics and kinetics of the complex formation and on the structure of this 66.5-kDa complex. The NMR measurements yielded a value of (18 +/- 5) x 10(-6) M at 20 degrees C for the dissociation constant and a lower limit for the first-order exchange rate constant of k(off) > 1,000 s(-1) at 20 degrees C. Chemical shift mapping showed that interactions with ERp57 occur exclusively through amino acid residues in the polypeptide segment 225-251 of CRT(189-288), which forms the tip of the hairpin structure of this domain. These results are analyzed with regard to the functional mechanism of the CRT/ERp57 chaperone system.
Collapse
Affiliation(s)
- Eva-Maria Frickel
- Institut für Biochemie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Our understanding of eukaryotic protein folding in the endoplasmic reticulum has increased enormously over the last 5 years. In this review, we summarize some of the major research themes that have captivated researchers in this field during the last years of the 20th century. We follow the path of a typical protein as it emerges from the ribosome and enters the reticular environment. While many of these events are shared between different polypeptide chains, we highlight some of the numerous differences between proteins, between cell types, and between the chaperones utilized by different ER glycoproteins. Finally, we consider the likely advances in this field as the new century unfolds and we address the prospect of a unified understanding of how protein folding, degradation, and translation are coordinated within a cell.
Collapse
Affiliation(s)
- A M Benham
- Department of Bio-Organic Chemistry, Utrecht University, The Netherlands
| | | |
Collapse
|
14
|
Primm TP, Gilbert HF. Hormone binding by protein disulfide isomerase, a high capacity hormone reservoir of the endoplasmic reticulum. J Biol Chem 2001; 276:281-6. [PMID: 11035025 DOI: 10.1074/jbc.m007670200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein disulfide isomerase (PDI) is a folding assistant of the eukaryotic endoplasmic reticulum, but it also binds the hormones, estradiol, and 3,3',5-triiodo-l-thyronine (T(3)). Hormone binding could be at discrete hormone binding sites, or it could be a nonphysiological consequence of binding site(s) that are involved in the interaction PDI with its peptide and protein substrates. Equilibrium dialysis, fluorescent hydrophobic probe binding (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS)), competition binding, and enzyme activity assays reveal that the hormone binding sites are distinct from the peptide/protein binding sites. PDI has one estradiol binding site with modest affinity (2.1 +/- 0.5 microm). There are two binding sites with comparable affinity for T(3) (4.3 +/- 1.4 microm). One of these overlaps the estradiol site, whereas the other binds the hydrophobic probe, bis-ANS. Neither estradiol nor T(3) inhibit the catalytic or chaperone activity of PDI. Although the affinity of PDI for the hormones estradiol and T(3) is modest, the high local concentration of PDI in the endoplasmic reticulum (>200 microm) would drive hormone binding and result in the association of a substantial fraction (>90%) of the hormones in the cell with PDI. High capacity, low affinity hormone sites may function to buffer hormone concentration in the cell and allow tight, specific binding to the true receptor while preserving a reasonable number of hormone molecules in the very small volume of the cellular environment.
Collapse
Affiliation(s)
- T P Primm
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
15
|
Abstract
The folding of many secretory proteins depends upon the formation of disulphide bonds. Recent advances in genetics and cell biology have outlined a core pathway for disulphide bond formation in the endoplasmic reticulum (ER) of eukaryotic cells. In this pathway, oxidizing equivalents flow from the recently identified ER membrane protein Ero1p to secretory proteins via protein disulphide isomerase (PDI). Contrary to prior expectations, oxidation of glutathione in the ER competes with oxidation of protein thiols. Contributions of PDI homologues to the catalysis of oxidative folding will be discussed, as will similarities between eukaryotic and prokaryotic disulphide-bond-forming systems.
Collapse
Affiliation(s)
- A R Frand
- Dept of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
16
|
Ruddock LW, Freedman RB, Klappa P. Specificity in substrate binding by protein folding catalysts: tyrosine and tryptophan residues are the recognition motifs for the binding of peptides to the pancreas-specific protein disulfide isomerase PDIp. Protein Sci 2000; 9:758-64. [PMID: 10794419 PMCID: PMC2144619 DOI: 10.1110/ps.9.4.758] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Using a cross-linking approach, we recently demonstrated that radiolabeled peptides or misfolded proteins specifically interact in vitro with two luminal proteins in crude extracts from pancreas microsomes. The proteins were the folding catalysts protein disulfide isomerase (PDI) and PDIp, a glycosylated, PDI-related protein, expressed exclusively in the pancreas. In this study, we explore the specificity of these proteins in binding peptides and related ligands and show that tyrosine and tryptophan residues in peptides are the recognition motifs for their binding by PDIp. This peptide-binding specificity may reflect the selectivity of PDIp in binding regions of unfolded polypeptide during catalysis of protein folding.
Collapse
Affiliation(s)
- L W Ruddock
- Department of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | |
Collapse
|
17
|
Zapun A, Jakob CA, Thomas DY, Bergeron JJ. Protein folding in a specialized compartment: the endoplasmic reticulum. Structure 1999; 7:R173-82. [PMID: 10467145 DOI: 10.1016/s0969-2126(99)80112-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The endoplasmic reticulum ensures proper folding of secretory proteins. In this review, we summarize and discuss the functions of different classes of folding mediators in the secretory pathway and propose updated models of the quality control system.
Collapse
Affiliation(s)
- A Zapun
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
18
|
Westphal V, Darby NJ, Winther JR. Functional properties of the two redox-active sites in yeast protein disulphide isomerase in vitro and in vivo. J Mol Biol 1999; 286:1229-39. [PMID: 10047493 DOI: 10.1006/jmbi.1999.2560] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein folding catalysed by protein disulphide isomerase (PDI) has been studied both in vivo and in vitro using different assays. PDI contains a CGHC active site in each of its two catalytic domains (a and a'). The relative importance of each active site in PDI from Saccharomyces cerevisiae (yPDI) has been analysed by exchanging the active-site cysteine residues for serine residues. The activity of the mutant forms of yPDI was determined quantitatively by following the refolding of bovine pancreatic trypsin inhibitor in vitro. In this assay the activity of the wild-type yPDI is quite similar to that of human PDI, both in rearrangement and oxidation reactions. However, while the a domain active site of the human enzyme is more active than the a'-site, the reverse is the case for yPDI. This prompted us to set up an assay to investigate whether the situation would be different with a native yeast substrate, procarboxypeptidase Y. In this assay, however, the a' domain active site also appeared to be much more potent than the a-site. These results were unexpected, not only because of the difference with human PDI, but also because analysis of folding of procarboxypeptidase Y in vivo had shown the a-site to be most important. We furthermore show that the apparent difference between in vivo and in vitro activities is not due to catalytic contributions from the other PDI homologues found in yeast.
Collapse
Affiliation(s)
- V Westphal
- Carlsberg Laboratory, Gamle Carlsbergvej 10, Copenhagen Valby, DK- 2500, Denmark
| | | | | |
Collapse
|