1
|
Kumar VS, Anjali K. Tumour generated exosomal miRNAs: A major player in tumour angiogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166383. [DOI: 10.1016/j.bbadis.2022.166383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
2
|
Chen Z, Duan Y, Wang H, Tang H, Wang S, Wang X, Liu J, Fang X, Ouyang K. Atypical protein kinase C is essential for embryonic vascular development in mice. Genesis 2021; 59:e23412. [PMID: 33547760 DOI: 10.1002/dvg.23412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/10/2022]
Abstract
The atypical PKC (aPKC) subfamily constitutes PKCζ and PKCλ in mice, and both aPKC isoforms have been proposed to be involved in regulating various endothelial cell (EC) functions. However, the physiological function of aPKC in ECs during embryonic development has not been well understood. To address this question, we utilized Tie2-Cre to delete PKCλ alone (PKCλ-SKO) or both PKCλ and PKCζ (DKO) in ECs, and found that all DKO mice died at around the embryonic day 11.5 (E11.5), whereas a small proportion of PKCλ-SKO mice survived till birth. PKCλ-SKO embryos also exhibited less phenotypic severity than DKO embryos at E10.5 and E11.5, suggesting a potential compensatory role of PKCζ for PKCλ in embryonic ECs. We then focused on DKO embryos and investigated the effects of aPKC deficiency on embryonic vascular development. At E9.5, deletion of both aPKC isoforms reduced the diameters of vitelline artery and vein, and decreased branching from both vitelline vessels in yolk sac. Ablation of both aPKC isoforms also disrupted embryonic angiogenesis in head and trunk at the same stage, increasing apoptosis of both ECs and non-ECs. Taken together, our results demonstrated that aPKC in ECs plays an essential role in regulating cell apoptosis, angiogenesis, and embryonic survival.
Collapse
Affiliation(s)
- Zee Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yaoyun Duan
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hong Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huayuan Tang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shijia Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xinru Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
3
|
Junjappa RP, Kim HK, Park SY, Bhattarai KR, Kim KW, Soh JW, Kim HR, Chae HJ. Expression of TMBIM6 in Cancers: The Involvement of Sp1 and PKC. Cancers (Basel) 2019; 11:cancers11070974. [PMID: 31336725 PMCID: PMC6678130 DOI: 10.3390/cancers11070974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/29/2022] Open
Abstract
Transmembrane Bax Inhibitor Motif-containing 6 (TMBIM6) is upregulated in several cancer types and involved in the metastasis. Specific downregulation of TMBIM6 results in cancer cell death. However, the TMBIM6 gene transcriptional regulation in normal and cancer cells is least studied. Here, we identified the core promoter region (−133/+30 bp) sufficient for promoter activity of TMBIM6 gene. Reporter gene expression with mutations at transcription factor binding sites, EMSA, supershift, and ChIP assays demonstrated that Sp1 is an essential transcription factor for basal promoter activity of TMBIM6. The TMBIM6 mRNA expression was increased with Sp1 levels in a concentration dependent manner. Ablation of Sp1 through siRNA or inhibition with mithramycin-A reduced the TMBIM6 mRNA expression. We also found that the protein kinase-C activation stimulates promoter activity and endogenous TMBIM6 mRNA by 2- to 2.5-fold. Additionally, overexpression of active mutants of PKCι, PKCε, and PKCδ increased TMBIM6 expression by enhancing nuclear translocation of Sp1. Immunohistochemistry analyses confirmed that the expression levels of PKCι, Sp1, and TMBIM6 were correlated with one another in samples from human breast, prostate, and liver cancer patients. Altogether, this study suggests the involvement of Sp1 in basal transcription and PKC in the enhanced expression of TMBIM6 in cancer.
Collapse
Affiliation(s)
- Raghu Patil Junjappa
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju 54896, Korea
| | - Hyun-Kyoung Kim
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju 54896, Korea
| | - Seong Yeol Park
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju 54896, Korea
| | - Kashi Raj Bhattarai
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju 54896, Korea
| | - Kyung-Woon Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration (RDA), Wanju-gun, Chonbuk 54875, Korea
| | - Jae-Won Soh
- Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Hyung-Ryong Kim
- College of Dentistry, Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju 54896, Korea.
| |
Collapse
|
4
|
Mehta N, Zhang D, Li R, Wang T, Gava A, Parthasarathy P, Gao B, Krepinsky JC. Caveolin-1 regulation of Sp1 controls production of the antifibrotic protein follistatin in kidney mesangial cells. Cell Commun Signal 2019; 17:37. [PMID: 30995923 PMCID: PMC6472091 DOI: 10.1186/s12964-019-0351-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND We previously showed that caveolin-1 (cav-1), an integral membrane protein, is required for the synthesis of matrix proteins by glomerular mesangial cells (MC). In a previous study to understand how cav-1 is involved in regulating matrix production, we had identified significant upregulation of the antifibrotic protein follistatin in cav-1 knockout MC. Follistatin inhibits the profibrotic effects of several members of the transforming growth factor beta superfamily, in particular the activins. Here, we characterize the molecular mechanism through which cav-1 regulates the expression of follistatin. METHODS Kidneys from cav-1 wild type and knockout (KO) mice were analyzed and primary cultures of MC from cav-1 wild-type and KO mice were utilized. FST promoter deletion constructs were generated to determine the region of the promoter important for mediating FST upregulation in cav-1 KO MC. siRNA-mediated down-regulation and overexpression of Sp1 in conjunction with luciferase activity assays, immunoprecipitation, western blotting and ChiP was used to assess the role of Sp1 in transcriptionally regulating FST expression. Pharmacologic kinase inhibitors and specific siRNA were used to determine the post-translational mechanism through which cav-1 affects Sp1 activity. RESULTS Our results establish that follistatin upregulation occurs at the transcript level. We identified Sp1 as the critical transcription factor regulating activation of the FST promoter in cav-1 KO MC through binding to a region within 123 bp of the transcription start site. We further determined that the lack of cav-1 increases Sp1 nuclear levels and transcriptional activity. This occurred through increased phosphoinositide 3-kinase (PI3K) activity and downstream protein kinase C (PKC) zeta-mediated phosphorylation and activation of Sp1. CONCLUSIONS These findings shed light on the transcriptional mechanism by which cav-1 represses the expression of a major antifibrotic protein, and can inform the development of novel antifibrotic treatment strategies.
Collapse
Affiliation(s)
- Neel Mehta
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Dan Zhang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Renzhong Li
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Tony Wang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Agata Gava
- Physiological Sciences Graduate Program, Health Sciences Centre, Federal University of Espirito Santo, Vitoria, Brazil
| | | | - Bo Gao
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada. .,St. Joseph's Hospital, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
5
|
A systems biology network analysis of nutri(epi)genomic changes in endothelial cells exposed to epicatechin metabolites. Sci Rep 2018; 8:15487. [PMID: 30341379 PMCID: PMC6195584 DOI: 10.1038/s41598-018-33959-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
Although vasculo-protective effects of flavan-3-ols are widely accepted today, their impact on endothelial cell functions and molecular mechanisms of action involved is not completely understood. The aim of this study was to characterize the potential endothelium-protective effects of circulating epicatechin metabolites and to define underlying mechanisms of action by an integrated systems biology approach. Reduced leukocyte rolling over vascular endothelium was observed following epicatechin supplementation in a mouse model of inflammation. Integrative pathway analysis of transcriptome, miRNome and epigenome profiles of endothelial cells exposed to epicatechin metabolites revealed that by acting at these different levels of regulation, metabolites affect cellular pathways involved in endothelial permeability and interaction with immune cells. In-vitro experiments on endothelial cells confirmed that epicatechin metabolites reduce monocyte adhesion and their transendothelial migration. Altogether, our in-vivo and in-vitro results support the outcome of a systems biology based network analysis which suggests that epicatechin metabolites mediate their vasculoprotective effects through dynamic regulation of endothelial cell monocyte adhesion and permeability. This study illustrates complex and multimodal mechanisms of action by which epicatechin modulate endothelial cell integrity.
Collapse
|
6
|
Kawai T, Richards JS, Shimada M. The Cell Type-Specific Expression of Lhcgr in Mouse Ovarian Cells: Evidence for a DNA-Demethylation-Dependent Mechanism. Endocrinology 2018; 159:2062-2074. [PMID: 29579175 PMCID: PMC5905396 DOI: 10.1210/en.2018-00117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/12/2018] [Indexed: 12/16/2022]
Abstract
The luteinizing hormone receptor (LHCGR) is expressed at low levels in mural granulosa cells and cumulus cells of antral follicles and is induced dramatically in granulosa cells but not in cumulus cells by follicle-stimulating hormone (FSH). Therefore, we hypothesized that FSH not only activates transcription factors controlling Lhcgr expression but also alters other events to permit and enhance Lhcgr expression in granulosa cells but not in cumulus cells. In granulosa cells, the level of DNA methylation in the Lhcgr promoter region was significantly decreased by equine chorionic gonadotropin (eCG) in vivo. However, in cumulus cells, hypermethylation of the Lhcgr promoter remained after eCG stimulation. eCG induced estrogen production from testosterone (T) and retinoic acid (RA) synthesis in granulosa cells. When either T or RA in the presence or absence of FSH was added to granulosa cell cultures, the combined treatment with FSH and RA induced demethylation of Lhcgr-promoter region and Lhcgr expression. FSH-dependent RA synthesis was negatively regulated by coculture of granulosa cells with denuded oocytes, suggesting that oocyte-secreted factors downregulate RA production in cumulus cells where Lhcgr expression was not induced. Strikingly, treatment of cultured cumulus-oocyte complexes with a SMAD inhibitor, SB431542, significantly induced RA production, demethylation of Lhcgr-promoter region, and Lhcgr expression in cumulus cells. These results indicate the demethylation of the Lhcgr-promoter region is mediated, at least in part, by RA synthesis and is a key mechanism regulating the cell type-specific differentiation during follicular development.
Collapse
Affiliation(s)
- Tomoko Kawai
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - JoAnne S Richards
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Correspondence: Masayuki Shimada, PhD, Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan. E-mail:
| |
Collapse
|
7
|
Tarade D, Ohh M. The HIF and other quandaries in VHL disease. Oncogene 2017; 37:139-147. [PMID: 28925400 DOI: 10.1038/onc.2017.338] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
Mutations in VHL underlie von Hippel-Lindau (VHL) disease, a hereditary cancer syndrome with several subtypes depending on the risk of developing certain combination of classic features, such as clear cell renal cell carcinoma (ccRCC), hemangioblastoma and pheochromocytoma. Although numerous potential substrates and functions of pVHL have been described over the past decade, the best-defined role of pVHL has remained as the negative regulator of the heterodimeric hypoxia-inducible factor (HIF) transcription factor via the oxygen-dependent ubiquitin-mediated degradation of HIF-α subunit. Despite the seminal discoveries that led to the molecular elucidation of the mammalian oxygen-sensing VHL-HIF axis, which have provided several rational therapies, the mechanisms underlying the complex genotype-phenotype correlation in VHL disease are unclear. This review will discuss and highlight the studies that have provided interesting insights as well as uncertainties to the underlying mechanisms governing VHL disease.
Collapse
Affiliation(s)
- D Tarade
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - M Ohh
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, MaRS Centre West Tower, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Jacob T, Ascher E, Hingorani A, Kallakuri S. The Effect of Von Hippel-Lindau Gene Transfer on Human Vascular Smooth Muscle Cell Proliferation and Apoptosis. Vasc Endovascular Surg 2016; 39:25-32. [PMID: 15696245 DOI: 10.1177/153857440503900103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Von Hippel-Lindau ( VHL) gene is a tumor suppressor gene that plays a genome “gatekeeper” role and controls several downstream effector genes. We have previously demonstrated that both in vivo and in vitro adenovirus-mediated gene transfer of tumor suppressor genes into the vascular endothelium is effective in decreasing neointimal hyperplasia and abnormal cell proliferation. The degree of apoptosis induced by these genes is critical in mediating the in vivo responses to gene therapy and the maintenance of the crucial balance between cell death and viability. Since VHL gene is known to regulate vascular endothelial growth factor (VEGF) as well as other angiogenic factors, it may exhibit a greater potential in the attenuation of vascular disorders in comparison to other tumor suppressor genes. This study focused on whether adenovirus-mediated VHL gene transfer into human vascular smooth muscle cells has an effect on cell proliferation and induction of apoptosis. Human aortic smooth muscle cells (HASMC) were grown as monolayers and transfected with varying titers of adenovirus containing the VHL cDNA (AdVHL). The negative controls were adenovirus containing green fluorescent protein (AdGFP), vector alone (AdNull), and virus-free infection medium. Adenovirus encoding wild-type p53 (Adp53) was used as positive control. Cell viability and proliferation were determined by using trypan blue exclusion and MTS-based CellTiter 96 AQ Proliferation Assay. Apoptosis was evaluated by TUNEL assay, morphologic changes, and nucleosomal DNA degradation. Following AdVHL transfection HASMCs demonstrated a dose-dependent decrease in viability as compared to negative controls (p<0.05). AdVHL-transfected cells exhibited a decrease in their proliferative ability by 40.21 ±1.66 (SEM)%. In cultures transfected with the positive control, Adp53, the cell viability as well as proliferation was highly reduced (p<0.001). AdGFP and AdNull did not increase HASMC apoptosis above baseline levels. The cells exposed to adenoviruses expressing tumor suppressor genes underwent apoptosis, with Adp53 demonstrating a very high magnitude of cell death (75.27 ±3.52 [SEM]%). AdVHL expression caused 45.36 ±2.55 (SEM)% apoptosis in HASMC. Recombinant adenovirus-mediated VHL expression is efficacious in limiting vascular smooth muscle cell growth in vitro. Overexpression of VHL suppresses HASMC proliferation and regulates apoptosis. Further experiments are indicated to examine whether VHL may be a useful adjunct in limiting myointimal hyperplasia.
Collapse
Affiliation(s)
- Theresa Jacob
- Division of Vascular Surgery, Department of Surgery, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | | | | | | |
Collapse
|
9
|
Gómez-Villafuertes R, García-Huerta P, Díaz-Hernández JI, Miras-Portugal MT. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions. Sci Rep 2015; 5:18417. [PMID: 26687764 PMCID: PMC4685307 DOI: 10.1038/srep18417] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/17/2015] [Indexed: 12/19/2022] Open
Abstract
The expression of purinergic P2X7 receptor (P2X7R) in neuroblastoma cells is associated to accelerated growth rate, angiogenesis, metastasis and poor prognosis. Noticeably, P2X7R allows the survival of neuroblastoma cells under restrictive conditions, including serum and glucose deprivation. Previously we identified specificity protein 1 (Sp1) as the main factor involved in the transcriptional regulation of P2rx7 gene, reporting that serum withdrawal triggers the expression of P2X7R in Neuro-2a (N2a) neuroblastoma cell line. Here we demonstrate that PI3K/Akt pathway is crucial for the upregulation of P2X7R expression in serum-deprived neuroblastoma cells, circumstance that facilitates cell proliferation in the absence of trophic support. The effect exerted by PI3K/Akt is independent of both mTOR and GSK3, but requires the activation of EGF receptor (EGFR). Nuclear levels of Sp1 are strongly reduced by inhibition of PI3K/Akt pathway, and blockade of Sp1-dependent transcription with mithramycin A prevents upregulation of P2rx7 gene expression following serum withdrawal. Furthermore, atypical PKCζ plays a key role in the regulation of P2X7R expression by preventing phosphorylation and, consequently, activation of Akt. Altogether, these data indicate that activation of EGFR enhanced the expression of P2X7R in neuroblastoma cells lacking trophic support, being PI3K/Akt/PKCζ signaling pathway and Sp1 mediating this pro-survival outcome.
Collapse
Affiliation(s)
- Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Paula García-Huerta
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan Ignacio Díaz-Hernández
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Mª Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
10
|
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. FEBS J 2015; 282:224-58. [PMID: 25393971 DOI: 10.1111/febs.13148] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
11
|
Kawashima I, Umehara T, Noma N, Kawai T, Shitanaka M, Richards JS, Shimada M. Targeted disruption of Nrg1 in granulosa cells alters the temporal progression of oocyte maturation. Mol Endocrinol 2014; 28:706-21. [PMID: 24650175 DOI: 10.1210/me.2013-1316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuregulin 1 (NRG1) is induced in granulosa cells by LH and acts on granulosa and cumulus cells during ovulation. In this study, we sought to determine the role of NRG1 in oocyte maturation by generating a granulosa cell-specific Nrg1 knockout mouse (Nrg1(flox/flox);Cyp19a1Cre mice [gcNrg1KO]). In the gcNrg1KO mice, meiosis was induced 2 hours earlier than in control mice. More than 60% of the oocytes in the mutant mice spontaneously re-resumed meiosis beyond the MII stage. The percentage of successful fertilization was comparable in oocytes of both genotypes collected at 14 or 16 hours after human chorionic gonadotropin injection but was significantly lower in oocytes of the gcNrg1KO mice at 18 or 20 hours. The number of pups per litter was significantly decreased in gcNrg1KO mice. To determine the molecular events associated with the abnormal progression of meiosis in the gcNrg1KO mouse oocytes, the defects of cumulus/granulosa cell functions were analyzed. The expression of genes involved in luteinization and cumulus expansion was significantly higher at 2 hours after human chorionic gonadotropin injection in the gcNrg1KO mice; this was related to abnormal activation of protein kinase C (PKC) and phosphorylation of connexin-43 in cumulus cells. Changes in connexin-43 by PKC might lead to early meiotic resumption of oocytes in gcNrg1KO mice. We conclude that NRG1 is induced by LH in mural granulosa cells and exerts an important regulatory role in oocyte meiotic maturation and competence by reducing PKC activation in cumulus cells and preventing premature progression to the MII stage that leads to abnormal fertilization and fertility.
Collapse
Affiliation(s)
- Ikko Kawashima
- Laboratory of Reproductive Endocrinology (I.K., T.U., N.N., T.K., M.S., M.S.), Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima,739-8528, Japan; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | |
Collapse
|
12
|
Transcriptional regulation by post-transcriptional modification—Role of phosphorylation in Sp1 transcriptional activity. Gene 2012; 508:1-8. [DOI: 10.1016/j.gene.2012.07.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/22/2012] [Accepted: 07/16/2012] [Indexed: 01/05/2023]
|
13
|
Drabkin HA, Gemmill RM. Cholesterol and the development of clear-cell renal carcinoma. Curr Opin Pharmacol 2012; 12:742-50. [PMID: 22939900 DOI: 10.1016/j.coph.2012.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 02/01/2023]
Abstract
The majority of kidney cancers are clear-cell carcinomas (ccRCC), characterized by the accumulation of cholesterol, cholesterol esters, other neutral lipids and glycogen. Rather than being a passive bystander, the clear-cell phenotype is suggested to be a biomarker of deregulated cholesterol and lipid biosynthesis, which plays an important role in development of the disease. One clue to this relationship has come from the elucidation of the hereditary kidney cancer gene, TRC8, which functions partly to degrade key regulators of endogenous cholesterol and lipid biosynthesis. In addition, deregulation of the mevalonate pathway has been shown to play a key role in cellular transformation and invasion. These findings are supported by considerable epidemiologic data linking obesity and the deregulation of lipid biosynthesis to ccRCC.
Collapse
Affiliation(s)
- Harry A Drabkin
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA.
| | | |
Collapse
|
14
|
Nawa T, Ishida H, Tatsumi T, Li W, Shimizu S, Kodama T, Hikita H, Hosui A, Miyagi T, Kanto T, Hiramatsu N, Hayashi N, Takehara T. Interferon-α suppresses hepatitis B virus enhancer II activity via the protein kinase C pathway. Virology 2012; 432:452-9. [PMID: 22832122 DOI: 10.1016/j.virol.2012.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/03/2012] [Accepted: 07/01/2012] [Indexed: 12/31/2022]
Abstract
HBV has two enhancer (En) regions each of which promotes its own transcription. En II regulates production of pregenomic RNA, a key product of HBV replication, more strongly than En I. Although IFN-α has been found to suppress En I activity, its effect on En II activity has not been examined. Here we used luciferase assay to demonstrate that IFN-α suppresses En II activity. Analysis with several deletion/mutation constructs identified two major segments, nt 1703-1727 and nt 1746-1770, within the En II sequence as being responsible for the suppressive effects of IFN-α. Pre-treatment with protein kinase C (PKC) inhibitors blocked this effect regardless of the expression levels of phospho-STAT1 and Mx upon IFN-α stimulation. These results indicate that IFN-α suppresses En II activity via the PKC pathway, which may be an alternative suppressive pathway for HBV replication. (136 words).
Collapse
Affiliation(s)
- Takatoshi Nawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Xin H, Brown JA, Gong C, Fan H, Brewer G, Gnarra JR. Association of the von Hippel-Lindau protein with AUF1 and posttranscriptional regulation of VEGFA mRNA. Mol Cancer Res 2011; 10:108-20. [PMID: 22086907 DOI: 10.1158/1541-7786.mcr-11-0435] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The von Hippel-Lindau (VHL) tumor suppressor gene product is the recognition component of an E3 ubiquitin ligase and is inactivated in patients with VHL disease and in most sporadic clear-cell renal cell carcinomas (RCC). pVHL controls oxygen-responsive gene expression at the transcriptional and posttranscriptional levels. The VEGFA mRNA contains AU-rich elements (ARE) in the 3'-untranslated region, and mRNA stability or decay is determined through ARE-associated RNA-binding factors. We show here that levels of the ARE-binding factor, AUF1, are regulated by pVHL and by hypoxia. pVHL and AUF1 stably associate with each other in cells and AUF1 is a ubiquitylation target of pVHL. AUF1 and another RNA-binding protein, HuR, bind to VEGFA ARE RNA. Ribonucleoprotein (RNP) immunoprecipitations showed that pVHL associates indirectly with VEGFA mRNA through AUF1 and/or HuR, and this complex is associated with VEGFA mRNA decay under normoxic conditions. Under hypoxic conditions pVHL is downregulated, whereas AUF1 and HuR binding to VEGF mRNA is maintained, and this complex is associated with stabilized mRNA. These studies suggest that AUF1 and HuR bind to VEGFA ARE RNA under both normoxic and hypoxic conditions, and that a pVHL-RNP complex determines VEGFA mRNA decay. These studies further implicate the ubiquitin-proteasome system in ARE-mediated RNA degradation.
Collapse
Affiliation(s)
- Hong Xin
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
16
|
Waby JS, Bingle CD, Corfe BM. Post-translational control of sp-family transcription factors. Curr Genomics 2011; 9:301-11. [PMID: 19471608 PMCID: PMC2685645 DOI: 10.2174/138920208785133244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/22/2022] Open
Abstract
Sp-family transcription factors are widely expressed in human tissues and involved in the regulation of many cellular processes and response to cellular microenvironment. These responses appear to be mediated by alterations in transcription factor affinity for DNA rather than altered protein level. How might such changes be effected? This review will identify the range of known post-translational modifications (PTMs) of Sp-factors and the sometimes conflicting literature about the roles of PTMs in regulating activity. We will speculate on the interaction between cell environment, chromatin microenvironment and the role of PTM in governing functionality of the proteins and the complexes to which they belong.
Collapse
Affiliation(s)
- J S Waby
- School of Medicine and Biomedical Sciences, University of Sheffield, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
| | | | | |
Collapse
|
17
|
Arii K, Suehiro T, Ikeda Y, Kumon Y, Inoue M, Inada S, Takata H, Ishibashi A, Hashimoto K, Terada Y. Role of protein kinase C in pitavastatin-induced human paraoxonase I expression in Huh7 cells. Metabolism 2010; 59:1287-93. [PMID: 20092859 DOI: 10.1016/j.metabol.2009.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 11/25/2009] [Accepted: 12/01/2009] [Indexed: 11/17/2022]
Abstract
We have demonstrated that pitavastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, enhanced human serum paraoxonase (PON1) gene promoter activity and that protein kinase C (PKC) activated PON1 expression through Sp1 in cultured HepG2 cells. We investigated whether PKC was involved in pitavastatin-induced PON1 expression. PON1 gene promoter activity was assessed by a reporter gene assay using cultured Huh7 cells. PON1 protein expression and PKC activation were measured by Western blotting. The binding activity of Sp1 to the PON1 gene upstream was analyzed by electrophoretic mobility shift assay. Both PON1 gene promoter activity and PON1 protein expression were elevated by pitavastatin stimulation. The effects of pitavastatin on PON1 promoter activity and PON1 protein expression were attenuated by both bisindolylmaleimide IX (Ro-31-8220) and bisindolylmaleimide I. Electrophoretic mobility shift assay showed that pitavastatin increased the Sp1-PON1 DNA binding, and this effect was attenuated by Ro-31-8220. Pitavastatin activated atypical PKC, but never conventional or novel PKC. Myristoylated pseudosubstrate peptide inhibitor of PKCzeta abolished the pitavastatin-increased PON1 promoter activity; however, calphostin C and Gö6976 (PKC inhibitors except for PKCzeta) did not influence the promoter activity. In addition, an overexpression of dominant negative form of PKCzeta expression vector obviously decreased pitavastatin-induced PON1 promoter activation. These observations suggest that pitavastatin activates PKC, especially PKCzeta isoform, which increases the binding intensity of Sp1 to PON1 DNA promoter responsible for enhanced transcription of PON1 gene and increased PON1 protein expression in Huh7 cells.
Collapse
Affiliation(s)
- Kaoru Arii
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kochi 783-8505, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Basu A, Datta D, Zurakowski D, Pal S. Altered VEGF mRNA stability following treatments with immunosuppressive agents: implications for cancer development. J Biol Chem 2010; 285:25196-202. [PMID: 20554520 DOI: 10.1074/jbc.m110.119446] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The high incidence of cancer and its aggressive progression is a common and major problem in patients receiving immunosuppressive therapy. The calcineurin inhibitors (CNIs) may have protumorigenic effects and can promote the overexpression of several molecules inducing tumor growth. We have recently demonstrated that CNIs can mediate the transcriptional activation of the angiogenic cytokine vascular endothelial growth factor (VEGF) and promote a rapid progression of human renal cancer. Here, we investigated whether the CNI cyclosporine (CsA) and the mTOR inhibitor rapamycin (RAPA) could alter the mRNA stability of VEGF in 786-0 and Caki-1 renal cancer cells. Following actinomycin D treatment, we observed that CsA increased, whereas RAPA decreased the VEGF mRNA stability as observed by real time PCR. It is established that the mRNA-binding protein HuR may play a critical role in VEGF mRNA stability. By using HuR-siRNA, we found that the knockdown of HuR significantly decreased the CNI-induced VEGF mRNA stability. By Western blot analysis, it has been observed that CNI treatment induced the translocation of HuR from the nucleus to the cytoplasm; CNIs also induced the association between HuR and PKC-delta and promoted the phosphorylation of HuR. Finally, we found that the inhibition of PKC-delta using a dominant negative plasmid significantly decreased the CsA-induced cytoplasmic translocation of HuR and VEGF mRNA stability. Together, targeting the pathways that promote CNI-induced transcription as well as the mRNA stability of VEGF might serve as novel therapeutics for the prevention and treatment of cancer in immunosuppressed patients.
Collapse
Affiliation(s)
- Aninda Basu
- Division of Nephrology and Transplantation Research Center, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
19
|
Evaluation of 188Re-DTPA-Deoxyglucose as a Potential Cancer Radiopharmaceutical. AJR Am J Roentgenol 2010; 194:761-5. [PMID: 20173156 DOI: 10.2214/ajr.09.3166] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Haase VH. The VHL tumor suppressor: master regulator of HIF. Curr Pharm Des 2010; 15:3895-903. [PMID: 19671042 DOI: 10.2174/138161209789649394] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 07/01/2009] [Indexed: 12/11/2022]
Abstract
Hypoxia-Inducible Factors (HIFs) are heterodimeric oxygen-sensitive basic helix-loop-helix transcription factors that play central roles in cellular adaptation to low oxygen environments. The von-Hippel Lindau tumor suppressor (pVHL) is the substrate recognition component of an E3 ubiquitin ligase and functions as a master regulator of HIF activity by targeting the hydroxylated HIF-alpha subunit for ubiquitylation and rapid proteasomal degradation under normoxic conditions. Mutations in pVHL can be found in familial and sporadic hemangioblastomas, clear cell carcinomas of the kidney, pheochromocytomas and inherited forms of erythrocytosis, illustrating the importance of disrupted molecular oxygen sensing in the pathogenesis of these diseases. Tissue-specific gene targeting of pVHL in mice has demonstrated that efficient execution of HIF proteolysis is critically important for normal tissue physiology, and has provided novel insights into the functional consequences of HIF activation on the cellular and tissue level. Here we focus on the contribution of individual HIF transcription factors to the development of VHL phenotypes and discuss how the pVHL/HIF axis could be exploited pharmacologically.
Collapse
Affiliation(s)
- Volker H Haase
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
21
|
Sabherwal N, Tsutsui A, Hodge S, Wei J, Chalmers AD, Papalopulu N. The apicobasal polarity kinase aPKC functions as a nuclear determinant and regulates cell proliferation and fate during Xenopus primary neurogenesis. Development 2009; 136:2767-77. [PMID: 19633170 DOI: 10.1242/dev.034454] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During neurogenesis in Xenopus, apicobasally polarised superficial and non-polar deep cells take up different fates: deep cells become primary neurons while superficial cells stay as progenitors. It is not known whether the proteins that affect cell polarity also affect cell fate and how membrane polarity information may be transmitted to the nucleus. Here, we examine the role of the polarity components, apically enriched aPKC and basolateral Lgl2, in primary neurogenesis. We report that a membrane-tethered form of aPKC (aPKC-CAAX) suppresses primary neurogenesis and promotes cell proliferation. Unexpectedly, both endogenous aPKC and aPKC-CAAX show some nuclear localisation. A constitutively active aPKC fused to a nuclear localisation signal has the same phenotypic effect as aPKC-CAAX in that it suppresses neurogenesis and enhances proliferation. Conversely, inhibiting endogenous aPKC with a dominant-negative form that is restricted to the nucleus enhances primary neurogenesis. These observations suggest that aPKC has a function in the nucleus that is important for cell fate specification during primary neurogenesis. In a complementary experiment, overexpressing basolateral Lgl2 causes depolarisation and internalisation of superficial cells, which form ectopic neurons when supplemented with a proneural factor. These findings suggest that both aPKC and Lgl2 affect cell fate, but that aPKC is a nuclear determinant itself that might shuttle from the membrane to the nucleus to control cell proliferation and fate; loss of epithelial cell polarity by Lgl2 overexpression changes the position of the cells and is permissive for a change in cell fate.
Collapse
Affiliation(s)
- Nitin Sabherwal
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
22
|
Adding structural information to the von Hippel-Lindau (VHL) tumor suppressor interaction network. FEBS Lett 2009; 583:3704-10. [PMID: 19878677 DOI: 10.1016/j.febslet.2009.10.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/21/2009] [Accepted: 10/26/2009] [Indexed: 11/23/2022]
Abstract
The von Hippel-Lindau (VHL) tumor suppressor gene is a protein interaction hub, controlling numerous genes implicated in tumor progression. Here we focus on structural aspects of protein interactions for a list of 35 experimentally verified protein VHL (pVHL) interactors. Using structural information and computational analysis we have located three distinct interaction interfaces (A, B, and C). Interface B is the most versatile, recognizing a refined linear motif present in 17 otherwise non-related proteins. It has been possible to distinguish compatible and exclusive interactions by relating pVHL function to interaction interfaces and subcellular localization. A novel hypothesis is presented regarding the possible function of the N-terminus as an inhibitor of pVHL function.
Collapse
|
23
|
Suttamanatwong S, Jensen ED, Shilling J, Franceschi RT, Carlson AE, Mansky KC, Gopalakrishnan R. Sp proteins and Runx2 mediate regulation of matrix gla protein (MGP) expression by parathyroid hormone. J Cell Biochem 2009; 107:284-92. [PMID: 19306294 PMCID: PMC2747369 DOI: 10.1002/jcb.22124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As part of its catabolic action in bone, parathyroid hormone (PTH) inhibits extracellular matrix mineralization. We previously showed that PTH dose-dependently induces matrix gla protein (MGP) expression in osteoblasts and this induction is at least partially responsible for PTH-mediated inhibition of mineralization. Recently, we identified PKA and ERK/MAPK as the key signaling pathways involved in PTH regulation of MGP expression. The goal of this study was to further characterize the mechanism by which PTH stimulates expression of MGP. Deletion analysis of the murine Mgp gene promoter identified a PTH-responsive region between -173 bp and-49 bp. Using gel-mobility shift assays we found that Sp1/Sp3, and Runx2 bind to distinct sites within this region. Mutation of either the Sp or the Runx2 site reduced MGP induction by PTH, while mutation of both sites completely abolished PTH responsiveness. Overexpression of Runx2 or Sp1 activated the Mgp reporter, while Sp3 was a dose-dependent repressor of Sp1 and PTH-induced MGP expression. Collectively, these data show that PTH regulates MGP gene transcription in osteoblasts through altered activities of Sp and Runx2 transcription factors.
Collapse
Affiliation(s)
- Supaporn Suttamanatwong
- Department of Diagnostic and Biological Sciences University of Minnesota School of Dentistry, Minneapolis, MN 55455
| | - Eric D Jensen
- Department of Diagnostic and Biological Sciences University of Minnesota School of Dentistry, Minneapolis, MN 55455
| | - Jody Shilling
- Department of Diagnostic and Biological Sciences University of Minnesota School of Dentistry, Minneapolis, MN 55455
| | - Renny T. Franceschi
- Periodontics and Oral Medicine University of Michigan School of Dentistry, Ann Arbor, MI 48109
| | - Ann E. Carlson
- Department of Diagnostic and Biological Sciences University of Minnesota School of Dentistry, Minneapolis, MN 55455
| | - Kim C. Mansky
- Department of Diagnostic and Biological Sciences University of Minnesota School of Dentistry, Minneapolis, MN 55455
| | - Rajaram Gopalakrishnan
- Department of Diagnostic and Biological Sciences University of Minnesota School of Dentistry, Minneapolis, MN 55455
| |
Collapse
|
24
|
Radiation dosimetry and biodistribution of (99m)Tc-ethylene dicysteine-deoxyglucose in patients with non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 2009; 36:1583-91. [PMID: 19396440 PMCID: PMC2758190 DOI: 10.1007/s00259-009-1135-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 03/23/2009] [Indexed: 12/03/2022]
Abstract
Purpose To assess the radiation dosimetry and biodistribution of 99mTc-labeled ethylene dicysteine deoxyglucose (99mTc-EC-DG) in patients with non-small-cell lung cancer (NSCLC). Methods Serial whole-body scans were acquired 0, 2, 4, 6 and 24 h after injection of 99mTc-EC-DG (925 MBq) in seven NSCLC patients. Radiation dosimetry, blood clearance and SPECT imaging of the primary tumor were assessed. Results The critical organ was the bladder wall, with average radiation absorbed dose over all seven patients of 2.47×10−2 mGy/MBq. The average effective dose equivalent and effective dose were 6.20×10−3 mSv/MBq (6.89 mSv/1,110 MBq) and 5.90×10−3 mSv/MBq (6.54 mSv/1,110 MBq), respectively. The primary tumor was visualized with SPECT in six patients. On final pathology, one patient had a granuloma, which did not enhance with 99mTc-EC-DG. Conclusion 99mTc-EC-DG has acceptable dosimetric and biodistribution properties as a diagnostic tumor-imaging agent. Future studies are planned to evaluate its diagnostic potential.
Collapse
|
25
|
|
26
|
Epidermal growth factor-dependent cyclooxygenase-2 induction in gliomas requires protein kinase C-δ. Oncogene 2009; 28:1410-20. [DOI: 10.1038/onc.2008.500] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Kim JI, Cordova AC, Hirayama Y, Madri JA, Sumpio BE. Differential effects of shear stress and cyclic strain on Sp1 phosphorylation by protein kinase Czeta modulates membrane type 1-matrix metalloproteinase in endothelial cells. ACTA ACUST UNITED AC 2008; 15:33-42. [PMID: 18568943 DOI: 10.1080/10623320802092260] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) plays a key role in extracellular matrix remodeling, endothelial cell (EC) migration, and angiogenesis. Whereas cyclic strain (CS) increases MT1-MMP expression, shear stress (SS) decreases MT1-MMP expression. The aim of this study was to determine if changes in levels of Sp1 phosphorylation induced by protein kinase Czeta (PKCzeta) in ECs exposed to SS but not CS are important for MT1-MMP expression. The results showed that SS increased Sp1 phosphorylation, which could be inhibited by pretreatment with PKCzeta inhibitors. In the presence of PKCzeta inhibitors, the SS-mediated decrease in MT1-MMP protein expression was also abolished. These data demonstrate that increased affinity of Sp1 for MT1-MMP's promoter site occurs as a consequence of PKCzeta-induced phosphorylation of Sp1 in response to SS, increasing Sp1 binding affinity for the promoter site, preventing Egr-1 binding, and consequently decreasing MT1-MMP expression.
Collapse
Affiliation(s)
- Ji Il Kim
- Department of Vascular Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
28
|
Basu A, Contreras AG, Datta D, Flynn E, Zeng L, Cohen HT, Briscoe DM, Pal S. Overexpression of vascular endothelial growth factor and the development of post-transplantation cancer. Cancer Res 2008; 68:5689-98. [PMID: 18632621 DOI: 10.1158/0008-5472.can-07-6603] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer is an increasing and major problem after solid organ transplantation. In part, the increased cancer risk is associated with the use of immunosuppressive agents, especially calcineurin inhibitors. We propose that the effect of calcineurin inhibitors on the expression of vascular endothelial growth factor (VEGF) leads to an angiogenic milieu that favors tumor growth. Here, we used 786-0 human renal cancer cells to investigate the effect of cyclosporine (CsA) on VEGF expression. Using a full-length VEGF promoter-luciferase construct, we found that CsA markedly induced VEGF transcriptional activation through the protein kinase C (PKC) signaling pathway, specifically involving PKC zeta and PKC delta isoforms. Moreover, CsA promoted the association of PKC zeta and PKC delta with the transcription factor Sp1 as observed by immunoprecipitation assays. Using promoter deletion constructs, we found that CsA-mediated VEGF transcription was primarily Sp1 dependent. Furthermore, CsA-induced and PKC-Sp1-mediated VEGF transcriptional activation was partially inhibited by von Hippel-Lindau protein. CsA also promoted the progression of human renal tumors in vivo, wherein VEGF is overexpressed. Finally, to evaluate the in vivo significance of CsA-induced VEGF overexpression in terms of post-transplantation tumor development, we injected CT26 murine carcinoma cells (known to form angiogenic tumors) into mice with fully MHC mismatched cardiac transplants. We observed that therapeutic doses of CsA increased tumor size and VEGF mRNA expression and also enhanced tumor angiogenesis. However, coadministration of a blocking anti-VEGF antibody inhibited this CsA-mediated tumor growth. Collectively, these findings define PKC-mediated VEGF transcriptional activation as a key component in the progression of CsA-induced post-transplantation cancer.
Collapse
Affiliation(s)
- Aninda Basu
- Division of Nephrology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Prasanna Kumar S, Thippeswamy G, Sheela ML, Prabhakar BT, Salimath BP. Butyrate-induced phosphatase regulates VEGF and angiogenesis via Sp1. Arch Biochem Biophys 2008; 478:85-95. [PMID: 18655767 DOI: 10.1016/j.abb.2008.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/28/2008] [Accepted: 07/08/2008] [Indexed: 11/25/2022]
Abstract
Sp1 is a ubiquitous transcription factor and master regulator of various eukaryotic gene expression. Better understanding of the role of increased Sp1 levels on angiogenic regulation and the regulatory regions of that transcription factor may act as a useful target in 'transcriptional therapy'. At the molecular level, butyrate inhibits Sp1-DNA binding activity by promoting Sp1 protein dephosphorylation in EAT cells. It also inhibits Sp1 binding activity and reduces expression of VEGF gene, thereby inhibiting angiogenesis. It was confirmed that butyrate induces expression of a tyrosine phosphatase by RT-PCR, cDNA sequence analysis, protein ESI-MS analysis and protein sequence homology comparison. Thus our result strongly suggests that inhibition of angiogenesis by butyrate involves Sp1 dephosphorylation and down-regulation of VEGF gene expression. Further, butyrate inhibits neoangiogenesis induced by tumor cells and VEGF in peritoneum of EAT bearing mice and rat cornea.
Collapse
Affiliation(s)
- S Prasanna Kumar
- Department of Applied Botany and Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | | | | | | | | |
Collapse
|
30
|
Tan NY, Midgley VC, Kavurma MM, Santiago FS, Luo X, Peden R, Fahmy RG, Berndt MC, Molloy MP, Khachigian LM. Angiotensin II-inducible platelet-derived growth factor-D transcription requires specific Ser/Thr residues in the second zinc finger region of Sp1. Circ Res 2008; 102:e38-51. [PMID: 18258854 DOI: 10.1161/circresaha.107.167395] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sp1, the first identified and cloned transcription factor, regulates gene expression via multiple mechanisms including direct protein-DNA interactions, protein-protein interactions, chromatin remodeling, and maintenance of methylation-free CpG islands. Sp1 is itself regulated at different levels, for example, by glycosylation, acetylation, and phosphorylation by kinases such as the atypical protein kinase C-zeta. Although Sp1 controls the basal and inducible regulation of many genes, the posttranslational processes regulating its function and their relevance to pathology are not well understood. Here we have used a variety of approaches to identify 3 amino acids (Thr668, Ser670, and Thr681) in the zinc finger domain of Sp1 that are modified by PKC-zeta and have generated novel anti-peptide antibodies recognizing the PKC-zeta-phosphorylated form of Sp1. Angiotensin II, which activates PKC-zeta phosphorylation (at Thr410) via the angiotensin II type 1 receptor, stimulates Sp1 phosphorylation and increases Sp1 binding to the platelet-derived growth factor-D promoter. All 3 residues in Sp1 (Thr668, Ser670, and Thr681) are required for Sp1-dependent platelet-derived growth factor-D activation in response to angiotensin II. Immunohistochemical analysis revealed that phosphorylated Sp1 is expressed in smooth muscle cells of human atherosclerotic plaques and is dynamically expressed together with platelet-derived growth factor-D in smooth muscle cells of the injured rat carotid artery wall. This study provides new insights into the regulatory mechanisms controlling the PKC-zeta-phospho-Sp1 axis and angiotensin II-inducible gene expression.
Collapse
Affiliation(s)
- Nicole Y Tan
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kapitsinou PP, Haase VH. The VHL tumor suppressor and HIF: insights from genetic studies in mice. Cell Death Differ 2008; 15:650-9. [PMID: 18219317 DOI: 10.1038/sj.cdd.4402313] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The von Hippel-Lindau tumor suppressor gene product, pVHL, functions as the substrate recognition component of an E3-ubiquitin ligase, which targets the oxygen-sensitive alpha-subunit of hypoxia-inducible factor (HIF) for rapid proteasomal degradation under normoxic conditions and as such plays a central role in molecular oxygen sensing. Mutations in pVHL can be found in familial and sporadic clear cell carcinomas of the kidney, hemangioblastomas of the retina and central nervous system, and pheochromocytomas, underscoring its gatekeeper function in the pathogenesis of these tumors. Tissue-specific gene targeting of VHL in mice has demonstrated that efficient execution of pVHL-mediated HIF proteolysis under normoxia is fundamentally important for survival, proliferation, differentiation and normal physiology of many cell types, and has provided novel insights into the biological function of individual HIF transcription factors. In this review, we discuss the role of HIF in the development of the VHL phenotype.
Collapse
Affiliation(s)
- P P Kapitsinou
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
32
|
Wu KL, Miao H, Khan S. JAK kinases promote invasiveness in VHL-mediated renal cell carcinoma by a suppressor of cytokine signaling-regulated, HIF-independent mechanism. Am J Physiol Renal Physiol 2007; 293:F1836-46. [PMID: 17898043 DOI: 10.1152/ajprenal.00096.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
von Hippel-Lindau (VHL) disease is a cancer syndrome, which includes renal cell carcinoma (RCC), and is caused by VHL mutations. Most, but not all VHL phenotypes are due to failure of mutant VHL to regulate constitutive proteolysis of hypoxia-inducible factors (HIFs). Janus kinases (JAK1, 2, 3, and TYK2) promote cell survival and proliferation, processes tightly controlled by SOCS proteins, which have sequence and structural homology to VHL. We hypothesized that in VHL disease, RCC pathogenesis results from enhanced SOCS1 degradation, leading to upregulated JAK activity. We find that baseline JAK2, JAK3, and TYK2 activities are increased in RCC cell lines, even after serum deprivation or coincubation with cytokine inhibitors. Furthermore, JAK activity is sustained in RCC stably expressing HIF2α shRNA. Invasion through Matrigel and migration in wound-healing assays, in vitro correlates of metastasis, are significantly greater in VHL mutant RCC compared with wild-type cells, and blocked by dominant-negative JAK expression or JAK inhibitors. Finally, we observe enhanced SOCS2/SOCS1 coprecipitation and reduced SOCS1 expression due to proteasomal degradation in VHL-null RCC compared with wild-type cells. The data support a new HIF-independent mechanism of RCC metastasis, whereby SOCS2 recruits SOCS1 for ubiquitination and proteasome degradation, which lead to unrestricted JAK-dependent RCC invasion. In addition to commonly proposed RCC treatment strategies that target HIFs, our data suggest that JAK inhibition represents an alternative therapeutic approach.
Collapse
Affiliation(s)
- Karen L Wu
- Case Western Reserve Univ., School of Medicine, Dept. of Nutrition, Research Tower, RT600, 2109 Adelbert Rd., Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
33
|
Xia L, Wang H, Munk S, Frecker H, Goldberg HJ, Fantus IG, Whiteside CI. Reactive oxygen species, PKC-beta1, and PKC-zeta mediate high-glucose-induced vascular endothelial growth factor expression in mesangial cells. Am J Physiol Endocrinol Metab 2007; 293:E1280-8. [PMID: 17711990 DOI: 10.1152/ajpendo.00223.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vascular endothelial growth factor (VEGF) is implicated in the development of proteinuria in diabetic nephropathy. High ambient glucose present in diabetes stimulates VEGF expression in several cell types, but the molecular mechanisms are incompletely understood. Here primary cultured rat mesangial cells served as a model to investigate the signal transduction pathways involved in high-glucose-induced VEGF expression. Exposure to high glucose (25 mM) significantly increased VEGF mRNA evaluated by real-time PCR by 3 h, VEGF cellular protein content assessed by immunoblotting or immunofluorescence within 24 h, and VEGF secretion by 24 h. High-glucose-induced VEGF expression was blocked by an antioxidant, Tempol, and antisense oligonucleotides directed against p22(phox), a NADPH oxidase subunit. Inhibition of protein kinase C (PKC)-beta(1) with the specific pharmacological inhibitor LY-333531 or inhibition of PKC-zeta with a cell permeable specific pseudosubstrate peptide also prevented enhanced VEGF expression in high glucose. Enhanced VEGF secretion in high glucose was prevented by Tempol, PKC-beta(1), or PKC-zeta inhibition. In normal glucose (5.6 mM), overexpression of p22(phox) or constitutively active PKC-zeta enhanced VEGF expression. Hypoxia inducible factor-1alpha protein was significantly increased in high glucose only by 24 h, suggesting a possible contribution to high-glucose-stimulated VEGF expression at later time points. Thus reactive oxygen species generated by NADPH oxidase, and both PKC-beta(1) and -zeta, play important roles in high-glucose-stimulated VEGF expression and secretion by mesangial cells.
Collapse
Affiliation(s)
- Ling Xia
- University Health Network, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Kondoh K, Tsuji N, Asanuma K, Kobayashi D, Watanabe N. Inhibition of estrogen receptor β-mediated human telomerase reverse transcriptase gene transcription via the suppression of mitogen-activated protein kinase signaling plays an important role in 15-deoxy-Δ12,14-prostaglandin J2-induced apoptosis in cancer cells. Exp Cell Res 2007; 313:3486-96. [PMID: 17706193 DOI: 10.1016/j.yexcr.2007.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/23/2007] [Accepted: 06/25/2007] [Indexed: 01/05/2023]
Abstract
The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR)-gamma plays a role in cancer development in addition to its role in glucose metabolism. The natural ligand of PPAR-gamma, namely, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), has been shown to possess antineoplastic activity in cancer cells. However, the mechanism underlying its antineoplastic activity remains to be elucidated. Inhibition of the expression of human telomerase reverse transcriptase (hTERT), a major determinant of telomerase activity, reportedly induces rapid apoptosis in cancer cells. In this study, we investigated the effect of 15d-PGJ(2) on hTERT expression. We found that 15d-PGJ(2) induced apoptosis in the MIAPaCa-2 pancreatic cancer cells and dose-dependently decreased hTERT mRNA and protein expression. Down-regulation of hTERT expression by hTERT-specific small inhibitory RNA also induced apoptosis. Furthermore, 15d-PGJ(2) attenuated the DNA binding of estrogen receptor (ER). MIAPaCa-2 expressed only ERbeta, and although its expression did not decrease due to 15d-PGJ(2), its phosphorylation was suppressed. Additionally, a mitogen-activated protein kinase (MAPK) kinase inhibitor decreased ERbeta phosphorylation, and 15d-PGJ(2) attenuated MAPK activity. We conclude that hTERT down-regulation by 15d-PGJ(2) plays an important role in the proapoptotic property of the latter. Furthermore, 15d-PGJ(2) inhibits ERbeta-mediated hTERT gene transcription by suppressing ERbeta phosphorylation via the inhibition of MAP kinase signaling.
Collapse
Affiliation(s)
- Kei Kondoh
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
35
|
Harper J, Yan L, Loureiro RM, Wu I, Fang J, D'Amore PA, Moses MA. Repression of Vascular Endothelial Growth Factor Expression by the Zinc Finger Transcription Factor ZNF24. Cancer Res 2007; 67:8736-41. [PMID: 17875714 DOI: 10.1158/0008-5472.can-07-1617] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis. Although many positive regulators of VEGF have been identified, relatively little is known regarding the negative regulation of VEGF expression. We identified a zinc finger transcription factor, ZNF24, that may repress VEGF transcription. An inverse correlation between expression of VEGF and ZNF24 was observed in a series of independent studies. ZNF24 was up-regulated in angiogenic tumor nodules where VEGF expression is significantly decreased compared with preangiogenic nodules. In human breast carcinoma cells cultured under normoxic conditions, ZNF24 levels were significantly up-regulated whereas VEGF levels were low. In contrast, VEGF was significantly increased in hypoxic cells whereas ZNF24 was down-regulated. The same inverse correlation between ZNF24 and VEGF was also observed in 70% of matched cDNA pairs of normal and malignant tissues from human colon and breast biopsies. Overexpression of ZNF24 resulted in a significant down-regulation of VEGF, whereas silencing of ZNF24 with small interfering RNA led to increased VEGF expression. Cotransfection of ZNF24 and a VEGF promoter luciferase reporter construct in MDA-MB-231 cells resulted in a significant decrease in VEGF promoter activity. Taken together, these data suggest that ZNF24 is involved in negative regulation of VEGF and may represent a novel repressor of VEGF transcription.
Collapse
Affiliation(s)
- Jay Harper
- Vascular Biology Program, Children's Hospital Boston, Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Ranganathan S, Wang Y, Kern FG, Qu Z, Li R. Activation loop phosphorylation-independent kinase activity of human protein kinase C zeta. Proteins 2007; 67:709-19. [PMID: 17335005 DOI: 10.1002/prot.21348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Atypical protein kinase C zeta (PKCzeta) plays an important role in cell proliferation and survival. PKCzeta and its truncated form containing only the kinase domain, CATzeta, have been reported to be activated by the phosphorylation of threonine 410 in the activation loop. We expressed both the full length PKCzeta and CATzeta in a baculovirus/insect cell over-expression system and purified the proteins for biochemical characterization. Ion exchange chromatography of CATzeta revealed three species with different levels of phosphorylation at Thr-410 and allowed the isolation of the CATzeta protein devoid of phosphorylation at Thr-410. All three species of CATzeta were active and their activity was not correlated with phosphorylation at Thr-410, indicating that the kinase activity of CATzeta did not depend solely on activation loop phosphorylation. Tyrosine phosphorylation was detected in all three species of CATzeta and the full length PKCzeta. Homology structural modeling of PKCzeta revealed a conserved, predicted-to-be phosphorylated tyrosine residue, Tyr-428, in the close proximity of the RD motif of the catalytic loop and of Thr-410 in the activation loop. The structural analysis indicated that phospho-Tyr-428 would interact with two key, positively-charged residues to form a triad conformation similar to that formed by phospho-Thr-410. Based on these observations, it is possible that the Thr-410 phosphorylation-independent kinase activity of CATzeta is regulated by the phosphorylation of Tyr-428. This alternative mode of PKCzeta activation is supported by the observed stimulation of PKCzeta kinase activity upon phosphorylation at the equivalent site by Abl, and may be involved in resistance to drug-induced apoptosis.
Collapse
Affiliation(s)
- Senthil Ranganathan
- Department of Organic Chemistry, Drug Discovery Division, Southern Research Institute, 2000, 9th Avenue South, Birmingham, AL 35205, USA
| | | | | | | | | |
Collapse
|
37
|
Inada S, Ikeda Y, Suehiro T, Takata H, Osaki F, Arii K, Kumon Y, Hashimoto K. Glucose enhances protein tyrosine phosphatase 1B gene transcription in hepatocytes. Mol Cell Endocrinol 2007; 271:64-70. [PMID: 17509747 DOI: 10.1016/j.mce.2007.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 04/15/2007] [Accepted: 04/19/2007] [Indexed: 01/11/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin receptor signal transduction pathway. We investigated the effects of glucose on PTP1B transcription in the human hepatocyte cell line Huh7. Using a reporter gene assay, we found that D-glucose dose-dependently enhanced the PTP1B promoter activity. Real-time PCR demonstrated that D-glucose also increased PTP1B mRNA expression. Protein kinase C (PKC) inhibitors partially but significantly inhibited the transactivation by D-glucose. Mithramycin, a Sp1 inhibitor, completely abrogated this transactivation. The deletion of three possible Sp1 sites in the promoter region of PTP1B significantly reduced the basal promoter activity and transactivation by D-glucose. Sp1 activation by PKC is one of the key mechanisms in the regulation of several gene expressions. Our data suggested that glucose enhanced PTP1B transcription through Sp1 activation by PKC. Increased hepatic PTP1B expression may partly explain glucose toxicity in diabetes.
Collapse
Affiliation(s)
- Shojiro Inada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Nankoku, Kochi 783-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen Y, Xiong Q, Yang X, Huang Z, Zhao Y, He L. Noninvasive Scintigraphic Detection of Tumor with 99mTc-DTPA-Deoxyglucose: An Experimental Study. Cancer Biother Radiopharm 2007; 22:403-5. [PMID: 17651047 DOI: 10.1089/cbr.2006.327] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Glucosamine is a highly attractive scaffold for a glucosyl ligand, and shows activity with glucose transporters and hexokinase. In the study reported here, diethylenetriamine-pentaacetic acid-D-glucosamine (DTPA-DG) was synthesized by conjugating D-glucosamine to DTPA, and was labeled with technetium-99m ((99m)Tc). We investigated (99m)Tc-DTPA-DG for tumor detection. METHODS The biodistribution and imaging of (99m)Tc-DTPA-DG in mammary tumor-bearing mice were compared to those in a control group of mice with oleum terebinthinae (turpentine oil)-induced inflammation. Both groups of mice were given an intravenous injection of 3.7 MBq/0.1 mL of (99m)Tc-DTPA-DG through the tail vein. RESULTS (99m)Tc-DTPA-DG accumulated in the tumor tissue to a percentage of 2.10 +/- 0.02% of the injected dose per gram of tissue (%ID/g) at 2 hours after injection, versus an accumulation of 0.81 +/- 0.03%ID/g in the inflamed tissue. The tumor-to-contralateral muscle tissue ratio of (99m)Tc-DTPA-DG was 5.01 +/- 1.02, while the inflamed tissue-to-contralateral muscle tissue ratio was 1.2 +/- 0.08. Gamma-camera imaging revealed the tumor tissue at 2 hours after injection of (99m)Tc-DTPA-DG. The tumor-to-background ratio of (99m)Tc-DTPA-DG (3.8 +/- 0.95) at 2 hours was significantly (p < 0.05) higher in mammary tumor-bearing mice than was the inflamed tissue-to-background ratio (1.2 +/- 0.62) in the mice with inflammation. CONCLUSIONS (99m)Tc-DTPA-DG showed excellent tumor targeting and has promise as an imaging agent for clinical tumor targeting.
Collapse
Affiliation(s)
- Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital, Luzhou Medical College, Luzhou, Sichuan, China.
| | | | | | | | | | | |
Collapse
|
39
|
Pivoriūnas A, Savickiene J, Treigyte G, Tunaitis V, Navakauskiene R, Magnusson KE. PI 3-K signaling pathway suppresses PMA-induced expression of p21WAF1/Cip1 in human leukemia cells. Mol Cell Biochem 2007; 302:9-18. [PMID: 17286201 DOI: 10.1007/s11010-007-9419-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
Despite the understanding of the importance of phosphoinositide 3-kinase (PI 3-K) signaling pathway in the regulation of cellular proliferation, little is known about its role during phorbol 12-myristate 13-acetate (PMA)-induced differentiation in human leukemia cells. Here, we report a novel finding that PI 3-K inhibition by LY294002 significantly increases p21WAF1/Cip1 expression in PMA-stimulated human leukemia cells NB4 and THP1. LY294002 potentiated expression of p21WAF1/Cip1 via a p53-independent mechanism and did not affect mitogen activated protein kinase (MAPK) activation. Electrophoretic mobility shift (EMSA) experiments revealed that blocking of PI 3-K was associated with increased binding of transcription factor Sp1 to the PMA-responsive sites on the p21WAF1/Cip1 promoter. Pretreatment with rapamycin, an inhibitor of mTOR kinase, decreased the expression of p21WAF1/Cip1 protein in PMA-stimulated NB4 cells. The level of PMA-induced p21WAF1/Cip1 protein expression was lower in NB4 cells overexpressing wild type protein kinase C zeta (PKC zeta) compared to those transfected with empty vector or with kinase inactive PKC zeta. Sp1 binding to the p21WAF1/Cip1 promoter was completely lost in a wild type PKC zeta overexpressing and PMA-stimulated NB4 cells. We demonstrate that PI 3-K signaling pathway suppresses PMA-induced expression of p21WAF1/Cip1 in human leukemia cells, and that this effect is partly mediated by PKC zeta.
Collapse
Affiliation(s)
- Augustas Pivoriūnas
- Department of Experimental Research, Institute of Experimental and Clinical Medicine, Zygimantu 9, 01102, Vilnius, Lithuania.
| | | | | | | | | | | |
Collapse
|
40
|
Yu BZ, Fu W, Su WH, Yu DH, Zhang Z, Feng C. Effects of PKC ζ on early genome transcription activation in mouse 1-cell stage fertilized eggs. Cell Biochem Funct 2007; 25:619-24. [PMID: 17066488 DOI: 10.1002/cbf.1357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Effects of PKC zeta on the activation of embryonic transcription in 1-cell stage fertilized mouse eggs were explored. The effects of PKC antagonist calphostin C and PKC zeta specific inhibitor on the activation of embryonic early transcription were observed by Western blotting and cell immunofluorescence. PKC activity increased gradually from G1 phase to late G2 phase in mouse 1-cell stage fertilized eggs, and reached a maximum in G2 stage. Calphostin C inhibited PKC activity by about 47% in 1-cell stage fertilized eggs. Calphostin C inhibited early transcription in 1-cell stage fertilized eggs (p < 0.01). PKC zeta-Thr410 in G2 were about 27% and 110% higher than those in G1 phase of 1-cell stage fertilized eggs and MII oocytes, respectively. PKC zeta specific inhibitor can also inhibit early transcription in 1-cell stage fertilized eggs (p < 0.05). The results suggest that PKC zeta participates in early transcription activation in mouse 1-cell stage fertilized eggs.
Collapse
Affiliation(s)
- Bing-zhi Yu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning Province, PR China.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor has been linked to a variety of tumors, including clear cell renal carcinoma, retinal and cerebellar hemangioblastoma, and pheochromocytoma. The best documented function of VHL protein (pVHL) relates to its ability to target the hypoxia-inducible transcription factor (HIF) for polyubiquitylation and proteasomal degradation. This chapter focuses on studies published over the past 2 years related to pVHL. These studies include those describing genetically engineered mice that were used to interrogate the relationship between pVHL and HIF in vivo and cell culture studies that underscore the importance of pVHL in epithelial differentiation and maintenance of the primary cilium. In addition, recent work suggests that pVHL regulates neuronal apoptosis in an HIF-independent manner, and this activity is linked to the risk of developing pheochromocytoma.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Abstract
Protein kinase C (PKC) comprises a superfamily of isoenzymes, many of which are activated by cofactors such as diacylglycerol and phosphatidylserine. In order to be capable of activation, PKC must first undergo a series of phosphorylations. In turn, activated PKC phosphorylates a wide variety of intracellular target proteins and has multiple functions in signal transduced cellular regulation. A role for PKC activation had been noted in several renal diseases, but two that have had most investigation are diabetic nephropathy and kidney cancer. In diabetic nephropathy, an elevation in diacylglycerol and/or other cofactor stimulants leads to an increase in activity of certain PKC isoforms, changes that are linked to the development of dysfunctional vasculature. The ability of isoform-specific PKC inhibitors to antagonize diabetes-induced vascular disease is a new avenue for treatment of this disorder. In the development and progressive invasiveness of kidney cancer, increased activity of several specific isoforms of PKC has been noted. It is thought that this may promote the kidney cancer's inherent resistance to apoptosis, in natural regression or after treatments, or it may promote the invasiveness of renal cancers via cellular differentiation pathways. In general, however, a more complete understanding of the functions of individual PKC isoforms in the kidney, and development or recognition of specific inhibitors or promoters of their activation, will be necessary to apply this knowledge for treatment of cellular dysregulation in renal disease.
Collapse
Affiliation(s)
- Jun Li
- Discipline of Molecular and Cellular Pathology, School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
43
|
Zhang Y, Liao M, Dufau ML. Phosphatidylinositol 3-kinase/protein kinase Czeta-induced phosphorylation of Sp1 and p107 repressor release have a critical role in histone deacetylase inhibitor-mediated derepression [corrected] of transcription of the luteinizing hormone receptor gene. Mol Cell Biol 2006; 26:6748-61. [PMID: 16943418 PMCID: PMC1592868 DOI: 10.1128/mcb.00560-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have demonstrated that silencing of luteinizing hormone receptor (LHR) gene transcription is mediated via a proximal Sp1 site at its promoter. Trichostatin A (TSA) induced histone acetylation and gene activation in JAR cells that prevailed in the absence of changes in Sp1/Sp3 expression, their binding activity, disassociation of the histone deacetylase/mSin3A complex from the Sp1 site, or demethylation of the promoter. This indicated a different mechanism involved in TSA-induced derepression. The present studies have revealed that phosphatidylinositol 3-kinase/protein kinase Czeta (PI3K/PKCzeta)-mediated Sp1 phosphorylation accounts for Sp1 site-dependent LHR gene activation. TSA caused marked phosphorylation of Sp1 at serine 641 in JAR and MCF-7 cells. Blockade of PI3K or PKCzeta activity by specific inhibitors, kinase-deficient mutants, or small interfering RNA abolished the effect of TSA on the LHR gene and Sp1 phosphorylation. PKCzeta was shown to associate with Sp1, and this association was enhanced by TSA. Sp1 phosphorylation at serine 641 was required for the release of the pRb homologue p107 from the LHR gene promoter, while p107 acted as a repressor of the LHR gene. Inhibition of PKCzeta activity blocked the dissociation of p107 from the LHR gene promoter and markedly reduced Sp1 phosphorylation and transcription. These results have demonstrated that phosphorylation of Sp1 by PI3K/PKCzeta is critical for TSA-activated LHR gene expression. These studies have revealed a novel mechanism of TSA action through derecruitment of a repressor from the LHR gene promoter in a PI3K/PKCzeta-induced Sp1 phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Ying Zhang
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development/NIH, 49 Convent Drive/ MSC 4510, Bethesda, MD 20892-4510, USA
| | | | | |
Collapse
|
44
|
Kaluz S, Kaluzová M, Stanbridge EJ. Proteasomal inhibition attenuates transcriptional activity of hypoxia-inducible factor 1 (HIF-1) via specific effect on the HIF-1alpha C-terminal activation domain. Mol Cell Biol 2006; 26:5895-907. [PMID: 16847340 PMCID: PMC1592766 DOI: 10.1128/mcb.00552-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is involved in regulation of multiple cellular processes. Hypoxia-inducible factor 1 alpha (HIF-1 alpha) is a prototypic target of the UPP and, as such, is stabilized under conditions of proteasomal inhibition. Using carbonic anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) expression as paradigmatic markers of HIF-1 activity, we found that proteasomal inhibitors (PI) abrogated hypoxia-induced CAIX expression in all cell lines tested and VEGF expression in two out of three. Mapping of the inhibitory effect identified the C-terminal activation domain (CAD) of HIF-1 alpha as the primary target of PI. PI specifically inhibited the HIF-1 alpha CAD despite activating the HIF-1 alpha coactivator p300 and another p300 cysteine/histidine-rich domain 1-dependent transcription factor, STAT-2. Coimmunoprecipitation and glutathione S-transferase pull downs indicated that PI does not disrupt interactions between HIF-1 alpha and p300. Mutational analysis failed to confirm involvement of sites of known or putative posttranslational modifications in regulation of HIF-1 alpha CAD function by PI. Our data provide evidence for the counterintuitive hypothesis that inhibition of HIF-1 function could be responsible for at least some of the antitumor effects of proteasomal inhibition. Further studies of the mechanism of the PI-induced attenuation of HIF-1alpha will provide important, potentially novel insight into regulation of HIF-1 activity and possibly identify new targets for HIF-directed therapy.
Collapse
Affiliation(s)
- Stefan Kaluz
- Department of Microbiology and Molecular Genetics, Medical Science I B210, University of California at Irvine, College of Medicine, Irvine, CA 92697-4025, USA.
| | | | | |
Collapse
|
45
|
Rojo AI, Salina M, Salazar M, Takahashi S, Suske G, Calvo V, de Sagarra MR, Cuadrado A. Regulation of heme oxygenase-1 gene expression through the phosphatidylinositol 3-kinase/PKC-zeta pathway and Sp1. Free Radic Biol Med 2006; 41:247-61. [PMID: 16814105 DOI: 10.1016/j.freeradbiomed.2006.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 03/13/2006] [Accepted: 04/04/2006] [Indexed: 11/17/2022]
Abstract
The molecular mechanisms involved in modulation of the antioxidant cell defence by survival signals remain largely unexplored. Here, we report a mechanistic connection between the survival signal elicited by nerve growth factor (NGF) and the antioxidant cell defence represented by heme oxygenase-1 (HO-1) at the level of a newly identified Sp1 site in the human ho1 proximal promoter. By using luciferase reporter constructs we identified a PI3K-responsive region containing a GC-box that resembled the response element for Sp1. Indeed, transfection of Sp1-deficient SL2 cells, electrophoretic mobility shift assays, the use of the GC-box binding drug mithramycin, and mutation of the GC-box provided evidence for a Sp1-like site in the PI3K-sensitive region. Then, we observed with the use of a Sp1-Gal4 chimera that PI3K regulates the transactivating capacity of Sp1. Cotransfection of active PI3K and PKC-zeta expression vectors resulted in substantial increase of Sp1 phosphorylation and in synergistic activation of both Sp1-Gal4 and endogenous Sp1. Moreover, these effects were mimicked by cotransfection of active MEK and ERK expression vectors and were blocked by the MEK inhibitor PD98059. Inhibition of HO-1 with Sn protoporphyrin IX and blockage of Sp-1-mediatied upregulation of HO-1 with mithramycin attenuated antioxidant and cytoprotective functions of NGF against hydrogen peroxide. This study elucidates how NGF contributes to protection of target cells against oxidative stress.
Collapse
Affiliation(s)
- Ana I Rojo
- Instituto de Investigaciones Biomédicas A. Sols UAM-CSIC and Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Nie D, Krishnamoorthy S, Jin R, Tang K, Chen Y, Qiao Y, Zacharek A, Guo Y, Milanini J, Pages G, Honn KV. Mechanisms Regulating Tumor Angiogenesis by 12-Lipoxygenase in Prostate Cancer Cells. J Biol Chem 2006; 281:18601-9. [PMID: 16638750 DOI: 10.1074/jbc.m601887200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
12-Lipoxygenase utilizes arachidonic acid to synthesize 12(S)-hydroperoxyeicosatetraenoic acid, which is converted to the end product 12(S)-hydroxyeicosatetraenoic acid, an eicosanoid that promotes tumorigenesis and metastasis. Increased expression of 12-lipoxygenase has been documented in a number of carcinomas. When overexpressed in human prostate or breast cancer, 12-lipoxygenase promotes tumor angiogenesis and growth in vivo. The present study was undertaken to delineate the mechanisms by which 12-lipoxygenase enhances angiogenesis. Herein we report that nordihydroguaiaretic acid, a pan inhibitor of lipoxygenases and baicalein, a selective inhibitor of 12-lipoxygenase, reduced VEGF expression in human prostate cancer PC-3 cells. Overexpression of 12-lipoxygenase in PC-3 cells resulted in a 3-fold increase in VEGF protein level when compared with vector control cells. An increase in PI 3-kinase activity was found in 12-LOX-transfected PC-3 cells and inhibition of PI 3-kinase by LY294002 significantly reduced VEGF expression. Northern blot and real time PCR analyses revealed an elevated VEGF transcript level in PC-3 cells transfected with a 12-lipoxygenase expression construct. Using a VEGF promoter luciferase construct (-1176/+54), we found a 10-fold increase in VEGF promoter activity in 12-lipoxygenase-transfected PC-3 cells. The region located between -88 and -66 of the VEGF promoter was identified as 12-lipoxygenase responsive using VEGF promoter-based luciferase assays. Further analysis with mutant constructs indicated Sp1 as a transcription factor required for 12-lipoxygenase stimulation of VEGF. Neutralization of VEGF by a function-blocking antibody significantly decreased the ability of 12-lipoxygenase-transfected PC-3 cells to stimulate endothelial cell migration, suggesting VEGF as an important effector for 12-lipoxygenase-mediated stimulation of tumor angiogenesis.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism
- Arachidonate 12-Lipoxygenase/biosynthesis
- Cell Line, Tumor
- Cell Movement/genetics
- Chromones/pharmacology
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Flavanones/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lipoxygenase Inhibitors/pharmacology
- Male
- Masoprocol/pharmacology
- Morpholines/pharmacology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/genetics
- Phosphatidylinositol 3-Kinases/biosynthesis
- Phosphoinositide-3 Kinase Inhibitors
- Promoter Regions, Genetic
- Prostatic Neoplasms/blood supply
- Prostatic Neoplasms/enzymology
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- Daotai Nie
- Department of Radiation Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hasegawa K, Wakino S, Tanaka T, Kimoto M, Tatematsu S, Kanda T, Yoshioka K, Homma K, Sugano N, Kurabayashi M, Saruta T, Hayashi K. Dimethylarginine dimethylaminohydrolase 2 increases vascular endothelial growth factor expression through Sp1 transcription factor in endothelial cells. Arterioscler Thromb Vasc Biol 2006; 26:1488-94. [PMID: 16574895 DOI: 10.1161/01.atv.0000219615.88323.b4] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Dimethylarginie dimethylaminohydrolase (DDAH) is a degrading enzyme for asymmetrical dimethylarginine, an endogenous NO synthase inhibitor. The molecular mechanism for DDAH-induced vascular endothelial growth factor (VEGF) expression was examined. METHODS AND RESULTS Although the transfection of expression vectors for 2 isoforms of DDAH, DDAH1, or DDAH2 increased DDAH activity in bovine aortic endothelial cells and human umbilical vein endothelial cells, expression and secretion of VEGF were increased only in DDAH2-transfected cells. Knocking down the DDAH2 gene reduced VEGF production, and DDAH2 overexpression enhanced both proliferation and migration of endothelial cells. The VEGF promoter activity was increased by DDAH2 transfection, which was not blocked by an NO synthase (NOS) inhibitor but required the Sp1 sites. DDAH2 overexpression increased nuclear protein levels bound to Sp1 oligonucleotides in endothelial cells. Sp1 small interfering RNA blocked DDAH2-induced upregulation of VEGF. DDAH2 transfection increased nuclear and threonine-phosphorylation levels of Sp1 in a protein kinase A (PKA)-dependent manner. Protein-protein interaction between DDAH2 and PKA was enhanced in DDAH2-transfected cells. CONCLUSIONS DDAH2 upregulated the expression of VEGF through Sp1-dependent and NO/NOS system-independent promoter activation. DDAH2-increased Sp1 DNA binding activity was PKA dependent. These mechanisms may provide a novel therapeutic strategy for VEGF-related vasculopathies such as atherosclerosis.
Collapse
Affiliation(s)
- Kazuhiro Hasegawa
- Department of Internal Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Improvement of scintigraphic tumor imaging is extensively determined by the development of more tumor specific radiopharmaceuticals. Thus, to improve the differential diagnosis, prognosis, planning and monitoring of cancer treatment, several functional pharmaceuticals have been developed. Application of molecular targets for cancer imaging, therapy and prevention using generator-produced isotopes is the major focus of ongoing research projects. Radionuclide imaging modalities (positron emission tomography, PET; single photon emission computed tomography, SPECT) are diagnostic cross-sectional imaging techniques that map the location and concentration of radionuclide-labeled radiotracers. 99mTc- and 68Ga-labeled agents using ethylenedicysteine (EC) as a chelator were synthesized and their potential uses to assess tumor targets were evaluated. 99mTc (t1/2 = 6 hr, 140 keV) is used for SPECT and 68Ga (t1/2 = 68 min, 511 keV) for PET. Molecular targets labeled with Tc-99m and Ga-68 can be utilized for prediction of therapeutic response, monitoring tumor response to treatment and differential diagnosis. Molecular targets for oncological research in (1) cell apoptosis, (2) gene and nucleic acid-based approach, (3) angiogenesis (4) tumor hypoxia, and (5) metabolic imaging are discussed. Numerous imaging ligands in these categories have been developed and evaluated in animals and humans. Molecular targets were imaged and their potential to redirect optimal cancer diagnosis and therapeutics were demonstrated.
Collapse
Affiliation(s)
- David J Yang
- Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston 77030, USA.
| | | | | |
Collapse
|
49
|
Bilsland AE, Stevenson K, Atkinson S, Kolch W, Keith WN. Transcriptional Repression of Telomerase RNA Gene Expression by c-Jun-NH2-Kinase and Sp1/Sp3. Cancer Res 2006; 66:1363-70. [PMID: 16452190 DOI: 10.1158/0008-5472.can-05-1941] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Telomerase is essential for immortalization of most human cancer cells. Expression of the core telomerase RNA (hTR) and reverse transcriptase (hTERT) subunits is mainly regulated by transcription. However, hTR transcriptional regulation remains poorly understood. We previously showed that the core hTR promoter is activated by Sp1 and is repressed by Sp3. Here, we show that the mitogen-activated protein kinase kinase kinase 1 (MEKK1)/c-Jun-NH(2)-kinase (JNK) pathway represses hTR expression by a mechanism that involves Sp1 and Sp3. Promoter activity was induced by the JNK inhibitor SP600125 and was repressed by activated MEKK1. Repression by MEKK1 was blocked by SP600125 or enhanced by coexpression of wild-type but not phosphoacceptor mutated JNK. SP600125 treatment also increased levels of endogenous hTR. Mutations in the hTR promoter Sp1/Sp3 binding sites attenuated SP600125-mediated promoter induction, whereas coexpression of MEKK1 with Sp3 enhanced hTR promoter repression. Chromatin immunoprecipitation showed that levels of immunoreactive Sp1 associated with the hTR promoter were low in comparison with Sp3 in control cells but increased after JNK inhibition with a reciprocal decrease in Sp3 levels. No corresponding changes in Sp1/Sp3 protein levels were detected. Thus, JNK represses hTR promoter activity and expression, apparently by enhancing repression through Sp3.
Collapse
Affiliation(s)
- Alan E Bilsland
- Centre for Oncology and Applied Pharmacology, University of Glasgow, Scotland, UK
| | | | | | | | | |
Collapse
|
50
|
Nakamura E, Kaelin WG. Recent insights into the molecular pathogenesis of pheochromocytoma and paraganglioma. Endocr Pathol 2006; 17:97-106. [PMID: 17159241 DOI: 10.1385/ep:17:2:97] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 02/07/2023]
Abstract
Pheochromocytomas and paragangliomas are rare tumors derived from chromaffin cells. These tumors can arise in the context of hereditary cancer syndromes such as von Hippel- Lindau disease, multiple endocrine neoplasia type 2, and neurofibromatosis 1. Recent studies indicate that germ line mutations of genes encoding specific succinate dehydrogenase (SDH) subunits also predispose individuals to pheochromocytomas and paragangliomas. This review focuses on the genetics of these tumors and suggests a possible link between familial pheochromocytomas/paraganglioma genes and control of neuronal apoptosis during embryological development.
Collapse
Affiliation(s)
- Eijiro Nakamura
- Department of Urology, Graduate School of Medicine, Kyoto University
| | | |
Collapse
|