1
|
Tekin A, Güner A, Akkan T. Protective Effect of Boric Acid Against Ochratoxin A-Induced Toxic Effects in Human Embryonal Kidney Cells (HEK293): A Study on Cytotoxic, Genotoxic, Oxidative, and Apoptotic Effects. Biol Trace Elem Res 2025; 203:810-821. [PMID: 38713435 PMCID: PMC11750931 DOI: 10.1007/s12011-024-04194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
The present study evaluates the protective properties of boric acid (BA) against the toxic effects induced by ochratoxin A (OTA) in human embryonic kidney cells (HEK293). The focus is on various parameters such as cytotoxicity, genotoxicity, oxidative stress, and apoptosis. OTA is a known mycotoxin that has harmful effects on the liver, kidneys, brain, and nervous system. BA, on the other hand, a boron-based compound, is known for its potential as a vital micronutrient with important cellular functions. The results show that BA administration not only increases cell viability but also mitigates the cytotoxic effects of OTA. This is evidenced by a reduction in the release of lactate dehydrogenase (LDH), indicating less damage to cell membranes. In addition, BA shows efficacy in reducing genotoxic effects, as the frequency of micronucleus (MN) and chromosomal aberrations (CA) decreases significantly, suggesting a protective role against DNA damage. In addition, the study shows that treatment with BA leads to a decrease in oxidative stress markers, highlighting its potential as a therapeutic intervention against the deleterious effects of OTA. These results emphasize the need for further research into the protective mechanisms of boron, particularly BA, in combating cell damage caused by OTA.
Collapse
Affiliation(s)
- Aşkın Tekin
- Faculty of Health Sciences, Department of Occupational Health and Safety,, Sinop University, Sinop, Türkiye.
| | - Adem Güner
- Şebinkarahisar Vocational School of Health Services, Giresun,, Giresun University, Giresun, Türkiye
| | - Tamer Akkan
- Faculty of Arts and Science, Biology Department of Biology, Giresun University, Giresun, Türkiye
| |
Collapse
|
2
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
3
|
Chan PF, Ang KP, Hamid RA. Cytotoxicity of bismuth(III) dithiocarbamate derivatives by promoting a mitochondrial-dependent apoptotic pathway and suppressing MCF-7 breast adenocarcinoma cell invasion. J Biol Inorg Chem 2024; 29:217-241. [PMID: 38369679 DOI: 10.1007/s00775-023-02041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/30/2023] [Indexed: 02/20/2024]
Abstract
We previously reported that the bismuth(III) dithiocarbamate derivative, bismuth diethyldithiocarbamate (1) exhibited greater cytotoxicity while inducing apoptosis via the intrinsic pathway in MCF-7 cells. We further evaluated the other bismuth(III) dithiocarbamate derivatives, Bi[S2CNR]3, with R = (CH2CH2OH)(iPr), (CH2)4, and (CH2CH2OH)(CH3), denoted as 2, 3, and 4, respectively, in the same MCF-7 cell line. 2-4 were found to exhibit IC50 values of 10.33 ± 0.06 µM, 1.07 ± 0.01 µM and 25.37 ± 0.12 µM, respectively, compared to that of cisplatin at 30.53 ± 0.23 µM. Apoptotic promotion via the mitochondrial-dependent pathway was due to the elevation of intracellular reactive oxygen species (ROS), promotion of caspases, release of cytochrome c, fragmentation of DNA, and results of staining assay observed in all compound-treated cells. 2-4 are also capable of suppressing MCF-7 cell invasion and modulate Lys-48 also Lys-63 linked polyubiquitination, leading to proteasomal degradation. Analysis of gene expression via qRT-PCR revealed their modulation, which supported all activities conducted upon treatment with 2-4. Altogether, bismuth dithiocarbamate derivatives, with bismuth(III) as the metal center bound to ligands, isopropyl ethanol, pyrrolidine, and methyl ethanol dithiocarbamate, are potential anti-breast cancer agents that induce apoptosis and suppress metastasis. Further studies using other breast cancer cell lines and in vivo studies are recommended to clarify the anticancer effects of these compounds.
Collapse
Affiliation(s)
- Pit Foong Chan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Kok Pian Ang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Roslida Abd Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Singh AK, Yadav D, Malviya R. Splicing DNA Damage Adaptations for the Management of Cancer Cells. Curr Gene Ther 2024; 24:135-146. [PMID: 38282448 DOI: 10.2174/0115665232258528231018113410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 01/30/2024]
Abstract
Maintaining a tumour cell's resistance to apoptosis (organized cell death) is essential for cancer to metastasize. Signal molecules play a critical function in the tightly regulated apoptotic process. Apoptosis may be triggered by a wide variety of cellular stresses, including DNA damage, but its ultimate goal is always the same: the removal of damaged cells that might otherwise develop into tumours. Many chemotherapy drugs rely on cancer cells being able to undergo apoptosis as a means of killing them. The mechanisms by which DNA-damaging agents trigger apoptosis, the interplay between pro- and apoptosis-inducing signals, and the potential for alteration of these pathways in cancer are the primary topics of this review.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Frolova AS, Chepikova OE, Deviataikina AS, Solonkina AD, Zamyatnin AA. New Perspectives on the Role of Nuclear Proteases in Cell Death Pathways. BIOLOGY 2023; 12:797. [PMID: 37372081 DOI: 10.3390/biology12060797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Multiple factors can trigger cell death via various pathways, and nuclear proteases have emerged as essential regulators of these processes. While certain nuclear proteases have been extensively studied and their mechanisms of action are well understood, others remain poorly characterized. Regulation of nuclear protease activity is a promising therapeutic strategy that could selectively induce favorable cell death pathways in specific tissues or organs. Thus, by understanding the roles of newly discovered or predicted nuclear proteases in cell death processes, we can identify new pharmacological targets for improving therapeutic outcomes. In this article, we delved into the role of nuclear proteases in several types of cell death and explore potential avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Anastasia S Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anna S Deviataikina
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Alena D Solonkina
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
6
|
Akhigbe RE, Oladipo AA, Oyedokun PA, Hamed MA, Okeleji LO, Ajayi AF. Upregulation of Uric Acid Production and Caspase 3 Signalling Mediates Rohypnol-Induced Cardiorenal Damage. Cardiovasc Toxicol 2022; 22:419-435. [PMID: 35103933 DOI: 10.1007/s12012-022-09723-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/19/2022] [Indexed: 12/22/2022]
Abstract
The global prevalence of illicit drug use is on the increase with attendant complications like cardiorenal collapse. One such substance of abuse is rohypnol. Despite its ban in most countries, it remains a popular substance of abuse. Whether or not rohypnol induces cardiorenal injury and the associated mechanism is yet to be elucidated. Therefore, the present study investigated the effect of rohypnol on cardiorenal integrity and functions, and glucolipid metabolism. Forty-eight male Wistar rats randomized into six groups (n = 8/group) received (per os) vehicle, low-dose (2 mg/kg) and high-dose (4 mg/kg) rohypnol once daily for twenty eight days, with or without a cessation period. Data revealed that rohypnol exposure irreversibly caused insulin resistance, hyperglycaemia, and dyslipidaemia. This was accompanied by reduced cardiorenal mass and impaired cardiorenal cytoarchitecture and function. Furthermore, rohypnol treatment promoted oxidative stress, inflammation, genotoxicity, and decreased cardiorenal activities of Na+-K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase. These alterations were associated with enhanced uric acid generation and caspase 3 activity in the cardiorenal complex. Thus, this study reveals that rohypnol exposure triggers cardiorenal toxicity with incident insulin resistance, glucolipid and cardiorenal proton pump dysregulation, altered redox state, and inflammation via enhancement of uric acid generation and caspase 3-dependent mechanism.
Collapse
Affiliation(s)
- R E Akhigbe
- Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Chemical Sciences, Kings University, Odeomu, Osun, Nigeria
| | - A A Oladipo
- Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - P A Oyedokun
- Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Buntai Medical and Diagnostic Laboratories, Osogbo, Nigeria
| | - L O Okeleji
- Cardio-Thoracic Unit, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Osun State, Nigeria
| | - A F Ajayi
- Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- Department of Human Physiology, Faculty of Basic Medical Sciences, Baze University, Abuja, Nigeria.
| |
Collapse
|
7
|
Ha HJ, Park HH. Molecular basis of apoptotic DNA fragmentation by DFF40. Cell Death Dis 2022; 13:198. [PMID: 35236824 PMCID: PMC8891305 DOI: 10.1038/s41419-022-04662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/09/2022]
Abstract
AbstractAlthough the functions of CIDE domain-containing proteins, including DFF40, DFF45, CIDE-A, CIDE-B, and FSP27, in apoptotic DNA fragmentation and lipid homeostasis have been studied extensively in mammals, the functions of four CIDE domain-containing proteins identified in the fly, namely DREP1, 2, 3, and 4, have not been explored much. Recent structural study of DREP4, a fly orthologue of mammalian DFF40 (an endonuclease involved in apoptotic DNA fragmentation), showed that the CIDE domain of DREP4 (and DFF40) forms filament-like assembly, which is critical for the corresponding function. The current study aimed to investigate the mechanism of filament formation of DREP4 CIDE and to characterize the same. DREP4 CIDE was shown to specifically bind to histones H1 and H2, an event important for the nuclease activity of DREP4. Based on the current experimental results, we proposed the mechanism underlying the process of apoptotic DNA fragmentation.
Collapse
|
8
|
Zhuang J, Xie L, Zheng L. A Glimpse of Programmed Cell Death Among Bacteria, Animals, and Plants. Front Cell Dev Biol 2022; 9:790117. [PMID: 35223864 PMCID: PMC8866957 DOI: 10.3389/fcell.2021.790117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death (PCD) in animals mainly refers to lytic and non-lytic forms. Disruption and integrity of the plasma membrane are considered as hallmarks of lytic and apoptotic cell death, respectively. These lytic cell death programs can prevent the hosts from microbial pathogens. The key to our understanding of these cases is pattern recognition receptors, such as TLRs in animals and LRR-RLKs in plants, and nod-like receptors (NLRs). Herein, we emphatically discuss the biochemical and structural studies that have clarified the anti-apoptotic and pro-apoptotic functions of Bcl-2 family proteins during intrinsic apoptosis and how caspase-8 among apoptosis, necroptosis, and pyroptosis sets the switchable threshold and integrates innate immune signaling, and that have compared the similarity and distinctness of the apoptosome, necroptosome, and inflammasome. We recapitulate that the necroptotic MLKL pore, pyroptotic gasdermin pore, HR-inducing resistosome, and mitochondrial Bcl-2 family all can form ion channels, which all directly boost membrane disruption. Comparing the conservation and unique aspects of PCD including ferrroptosis among bacteria, animals, and plants, the commonly shared immune domains including TIR-like, gasdermin-like, caspase-like, and MLKL/CC-like domains act as arsenal modules to restructure the diverse architecture to commit PCD suicide upon stresses/stimuli for host community.
Collapse
Affiliation(s)
- Jun Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Jun Zhuang,
| | - Li Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luping Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Yao Y, Zhang J, Tian P, Li L, Huang X, Nawutayi M, Huang Y, Zhang C. Passive smoking induces rat testicular injury via the FAS/FASL pathway. Drug Chem Toxicol 2022; 45:61-69. [PMID: 31476926 DOI: 10.1080/01480545.2019.1659807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/27/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
Abstract
The mechanisms by which cigarette smoke (CS) exposure has a detrimental effect on the male reproductive system is still not fully understood. We aimed to elucidate the role of cigarette smoke-induced injury by the Fas/FasL pathway by using a Sprague-Dawley rat model of cigarette smoking exposure. Here, 200 rats were randomaly divided into five groups with different smoking exposure durations. Forty animals per group were further divided into four groups: a control group, and groups exposed to cigarette smoke at doses of 10, 20 or 30 cigarettes/day. The testes were harvested and the effects of CS exposure on the testis were characterized on the basis of morphological changes, oxidative stress, and a significant elevation in the expression of FAS/FASL pathway related genes, such as FAS, FASL, FADD, caspase 8 and caspase 3. Oxidative stress was reflected by significant time-dependent changes in SOD and GSH-Px activity, and MDA content. Taken together, our data suggest that CS exposure induces testis injury, which is related to the increased oxidative stress and activation of the FAS/FASL apoptotic pathway in the testes.
Collapse
Affiliation(s)
- Yanling Yao
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Jing Zhang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Ping Tian
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Linlin Li
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Xiaoxi Huang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Maitinashi Nawutayi
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Yunfei Huang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Chen Zhang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
10
|
Gossypol Treatment Restores Insufficient Apoptotic Function of DFF40/CAD in Human Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13215579. [PMID: 34771741 PMCID: PMC8583586 DOI: 10.3390/cancers13215579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor and almost all patients die because of relapses. GBM-derived cells undergo cell death without nuclear fragmentation upon treatment with different apoptotic agents. Nuclear dismantling determines the point-of-no-return in the apoptotic process. DFF40/CAD is the main endonuclease implicated in apoptotic nuclear disassembly. To be properly activated, DFF40/CAD should reside in the cytosol. However, the endonuclease is poorly expressed in the cytosol and remains cumulated in the nucleus of GBM cells. Here, by employing commercial and non-commercial patient-derived GBM cells, we demonstrate that the natural terpenoid aldehyde gossypol prompts DFF40/CAD-dependent nuclear fragmentation. A comparative analysis between gossypol- and staurosporine-treated cells evidenced that levels of neither caspase activation nor DNA damage were correlated with the ability of each compound to induce nuclear fragmentation. Deconvoluted confocal images revealed that DFF40/CAD was almost completely excluded from the nucleus early after the staurosporine challenge. However, gossypol-treated cells maintained DFF40/CAD in the nucleus for longer times, shaping a ribbon-like structure piercing the nuclear fragments and building a network of bridged masses of compacted chromatin. Therefore, GBM cells can fragment their nuclei if treated with the adequate insult, making the cell death process irreversible.
Collapse
|
11
|
Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:73-120. [PMID: 33931145 DOI: 10.1016/bs.apcsb.2021.01.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptosis, also named programmed cell death, is a fundament process required for morphogenetic homeostasis during early development and in pathophysiological conditions. It is come into existence in 1972 by work of Kerr, Wyllie and Currie and later on investigated during the research on development of the C. elegans. Trigger by several stimuli, apoptosis is necessary during the embryonic development and aging as homeostatic mechanism to control the cell population and also play a key role as defense mechanism against the immune responses and elimination of damaged cells. Cancer, a genetic disease, is a growing burden on the health and economy of both developing and developed countries. Every year there is tremendously increasing in the number of new cancer cases and mortality rate. Although, there is a significant improvement have been made in biotechnological and bioinformatic fields however, the therapeutic advantages and cancer etiology is still under explored. Several studies determined the deregulation of different apoptotic components during the cancer development and progression. Apoptosis relies on activation of distinct signaling pathways that are often deregulated in cancer. Thus, exploring the single or more than one apoptotic component underlying their expression in carcinogenesis could help to track the disease progression. Current book chapter will provide the several evidences supporting the use of different apoptotic components as prognosis and prediction markers in various human cancer types.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduation Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Neelam Goel
- Department of Information Technology, UIET, Panjab University, Chandigarh, India.
| |
Collapse
|
12
|
Chan PF, Ang KP, Hamid RA. A bismuth diethyldithiocarbamate compound induced apoptosis via mitochondria-dependent pathway and suppressed invasion in MCF-7 breast cancer cells. Biometals 2021; 34:365-391. [PMID: 33555494 DOI: 10.1007/s10534-021-00286-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Interest in bismuth(III) dithiocarbamate complexes as potential drug candidates is increasing due to their low toxicity compared to other group 15 elements (pnictogen) of the periodic table. Bismuth dithiocarbamate compounds have been reported to induce greater cytotoxicity in various human carcinoma cancer cell lines. Using various in vitro cancer-related assays, we investigated the antiproliferative activity of bismuth diethyldithiocarbamate, denoted as 1, against the MCF-7 human breast adenocarcinoma cell line and the effect on genes that may be involved in antiproliferation, apoptosis, DNA fragmentation, invasion and polyubiquitination functions. In general, 1 exhibited high cytotoxicity in MCF-7 cells, with an IC50 of 1.26 ± 0.02 µM, by inducing the intrinsic apoptotic pathway, as ascertained by measurements of intracellular reactive oxygen species (ROS), caspase activity, the amount of cytochrome c released and the extent of DNA fragmentation and by staining assays that reveal apoptotic cells. In addition, 1 significantly attenuated cell invasion and modulated several cancer-related genes, including PLK2, FIGF, FLT4, PARP4, and HDAC11, as determined via gene expression analysis. The NF-κB signaling pathway was inhibited by 1 upon the activation of Lys48- and Lys63-linked polyubiquitination, thus leading to its degradation via the proteasome. Overall, 1 has the potential to act as an antiproliferative agent and a proteasome inhibitor in estrogen-positive breast cancer.
Collapse
Affiliation(s)
- Pit Foong Chan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Kok Pian Ang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Roslida Abd Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
13
|
Lung Macrophage Functional Properties in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:ijms21030853. [PMID: 32013028 PMCID: PMC7037150 DOI: 10.3390/ijms21030853] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by the chronic exposure of the lungs to toxic particles and gases. These exposures initiate a persistent innate and adaptive immune inflammatory response in the airways and lung tissues. Lung macrophages (LMs) are key innate immune effector cells that identify, engulf, and destroy pathogens and process inhaled particles, including cigarette smoke and particulate matter (PM), the main environmental triggers for COPD. The number of LMs in lung tissues and airspaces is increased in COPD, suggesting a potential key role for LMs in initiating and perpetuating the chronic inflammatory response that underpins the progressive nature of COPD. The purpose of this brief review is to discuss the origins of LMs, their functional properties (chemotaxis, recruitment, mediator production, phagocytosis and apoptosis) and changes in these properties due to exposure to cigarette smoke, ambient particulate and pathogens, as well as their persistent altered functional properties in subjects with established COPD. We also explore the potential to therapeutically modulate and restore LMs functional properties, to improve impaired immune system, prevent the progression of lung tissue destruction, and improve both morbidity and mortality related to COPD.
Collapse
|
14
|
Bedoya-Medina J, Mendivil-Perez M, Rey-Suarez P, Jimenez-Del-Rio M, Núñez V, Velez-Pardo C. L-amino acid oxidase isolated from Micrurus mipartitus snake venom (MipLAAO) specifically induces apoptosis in acute lymphoblastic leukemia cells mostly via oxidative stress-dependent signaling mechanism. Int J Biol Macromol 2019; 134:1052-1062. [PMID: 31129208 DOI: 10.1016/j.ijbiomac.2019.05.174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022]
Abstract
The effect of Micrurus mipartitus snake venom as a therapeutic alternative for T-acute lymphoblastic leukemia (ALL) is still unknown. This study was aimed to evaluate the cytotoxic effect of M. mipartitus snake venom and a new L-amino acid oxidase (LAAO), named MipLAAO, on human peripheral blood lymphocytes (PBL) and on T-ALL cells (Jurkat), and its mechanism of action. PBL and Jurkat cells were treated with venom and MipLAAO, and morphological changes in the cell nucleus/DNA, mitochondrial membrane potential, levels of intracellular reactive oxygen species and cellular apoptosis markers were determined by fluorescence microscopy, flow cytometry and pharmacological inhibition. Venom and MipLAAO induced apoptotic cell death in Jurkat cells, but not in PBL, in a dose-response manner. Additionally, venom and MipLAAO increased dichlorofluorescein fluorescence intensity, indicative of H2O2 production, increased DJ-1 Cys106-sulfonate, as a marker of intracellular stress and induced the up-regulation of PUMA, p53 and phosphorylation of c-JUN. Additionally, it increased the expression of apoptotic CASPASE-3. In conclusion, M. mipartitus venom and MipLAAO selectively induces apoptosis in Jurkat cells through a H2O2-mediated signaling pathway dependent mostly on CASPASE-3 pathway. Our findings support the potential use of M. mipartitus snake venom compounds as a potential treatment for T-ALL.
Collapse
Affiliation(s)
- Jesus Bedoya-Medina
- Programa de Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín, Colombia
| | - Miguel Mendivil-Perez
- Grupo de Neurociencias, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, bloque 1, laboratorio 412, SIU, Medellín, Colombia
| | - Paola Rey-Suarez
- Programa de Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Grupo de Neurociencias, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, bloque 1, laboratorio 412, SIU, Medellín, Colombia
| | - Vitelbina Núñez
- Programa de Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín, Colombia; Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Carlos Velez-Pardo
- Grupo de Neurociencias, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, bloque 1, laboratorio 412, SIU, Medellín, Colombia.
| |
Collapse
|
15
|
Crystal structure and mutation analysis revealed that DREP2 CIDE forms a filament-like structure with features differing from those of DREP4 CIDE. Sci Rep 2018; 8:17810. [PMID: 30546036 PMCID: PMC6292858 DOI: 10.1038/s41598-018-36253-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/16/2018] [Indexed: 11/26/2022] Open
Abstract
Cell death-inducing DFF45-like effect (CIDE) domain-containing proteins, DFF40, DFF45, CIDE-A, CIDE-B, and FSP27, play important roles in apoptotic DNA fragmentation and lipid homeostasis. The function of DFF40/45 in apoptotic DNA fragmentation is mediated by CIDE domain filament formation. Although our recent structural study of DREP4 CIDE revealed the first filament-like structure of the CIDE domain and its functional importance, the filament structure of DREP2 CIDE is unclear because this structure was not helical in the asymmetric unit. In this study, we present the crystal structure and mutagenesis analysis of the DREP2 CIDE mutant, which confirmed that DREP2 CIDE also forms a filament-like structure with features differing from those of DREP4 CIDE.
Collapse
|
16
|
Kim CM, Jeon SH, Choi JH, Lee JH, Park HH. Interaction mode of CIDE family proteins in fly: DREP1 and DREP3 acidic surfaces interact with DREP2 and DREP4 basic surfaces. PLoS One 2017; 12:e0189819. [PMID: 29240809 PMCID: PMC5730196 DOI: 10.1371/journal.pone.0189819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022] Open
Abstract
Cell death-inducing DNA fragmentation factor 45 (DFF45)-like effector (CIDE) domains were initially identified as protein interaction modules in apoptotic nucleases and are now known to form a highly conserved family with diverse functions that range from cell death to lipid homeostasis. In the fly, four CIDE domain-containing proteins (DFF-related protein [DREP]-1–4) and their functions, including interaction relationships, have been identified. In this study, we introduced and investigated acidic side-disrupted mutants of DREP1, DREP2, and DREP3. We discovered that the acidic surface patches of DREP1 and DREP3 are critical for the homo-dimerization. In addition, we found that the acidic surface sides of DREP1 and DREP3 interact with the basic surface sides of DREP2 and DREP4. Our current study provides clear evidence demonstrating the mechanism of the interactions between four DREP proteins in the fly.
Collapse
Affiliation(s)
- Chang Min Kim
- School of Natural Science, Department of Chemistry and Biochemistry and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sun Hee Jeon
- School of Natural Science, Department of Chemistry and Biochemistry and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jun-Hyuk Choi
- Department of Metrology for Quality of Life, Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Inchon, Republic of Korea
| | - Hyun Ho Park
- School of Natural Science, Department of Chemistry and Biochemistry and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Zhang Y, Chang Y, Cao H, Xu W, Li Z, Tao L. Potential threat of Chlorpyrifos to human liver cells via the caspase-dependent mitochondrial pathways. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1373271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yuansen Chang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Haijing Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|
18
|
Palanisamy SK, Rajendran NM, Marino A. Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:1-111. [PMID: 28097641 PMCID: PMC5315671 DOI: 10.1007/s13659-016-0115-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
This present study reviewed the chemical diversity of marine ascidians and their pharmacological applications, challenges and recent developments in marine drug discovery reported during 1994-2014, highlighting the structural activity of compounds produced by these specimens. Till date only 5% of living ascidian species were studied from <3000 species, this study represented from family didemnidae (32%), polyclinidae (22%), styelidae and polycitoridae (11-12%) exhibiting the highest number of promising MNPs. Close to 580 compound structures are here discussed in terms of their occurrence, structural type and reported biological activity. Anti-cancer drugs are the main area of interest in the screening of MNPs from ascidians (64%), followed by anti-malarial (6%) and remaining others. FDA approved ascidian compounds mechanism of action along with other compounds status of clinical trials (phase 1 to phase 3) are discussed here in. This review highlights recent developments in the area of natural products chemistry and biotechnological approaches are emphasized.
Collapse
Affiliation(s)
- Satheesh Kumar Palanisamy
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166, Messina, Italy.
| | - N M Rajendran
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166, Messina, Italy
| |
Collapse
|
19
|
Yu X, Zhang Y, Yang M, Guo J, Xu W, Gao J, Li Y, Tao L. Cytotoxic effects of tebufenozide in vitro bioassays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:180-188. [PMID: 27043174 DOI: 10.1016/j.ecoenv.2016.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/17/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
Tebufenozide is considered an environmentally friendly pesticide due to its specificity on target insects, but the effects on human are well studied. Studies on the toxicity of tebufenozide at molecular and cellular level is poorly understood. The present study reveals non-selective cytotoxic effects of tebufenozide, and the apoptotic mechanism induced by tebufenozide on HeLa and Tn5B1-4 cells. We demonstrate that the viability of HeLa and Tn5B1-4 cells is inhibited by tebufenozide in a time- and concentration-dependent manner. Intracellular biochemical assays showed that tebufenozide-induced apoptosis of two cell lines concurrent with a decrease in the mitochondrial membrane potential and an increase reactive oxygen species generation, the release of cytochrome-c into the cytosol and a marked activation of caspase-3. These results indicate that a mitochondrial-dependent intrinsic pathway contributes to tebufenozide induced apoptosis in HeLa and Tn5B1-4 cells and suggests potential threats to ecosystems and human health.
Collapse
Affiliation(s)
- Xiaoqin Yu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Junfu Guo
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yaxiao Li
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
20
|
Zhang Y, Liu S, Yang X, Yang M, Xu W, Li Y, Tao L. Staurosporine shows insecticidal activity against Mythimna separata Walker (Lepidoptera: Noctuidae) potentially via induction of apoptosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 128:37-44. [PMID: 26969438 DOI: 10.1016/j.pestbp.2015.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/20/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
Staurosporine (STS), a wide-spectrum kinase inhibitor, is widely used in studies of apoptosis in mammalian cells. However, its physiological and mechanistic effects have never been clearly defined in insect cells, and other applications of STS have rarely been reported. The present study reveals the insecticidal activity of STS on larvae of Mythimna separata Walker, and the apoptotic mechanism induced by STS on lepidopteran Sf9 cell lines. We demonstrate that the viability of Sf9 cells is inhibited by STS in a time- and concentration-dependent manner. Intracellular biochemical assays show that STS-induced apoptosis of Sf9 cells coincides with a decrease in the mitochondrial membrane potential, the release of cytochrome c into the cytosol, a significant increase of the Bax/Bcl-2 ratio, and a marked activation of caspase-9 and caspase-3. These results indicate that a mitochondrial-dependent intrinsic pathway contributes to STS induced caspase-3 activation and apoptosis in Sf9 cells which is homologous to the mechanisms in mammalian cells. This study contributes to our understanding of the mechanism of insect cell apoptosis and suggests a possible new application of STS as a potential insecticide against Lepidopteran insect pests in agriculture.
Collapse
Affiliation(s)
- Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Songlin Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xing Yang
- Shanghai Pesticide Research Institute, Shanghai 200032, China
| | - Mingjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yaxiao Li
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
21
|
Lee SH, Lee EH, Lee SH, Lee YM, Kim HD, Kim YZ. Epigenetic Role of Histone 3 Lysine Methyltransferase and Demethylase in Regulating Apoptosis Predicting the Recurrence of Atypical Meningioma. J Korean Med Sci 2015; 30:1157-66. [PMID: 26240495 PMCID: PMC4520948 DOI: 10.3346/jkms.2015.30.8.1157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/07/2015] [Indexed: 12/27/2022] Open
Abstract
Alteration of apoptosis is related with progression and recurrence of atypical meningiomas (AMs). However, no comprehensive study has been conducted regarding histone modification regulating apoptosis in AMs. This study aimed to determine the prognostic values of certain apoptosis-associated factors, and examine the role of histone modification on apoptosis in AMs. The medical records of 67 patients with AMs, as diagnosed during recent 13 yr, were reviewed retrospectively. Immunohistochemical staining was performed on archived paraffin-embedded tissues for pro-apoptotic factors (CASP3, IGFBP, TRAIL-R1, BAX, and XAF1), anti-apoptotic factors (survivin, ERK, RAF1, MDM2, and BCL2), and the histone modifying enzymes (MLL2, RIZ, EZH1, NSD2, KDM5c, JMJD2a, UTX, and JMJD5). Twenty-six (38.8%) patients recurred during the follow-up period (mean duration 47.7 months). In terms of time-to-recurrence (TTR), overexpression of CASP3, TRAIL-R1, and BAX had a longer TTR than low expression, and overexpression of survivin, MDM2, and BCL2 had a shorter TTR than low expression (P<0.05). Additionally, overexpression of MLL2, UTX, and JMJ5 had shorter TTRs than low expression, and overexpression of KDM5c had a longer TTR than low expression. However, in the multi-variate analysis of predicting factors for recurrence, low expression of CASP3 (P<0.001), and BAX (P<0.001), and overexpression of survivin (P=0.007), and MDM2 (P=0.037) were associated with recurrence independently, but any enzymes modifying histone were not associated with recurrence. Conclusively, this study suggests certain apoptosis-associated factors should be associated with recurrence of AMs, which may be regulated epigenetically by histone modifying enzymes.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Department of Neurosurgery and Division of Neurooncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Eun Hee Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Sung-Hun Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Young Min Lee
- Department of Neurosurgery and Division of Neurooncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Hyung Dong Kim
- Department of Neurosurgery, Dong-A University Medical Center, Dong-A University College of Medicine, Busan, Korea
| | - Young Zoon Kim
- Department of Neurosurgery and Division of Neurooncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
22
|
Paydar M, Kamalidehghan B, Wong YL, Wong WF, Looi CY, Mustafa MR. Evaluation of cytotoxic and chemotherapeutic properties of boldine in breast cancer using in vitro and in vivo models. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:719-33. [PMID: 24944509 PMCID: PMC4057328 DOI: 10.2147/dddt.s58178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
To date, plants have been the major source of anticancer drugs. Boldine is a natural alkaloid commonly found in the leaves and bark of Peumus boldus. In this study, we found that boldine potently inhibited the viability of the human invasive breast cancer cell lines, MDA-MB-231 (48-hour IC50 46.5±3.1 μg/mL) and MDA-MB-468 (48-hour IC50 50.8±2.7 μg/mL). Boldine had a cytotoxic effect and induced apoptosis in breast cancer cells as indicated by a higher amount of lactate dehydrogenase released, membrane permeability, and DNA fragmentation. In addition, we demonstrated that boldine induced cell cycle arrest at G2/M phase. The anticancer mechanism is associated with disruption of the mitochondrial membrane potential and release of cytochrome c in MDA-MB-231. Boldine selectively induced activation of caspase-9 and caspase-3/7, but not caspase-8. We also found that boldine could inhibit nuclear factor kappa B activation, a key molecule in tumor progression and metastasis. In addition, protein array and Western blotting analysis showed that treatment with boldine resulted in downregulation of Bcl-2 and heat shock protein 70 and upregulation of Bax in the MDA-MB-231 cell line. An acute toxicity study in rats revealed that boldine at a dose of 100 mg/kg body weight was well tolerated. Moreover, intraperitoneal injection of boldine (50 or 100 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that boldine is a potentially useful agent for the treatment of breast cancer.
Collapse
Affiliation(s)
| | | | - Yi Li Wong
- Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Park OK, Park HH. A putative role of Drep1 in apoptotic DNA fragmentation system in fly is mediated by direct interaction with Drep2 and Drep4. Apoptosis 2014; 18:385-92. [PMID: 23417746 DOI: 10.1007/s10495-013-0815-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA fragmentation is common phenomenon for apoptotic cell death. DNA fragmentation factor, called DFF40 (CAD: mouse homologue), is a main nuclease for apoptotic DNA fragmentation. Nuclease activity of DFF40 is normally inhibited by DFF45 by tight interaction via CIDE domain without apoptotic stimuli. Once effector caspase is activated during apoptosis signaling, it cleave DFF45, allowing DFF40 to enter the nucleus and cleave chromosomal DNA. Unlike mammalian system, apoptotic DNA fragmentation in the fly might be controlled by four DFF-related proteins, known as Drep1, Drep2, Drep3 and Drep4. Although the function of Drep1 and Drep4 is well known as DFF45 and DFF40 homologues, respectively, the function of Drep2 and Drep3 is still unclear. DFF-related proteins contain a conserved CIDE domain of ~90 amino acid residues that is involved in protein-protein interaction. Here, we showed that Drep1 directly bind to Drep2 as well as Drep4 via CIDE domain. In addition, we found that the interaction of Drep2 and Drep4 to Drep1 was not competitive indicating that Drep2 and Drep4 bind different place of Drep1. All together, we suggest that Drep1 might be involved in apoptotic DNA fragmentation of fly system by direct interaction with Drep2 as well as Drep4.
Collapse
Affiliation(s)
- Ok Kyung Park
- Department of Biotechnology, School of Biotechnology and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | | |
Collapse
|
24
|
|
25
|
Lee SM, Park HH. General interaction mode of CIDE:CIDE complex revealed by a mutation study of the Drep2 CIDE domain. FEBS Lett 2013; 587:854-9. [DOI: 10.1016/j.febslet.2013.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/06/2013] [Accepted: 02/15/2013] [Indexed: 11/15/2022]
|
26
|
Ocker M, Höpfner M. Apoptosis-modulating drugs for improved cancer therapy. Eur Surg Res 2012; 48:111-120. [PMID: 22538523 DOI: 10.1159/000336875] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/16/2022]
Abstract
Resistance to cell death induction has been recognized as a hallmark of cancer. Increasing understanding of the underlying molecular events regulating different cell death mechanisms like apoptosis, endoplasmic reticulum stress, autophagy, necroptosis and others has opened new possibilities for targeted interference with these pathways. While conventional chemotherapeutic agents usually inhibit cell cycle progression, DNA replication or mitosis execution, novel agents like small molecule kinase inhibitors also target survival-related kinases and signaling pathways and contribute to overcome resistance to chemotherapy and apoptosis. Additionally, antibodies targeting cellular death receptors have been described to specifically target tumor cells only. This review briefly highlights the pathways involved in (apoptotic) cell death and summarizes the current state of development of specific modulators of cell death and how they can help to improve the tolerability of chemotherapy regimens and increase survival rates in patients with advanced cancer diseases.
Collapse
Affiliation(s)
- M Ocker
- Institute for Surgical Research, Philipps University Marburg, Marburg, Germany.
| | | |
Collapse
|
27
|
Zavattaro E, Boccafoschi F, Borgogna C, Conca A, Johnson RC, Sopoh GE, Dossou AD, Colombo E, Clemente C, Leigheb G, Valente G. Apoptosis in Buruli ulcer: a clinicopathological study of 45 cases. Histopathology 2012; 61:224-36. [DOI: 10.1111/j.1365-2559.2012.04206.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Iglesias-Guimarais V, Gil-Guiñon E, Gabernet G, García-Belinchón M, Sánchez-Osuna M, Casanelles E, Comella JX, Yuste VJ. Apoptotic DNA degradation into oligonucleosomal fragments, but not apoptotic nuclear morphology, relies on a cytosolic pool of DFF40/CAD endonuclease. J Biol Chem 2012; 287:7766-79. [PMID: 22253444 DOI: 10.1074/jbc.m111.290718] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptotic cell death is characterized by nuclear fragmentation and oligonucleosomal DNA degradation, mediated by the caspase-dependent specific activation of DFF40/CAD endonuclease. Here, we describe how, upon apoptotic stimuli, SK-N-AS human neuroblastoma-derived cells show apoptotic nuclear morphology without displaying concomitant internucleosomal DNA fragmentation. Cytotoxicity afforded after staurosporine treatment is comparable with that obtained in SH-SY5Y cells, which exhibit a complete apoptotic phenotype. SK-N-AS cell death is a caspase-dependent process that can be impaired by the pan-caspase inhibitor q-VD-OPh. The endogenous inhibitor of DFF40/CAD, ICAD, is correctly processed, and dff40/cad cDNA sequence does not reveal mutations altering its amino acid composition. Biochemical approaches show that both SH-SY5Y and SK-N-AS resting cells express comparable levels of DFF40/CAD. However, the endonuclease is poorly expressed in the cytosolic fraction of healthy SK-N-AS cells. Despite this differential subcellular distribution of DFF40/CAD, we find no differences in the subcellular localization of both pro-caspase-3 and ICAD between the analyzed cell lines. After staurosporine treatment, the preferential processing of ICAD in the cytosolic fraction allows the translocation of DFF40/CAD from this fraction to a chromatin-enriched one. Therefore, the low levels of cytosolic DFF40/CAD detected in SK-N-AS cells determine the absence of DNA laddering after staurosporine treatment. In these cells DFF40/CAD cytosolic levels can be restored by the overexpression of their own endonuclease, which is sufficient to make them proficient at degrading their chromatin into oligonucleosome-size fragments after staurosporine treatment. Altogether, the cytosolic levels of DFF40/CAD are determinants in achieving a complete apoptotic phenotype, including oligonucleosomal DNA degradation.
Collapse
Affiliation(s)
- Victoria Iglesias-Guimarais
- Cell Death, Senescence, and Survival Group, Departament de Bioquimica i Biologia Molecular and Institut de Neurociencies, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Xie Y, Bruce A, He L, Wei F, Tao L, Tang D. CYB5D2 enhances HeLa cells survival of etoposide-induced cytotoxicity. Biochem Cell Biol 2011; 89:341-50. [PMID: 21639828 DOI: 10.1139/o11-004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome b5 domain containing 2 (CYB5D2) (neuferricin) belongs to the family of membrane-associated progesterone receptors (MAPRs). MAPRs affect multiple cellular processes, including proliferation, differentiation, and survival. Consistent with these observations, we report here that CYB5D2 enhances HeLa cells survival of etoposide (ETOP)-mediated cytotoxicity. Overexpression of CYB5D2 enhanced the survival of HeLa cells compared with HeLa cells transfected with empty vector (EV) upon ETOP treatment. As ETOP initiates ATM-dependent DNA damage response (DDR), we were able to show that CYB5D2 did not affect ETOP-induced DDR. In line with these observations, CYB5D2 did not protect HeLa cells from UV-induced cytotoxicity. Additionally, CYB5D2 had no effects on TNFα-induced apoptosis. Collectively, CYB5D2 enhances HeLa cell survival of ETOP-induced cytotoxicity with some specificity. CYB5D2 contains a cytochrome b5 (cyt-b5) domain and a transmembrane (TM) motif. Both domains are required for CYB5D2-mediated protection of HeLa cells from ETOP-induced cytotoxicity. In an effort to search for the underlying mechanisms, we have profiled gene expression between HeLa-CYB5D2 and HeLa-EV cells. Although ectopic CYB5D2 does not massively alter gene expression, the expression of several transcripts was affected more than 2-fold, suggesting that they may contribute to CYB5D2-mediated HeLa cell survival of ETOP treatment.
Collapse
Affiliation(s)
- Yanyun Xie
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Saxena G, Patro IK, Nath C. ICV STZ induced impairment in memory and neuronal mitochondrial function: A protective role of nicotinic receptor. Behav Brain Res 2011; 224:50-7. [PMID: 21620901 DOI: 10.1016/j.bbr.2011.04.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
The present study was planned to evaluate the cholinergic influence on mitochondrial activity and neurodegeneration associated with impaired memory in intracerebroventricular (ICV) streptozotocin (STZ) treated rats. STZ (3mg/kg), administered ICV twice with an interval of 48h between the two doses, showed significant impairment in spatial memory tested by water maze test 14 days after first dose without altering blood glucose level and locomotor activity. Animals were sacrificed on 21st day of ICV administration. STZ significantly increased malondialdehyde (MDA), reactive oxygen species (ROS), Ca(2+) ion influx, caspase-3 activity and decreased glutathione (GSH) level. Acetylcholinesterase inhibitors tacrine and donepezil (5mg/kg, PO) pretreatment significantly prevented STZ induced memory deficit, oxidative stress, Ca(2+) influx and caspase-3 activity. Carbachol, a muscarinic cholinergic agonist (0.01mg/kg, SC) did not show any significant effect on ROS generation, Ca(2+) ion influx and caspase-3 activity. While nicotinic cholinergic agonist, nicotine, significantly attenuated ICV STZ induced mitochondrial dysfunction and caspase-3 activity. The results indicate that instead of muscarinic receptors nicotinic receptors may be involved in neuroprotection by maintaining mitochondrial functions.
Collapse
Affiliation(s)
- Gunjan Saxena
- Division of Pharmacology, Central Drug Research Institute (CSIR), Lucknow 226001, India
| | | | | |
Collapse
|
31
|
Tiwari P, Kumar A, Balakrishnan S, Kushwaha HS, Mishra KP. Silibinin-induced apoptosis in MCF7 and T47D human breast carcinoma cells involves caspase-8 activation and mitochondrial pathway. Cancer Invest 2011; 29:12-20. [PMID: 21166494 DOI: 10.3109/07357907.2010.535053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Silibinin, a natural flavonoid, under phase I/II clinical trial in prostate cancer patients was aimed to evaluate its chemotherapeutic potential in human breast cancer cell MCF7 and T47D. Results showed that T47D cells were found to be more sensitive to silibinin than MCF7 as observed by proliferation, clonogenic, and apoptotic assays, which was abrogated by pan-caspase inhibitor but remained unaffected by p53 inhibitor. Apoptotic events in both cell types differ temporally and also by magnitude that involved mitochondrial and caspase-8 activation pathway. These results have relevance in understanding silibinin treatment to breast tumor.
Collapse
Affiliation(s)
- Prabha Tiwari
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | | | | | | | | |
Collapse
|
32
|
Abstract
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.
Collapse
Affiliation(s)
- Ikuko Kitazumi
- Bio Process Research and Development Laboratories, Kyowa Hakko Kirin Co. Ltd, Takasaki, Gunma, Japan
| | | |
Collapse
|
33
|
Chi Y, Zhang C, Zong H, Hong Y, Kong X, Liu H, Zou W, Wang Y, Yun X, Gu J. Thr-370 is responsible for CDK11(p58) autophosphorylation, dimerization, and kinase activity. J Biol Chem 2010; 286:1748-57. [PMID: 21078675 DOI: 10.1074/jbc.m110.107367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
CDK11(p58), a member of the p34(cdc2)-related kinase family, is associated with cell cycle progression, tumorigenesis, and proapoptotic signaling. It is also required for the maintenance of chromosome cohesion, the maturation of centrosome, the formation of bipolar spindle, and the completion of mitosis. Here we identified that CDK11(p58) interacted with itself to form homodimers in cells, whereas D224N, the kinase-dead mutant, failed to form homodimers. CDK11(p58) was autophosphorylated, and the main functions of CDK11(p58), such as kinase activity, transactivation of nuclear receptors, and proapoptotic signal transduction, were dependent on its autophosphorylation. Furthermore, the in vitro kinase assay indicated that CDK11(p58) was autophosphorylated at Thr-370. By mutagenesis, we created CDK11(p58) T370A and CDK11(p58) T370D, which mimic the dephosphorylated and phosphorylated forms of CDK11(p58), respectively. The T370A mutant could not form dimers and be phosphorylated by the wild type CDK11(p58) and finally lost the kinase activity. Further functional research revealed that T370A failed to repress the transactivation of androgen receptor and enhance the cell apoptosis. Overall, our data indicated that Thr-370 is responsible for the autophosphorylation, dimerization, and kinase activity of CDK11(p58). Moreover, Thr-370 mutants might affect CDK11(p58)-mediated signaling pathways.
Collapse
Affiliation(s)
- Yayun Chi
- Gene Research Center, Shanghai Medical College and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Signals of apoptotic pathways in several types of meningioma. Pathol Oncol Res 2010; 17:51-9. [PMID: 20524098 DOI: 10.1007/s12253-010-9279-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Meningiomas are intracranial tumour derived from meningothelial cells, which aggressive behaviour has been frequently associated to cell apoptosis. In this paper activation of several factors involved in apoptosis has been investigated on biopsies of primary, non recurrent meningiomas. Benign (meningotheliomatous, transitional, fibrous, angiomatous), atypical and anaplastic meningiomas were analysed by immunohistochemistry and western blot, to visualize the occurring of different apoptotic pathways and their association with clinical grading. Apoptotic cell have been detected by a double colorimetric staining for TUNEL and caspase-3 active form. Apoptotic signal positive cells have been detected in all type of meningiomas analysed, with exception of meningotheliomatous meningiomas. Differences have been found in the activation of apoptotic pathways between several types of grade I meningiomas and among benign, anaplastic and atypical meningiomas. An intense expression of several apoptotic inhibitor occurred in grade I meningiomas. The correlation among expression of apoptotic and inhibitory factors and cell proliferation index may suggest that in grade I meningiomas apoptosis may be related to mechanisms involved into tumor cells surviving. Instead in grade II and III meningiomas the same correlation seems indicate an high turnover of tumor cells that might be useful as index of cell proliferation and tumor mass growth.
Collapse
|
35
|
Kitazumi I, Maseki Y, Nomura Y, Shimanuki A, Sugita Y, Tsukahara M. Okadaic acid induces DNA fragmentation via caspase-3-dependent and caspase-3-independent pathways in Chinese hamster ovary (CHO)-K1 cells. FEBS J 2009; 277:404-12. [PMID: 19968860 DOI: 10.1111/j.1742-4658.2009.07493.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA fragmentation is a hallmark of apoptosis that occurs in a variety of cell types; however, it remains unclear whether caspase-3 is required for its induction. To investigate this, we produced caspase-3 knockout Chinese hamster ovary (CHO)-K1 cells and examined the effects of gene knockout and treatment with caspase-3 inhibitors. Okadaic acid (OA) is a potent inhibitor of the serine/threonine protein phosphatases (PPs) PP1 and PP2A, which induce apoptotic cellular reactions. Treatment of caspase-3(-/-) cells with OA induced DNA fragmentation, indicating that caspase-3 is not an essential requirement. However, in the presence of benzyloxycarbonyl-Asp-Glu-Val-Asp (OMe) fluoromethylketone (z-DEVD-fmk), DNA fragmentation occurred in CHO-K1 cells but not in caspase-3(-/-) cells, suggesting that caspase-3 is involved in OA-induced DNA fragmentation that does not utilize DEVDase activity. In the absence of caspase-3, DEVDase activity may play an important role. In addition, OA-induced DNA fragmentation was reduced but not blocked in CHO-K1 cells, suggesting that caspase-3 is involved in caspase-independent OA-induced DNA fragmentation. Furthermore, OA-induced cleavage of caspase-3 and DNA fragmentation were blocked by pretreatment with the wide-ranging serine protease inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride. These results suggest that serine proteases regulate DNA fragmentation upstream of caspase-3.
Collapse
Affiliation(s)
- Ikuko Kitazumi
- Bio Process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd, Hagiwara, Takasaki, Gunma, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Rhee WJ, Lee EH, Park TH. Expression of Bombyx mori 30Kc19 protein in Escherichia coli and its anti-apoptotic effect in Sf9 cell. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-009-0081-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Ding X, Mohd AB, Huang Z, Baba T, Bernardini MQ, Lyerly HK, Berchuck A, Murphy SK, Buermeyer AB, Devi GR. MLH1 expression sensitises ovarian cancer cells to cell death mediated by XIAP inhibition. Br J Cancer 2009; 101:269-77. [PMID: 19603033 PMCID: PMC2720211 DOI: 10.1038/sj.bjc.6605180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The X-linked inhibitor of apoptosis protein (XIAP), an endogenous apoptosis suppressor, can determine the level of caspase accumulation and the resultant response to apoptosis-inducing agents such as cisplatin in epithelial ovarian cancer (EOC). In addition, the mismatch repair protein, hMLH1, has been linked to DNA damage-induced apoptosis by cisplatin by both p53-dependent and -independent mechanisms. METHODS In this study, hMLH1 expression was correlated with clinical response to platinum drugs and survival in advanced stage (III-IV) EOC patients. We then investigated whether MLH1 loss was a determinant in anti-apoptosis response to cisplatin mediated by XIAP in isogenic and established EOC cell lines with differential p53 status. RESULTS The percentage of cells undergoing cisplatin-induced cell killing was higher in MLH1-proficient cells than in MLH1-defective cells. In addition, the presence of wild-type hMLH1 or hMLH1 re-expression significantly increased sensitivity to 6-thioguanine, a MMR-dependent agent. Cell-death response to 6-thioguanine and cisplatin was associated with significant proteolysis of MLH1, with XIAP destabilisation and increased caspase-3 activity. The siRNA-mediated inhibition of XIAP increased MLH1 proteolysis and cell death in MLH1-proficient cells but not in MLH1-defective cells. CONCLUSION These data suggest that XIAP inhibitors may prove to be an effective means of sensitising EOC to MLH1-dependent apoptosis.
Collapse
Affiliation(s)
- X Ding
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Krumschnabel G, Sohm B, Bock F, Manzl C, Villunger A. The enigma of caspase-2: the laymen's view. Cell Death Differ 2009; 16:195-207. [PMID: 19023332 PMCID: PMC3272397 DOI: 10.1038/cdd.2008.170] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/07/2008] [Accepted: 10/27/2008] [Indexed: 01/06/2023] Open
Abstract
Proteolysis of cellular substrates by caspases (cysteine-dependent aspartate-specific proteases) is one of the hallmarks of apoptotic cell death. Although the activation of apoptotic caspases is considered a 'late-stage' event in apoptosis signaling, past the commitment stage, one caspase family member, caspase-2, splits the cell death community into half - those searching for evidence of an apical initiator function of this molecule and those considering it as an amplifier of the apoptotic caspase cascade, at best, if relevant for apoptosis at all. This review screens past and present biochemical as well as genetic evidence for caspase-2 function in cell death signaling and beyond.
Collapse
Affiliation(s)
- G Krumschnabel
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - B Sohm
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - F Bock
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - C Manzl
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - A Villunger
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
39
|
Sudhakar C, Jain N, Swarup G. Sp1-like sequences mediate human caspase-3 promoter activation by p73 and cisplatin. FEBS J 2008; 275:2200-13. [DOI: 10.1111/j.1742-4658.2008.06373.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Rabi T, Wang L, Banerjee S. Novel triterpenoid 25-hydroxy-3-oxoolean-12-en-28-oic acid induces growth arrest and apoptosis in breast cancer cells. Breast Cancer Res Treat 2007; 101:27-36. [PMID: 17028990 DOI: 10.1007/s10549-006-9275-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
25-Hydroxy-3-oxoolean-12-en-28-oic acid (Amooranin-AMR) is a triterpene acid isolated from the stem bark of a tropical tree (Amoora rohituka) grown wild in India. A herbal preparation used for the treatment of cancer by the Ayurvedic system of medicine contains the stem bark of Amoora rohituka as one of the ingredients. In this paper, we show that AMR displays a strong inhibitory effect on survival of human breast carcinoma MDA-468, breast adenocarcinoma MCF-7 cells compared to breast epithelial MCF-10A control cells. A 50% decrease in cells (IC50) ranged from 1.8 to 14.6 microM and cell growth was suppressed by arresting cell cycle at G2 + M phase. AMR effectively induces apoptosis and triggered a series of effects associated with apoptosis including cleavage of caspase-8, -9, -3, Bid and ER stress in MDA-468 cells and caspase- 8, -9, -6 and Bid in MCF-7 cells, release of cytochrome c from the mitochondria, cleavage of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation with a concomitant upregulation of p53, Bax and down-regulation of Bcl-2 in MDA-468 cells, but Bax unchanged in MCF-7 cells. The use of caspase blocking peptides and acridine orange staining confirmed the involvement of primarily caspase-9 and -3 in MDA-468 cells with mutated p53 and primarily caspase-8, -9 and -6 in MCF-7 cells expressing wt p53. We also observed in MCF-7/p53siRNA cells AMR treatment caused reduced expression of Bcl-2 without affecting levels of Bax similar to MCF-7 cells treated with AMR and proteolytic activation of Bax in MDA-468 cells. These results suggest that AMR induces apoptosis in human breast carcinoma cells via caspase activation pathway and likely it is a p53-independent apoptosis.
Collapse
Affiliation(s)
- Thangaiyan Rabi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
41
|
|
42
|
Cohly HHP, Graham-Evans B, Ndebele K, Jenkins JK, McMurray R, Yan J, Yu H, Angel MF. Effect of light irradiation and sex hormones on jurkat T cells: 17beta-estradiol but not testosterone enhances UVA-induced cytotoxicity in Jurkat lymphocytes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2006; 2:156-63. [PMID: 16705813 PMCID: PMC3814710 DOI: 10.3390/ijerph2005010156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Eastern cultures, such as India, it is traditionally recommended that women but not men cover their heads while working in the scorching sun. The purpose of this pilot study was to determine whether there was any scientific basis for this cultural tradition. We examined the differential cytotoxic effects of ultraviolet A light (UVA) on an established T cell line treated with female and male sex hormones. CD4+ Jurkat T cells were plated in 96 well plates at 2 × 106 cells/ml and treated with 17β-estradiol (EST) or testosterone (TE). These cells were irradiated by UVA light with an irradiance of 170 J/cm2 for 15min at a distance of 6 cm from the surface of the 96-well plate. Controls included cells not treated with hormones or UVA. The effects of EST and TE were investigated between 1 and 20 ng/mL. Cytotoxicity by fluorescein-diacetate staining and COMET assay generating single strand DNA cleavage, tail length and tail moment measurements were examined. The effect of estrogen (5ng/mL) on apoptosis and its mediators was further studied using DNA laddering and western blotting for bcl-2 and p53. We found that EST alone, without UVA, enhanced Jurkat T cell survival. However, EST exhibited a dose-related cytotoxicity in the presence of UVA; up to 28% at 20 ng/ml. TE did not alter UVA-induced cytotoxicity. Since TE did not alter cell viability in the presence of UVA further damaging studies were not performed. COMET assay demonstrated the harmful effects of EST in the presence of UVA while EST without UVA had no significant effect on the nuclear damage. Apoptosis was not present as indicated by the absence of DNA laddering on agarose gel electrophoresis at 5ng/ml EST or TE ± UVA. Western blot showed that estrogen down regulated bcl-2 independently of UVA radiation while p53 was down regulated in the presence of UVA treatment. EST and TE have differential effects on UVA-induced cytotoxicity in Jurkat T-lymphocyte which suggested that women may be more susceptible to the harmful effects of solar irradiation than men.
Collapse
Affiliation(s)
- Hari H P Cohly
- Department of Surgery, Division of Plastic Surgery, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216-4505, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res 2006; 7:53. [PMID: 16571143 PMCID: PMC1501017 DOI: 10.1186/1465-9921-7-53] [Citation(s) in RCA: 371] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 03/30/2006] [Indexed: 02/02/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by chronic inflammation of the airways and progressive destruction of lung parenchyma, a process that in most cases is initiated by cigarette smoking. Several mechanisms are involved in the development of the disease: influx of inflammatory cells into the lung (leading to chronic inflammation of the airways), imbalance between proteolytic and anti-proteolytic activity (resulting in the destruction of healthy lung tissue) and oxidative stress. Recently, an increasing number of data suggest a fourth important mechanism involved in the development of COPD: apoptosis of structural cells in the lung might possibly be an important upstream event in the pathogenesis of COPD. There is an increase in apoptotic alveolar epithelial and endothelial cells in the lungs of COPD patients. Since this is not counterbalanced by an increase in proliferation of these structural cells, the net result is destruction of lung tissue and the development of emphysema. Data from animal models suggest a role for Vascular Endothelial Growth Factor (VEGF) in the induction of apoptosis of structural cells in the lung. Other mediators of apoptosis, such as caspase-3 and ceramide, could be interesting targets to prevent apoptosis and the development of emphysema. In this review, recent data on the role of apoptosis in COPD from both animal models as well as from studies on human subjects will be discussed. The aim is to provide an up to date summary on the increasing knowledge on the role of apoptosis in COPD and pulmonary emphysema.
Collapse
Affiliation(s)
- Ingel K Demedts
- Department of Respiratory Diseases, Ghent University Hospital, Belgium
| | - Tine Demoor
- Department of Respiratory Diseases, Ghent University Hospital, Belgium
| | - Ken R Bracke
- Department of Respiratory Diseases, Ghent University Hospital, Belgium
| | - Guy F Joos
- Department of Respiratory Diseases, Ghent University Hospital, Belgium
| | - Guy G Brusselle
- Department of Respiratory Diseases, Ghent University Hospital, Belgium
| |
Collapse
|
44
|
Johnson EA, Svetlov SI, Wang KKW, Hayes RL, Pineda JA. Cell-specific DNA fragmentation may be attenuated by a survivin-dependent mechanism after traumatic brain injury in rats. Exp Brain Res 2005; 167:17-26. [PMID: 16193270 DOI: 10.1007/s00221-005-2362-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 03/23/2005] [Indexed: 01/02/2023]
Abstract
Survivin attenuates apoptosis by inhibiting cleavage of some cell proteins by activated caspase-3. We recently discovered strong up-regulation of survivin, primarily in astrocytes and a sub-set of neurons, after traumatic brain injury (TBI) in rats. In this study we characterized co-expression of survivin with activated caspase-3 and downstream DNA fragmentation (TUNEL) in astrocytes and neurons after TBI. Western blot analysis revealed significant time-dependent increases in active caspase-3 between 5 and 14 days post-injury. No difference was observed between the proportion of survivin-positive and survivin-negative cells labeled with active caspase-3 at 5 or 7 days post-injury, as indicated by dual fluorescent immunostaining. Labeling of survivin-negative cells with TUNEL was, however, significantly greater than for survivin-positive cells, suggesting that expression of survivin may attenuate DNA cleavage and progression of apoptosis. A higher proportion of astrocytes than neurons accumulated active caspase-3. In contrast, co-localization with TUNEL was significantly higher for neurons than for astrocytes. These data suggest that survivin expression may attenuate DNA cleavage and cell death, and that this mechanism operates in a cell type-specific manner after TBI.
Collapse
Affiliation(s)
- Erik A Johnson
- Center for Traumatic Brain Injury Studies (CTBIS), E.F and W.L. McKnight Brain Institute of the University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
45
|
Li Z, Wang H, Zong H, Sun Q, Kong X, Jiang J, Gu J. Downregulation of beta1,4-galactosyltransferase 1 inhibits CDK11(p58)-mediated apoptosis induced by cycloheximide. Biochem Biophys Res Commun 2005; 327:628-36. [PMID: 15629159 DOI: 10.1016/j.bbrc.2004.12.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Indexed: 11/22/2022]
Abstract
Cyclin-dependent kinase 11 (CDK11; also named PITSLRE) is part of the large family of p34(cdc2)-related kinases whose functions appear to be linked with cell cycle progression, tumorigenesis, and apoptotic signaling. The mechanism that CDK11(p58) induces apoptosis is not clear. Some evidences suggested beta1,4-galactosyltransferase 1 (beta1,4-GT 1) might participate in apoptosis induced by CDK11(p58). In this study, we demonstrated that ectopically expressed beta1,4-GT 1 increased CDK11(p58)-mediated apoptosis induced by cycloheximide (CHX). In contrast, RNAi-mediated knockdown of beta1,4-GT 1 effectively inhibited apoptosis induced by CHX in CDK11(p58)-overexpressing cells. For example, the cell morphological and nuclear changes were reduced; the loss of cell viability was prevented and the number of cells in sub-G1 phase was decreased. Knock down of beta1,4-GT 1 also inhibited the release of cytochrome c from mitochondria and caspase-3 processing. Therefore, the cleavage of CDK11(p58) by caspase-3 was reduced. We proposed that beta1,4-GT 1 might contribute to the pro-apoptotic effect of CDK11(p58). This may represent a new mechanism of beta1,4-GT 1 in CHX-induced apoptosis of CDK11(p58)-overexpressing cells.
Collapse
Affiliation(s)
- Zejuan Li
- State Key Laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Box 103, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The ability of a tumour cell to evade programmed cell death (apoptosis) is crucial in the development of cancer. The process of apoptosis is complex and involves the careful interplay of a host of signalling molecules. Cellular stresses, such as DNA-damage, can initiate apoptosis through multiple pathways, all of which eventually lead to eradication of damaged cells that may otherwise go on to form a tumour. Moreover, the relevance of this to combating cancer is very strong since several therapeutic agents used to treat malignant disease utilize the cells' apoptotic machinery. The purpose of this review is to provide an insight into what we know about how apoptosis is initiated by DNA-damaging agents, how pro- and anti-apoptotic signals converge in the execution of cell death, and how such mechanisms can be perturbed in cancer.
Collapse
Affiliation(s)
- Diane Crighton
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | |
Collapse
|
47
|
Sabbatini M, Bozzo C, Castellucci M, Cannas M. Morphometric Quantification of Apoptotic Stages in Cell Culture. Cells Tissues Organs 2005; 178:139-45. [PMID: 15655331 DOI: 10.1159/000082244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2004] [Indexed: 12/16/2022] Open
Abstract
Apoptosis is an active process of self-destruction, whereby cells undergo physiological cell death. It occurs during development and regulation of tissue homeostasis or as a result of changes in environmental stimuli. Chromatin condensation and nuclear fragmentation, which are typical features of apoptotic nuclei, are usually quantified by fluorescent DNA dyes. The present study reports a reliable method to analyze morphological apoptotic stages in cultured cells, using light microscopy. We used the human neuroblastoma cell line SK-N-BE as a model to study apoptosis induced by inadequate cell-matrix interactions. Apoptosis was detected on cells cultured for different time intervals on polyHEMA, poly-L-lysine or collagen I. Quantitative morphometric and densitometric analysis after hematoxylin nuclear staining and caspase-3 immunocytochemistry, as markers of occurring apoptosis, were performed. Our method identifies different stages of caspase-3 activation and the subsequent DNA fragmentation and condensation. This experimental procedure enables us to detect slight differences in apoptosis progression by morphological analysis.
Collapse
Affiliation(s)
- Maurizio Sabbatini
- Department of Medical Science, Human Anatomy Laboratory, University of Eastern Piedmont A. Avogadro, via Solaroli 17, IT-28100 Novara, Italy
| | | | | | | |
Collapse
|
48
|
Ramanathan K, Anusuyadevi M, Shila S, Panneerselvam C. Ascorbic acid and alpha-tocopherol as potent modulators of apoptosis on arsenic induced toxicity in rats. Toxicol Lett 2005; 156:297-306. [PMID: 15737492 DOI: 10.1016/j.toxlet.2004.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 12/07/2004] [Accepted: 12/07/2004] [Indexed: 12/11/2022]
Abstract
Apoptosis or programmed cell death (PCD) is a genetically regulated cellular, physiological and biochemical suicidal mechanism that plays a crucial role in the development and defense of homeostasis, in which the cell participates in its own demise via a cascade of molecular interactions. PCD can be modulated by various stimuli including infectious agents or drugs. Arsenic is one among inducible toxic agent that triggers apoptosis via free radical generation. Since the generation of free radicals during the metabolism of arsenic is thought to be involved in arsenic toxicosis, understanding the deleterious effects caused by the ROS that attack the vital molecules like DNA has become important. The present work was conducted to evaluate the regulatory effect exerted by Vitamin C and Vitamin E upon the apoptotic process, which can be assessed by the presence of cells with apoptosis associated DNA breaks and characterize the role of TNF-alpha and caspase-3 in rats intoxicated with arsenic. Male albino rats of wistar strain (120-150 g) were used in this study and are further divided into seven groups. We observed that ascorbate and alpha-tocopherol selectively altered the extent of DNA damage by reducing TNF-alpha level and inhibiting the activation of caspase cascade, from these observations it is strongly believed that the present vitamins supplementation perspective, though observed in animal model, will have sustainable curative value among the already afflicted populations, neutralizing impact on freshly emerging arsenicosis scenario and possible proactive protection to those potentially susceptible to arsenicals exposure.
Collapse
Affiliation(s)
- Kadirvel Ramanathan
- Department of Medical Biochemistry, Dr. AL. Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India
| | | | | | | |
Collapse
|
49
|
Yadav VK, Lakshmi G, Medhamurthy R. Prostaglandin F2alpha-mediated activation of apoptotic signaling cascades in the corpus luteum during apoptosis: involvement of caspase-activated DNase. J Biol Chem 2004; 280:10357-67. [PMID: 15623530 DOI: 10.1074/jbc.m409596200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin F(2alpha) (PGF(2alpha)) acting via a G protein-coupled receptor has been shown to induce apoptosis in the corpus luteum of many species. Studies were carried out to characterize changes in the apoptotic signaling cascade(s) culminating in luteal tissue apoptosis during PGF(2alpha)-induced luteolysis in the bovine species in which initiation of apoptosis was demonstrable at 18 h after exogenous PGF(2alpha) treatment. An analysis of intrinsic arm of apoptotic signaling cascade elements revealed that PGF(2alpha) injection triggered increased ratio of Bax to Bcl-2 in the luteal tissue as early as 4 h posttreatment that remained elevated until 18 h. This increase was associated with the elevation in the active caspase-9 and -3 protein levels and activity (p < 0.05) at 4-12 h, but a spurt in the activity was seen only at 18 h posttreatment that could not be accounted for by the changes in the Bax/Bcl-2 ratio or changes in translocation of Bax to mitochondria. Examination of luteal tissue for FasL/Fas death receptor cascade revealed increased expression of FasL and Fas at 18 h accompanied by a significant (p < 0.05) induction in the caspase-8 activity and truncated Bid levels. Furthermore, intrabursal administration of specific caspase inhibitors, downstream to the extrinsic and intrinsic apoptotic signaling cascades, in a pseudopregnant rat model revealed a greater importance of extrinsic apoptotic signaling cascade in mediating luteal tissue apoptosis during PGF(2alpha) treatment. The DNase responsible for PGF(2alpha)-induced apoptotic DNA fragmentation was found to be Ca(2+)/Mg(2+)-dependent, temperature-sensitive DNase, and optimally active at neutral pH conditions. This putative DNase was inhibited by the recombinant inhibitor of caspase-activated DNase, and immunodepletion of caspase-activated DNase from luteal lysates abolished the observed DNA fragmentation activity. Together, these data demonstrate for the first time temporal and spatial changes in the apoptotic signaling cascades during PGF(2alpha)-in-duced apoptosis in the corpus luteum.
Collapse
Affiliation(s)
- Vijay K Yadav
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
50
|
Tawa P, Hell K, Giroux A, Grimm E, Han Y, Nicholson DW, Xanthoudakis S. Catalytic activity of caspase-3 is required for its degradation: stabilization of the active complex by synthetic inhibitors. Cell Death Differ 2004; 11:439-47. [PMID: 14713960 DOI: 10.1038/sj.cdd.4401360] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The activation of caspase-3 represents a critical step in the pathways leading to the biochemical and morphological changes that underlie apoptosis. Upon induction of apoptosis, the large (p17) and small (p12) subunits, comprising active caspase-3, are generated via proteolytic processing of a latent proenzyme dimer. Two copies of each individual subunit are generated to form an active heterotetramer. The tetrameric form of caspase-3 cleaves specific protein substrates within the cell, thereby producing the apoptotic phenotype. In contrast to the proenzyme, once activated in HeLa cells, caspase-3 is difficult to detect due to its rapid degradation. Interestingly, however, enzyme stability and therefore detection of active caspase-3 by immunoblot analysis can be restored by treatment of cells with a peptide-based caspase-3 selective inhibitor, suggesting that the active form can be stabilized through protein-inhibitor interaction. The heteromeric active enzyme complex is necessary for its stabilization by inhibitors, as expression of the large subunit alone is not stabilized by the presence of inhibitors. Our results show for the first time, that synthetic caspase inhibitors not only block caspase activity, but may also increase the stability of otherwise rapidly degraded mature caspase complexes. Consistent with these findings, experiments with a catalytically inactive mutant of caspase-3 show that rapid turnover is dependent on the activity of the mature enzyme. Furthermore, turnover of otherwise stable active site mutants of capase-3 is rescued by the presence of the active enzyme suggesting that turnover can be mediated in trans.
Collapse
Affiliation(s)
- P Tawa
- Department of Biochemistry & Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|