1
|
Mechanistic model of natural killer cell proliferative response to IL-15 receptor stimulation. PLoS Comput Biol 2013; 9:e1003222. [PMID: 24068905 PMCID: PMC3772054 DOI: 10.1371/journal.pcbi.1003222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/28/2013] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that provide early host defense against intracellular pathogens, such as viruses. Although NK cell development, homeostasis, and proliferation are regulated by IL-15, the influence of IL-15 receptor (IL-15R)-mediated signaling at the cellular level has not been quantitatively characterized. We developed a mathematical model to analyze the kinetic interactions that control the formation and localization of IL-15/IL-15R complexes. Our computational results demonstrated that IL-15/IL-15R complexes on the cell surface were a key determinant of the magnitude of the IL-15 proliferative signal and that IL-15R occupancy functioned as an effective surrogate measure of receptor signaling. Ligand binding and receptor internalization modulated IL-15R occupancy. Our work supports the hypothesis that the total number and duration of IL-15/IL-15R complexes on the cell surface crosses a quantitative threshold prior to the initiation of NK cell division. Furthermore, our model predicted that the upregulation of IL-15Rα on NK cells substantially increased IL-15R complex formation and accelerated the expansion of dividing NK cells with the greatest impact at low IL-15 concentrations. Model predictions of the threshold requirement for NK cell recruitment to the cell cycle and the subsequent exponential proliferation correlated well with experimental data. In summary, our modeling analysis provides quantitative insight into the regulation of NK cell proliferation at the receptor level and provides a framework for the development of IL-15 based immunotherapies to modulate NK cell proliferation. Natural killer (NK) cells are innate immune cells that are important in our bodies' initial defenses against pathogens, like viruses. NK cells rapidly proliferate early during viral infections to provide an expanded pool of effector cells to suppress the infection. This proliferative response is driven by a cytokine called interleukin-15 (IL-15); however, the influence of IL-15 and its receptor (IL-15R) in stimulating NK cell proliferation has not been quantitatively characterized at the cellular level. To better understand the factors controlling the vigorous expansion of NK cells during infections, we developed a mathematical model incorporating IL-15R binding and trafficking parameters that regulate the number of cell-surface IL-15/IL-15R signaling complexes. The analysis of this model provided us with insight on how IL-15-driven NK cell expansion can be modulated through changes in receptor kinetics and expression. Based on model predictions, we were able to draw inferences about NK cell population dynamics and to compare these conclusions with quantitative experimental results. Our results and model have applicability to studies designed to manipulate cell responses in the context of immunotherapies.
Collapse
|
2
|
Pan W, Stone KP, Hsuchou H, Manda VK, Zhang Y, Kastin AJ. Cytokine signaling modulates blood-brain barrier function. Curr Pharm Des 2013; 17:3729-40. [PMID: 21834767 DOI: 10.2174/138161211798220918] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) provides a vast interface for cytokines to affect CNS function. The BBB is a target for therapeutic intervention. It is essential, therefore, to understand how cytokines interact with each other at the level of the BBB and how secondary signals modulate CNS functions beyond the BBB. The interactions between cytokines and lipids, however, have not been fully addressed at the level of the BBB. Here, we summarize current understanding of the localization of cytokine receptors and transporters in specific membrane microdomains, particularly lipid rafts, on the luminal (apical) surface of the microvascular endothelial cells composing the BBB. We then illustrate the clinical context of cytokine effects on the BBB by neuroendocrine regulation and amplification of inflammatory signals. Two unusual aspects discussed are signaling crosstalk by different classes of cytokines and genetic regulation of drug efflux transporters. We also introduce a novel area of focus on how cytokines may act through nuclear hormone receptors to modulate efflux transporters and other targets. A specific example discussed is the ATP-binding cassette transporter-1 (ABCA-1) that regulates lipid metabolism. Overall, cytokine signaling at the level of the BBB is a crucial feature of the dynamic regulation that can rapidly change BBB function and affect brain health and disease.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
The facilitative glucose transporter GLUT4, a recycling membrane protein, is required for dietary glucose uptake into muscle and fat cells. GLUT4 is also responsible for the increased glucose uptake by myofibres during muscle contraction. Defects in GLUT4 membrane traffic contribute to loss of insulin-stimulated glucose uptake in insulin resistance and Type 2 diabetes. Numerous studies have analysed the intracellular membrane compartments occupied by GLUT4 and the mechanisms by which insulin regulates GLUT4 exocytosis. However, until recently, GLUT4 internalization was less well understood. In the present paper, we review: (i) evidence supporting the co-existence of clathrin-dependent and independent GLUT4 internalization in adipocytes and muscle cells; (ii) the contrasting regulation of GLUT4 internalization by insulin in these cells; and (iii) evidence suggesting regulation of GLUT4 endocytosis in muscle cells by signals associated with muscle contraction.
Collapse
|
4
|
Inal J, Miot S, Schifferli JA. The complement inhibitor, CRIT, undergoes clathrin-dependent endocytosis. Exp Cell Res 2005; 310:54-65. [PMID: 16112669 DOI: 10.1016/j.yexcr.2005.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/07/2005] [Accepted: 07/07/2005] [Indexed: 01/22/2023]
Abstract
Complement C2 receptor inhibitor trispanning (CRIT) is a receptor for the second component of complement and is found in various tissues and hemopoietic cells. On binding to CRIT, C2 cannot be activated to potentially form a variant-C3 convertase as it is rendered non-cleavable by C1s. CRIT thus limits the amount of C3 convertase formed on the cell surface. In this study we have shown, using flow cytometry and immunofluorescence microscopy, that human CRIT undergoes endocytosis from the plasma membrane. The endocytosis, possibly ligand mediated, occurs via clathrin-coated pits as it can be inhibited by prior incubation of cells in hypertonic medium or with chlorpromazine, at 37 degrees C. However, inhibition of endocytosis was not possible after treatment with nystatin, or filipin, inhibitors of caveolae/raft-dependent endocytosis. In the presence of C2 alone, CRIT associates with the adapter protein, beta-arrestin-2, and whether in association with C2 or not, then appears in the perinuclear region, but does not appear to be translocated into the nucleus. Apart from the C3aR and C5aR that internalize the anaphylatoxic peptides, this is the first report of the internalization via the clathrin pathway of a receptor for a complement serum protein.
Collapse
Affiliation(s)
- Jameel Inal
- University Hospital Basel, Immunonephrology, Department of Research, 4031 Basel, Switzerland.
| | | | | |
Collapse
|
5
|
Bakker ABH, van den Oudenrijn S, Bakker AQ, Feller N, van Meijer M, Bia JA, Jongeneelen MAC, Visser TJ, Bijl N, Geuijen CAW, Marissen WE, Radosevic K, Throsby M, Schuurhuis GJ, Ossenkoppele GJ, de Kruif J, Goudsmit J, Kruisbeek AM. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res 2005; 64:8443-50. [PMID: 15548716 DOI: 10.1158/0008-5472.can-04-1659] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) has a poor prognosis due to treatment-resistant relapses. A humanized anti-CD33 antibody (Mylotarg) showed a limited response rate in relapsed AML. To discover novel AML antibody targets, we selected a panel of single chain Fv fragments using phage display technology combined with flow cytometry on AML tumor samples. One selected single chain Fv fragment broadly reacted with AML samples and with myeloid cell lineages within peripheral blood. Expression cloning identified the antigen recognized as C-type lectin-like molecule-1 (CLL-1), a previously undescribed transmembrane glycoprotein. CLL-1 expression was analyzed with a human anti-CLL-1 antibody that was generated from the single chain Fv fragment. CLL-1 is restricted to the hematopoietic lineage, in particular to myeloid cells present in peripheral blood and bone marrow. CLL-1 is absent on uncommitted CD34(+)/CD38(-) or CD34(+)/CD33(-) stem cells and present on subsets of CD34(+)/CD38(+) or CD34(+)/CD33(+) progenitor cells. CLL-1 is not expressed in any other tissue. In contrast, analysis of primary AMLs demonstrated CLL-1 expression in 92% (68 of 74) of the samples. As an AML marker, CLL-1 was able to complement CD33, because 67% (8 of 12) of the CD33(-) AMLs expressed CLL-1. CLL-1 showed variable expression (10-60%) in CD34(+) cells in chronic myelogenous leukemia and myelodysplastic syndrome but was absent in 12 of 13 cases of acute lymphoblastic leukemia. The AML reactivity combined with the restricted expression on normal cells identifies CLL-1 as a novel potential target for AML treatment.
Collapse
|
6
|
|
7
|
Dupré DJ, Chen Z, Le Gouill C, Thériault C, Parent JL, Rola-Pleszczynski M, Stankova J. Trafficking, ubiquitination, and down-regulation of the human platelet-activating factor receptor. J Biol Chem 2003; 278:48228-35. [PMID: 14500726 DOI: 10.1074/jbc.m304082200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet-activating factor (PAF) is a potent phospholipid mediator involved in various disease states such as allergic asthma, atherosclerosis and psoriasis. The human PAF receptor (PAFR) is a member of the G protein-coupled receptor family. Following PAF stimulation, cells become rapidly desensitized; this refractory state can be maintained for hours and is dependent on PAFR phosphorylation, internalization, and down-regulation. In this report, we characterized ligand-induced, long term PAFR desensitization, and pathways leading to its degradation. Some GPCRs are known to be targeted to proteasomes for degradation while others traffic via the early/late endosomes toward lysosomes. Specific inhibitors of lysosomal proteases and inhibitors of the proteasome were effective in reducing the ligand-induced PAFR down-regulation by 40 and 25%, respectively, indicating the importance of receptor targeting to both lysosomes and proteasomes in long term cell desensitization to PAF. The effects of the proteasome and lysosomal protease inhibitors were additive and, together, completely blocked ligand-induced degradation of PAFR. Using dominant-negative Rab5 and 7 and colocalization of the PAFR with the early endosome autoantigen I (EEAI) or transferrin, we confirmed that ligand-induced PAFR down-regulation was Rab5/7-dependent and involved lysosomal degradation. In addition, we also demonstrated that PAFR was ubiquitinated in an agonist-independent manner. However, a dominant negative ubiquitin ligase (NCbl) reduced PAFR ubiquitination and inhibited ligand-induced but not basal receptor degradation. Our results indicate that PAFR degradation can occur via both the proteasome and lysosomal pathways and ligand-stimulated degradation is ubiquitin-dependent.
Collapse
Affiliation(s)
- Denis J Dupré
- Immunology Division, Department of Pediatrics, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The endocytic pathway receives cargo from the cell surface via endocytosis, biosynthetic cargo from the late Golgi complex, and various molecules from the cytoplasm via autophagy. This review focuses on the dynamics of the endocytic pathway in relationship to these processes and covers new information about the sorting events and molecular complexes involved. The following areas are discussed: dynamics at the plasma membrane, sorting within early endosomes and recycling to the cell surface, the role of the cytoskeleton, transport to late endosomes and sorting into multivesicular bodies, anterograde and retrograde Golgi transport, as well as the autophagic pathway.
Collapse
Affiliation(s)
- Naomi E Bishop
- School of Biological Sciences, University of Manchester, Manchester, Ml 3 9PT United Kingdom
| |
Collapse
|
9
|
Strous GJ, van Kerkhof P. The ubiquitin-proteasome pathway and the regulation of growth hormone receptor availability. Mol Cell Endocrinol 2002; 197:143-51. [PMID: 12431807 DOI: 10.1016/s0303-7207(02)00258-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The number of growth hormone receptors (GHR) per cell are regulated and this feature plays a major role in the hormone responsiveness of the body. This article deals with the regulatory mechanisms underlying the availability of GHR for serum growth hormone. The availability of membrane proteins at the cell surface can be regulated at different locations within the cell: (1) The amount of protein synthesized in the endoplasmic reticulum (ER) is largely controlled by gene transcription. In addition, the ER quality control system regulates the exiting of properly folded proteins from the ER. (2) In the trans-Golgi network, proteins can either be diverted directly to the lysosomes or be transported to the cell surface. (3) At the plasma membrane, the endocytic machinery can select proteins for endocytosis via clathrin-coated pits or proteins may be subject to proteolysis, resulting in shedding of the extracellular domain. (4) In endosomes, internalized proteins are either recycled back to the plasma membrane or targeted to the lysosome for degradation. At each of these cellular locations the ubiquitin-proteasome pathway can specifically regulate protein levels via different mechanisms. In transfected Chinese hamster lung cells, GHR availability is determined by three factors: endocytosis (75%), shedding (10%), and other undetermined mechanisms (15%). As outlined in this article the level of GHR at the cell surface, defined as GHR availability, is mainly regulated by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Ger J Strous
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | | |
Collapse
|
10
|
Shackleton S, Hamer I, Foti M, Zumwald N, Maeder C, Carpentier JL. Role of two dileucine-like motifs in insulin receptor anchoring to microvilli. J Biol Chem 2002; 277:43631-7. [PMID: 12218050 DOI: 10.1074/jbc.m204036200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the absence of ligand, the insulin receptor is maintained on microvilli on the cell surface. A dileucine motif (LL(986-987)) is necessary but not sufficient for this anchoring, which also required the presence of additional sequence(s) downstream of position 1000. The aim of the present study was to identify this (these) additional sequence(s). First, exons 16 or 17 were fused to the extracellular and transmembrane domains of complement receptor 1 and stably expressed in Chinese hamster ovary cells. Results obtained indicate that exon 17 is sufficient for anchoring to microvilli. Second, analysis of insulin receptor mutants truncated within exon 17 demonstrated that whereas receptors truncated at position 1000 showed no preferential association with microvilli, receptors truncated at position 1012 displayed a level of association identical to that of the full-length insulin receptor. Third, mutation of a diisoleucine motif (II(1006-1007)) present within this 12-amino acid stretch abrogated the preferential association of the receptor with microvilli. These results indicate that the domain required for association of insulin receptor with microvilli is contained within the region encoded by exon 17 and that, within this sequence, two dileucine-like motifs (LL(986-987) and II(1006-1007)) play a crucial role.
Collapse
Affiliation(s)
- Sue Shackleton
- Department of Morphology, Faculty of Medicine, University of Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
11
|
Sachse M, Urbé S, Oorschot V, Strous GJ, Klumperman J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol Biol Cell 2002; 13:1313-28. [PMID: 11950941 PMCID: PMC102271 DOI: 10.1091/mbc.01-10-0525] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In many cells endosomal vacuoles show clathrin coats of which the function is unknown. Herein, we show that this coat is predominantly present on early endosomes and has a characteristic bilayered appearance in the electron microscope. By immunoelectron microscopy we show that the coat contains clathrin heavy as well as light chain, but lacks the adaptor complexes AP1, AP2, and AP3, by which it differs from clathrin coats on endocytic vesicles and recycling endosomes. The coat is insensitive to short incubations with brefeldin A, but disappears in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin. No association of endosomal coated areas with tracks of tubulin or actin was found. By quantitative immunoelectron microscopy, we found that the lysosomal-targeted receptors for growth hormone (GHR) and epidermal growth factor are concentrated in the coated membrane areas, whereas the recycling transferrin receptor is not. In addition, we found that the proteasomal inhibitor MG 132 induces a redistribution of a truncated GHR (GHR-369) toward recycling vesicles, which coincided with a redistribution of endosomal vacuole-associated GHR-369 to the noncoated areas of the limiting membrane. Together, these data suggest a role for the bilayered clathrin coat on vacuolar endosomes in targeting of proteins to lysosomes.
Collapse
Affiliation(s)
- Martin Sachse
- Department of Cell Biology, University Medical Center Utrecht and Institute of Biomembranes, 3584 CX Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Abstract
Organelles in the endocytic pathway are composed of a mosaic of structural and functional regions. These regions consist, at least in part, of specialized protein-lipid domains within the plane of the membrane, or of protein complexes associated with specific membrane lipids. Whereas some of these molecular assemblies can be found in more than one compartment, a given combination seems to be unique to each compartment, indicating that membrane organization might be modular.
Collapse
Affiliation(s)
- J Gruenberg
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland.
| |
Collapse
|
13
|
Rocca A, Lamaze C, Subtil A, Dautry-Varsat A. Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor beta chain to late endocytic compartments. Mol Biol Cell 2001; 12:1293-301. [PMID: 11359922 PMCID: PMC34584 DOI: 10.1091/mbc.12.5.1293] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Down-regulation of cell surface growth factor receptors plays a key role in the tight control of cellular responses. Recent reports suggest that the ubiquitin system, in addition to participating in degradation by the proteasome of cytosolic and nuclear proteins, might also be involved in the down-regulation of various membrane receptors. We have previously characterized a signal in the cytosolic part of the interleukin 2 receptor beta chain (IL2Rbeta) responsible for its targeting to late endosomes/lysosomes. In this report, the role of the ubiquitin/proteasome system on the intracellular fate of IL2Rbeta was investigated. Inactivation of the cellular ubiquitination machinery in ts20 cells, which express a thermolabile ubiquitin-activating enzyme E1, leads to a significant decrease in the degradation rate of IL2Rbeta, with little effect on its internalization. In addition, we show that a fraction of IL2Rbeta can be monoubiquitinated. Furthermore, mutation of the lysine residues of the cytosolic region of a chimeric receptor carrying the IL2Rbeta targeting signal resulted in a decreased degradation rate. When cells expressing IL2Rbeta were treated either by proteasome or lysosome inhibitors, a significant decrease in receptor degradation was observed. Our data show that ubiquitination is required for the sorting of IL2Rbeta toward degradation. They also indicate that impairment of proteasome function might more generally affect intracellular routing.
Collapse
Affiliation(s)
- A Rocca
- Unité de Biologie des Interactions Cellulaires, Unité de Recherche Associée Centre National de la Recherche Scientifique 1960, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
14
|
Abstract
Internalization of receptors and other cell surface components is well known to occur via clathrin-mediated endocytosis, although other less well characterized pathways are also involved. Internalized receptors are then delivered to early endosomes, where they are sorted to be recycled back to the plasma membrane for reutilization or transported to late endosomes/lysosomes for degradation. Endocytosis has long been considered as a constitutive, housekeeping function of animal cells that occurs independently of the cellular environment in contrast to regulated secretion. Here, we will discuss recent studies that are uncovering the existence of cross-talk between signaling molecules and components of the transport machinery, indicating that endocytosis can be modulated by signaling pathways.
Collapse
Affiliation(s)
- V Cavalli
- Department of Biochemistry, University of Geneva, Sciences II, 30 quai Ernest Ansermet, 1211 -4, Geneva, Switzerland
| | | | | |
Collapse
|
15
|
Abstract
The Janus family tyrosine kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway is broadly used by interferons and type I cytokines. These cytokines and interferons activate Janus family tyrosine kinases (Jak kinases), which in turn phosphorylate and thereby activate STAT proteins. Before activation, STAT proteins are cytosolic proteins; after activation, however, they are translocated to the nucleus where they function as transcription factors. This review summarizes salient features of the Jak-STAT pathway and focuses on the functional role of the different Jak kinases and STATs in vivo.
Collapse
Affiliation(s)
- W J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| |
Collapse
|
16
|
Abstract
A short while ago, we could only inhibit post-Golgi membrane traffic with crude, unselective tools, such as low temperature or high extracellular sucrose. Molecular dissection of vesiculation steps has revealed unexpected complexity in the coating machinery that has initiated a search for more specific inhibitors. We have learned that membrane vesiculation is driven by a tightly regulated multicomponent, membrane-associated protein machine held together by carefully specified interaction domains. An experimental advantage of such complex interacting machinery is that it is very susceptible to disruption by dominant negative inhibitors or by overexpression. As a result, we now have much more specific inhibitors of post-Golgi membrane traffic. Some, such as dynamin K44A, may be general inhibitors, whereas others can distinguish classes of endocytotic events (10), binding events that require clathrin from those that do not (42), or specific steps of endocytosis (62). Ligand-mediated uptake of EGF and numerous, but not all, GPCRs can be inhibited by overexpression of an ARF GTPase-activating protein that has no effect on transferrin uptake (67). We can look forward to increasingly powerful and selective inhibitors that should help us to navigate successfully the complex routes of post-Golgi membrane traffic.
Collapse
Affiliation(s)
- N Jarousse
- Department of Biochemistry and Biophysics, Hormone Research Institute, University of California, San Francisco, CA 94143-0534, USA
| | | |
Collapse
|
17
|
Friedrich K, Kammer W, Erhardt I, Brändlein S, Arnold S, Sebald W. The two subunits of the interleukin-4 receptor mediate independent and distinct patterns of ligand endocytosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:457-65. [PMID: 10491204 DOI: 10.1046/j.1432-1327.1999.00773.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interleukin-4 (IL-4) triggers cellular responses by interaction with the bipartite interleukin-4 receptor (IL-4R). IL-4-responsive cells specifically endocytose IL-4. We studied the ligand internalization properties of the human IL-4R and analyzed the specific functions of its two subunits IL-4Ralpha and gammac in this process. IL-4 mutant RY, which binds to IL-4Ralpha but does not recruit gammac into the receptor complex was used as a tool to show that IL-4Ralpha can promote independent ligand uptake in human T cells. Internalization was limited, however, by rapid IL-4 dissociation, suggesting that one important function of gammac in IL-4 endocytosis is to retain the ligand sufficiently long within the ternary receptor complex. We then measured IL-4 internalization by murine Ba/F3 cells that were stably transfected with various human IL-4R constructs. Efficient IL-4 uptake required the cytoplasmic section of the receptor. The intracellular domains of IL-4Ralpha and gammac were responsible for independent endocytosis processes with distinct kinetics. IL-4Ralpha-mediated internalization resulted in long-term intracellular maintainance of IL-4, whereas gammac directed the associated radioligand to intracellular breakdown and rapid release in the form of degraded protein. Mutants of either IL-4R subunit deficient in Janus kinase activation were not impaired in internalization, indicating that IL-4 endocytosis is not functionally connected to signal transduction.
Collapse
Affiliation(s)
- K Friedrich
- Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Physiologische Chemie II, Am Hubland, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Evidence is accumulating that membrane traffic between organelles can be achieved by different types of intermediates. Small (< 100 nm) and short-lived vesicles mediate transport from the plasma membrane or the trans-Golgi network to endosomes, and formation of these vesicles depends on specific adapter complexes. In contrast, transport from early to late endosomes is achieved by relatively large (approximately 0.5 microm), long-lived and multivesicular intermediates, and their biogenesis depends on endosomal COP-I proteins. Here, we review recent work on the formation of these different transport intermediates, and we discuss, in particular, coat proteins, sorting signals contained in cargo molecules and the emerging role of lipid in vesicle biogenesis.
Collapse
Affiliation(s)
- F Gu
- Department of Biochemistry, Sciences II, University of Geneva, Switzerland
| | | |
Collapse
|