1
|
Miranda MP. Identification and structural characterization of glucosylceramides in Holothuria (Halodeima) grisea: Insights from TLC and NMR techniques. Carbohydr Res 2025; 549:109374. [PMID: 39818085 DOI: 10.1016/j.carres.2024.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Sea cucumbers are widely used in oriental cuisine due to their medicinal properties. Antioxidant, antifungal, antiviral, anticancer and neuroprotective activities have already been identified in several species and in different tissues. Among the class of compounds with biological activity are cerebrosides, which have important functions for the proper functioning of cells, especially neuronal cells. The identification of this class of compounds can be carried out using simple techniques such as thin layer chromatography (TLC) or more sophisticated techniques such as nuclear magnetic resonance (NMR), providing different information depending on the technique used. Therefore, this work aimed to identify the presence of cerebrosides in different tissues of Holothuria (Halodeima) grisea. TLC analysis and separation on a silica column made it possible to accurately identify the positive fractions for cerebrosides. This selectivity is crucial to ensure that the compounds identified are genuine cerebrosides, eliminating interference from other non-pertinent bands. NMR spectroscopy analyses confirmed the presence of glucosylceramide in the tissues studied. The identification of a β-glucose linked to the ceramide, with specific structural characteristics such as hydroxyl on the 3' carbon of the sphingosine and a double bond between the 4' and 5' carbons, highlights the accuracy of the structural determination obtained with the techniques used.
Collapse
Affiliation(s)
- Matheus Pires Miranda
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil.
| |
Collapse
|
2
|
Li D, Bao LF, Lei HM, Zhang GK, Li GH, Zhao PJ. Bioactive Secondary Metabolites from Harposporium anguillulae Against Meloidogyne incognita. Microorganisms 2024; 12:2585. [PMID: 39770787 PMCID: PMC11676538 DOI: 10.3390/microorganisms12122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Root-knot nematodes (RKNs) are pathogens that endanger a wide range of crops and cause serious global agricultural losses. In this study, we investigated metabolites of the endoparasitic fungus Harposporium anguillulae YMF1.01751, with the expectation of discovering valuable Meloidogyne incognita biocontrol compounds. Based on results obtained by a liquid chromatograph coupled to a mass spectrometer (LC-MS) of crude extracts under five culture conditions and their nematicidal activity against M. incognita, corn meal agar (CMA) medium was determined as the scale-up fermentation medium. Twelve metabolites (1-12) were isolated from the fermentation products, and compound 1 was identified to be a new cyclic tetrapeptide. The activity assay results showed that phenylacetic acid (11) had good nematicidal activity at 400 μg/mL, and the mortalities of M. incognita were 89.76% and 96.05% at 12 and 24 h, respectively, while the mortality of canthin-6-one (2) against M. incognita was 44.26% at 72 h. In addition, the results of chemotaxis activity showed that 1-(1H-indol-3-yl)ethanone (10) possessed attraction activity towards M. incognita. At the tested concentrations, cyclo-(Arg-Pro) (4) and cyclo-(Val-Ile) (7) showed an avoidant response to M. incognita. This study provides insight into the nematode-active compounds of H. anguillulae origin and offers new opportunities for the development of RKN biocontrol products.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (D.L.); (H.-M.L.); (G.-K.Z.); (G.-H.L.)
| | - Ling-Feng Bao
- Institute of Tropical Eco-Agricultural Sciences of Yunnan Academy of Agricultural Sciences, Kunming 650091, China;
| | - Hong-Mei Lei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (D.L.); (H.-M.L.); (G.-K.Z.); (G.-H.L.)
| | - Guang-Ke Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (D.L.); (H.-M.L.); (G.-K.Z.); (G.-H.L.)
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (D.L.); (H.-M.L.); (G.-K.Z.); (G.-H.L.)
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (D.L.); (H.-M.L.); (G.-K.Z.); (G.-H.L.)
| |
Collapse
|
3
|
Li P, An Z, Sun H, Meng Y, Hou L, Han X, Feng S, Liu Y, Shen S, Zeng F, Dong J, Hao Z. The serine palmitoyltransferase core subunit StLcb2 regulates sphingolipid metabolism and promotes Setosphaeria turcica pathogenicity by modulating appressorium development. Int J Biol Macromol 2024; 283:137928. [PMID: 39579824 DOI: 10.1016/j.ijbiomac.2024.137928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
The fungal pathogen Setosphaeria turcica (S. turcica) causes northern corn leaf blight (NCLB), resulting in significant yield and economic losses in maize. To elucidate the metabolic pathways essential for its pathogenicity, we investigated the metabolome of S. turcica during appressorium development, a critical stage for host infection. Our analysis indicated a substantial enrichment of sphingosine and related compounds during this phase. The application of chemical inhibitors to disrupt sphingolipid metabolism confirmed their pivotal role in appressorium formation and pathogenicity. Additionally, silencing of the serine palmitoyl transferase (Spt) core subunit gene StLCB2 led to significant alterations in fungal morphology and growth, accompanied by changes in cell membrane integrity, surface hydrophobicity, melanin, and sphingosine synthesis. These findings underscore the importance of sphingolipids in the pathogenicity of S. turcica and suggest that targeting specific components of the sphingolipid pathway could aid in developing novel fungicides or genetically engineered maize varieties with increased resistance to NCLB.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Zhenwu An
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Hehe Sun
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Yanan Meng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Lifeng Hou
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xinpeng Han
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Shang Feng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Yuwei Liu
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Shen Shen
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| |
Collapse
|
4
|
Monjil MS, Kato H, Ota S, Matsuda K, Suzuki N, Tenhiro S, Tatsumi A, Pring S, Miura A, Camagna M, Suzuki T, Tanaka A, Terauchi R, Sato I, Chiba S, Kawakita K, Ojika M, Takemoto D. Two structurally different oomycete lipophilic microbe-associated molecular patterns induce distinctive plant immune responses. PLANT PHYSIOLOGY 2024; 196:479-494. [PMID: 38828881 PMCID: PMC11376384 DOI: 10.1093/plphys/kiae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Plants recognize a variety of external signals and induce appropriate mechanisms to increase their tolerance to biotic and abiotic stresses. Precise recognition of attacking pathogens and induction of effective resistance mechanisms are critical functions for plant survival. Some molecular patterns unique to a certain group of microbes, microbe-associated molecular patterns (MAMPs), are sensed by plant cells as nonself molecules via pattern recognition receptors. While MAMPs of bacterial and fungal origin have been identified, reports on oomycete MAMPs are relatively limited. This study aimed to identify MAMPs from an oomycete pathogen Phytophthora infestans, the causal agent of potato late blight. Using reactive oxygen species (ROS) production and phytoalexin production in potato (Solanum tuberosum) as markers, two structurally different groups of elicitors, namely ceramides and diacylglycerols, were identified. P. infestans ceramides (Pi-Cer A, B, and D) induced ROS production, while diacylglycerol (Pi-DAG A and B), containing eicosapentaenoic acid (EPA) as a substructure, induced phytoalexins production in potato. The molecular patterns in Pi-Cers and Pi-DAGs essential for defense induction were identified as 9-methyl-4,8-sphingadienine (9Me-Spd) and 5,8,11,14-tetraene-type fatty acid (5,8,11,14-TEFA), respectively. These structures are not found in plants, but in oomycetes and fungi, indicating that they are microbe molecular patterns recognized by plants. When Arabidopsis (Arabidopsis thaliana) was treated with Pi-Cer D and EPA, partially overlapping but different sets of genes were induced. Furthermore, expression of some genes is upregulated only after the simultaneous treatment with Pi-Cer D and EPA, indicating that plants combine the signals from simultaneously recognized MAMPs to adapt their defense response to pathogens.
Collapse
Affiliation(s)
- Mohammad Shahjahan Monjil
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hiroaki Kato
- Graduate School of Agriculture, Kyoto University, Muko, Kyoto 617-0001, Japan
| | - Satomi Ota
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kentaro Matsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Natsumi Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shiho Tenhiro
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayane Tatsumi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Sreynich Pring
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Atsushi Miura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 478-8501, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ryohei Terauchi
- Graduate School of Agriculture, Kyoto University, Muko, Kyoto 617-0001, Japan
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kazuhito Kawakita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
5
|
Li H, Hou J, Li B, Zhang L, Yu Z. A Phytotoxin with Selective Herbicidal Activity and Related Metabolites from the Phytopathogenic Fungus Bipolaris cookei SYBL03. Molecules 2024; 29:3040. [PMID: 38998991 PMCID: PMC11243656 DOI: 10.3390/molecules29133040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Weeds are a serious threat to crop production, and the utilization of secondary metabolites of phytopathogenic fungi is considered to be an effective method of weed control. In this study, eight compounds were isolated and purified from the mycelium and fermentation broth extracts of Bipolaris cookei SYBL03. The compounds (1-8), except 2 and 6, are reported for the first time from this genus. The herbicidal activities of compounds 1-8 were studied by evaluating their effects on the seed germination and seedling growth of monocotyledonous and dicotyledonous weeds. The results indicated that compound 7 (Cyclo-N-methylphenylalanyltryptophenyl, cNMPT) exhibited a concentration-dependent dual effect on the growth of weed seedlings and selective herbicidal activity against dicotyledonous weeds. We further investigated the morphological and physiological responses of roots of Amaranthus retroflexus, a dicotyledonous weed, to compound 7. Some changes were found in seedlings grown in 400 μg/mL compound 7 solution for 96 h, such as shortening and swelling of elongation zone cells, reduced number and length of root hairs, damage and wrinkling of the root surface, occurrence of electrolyte leakage, and an increase in ethylene content. These results suggest that compound 7 may exert herbicidal activity by causing stress to weed seedlings. Increased ethylene production could be involved in the response of plants to compound 7.
Collapse
Affiliation(s)
- Haiyan Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jingzhuo Hou
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Bing Li
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Lizhong Zhang
- College of Computer Science and Technology, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zhiguo Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
Jiang Y, Yue Y, Wang Z, Lu C, Yin Z, Li Y, Ding X. Plant Biostimulant as an Environmentally Friendly Alternative to Modern Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5107-5121. [PMID: 38428019 DOI: 10.1021/acs.jafc.3c09074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Ensuring the safety of crop production presents a significant challenge to humanity. Pesticides and fertilizers are commonly used to eliminate external interference and provide nutrients, enabling crops to sustain growth and defense. However, the addition of chemical substances does not meet the environmental standards required for agricultural production. Recently, natural sources such as biostimulants have been found to help plants with growth and defense. The development of biostimulants provides new solutions for agricultural product safety and has become a widely utilized tool in agricultural. The review summarizes the classification of biostimulants, including humic-based biostimulant, protein-based biostimulant, oligosaccharide-based biostimulant, metabolites-based biostimulants, inorganic substance, and microbial inoculant. This review attempts to summarize suitable alternative technology that can address the problems and analyze the current state of biostimulants, summarizes the research mechanisms, and anticipates future technological developments and market trends, which provides comprehensive information for researchers to develop biostimulants.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| |
Collapse
|
7
|
Kato-Noguchi H. Defensive Molecules Momilactones A and B: Function, Biosynthesis, Induction and Occurrence. Toxins (Basel) 2023; 15:toxins15040241. [PMID: 37104180 PMCID: PMC10140866 DOI: 10.3390/toxins15040241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Labdane-related diterpenoids, momilactones A and B were isolated and identified in rice husks in 1973 and later found in rice leaves, straws, roots, root exudate, other several Poaceae species and the moss species Calohypnum plumiforme. The functions of momilactones in rice are well documented. Momilactones in rice plants suppressed the growth of fungal pathogens, indicating the defense function against pathogen attacks. Rice plants also inhibited the growth of adjacent competitive plants through the root secretion of momilactones into their rhizosphere due to the potent growth-inhibitory activity of momilactones, indicating a function in allelopathy. Momilactone-deficient mutants of rice lost their tolerance to pathogens and allelopathic activity, which verifies the involvement of momilactones in both functions. Momilactones also showed pharmacological functions such as anti-leukemia and anti-diabetic activities. Momilactones are synthesized from geranylgeranyl diphosphate through cyclization steps, and the biosynthetic gene cluster is located on chromosome 4 of the rice genome. Pathogen attacks, biotic elicitors such as chitosan and cantharidin, and abiotic elicitors such as UV irradiation and CuCl2 elevated momilactone production through jasmonic acid-dependent and independent signaling pathways. Rice allelopathy was also elevated by jasmonic acid, UV irradiation and nutrient deficiency due to nutrient competition with neighboring plants with the increased production and secretion of momilactones. Rice allelopathic activity and the secretion of momilactones into the rice rhizosphere were also induced by either nearby Echinochloa crus-galli plants or their root exudates. Certain compounds from Echinochloa crus-galli may stimulate the production and secretion of momilactones. This article focuses on the functions, biosynthesis and induction of momilactones and their occurrence in plant species.
Collapse
|
8
|
Valletta A, Iozia LM, Fattorini L, Leonelli F. Rice Phytoalexins: Half a Century of Amazing Discoveries; Part I: Distribution, Biosynthesis, Chemical Synthesis, and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:260. [PMID: 36678973 PMCID: PMC9862927 DOI: 10.3390/plants12020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Cultivated rice is a staple food for more than half of the world's population, providing approximately 20% of the world's food energy needs. A broad spectrum of pathogenic microorganisms causes rice diseases leading to huge yield losses worldwide. Wild and cultivated rice species are known to possess a wide variety of antimicrobial secondary metabolites, known as phytoalexins, which are part of their active defense mechanisms. These compounds are biosynthesized transiently by rice in response to pathogens and certain abiotic stresses. Rice phytoalexins have been intensively studied for over half a century, both for their biological role and their potential application in agronomic and pharmaceutical fields. In recent decades, the growing interest of the research community, combined with advances in chemical, biological, and biomolecular investigation methods, has led to a notable acceleration in the growth of knowledge on rice phytoalexins. This review provides an overview of the knowledge gained in recent decades on the diversity, distribution, biosynthesis, chemical synthesis, and bioactivity of rice phytoalexins, with particular attention to the most recent advances in this research field.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Maria Iozia
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
9
|
Zou ZB, Zhang G, Zhou YQ, Xie CL, Xie MM, Xu L, Hao YJ, Luo LZ, Zhang XK, Yang XW, Wang JS. Chemical Constituents of the Deep-Sea-Derived Penicillium citreonigrum MCCC 3A00169 and Their Antiproliferative Effects. Mar Drugs 2022; 20:md20120736. [PMID: 36547883 PMCID: PMC9781865 DOI: 10.3390/md20120736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022] Open
Abstract
Six new citreoviridins (citreoviridins J-O, 1-6) and twenty-two known compounds (7-28) were isolated from the deep-sea-derived Penicillium citreonigrum MCCC 3A00169. The structures of the new compounds were determined by spectroscopic methods, including the HRESIMS, NMR, ECD calculations, and dimolybdenum tetraacetate-induced CD (ICD) experiments. Citreoviridins J-O (1-6) are diastereomers of 6,7-epoxycitreoviridin with different chiral centers at C-2-C-7. Pyrenocine A (7), terrein (14), and citreoviridin (20) significantly induced apoptosis for HeLa cells with IC50 values of 5.4 μM, 11.3 μM, and 0.7 μM, respectively. To be specific, pyrenocine A could induce S phase arrest, while terrein and citreoviridin could obviously induce G0-G1 phase arrest. Citreoviridin could inhibit mTOR activity in HeLa cells.
Collapse
Affiliation(s)
- Zheng-Biao Zou
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Gang Zhang
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medica College, 1999 Guankouzhong Road, Xiamen 361023, China
| | - Yu-Qi Zhou
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen 361102, China
| | - Chun-Lan Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Lin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - You-Jia Hao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Lian-Zhong Luo
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medica College, 1999 Guankouzhong Road, Xiamen 361023, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen 361102, China
- Correspondence: (X.-K.Z.); (X.-W.Y.); (J.-S.W.); Tel.: +86-592-2181851 (X.-K.Z.); +86-592-2195319 (X.-W.Y.); +86-258-4315512 (J.-S.W.)
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
- Correspondence: (X.-K.Z.); (X.-W.Y.); (J.-S.W.); Tel.: +86-592-2181851 (X.-K.Z.); +86-592-2195319 (X.-W.Y.); +86-258-4315512 (J.-S.W.)
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
- Correspondence: (X.-K.Z.); (X.-W.Y.); (J.-S.W.); Tel.: +86-592-2181851 (X.-K.Z.); +86-592-2195319 (X.-W.Y.); +86-258-4315512 (J.-S.W.)
| |
Collapse
|
10
|
Nie Y, Li G, Li J, Zhou X, Zhang Y, Shi Q, Zhou X, Li H, Chen XL, Li Y. A novel elicitor MoVcpo is necessary for the virulence of Magnaporthe oryzae and triggers rice defense responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1018616. [PMID: 36325552 PMCID: PMC9619064 DOI: 10.3389/fpls.2022.1018616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most important diseases of rice. Elicitors secreted by M. oryzae play important roles in the interaction with rice to facilitate fungal infection and disease development. In recent years, several elicitor proteins have been identified in M. oryzae, and their functions and importance are increasingly appreciated. In this study, we purified a novel elicitor-activity protein from M. oryzae, which was further identified as a vanadium chloroperoxidase (MoVcpo) by MAIDL TOF/TOF MS. The purified MoVcpo induced reactive oxygen species (ROS) accumulation in host cells, up-regulated the expression of multiple defense-related genes, thus significantly enhancing rice resistance against M. oryzae. These results suggested that MoVcpo functions as a pathogen-associated molecular pattern (PAMP) to trigger rice immunity. Furthermore, MoVcpo was highly expressed in the early stage of M. oryzae infection. Deletion of MoVcpo affected spore formation, conidia germination, cell wall integrity, and sensitivity to osmotic stress, but not fungal growth. Interestingly, compared with the wild-type, inoculation with MoVcpo deletion mutant on rice led to markedly induced ROS accumulation, increased expression of defense-related genes, but also lower disease severity, suggesting that MoVcpo acts as both an elicitor activating plant immune responses and a virulence factor facilitating fungal infection. These findings reveal a novel role for vanadium chloroperoxidase in fungal pathogenesis and deepen our understanding of M. oryzae-rice interactions.
Collapse
Affiliation(s)
- Yanfang Nie
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guanjun Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jieling Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaoshu Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yanzhi Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qingchuan Shi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunfeng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Lü P, Liu Y, Yu X, Shi CL, Liu X. The right microbe-associated molecular patterns for effective recognition by plants. Front Microbiol 2022; 13:1019069. [PMID: 36225366 PMCID: PMC9549324 DOI: 10.3389/fmicb.2022.1019069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Plants are constantly exposed to diverse microbes and thus develop a sophisticated perceive system to distinguish non-self from self and identify non-self as friends or foes. Plants can detect microbes in apoplast via recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) on the cell surface to activate appropriate signaling in response to microbes. MAMPs are highly conserved but essential molecules of microbes and often buried in microbes’ complex structure. Mature MAMPs are released from microbes by invasion-induced hydrolytic enzymes in apoplast and accumulate in proximity of plasma membrane-localized PRRs to be perceived as ligands to activate downstream signaling. In response, microbes developed strategies to counteract these processing. Here, we review how the form, the concentration, and the size of mature MAMPs affect the PRR-mediated immune signaling. In particular, we describe some potential applications and explore potential open questions in the fields.
Collapse
Affiliation(s)
- Pengpeng Lü
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Xixi Yu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | | | - Xiaokun Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- *Correspondence: Xiaokun Liu,
| |
Collapse
|
12
|
Yang T, Yang K, Zhang Y, Zhou R, Zhang F, Zhan G, Guo Z. Metabolites with antioxidant and α-glucosidase inhibitory activities produced by the endophytic fungi Aspergillus niger from Pachysandra terminalis. Biosci Biotechnol Biochem 2022; 86:1343-1348. [PMID: 35973685 DOI: 10.1093/bbb/zbac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/06/2022] [Indexed: 11/13/2022]
Abstract
One new compound and 13 known compounds were isolated from Aspergillus niger, a plant endophytic fungus of Pachysandra terminalis collected from Qinling Mountains, Xi'an, China. The structure of new compound 1 was classically determined by extensive spectroscopic analysis. Compounds 5, 6, 8, and 14 were firstly reported from Aspergillus, while compound 2 was isolated from A. niger for the first time. All isolated compounds were further evaluated for their antioxidant and α-glucosidase inhibitory activities. Compounds 2 and 3 exhibited significant antioxidant activities with IC50 values of 31.64 μm and 24.32 μm, respectively, similar to the positive control ascorbic acid. Additionally, compound 1 displayed remarkable inhibitory activity against α-glucosidase with an IC50 value of 96.25 μm, which was 3.4-fold more potent than that of the positive control acarbose. Compound 1 has great potential for development as a new lead compound owing to its simple structure and remarkable biological activity.
Collapse
Affiliation(s)
- Tao Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Kailing Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Ruixi Zhou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Fuxin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Guanqun Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Zengjun Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
13
|
Glucosylceramides from Cladosporium and Their Roles in Fungi–Plant Interaction. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cladosporium species are widely distributed filamentous fungi. One of the most important species is C. herbarum, which is related to infections in a variety of plants and of concern in plantations. Fungal cerebrosides, such as glucosylceramide (GlcCer), have been described as playing important roles in fungal growth and pathogenesis, but GlcCer from C. herbarum has not been characterized so far. For this reason, the present study aimed to elucidate the chemical structure of GlcCer from C. herbarum and its role in the interaction with Passiflora edulis. Mass spectrometry characterization of purified GlcCer revealed two major molecular ions, m/z 760 and m/z 774, and it reacts with monoclonal anti-GlcCer antibodies and is exposed on the fungal surface. P. edulis treatment with GlcCer induced increased levels of superoxide as well as the expression of some genes related to plant defense, such as PR3, POD, LOX and PAL. GlcCer also enhanced growth parameters, such as plant height and root weight. All these results suggest that C. herbarum GlcCer can stimulate plant defense mechanisms, which could help plants to face fungal infections.
Collapse
|
14
|
Yang B, Yang S, Zheng W, Wang Y. Plant immunity inducers: from discovery to agricultural application. STRESS BIOLOGY 2022; 2:5. [PMID: 37676359 PMCID: PMC10442025 DOI: 10.1007/s44154-021-00028-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 09/08/2023]
Abstract
While conventional chemical fungicides directly eliminate pathogens, plant immunity inducers activate or prime plant immunity. In recent years, considerable progress has been made in understanding the mechanisms of immune regulation in plants. The development and application of plant immunity inducers based on the principles of plant immunity represent a new field in plant protection research. In this review, we describe the mechanisms of plant immunity inducers in terms of plant immune system activation, summarize the various classes of reported plant immunity inducers (proteins, oligosaccharides, chemicals, and lipids), and review methods for the identification or synthesis of plant immunity inducers. The current situation, new strategies, and future prospects in the development and application of plant immunity inducers are also discussed.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Jantaharn P, Mongkolthanaruk W, Suwannasai N, Senawong T, Tontapha S, Amornkitbumrung V, Boonmak J, Youngme S, McCloskey S. Anti-inflammatory and anti-proliferative activities of chemical constituents from fungus Biscogniauxia whalleyi SWUF13-085. PHYTOCHEMISTRY 2021; 191:112908. [PMID: 34388664 DOI: 10.1016/j.phytochem.2021.112908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The fungus Biscogniauxia whalleyi SWUF13-085 from the Graphostomataceae family was studied for potential anti-inflammatory and anticancer agents. A diverse array of natural products was identified. Six of which were undescribed compounds, including xylariterpenoids L-N, (1R,2S,6R,7S)-1,2-dihydroxy-α-bisabolol, 6-[(1R)-1-hydroxy-1-methyl-2-propenyl]-4-methoxy-3-methyl-2H-pyran-2-one and (1R*,4S*,5S*,7S*,10R*)-guaia-11 (12)-en-7,10-diol. Several of the isolated compounds such as bergamotene, guaiane and phthalide derivatives showed activity in both the inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values in the range of 2.48-10.82 μg/mL and anti-proliferation against HeLa cells with IC50 values in the range of 8.64-31.16 μg/mL. While compounds such as cerebrosides A and C only exhibited inhibitory effects on NO production with IC50 values in the range of 4.45-10.28 μg/mL.
Collapse
Affiliation(s)
- Phongphan Jantaharn
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wiyada Mongkolthanaruk
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nuttika Suwannasai
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sarawut Tontapha
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Vittaya Amornkitbumrung
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Institute of Nanomaterials Research and Innovation for Energy, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sujittra Youngme
- Materials Chemistry Research Center, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirirath McCloskey
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
16
|
He ZH, Wu J, Xu L, Hu MY, Xie MM, Hao YJ, Li SJ, Shao ZZ, Yang XW. Chemical Constituents of the Deep-Sea-Derived Penicillium solitum. Mar Drugs 2021; 19:580. [PMID: 34677479 PMCID: PMC8540044 DOI: 10.3390/md19100580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
A systematic chemical investigation of the deep-sea-derived fungus Penicillium solitum MCCC 3A00215 resulted in the isolation of one novel polyketide (1), two new alkaloids (2 and 3), and 22 known (4-25) compounds. The structures of the new compounds were established mainly on the basis of exhaustive analysis of 1D and 2D NMR data. Viridicatol (13) displayed moderate anti-tumor activities against PANC-1, Hela, and A549 cells with IC50 values of around 20 μM. Moreover, 13 displayed potent in vitro anti-food allergic activity with an IC50 value of 13 μM, compared to that of 92 μM for the positive control, loratadine, while indole-3-acetic acid methyl ester (9) and penicopeptide A (10) showed moderate effects (IC50 = 50 and 58 μM, respectively).
Collapse
Affiliation(s)
- Zhi-Hui He
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - Jia Wu
- Yanjing Medical College, Capital Medical University, 4 Dadong Road, Beijing 101300, China;
| | - Lin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - Man-Yi Hu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - Ming-Ming Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - You-Jia Hao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - Shu-Jin Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - Zong-Ze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| |
Collapse
|
17
|
Seo SY, Kim YJ, Kim J, Nam MH, Park KY. Phytosphingosine induces systemic acquired resistance through activation of sphingosine kinase. PLANT DIRECT 2021; 5:e351. [PMID: 34622122 PMCID: PMC8483070 DOI: 10.1002/pld3.351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/13/2020] [Accepted: 09/08/2021] [Indexed: 05/11/2023]
Abstract
Phytosphingosine (PHS) is a naturally occurring bioactive sphingolipid molecule. Intermediates such as sphingolipid long-chain bases (LCBs) in sphingolipid biosynthesis have been shown to have important roles as signaling molecules. PHS treatment caused rapid cell damage and upregulated the generation of reactive oxygen species (ROS) and ethylene in tobacco plants. These events were followed by the induction of sphingosine kinase (SphK) in a biphasic manner, which metabolized PHS to phytosphingosine-1-phosphate (PHS-1-P). On the other hand, a PHS treatment with a virulent pathogen, Phytophthora parasitica var. nicotianae (Ppn), alleviated the pathogen-induced cell damage and reduced the growth of Ppn. A Ppn infection increased the PHS and PHS-1-P levels significantly in the upper part of the leaves at the infection site at the later stage. In addition, Ppn increased the transcription levels of serine palmitoyltransferase (LCB1 and LCB2) for sphingolipid biosynthesis at the later stage, which was enhanced further by PHS. Moreover, the PHS treatment increased the transcription and activity of SphK, which was accompanied by prominent increases in the transcription levels of ROS-detoxifying enzymes and PR proteins in the later phase of the pathogen infection. Overall, the PHS-induced resistant effects were prominent during the necrotic stage of this hemibiotrophic infection, indicating that it is more beneficial for inhibiting the pathogenicity on necrotic cell death. Phosphorylated LCBs reduced the pathogen-induced cell damage significantly in this stage. These results suggest that the selective channeling of sphingolipids into phosphorylated forms has a pro-survival effect on plant immunity.
Collapse
Affiliation(s)
- So Yeon Seo
- Department of Biology Sunchon National University Suncheon Republic of Korea
| | - Yu Jung Kim
- Department of Biology Sunchon National University Suncheon Republic of Korea
| | - Jinwoo Kim
- Seoul Center Korea Basic Science Institute (KBSI) Seoul Republic of Korea
| | - Myung Hee Nam
- Seoul Center Korea Basic Science Institute (KBSI) Seoul Republic of Korea
| | - Ky Young Park
- Department of Biology Sunchon National University Suncheon Republic of Korea
| |
Collapse
|
18
|
Koga J, Yazawa M, Miyamoto K, Yumoto E, Kubota T, Sakazawa T, Hashimoto S, Sato M, Yamane H. Sphingadienine-1-phosphate levels are regulated by a novel glycoside hydrolase family 1 glucocerebrosidase widely distributed in seed plants. J Biol Chem 2021; 297:101236. [PMID: 34563538 PMCID: PMC8571087 DOI: 10.1016/j.jbc.2021.101236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Long-chain base phosphates (LCBPs) such as sphingosine-1-phosphate and phytosphingosine-1-phosphate function as abscisic acid (ABA)-mediated signaling molecules that regulate stomatal closure in plants. Recently, a glycoside hydrolase family 1 (GH1) β-glucosidase, Os3BGlu6, was found to improve drought tolerance by stomatal closure in rice, but the biochemical functions of Os3BGlu6 have remained unclear. Here we identified Os3BGlu6 as a novel GH1 glucocerebrosidase (GCase) that catalyzes the hydrolysis of glucosylceramide to ceramide. Phylogenetic and enzymatic analyses showed that GH1 GCases are widely distributed in seed plants and that pollen or anthers of all seed plants tested had high GCase activity, but activity was very low in ferns and mosses. Os3BGlu6 had high activity for glucosylceramides containing (4E,8Z)-sphingadienine, and GCase activity in leaves, stems, roots, pistils, and anthers of Os3BGlu6-deficient rice mutants was completely absent relative to that of wild-type rice. The levels of ceramides containing sphingadienine were correlated with GCase activity in each rice organ and were significantly lower in Os3BGlu6-deficient rice mutants than in the wild type. The levels of LCBPs synthesized from ceramides, especially the levels of sphingadienine-1-phosphate, were also correlated with GCase activity in each rice organ and were significantly lower in Os3BGlu6-deficient rice mutants than in the wild type. These results indicate that Os3BGlu6 regulates the level of ceramides containing sphingadienine, influencing the regulation of sphingadienine-1-phosphate levels and subsequent improvement of drought tolerance via stomatal closure in rice.
Collapse
Affiliation(s)
- Jinichiro Koga
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan.
| | - Makoto Yazawa
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Koji Miyamoto
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Tochigi, Japan
| | - Tomoyoshi Kubota
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Tomoko Sakazawa
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Syun Hashimoto
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Masaki Sato
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Hisakazu Yamane
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| |
Collapse
|
19
|
Kant K, Lal UR, Rawat R, Kumar A, Ghosh M. Genus Arisaema: A Review of Traditional Importance, Chemistry and Biological Activities. Comb Chem High Throughput Screen 2021; 23:624-648. [PMID: 32297572 DOI: 10.2174/1386207323666200416150754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND The Arisaema (Araceae) is a genus of approximately 180 perennial herbs widely distributed in the evergreen and deciduous forests. This genus (Arisaema) has been used as a medicinal agent since ancient times. Experimental investigations have shown a promising positive correlation with its folklore claim and this encourages us to report updated medicinal review (genus Arisaema) for future research. OBJECTIVE This review aimed to summarize the ethnobotany, folklore uses, chemistry and biological activities. CONCLUSION The comprehensive literature on genus Arisaema indicates the presence of terpenoids, flavonoids, and glycosphingolipids as the principal chemical constituents. Additionally, phytosterols, alkaloids, carboline derivatives and miscellaneous compounds were documented in plants of genus Arisaema. Biological investigations led to the credentials of antioxidant, anticancer, insecticidal, antimicrobial, anthelmintic and hepatoprotective activities. Following, several plant species are promising candidates for the treatment of cancer, parasitic diseases and microbial infection complications. Though, a lot of facets of this genus like phytoconstituents identification, mechanistic profile, adverse effects and clinical studies are still quite limited. Thus, this systematic review may act as a powerful tool in future studies for promoting health benefits against various health hazards.
Collapse
Affiliation(s)
- Kamal Kant
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Uma R Lal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Ravi Rawat
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Anoop Kumar
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, Punjab, India
| | - Manik Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
20
|
Hussain H, Mamadalieva NZ, Ali I, Elizbit, Green IR, Wang D, Zou L, Simal-Gandara J, Cao H, Xiao J. Fungal glycosides: Structure and biological function. Trends Food Sci Technol 2021; 110:611-651. [DOI: 10.1016/j.tifs.2021.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Ren J, Wang Q, Zuo J, Jiang S. Study of thermotolerant mechanism of Stropharia rugosoannulata under high temperature stress based on the transcriptome sequencing. MYCOSCIENCE 2021; 62:95-105. [PMID: 37089254 PMCID: PMC9157782 DOI: 10.47371/mycosci.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Stropharia rugosoannulata is a popular edible mushroom in the world. High temperature seriously affects its yield and quality. In this study, transcriptome sequencing was performed on the mycelia of heat-resistant strains and heat-sensitive strains heat-treated at 38 °C for 0 h and 24 h. The changes of catalase (CAT) activity, superoxide dismutase (SOD) activity and trehalose content in the mycelia under high temperature stress were also measured and analyzed. We find that the differential genes are mainly enriched in the pathways of glycerophospholipid metabolism, starch and sucrose metabolism, protein processing in the endoplasmic reticulum, etc. The expression levels of genes encoding trehalose-6-phosphate phosphatase (TPP), CAT, SOD, etc. are quite different. And these genes' variation range in the thermotolerant strain are higher than that in heat-sensitive strain. The CAT activity and trehalose content of the two strains increase first and then decrease, and the SOD activity increase slowly. The CAT, SOD activity and trehalose content of the thermotolerant strain are higher than those of the heat-sensitive strain. This study will provide a basis for further research on important signal pathways and gene function identification of S. rugosoannulata related to high temperature stress.
Collapse
Affiliation(s)
- Jifan Ren
- College of Plant Protection, Shandong Agricultural University, Shandong Province Key Lab. of Agricultural Microorganisms
| | - Qingji Wang
- College of Plant Protection, Shandong Agricultural University, Experimental Center
| | - Jie Zuo
- College of Plant Protection, Shandong Agricultural University, Shandong Province Key Lab. of Agricultural Microorganisms
| | - Shuxia Jiang
- College of Plant Protection, Shandong Agricultural University, Shandong Province Key Lab. of Agricultural Microorganisms
| |
Collapse
|
22
|
Yumoto E, Sato M, Kubota T, Enomoto H, Miyamoto K, Yamane H, Koga J. Direct LC–ESI–MS/MS analysis of plant glucosylceramide and ceramide species with 8E and 8Z isomers of the long chain base. Biosci Biotechnol Biochem 2020; 85:205-210. [DOI: 10.1093/bbb/zbaa032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 11/12/2022]
Abstract
ABSTRACT
Glucosylceramides and ceramides with 8E and 8Z isomers of the long chain base are found in plants. These isomers have been difficult to quantify separately using liquid chromatography–tandem mass spectrometry (LC–MS/MS) because the isomers have the same retention time, their precursor and product ions have the same m/z values, and plant ceramide standards are not commercially available. Here we tested trial separations using various ODS columns and prepared plant ceramide standards generated by human glucocerebrosidase (imiglucerase) using commercially available plant glucosylceramide standards as the substrates. Consequently, we were able to quantify the isomers based on differences in retention times in a TSKgel ODS-120A column (Tosoh, Tokyo Japan) using LC–electrospray ionization–MS/MS (LC–ESI–MS/MS).
Collapse
Affiliation(s)
- Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Tochigi, Japan
| | - Masaki Sato
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Tomoyoshi Kubota
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Hirofumi Enomoto
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Koji Miyamoto
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Hisakazu Yamane
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Jinichiro Koga
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| |
Collapse
|
23
|
Bernardino MC, Couto MLCO, Vaslin MFS, Barreto-Bergter E. Antiviral activity of glucosylceramides isolated from Fusarium oxysporum against Tobacco mosaic virus infection. PLoS One 2020; 15:e0242887. [PMID: 33237955 PMCID: PMC7688173 DOI: 10.1371/journal.pone.0242887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Natural elicitors derived from pathogenic microorganisms represent an ecologic strategy to achieve resistance in plants against diseases. Glucosylceramides (GlcCer) are classified as neutral glycosphingolipids. GlcCer were isolated and purified from Fusarium oxysporum mycelium. F. oxysporum is a plant pathogenic fungus, abundant in soil and causing severe losses in economically important crops such as corn, tobacco, banana, cotton and passion fruit. In this study we evaluate the capacity of GlcCer in inducing resistance in N. tabacum cv Xanthi plants against Tobacco mosaic virus (TMV). Spraying tobacco plants with GlcCer before virus infection reduced the incidence of necrotic lesions caused by TMV. In addition, plants already infected with the virus showed a reduction in hypersensitive response (HR) lesions after GlcCer treatment, suggesting an antiviral effect of GlcCer. Our investigations showed that GlcCer stimulates the early accumulation of H2O2 and superoxide radicals. In addition, the expression of PR-1 (pathogenesis-related 1, with suggested antifungal action), PR-2 (β-1,3-glucanase), PR-3 (Chitinase), PR-5 (Osmotin), PAL (Phenylalanine ammonia-lyase), LOX (Lipoxygenase) and POX (Peroxidase) genes was highly induced after treatment of tobacco plants with GlcCer and induction levels remained high throughout a period of 6 to 120 hours. Our experiments demonstrate that GlcCer induces resistance in tobacco plants against infection by TMV.
Collapse
Affiliation(s)
- Mariana C. Bernardino
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michel Leon C. O. Couto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maite F. S. Vaslin
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Boulis AG, Hamed AA, El-Awady ME, Mohamed AR, Eliwa EM, Asker MMS, Shaaban M. Diverse bioactive metabolites from Penicillium sp. MMA derived from the red sea: structure identification and biological activity studies. Arch Microbiol 2020; 202:1985-1996. [PMID: 32476047 DOI: 10.1007/s00203-020-01923-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
A soft coral-derived fungus Penicillium sp. among other isolates e high antibacterial, anti-yeast and cytotoxic activities. The fungus, Penicillium sp. MMA, isolated from Sarcphyton glaucoma, afforded nine diverse compounds (1-9). Their structures were identified by 1D and 2 D NMR and ESI-MS spectroscopic data as two alkaloids: veridicatol (1), aurantiomide C (2); one sesquiterpene, aspterric acid (3); two carboxylic acids, 3,4-dihydroxy-benzoic acid; (4) and linoleic acid (5); three steroids, ergosterol (6), β-Sitosterol (7), β-Sitosterol glucoside (8) along with the sphingolipid, cerebroside A (9). Biologically, the antimicrobial, antioxidant, in vitro cytotoxicity and antibiofilm activities were studied in comparison with the fungal extract. The in silico computational studies were implemented to predict drug and lead likeness properties for 1-4. The fungus was taxonomically characterized by morphological and molecular biology (18srRNA) approaches.
Collapse
Affiliation(s)
- Ann G Boulis
- Division of Pharmaceutical Industries, Chemistry of Natural Compounds Department, National Research Centre, El-Buhouth St. 33, Dokki-Cairo, 12622, Egypt
| | - Ahmed A Hamed
- Genetic Engineering and Biotechnology Research Division, Microbial Chemistry Department, National Research Centre, El-Buhouth St. 33, Dokki-Giza, 12622, Egypt
| | - Mohamed E El-Awady
- Division of Genetic Engineering and Biotechnology Research, Microbial Biotechnology Department, National Research Centre, El-Buhouth St. 33, Dokki-Cairo, 12622, Egypt
| | - Attia R Mohamed
- Botany Department, Faculty of Science, Benha University, Benha, Egypt
| | - Essam M Eliwa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo, 11884, Egypt
| | - Mohsen M S Asker
- Division of Genetic Engineering and Biotechnology Research, Microbial Biotechnology Department, National Research Centre, El-Buhouth St. 33, Dokki-Cairo, 12622, Egypt
| | - Mohamed Shaaban
- Division of Pharmaceutical Industries, Chemistry of Natural Compounds Department, National Research Centre, El-Buhouth St. 33, Dokki-Cairo, 12622, Egypt.
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany.
| |
Collapse
|
25
|
Metabolomics Analysis Identifies Sphingolipids as Key Signaling Moieties in Appressorium Morphogenesis and Function in Magnaporthe oryzae. mBio 2019; 10:mBio.01467-19. [PMID: 31431550 PMCID: PMC6703424 DOI: 10.1128/mbio.01467-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The blast fungus initiates infection using a heavily melanized, dome-shaped infection structure known as the appressorium, which forcibly ruptures the cuticle to enter the rice leaf tissue. How this process takes place remains not fully understood. Here, we used untargeted metabolomics analyses to profile the metabolome of developing appressoria and identified significant changes in six key metabolic pathways, including early sphingolipid biosynthesis. Analyses employing small molecule inhibitors, gene disruption, or genetic and chemical complementation demonstrated that ceramide compounds of the sphingolipid biosynthesis pathway are essential for normal appressorial development controlled by mitosis. In addition, ceramide was found to act upstream from the protein kinase C-mediated cell wall integrity pathway during appressorium repolarization and pathogenicity in rice blast. Further discovery of the sphingolipid biosynthesis pathway revealed that glucosylceramide (GlcCer) synthesized by ceramide is the key substance affecting the pathogenicity of Magnaporthe oryzae Our results provide new insights into the chemical moieties involved in the infection-related signaling networks, thereby revealing a potential target for the development of novel control agents against the major disease of rice and other cereals.IMPORTANCE Our untargeted analysis of metabolomics throughout the course of pathogenic development gave us an unprecedented high-resolution view of major shifts in metabolism that occur in the topmost fungal pathogen that infects rice, wheat, barley, and millet. Guided by these metabolic insights, we demonstrated their practical application by using two different small-molecule inhibitors of sphingolipid biosynthesis enzymes to successfully block the pathogenicity of M. oryzae Our study thus defines the sphingolipid biosynthesis pathway as a key step and potential target that can be exploited for the development of antifungal agents. Furthermore, future investigations that exploit such important metabolic intermediates will further deepen our basic understanding of the molecular mechanisms underlying the establishment of fungal blast disease in important cereal crops.
Collapse
|
26
|
Yang YH, Yang DS, Li GH, Pu XJ, Mo MH, Zhao PJ. Antibacterial diketopiperazines from an endophytic fungus Bionectria sp. Y1085. J Antibiot (Tokyo) 2019; 72:752-758. [DOI: 10.1038/s41429-019-0209-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 11/09/2022]
|
27
|
Ishihara A, Ando K, Yoshioka A, Murata K, Kokubo Y, Morimoto N, Ube N, Yabuta Y, Ueno M, Tebayashi SI, Ueno K, Osaki-Oka K. Induction of defense responses by extracts of spent mushroom substrates in rice. JOURNAL OF PESTICIDE SCIENCE 2019; 44:89-96. [PMID: 31148936 PMCID: PMC6529750 DOI: 10.1584/jpestics.d18-063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
We investigated the effect of treatment with hot water extracts from the spent mushroom substrates (SMSs) of Lentinula edodes and Hypsizygus marmoreus on the resistance of rice leaves to Pyricularia oryzae infection. The spraying of the SMS extracts clearly suppressed the development of lesions caused by Py. oryzae infection. The accumulation of phytoalexins momilactones A and B, oryzalexin A, and sakuranetin was markedly induced by the spraying of extracts. The enhanced expression of defense related genes PR1b and PBZ was also found in leaves sprayed with the extracts. Treatments with the extracts also affected phytohormone levels. The levels of N 6-(Δ2-isopentenyl)adenine and trans-zeatin markedly increased in response to treatment, whereas the levels of salicylic and jasmonic acids were largely unchanged.
Collapse
Affiliation(s)
| | - Kana Ando
- Faculty of Agriculture, Tottori University
| | | | | | - Yu Kokubo
- Graduate School of Agriculture, Tottori University
| | | | - Naoki Ube
- The United Graduate School of Agricultural Sciences, Tottori University
| | | | - Makoto Ueno
- Faculty of Life and Environmental Science, Shimane University
| | | | | | | |
Collapse
|
28
|
Wang W, Li Y, Dang P, Zhao S, Lai D, Zhou L. Rice Secondary Metabolites: Structures, Roles, Biosynthesis, and Metabolic Regulation. Molecules 2018; 23:E3098. [PMID: 30486426 PMCID: PMC6320963 DOI: 10.3390/molecules23123098] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 02/05/2023] Open
Abstract
Rice (Oryza sativa L.) is an important food crop providing energy and nutrients for more than half of the world population. It produces vast amounts of secondary metabolites. At least 276 secondary metabolites from rice have been identified in the past 50 years. They mainly include phenolic acids, flavonoids, terpenoids, steroids, alkaloids, and their derivatives. These metabolites exhibit many physiological functions, such as regulatory effects on rice growth and development, disease-resistance promotion, anti-insect activity, and allelopathic effects, as well as various kinds of biological activities such as antimicrobial, antioxidant, cytotoxic, and anti-inflammatory properties. This review focuses on our knowledge of the structures, biological functions and activities, biosynthesis, and metabolic regulation of rice secondary metabolites. Some considerations about cheminformatics, metabolomics, genetic transformation, production, and applications related to the secondary metabolites from rice are also discussed.
Collapse
Affiliation(s)
- Weixuan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yuying Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Pengqin Dang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Siji Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Boutrot F, Zipfel C. Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:257-286. [PMID: 28617654 DOI: 10.1146/annurev-phyto-080614-120106] [Citation(s) in RCA: 411] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to would-be pathogens and pests, and thus have a sophisticated immune system to ward off these threats, which otherwise can have devastating ecological and economic consequences on ecosystems and agriculture. Plants employ receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to monitor their apoplastic environment and detect non-self and damaged-self patterns as signs of potential danger. Plant PRRs contribute to both basal and non-host resistances, and treatment with pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) or damage-associated molecular patterns (DAMPs) recognized by plant PRRs induces both local and systemic immunity. Here, we comprehensively review known PAMPs/DAMPs recognized by plants as well as the plant PRRs described to date. In particular, we describe the different methods that can be used to identify PAMPs/DAMPs and PRRs. Finally, we emphasize the emerging biotechnological potential use of PRRs to improve broad-spectrum, and potentially durable, disease resistance in crops.
Collapse
Affiliation(s)
- Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
30
|
Zhang JC, Chen GY, Li XZ, Hu M, Wang BY, Ruan BH, Zhou H, Zhao LX, Zhou J, Ding ZT, Yang YB. Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Nat Prod Res 2017; 31:2745-2752. [DOI: 10.1080/14786419.2017.1295235] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ju-cheng Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming, China
- College of Science, Honghe University, Mengzi, China
| | - Guang-Yi Chen
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Xiao-Zhan Li
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Ming Hu
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Bang-Yan Wang
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Bao-Hui Ruan
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Hao Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Li-Xing Zhao
- Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Jun Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Zhong-Tao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Ya-Bin Yang
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| |
Collapse
|
31
|
Lv S, Wang Z, Yang X, Guo L, Qiu D, Zeng H. Transcriptional Profiling of Rice Treated with MoHrip1 Reveal the Function of Protein Elicitor in Enhancement of Disease Resistance and Plant Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:1818. [PMID: 27990152 PMCID: PMC5131010 DOI: 10.3389/fpls.2016.01818] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/18/2016] [Indexed: 05/05/2023]
Abstract
MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS)-based digital gene expression (DGE) profiling was performed to collect the transcriptional data of differentially expressed genes (DEGs) induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA) pathway, phytoalexin, transcription factors, and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA) pathway were activated, while the jasmonic acid (JA) signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
32
|
Liu M, Duan L, Wang M, Zeng H, Liu X, Qiu D. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2. FRONTIERS IN PLANT SCIENCE 2016; 7:1103. [PMID: 27507984 PMCID: PMC4960229 DOI: 10.3389/fpls.2016.01103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/12/2016] [Indexed: 05/31/2023]
Abstract
The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity.
Collapse
Affiliation(s)
- Mengjie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection – Chinese Academy of Agricultural SciencesBeijing, China
| | - Liangwei Duan
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Meifang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection – Chinese Academy of Agricultural SciencesBeijing, China
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection – Chinese Academy of Agricultural SciencesBeijing, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection – Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
33
|
Wang Y, Wu J, Kim SG, Tsuda K, Gupta R, Park SY, Kim ST, Kang KY. Magnaporthe oryzae-Secreted Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:299-312. [PMID: 26780420 DOI: 10.1094/mpmi-12-15-0266-r] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Magnaporthe oryzae snodprot1 homolog (MSP1), secreted by M. oryzae, is a cerato-platanin family protein. msp1-knockout mutants have reduced virulence on barley leaves, indicating that MSP1 is required for the pathogenicity of rice blast fungus. To investigate the functional roles of MSP1 and its downstream signaling in rice, recombinant MSP1 was produced in Escherichia coli and was assayed for its functionality. Application of MSP1 triggered cell death and elicited defense responses in rice. MSP1 also induced H2O2 production and autophagic cell death in both suspension-cultured cells and rice leaves. One or more protein kinases triggered cell death, jasmonic acid and abscisic acid enhanced cell death, while salicylic acid suppressed it. We demonstrated that the secretion of MSP1 into the apoplast is a prerequisite for triggering cell death and activating defense-related gene expression. Furthermore, pretreatment of rice with a sublethal MSP1 concentration potentiated resistance to the pathogen. Taken together, our results showed that MSP1 induces a high degree of cell death in plants, which might be essential for its virulence. Moreover, rice can recognize MSP1, resulting in the induction of pathogen-associated molecular pattern-triggered immunity.
Collapse
Affiliation(s)
- Yiming Wang
- 1 Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
- 2 Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
| | - Jingni Wu
- 2 Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
- 3 Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, Korea
| | - Sang Gon Kim
- 1 Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Kenichi Tsuda
- 2 Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
| | - Ravi Gupta
- 4 Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea; and
| | - Sook-Young Park
- 5 Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Sun Tae Kim
- 4 Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea; and
| | - Kyu Young Kang
- 1 Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
- 3 Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, Korea
| |
Collapse
|
34
|
Glucosylceramides are required for mycelial growth and full virulence in Penicillium digitatum. Biochem Biophys Res Commun 2014; 455:165-71. [PMID: 25449268 DOI: 10.1016/j.bbrc.2014.10.142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 01/05/2023]
Abstract
Glucosylceramides (GlcCers) are important lipid components of the membrane systems of eukaryotes. Recent studies have suggested the roles for GlcCers in regulating fungal growth and pathogenesis. In this study, we report the identification and functional characterization of PdGcs1, a gene encoding GlcCer synthase (GCS) essential for the biosynthesis of GlcCers, in Penicilliumdigitatum genome. We demonstrated that the deletion of PdGcs1 in P. digitatum resulted in the complete loss of production of GlcCer (d18:1/18:0 h) and GlcCer (d18:2/18:0 h), a decrease in vegetation growth and sporulation, and a delay in spore germination. The virulence of the PdGcs1 deletion mutant on citrus fruits was also impaired, as evidenced by the delayed occurrence of water soaking lesion and the formation of smaller size of lesion. These results suggest that PdGcs1 is a bona fide GCS that plays an important role in regulating cell growth, differentiation, and virulence of P. digitatum by controlling the biosynthesis of GlcCers.
Collapse
|
35
|
Chen M, Zhang C, Zi Q, Qiu D, Liu W, Zeng H. A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice. PLANT CELL REPORTS 2014; 33:1865-79. [PMID: 25056480 DOI: 10.1007/s00299-014-1663-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/25/2014] [Accepted: 07/15/2014] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Our studies indicate a potential important elicitor candidate which can aid in the fight against a worldwide disease, rice blast. In this study, we report the purification, identification, characterization, and gene cloning of a novel hypersensitive response-inducing protein elicitor (MoHrip2) secreted from an important pathogenic fungus, Magnaporthe oryzae. The protein fraction was isolated from the culture filtrate of M. oryzae and identified by de novo sequencing. The elicitor-encoding gene mohrip2 was cloned following sequence comparison and PCR amplification. This 459-bp gene encodes a 152-residue polypeptide that contains an 18-residue signal peptide and exhibits a pI of 4.72 and an apparent molecular mass of 16 kDa. The hypothetical protein, MoHrip2, was expressed in Escherichia coli, and both the recombinant and the endogenous protein caused necrotic lesions in tobacco leaves. In addition to phenolic compound deposition and alkalization of the extracellular medium, MoHrip2 also induced hydrogen peroxide production and nitric oxide accumulation in tobacco cells. Moreover, rice seedlings treated with MoHrip2 exhibited pronounced resistance to M. oryzae compared with control seedlings.
Collapse
Affiliation(s)
- Mingjia Chen
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany,
| | | | | | | | | | | |
Collapse
|
36
|
Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ. Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:659-78. [PMID: 24450747 DOI: 10.1111/tpj.12436] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/22/2013] [Accepted: 01/10/2014] [Indexed: 05/07/2023]
Abstract
A long-standing goal in plant research is to optimize the protective function of biochemical agents that impede pest and pathogen attack. Nearly 40 years ago, pathogen-inducible diterpenoid production was described in rice, and these compounds were shown to function as antimicrobial phytoalexins. Using rice and maize as examples, we discuss recent advances in the discovery, biosynthesis, elicitation and functional characterization of monocot terpenoid phytoalexins. The recent expansion of known terpenoid phytoalexins now includes not only the labdane-related diterpenoid superfamily but also casbane-type diterpenoids and β-macrocarpene-derived sequiterpenoids. Biochemical approaches have been used to pair pathway precursors and end products with cognate biosynthetic genes. The number of predicted terpenoid phytoalexins is expanding through advances in cereal genome annotation and terpene synthase characterization that likewise enable discoveries outside the Poaceae. At the cellular level, conclusive evidence now exists for multiple plant receptors of fungal-derived chitin elicitors, phosphorylation of membrane-associated signaling complexes, activation of mitogen-activated protein kinase, involvement of phytohormone signals, and the existence of transcription factors that mediate the expression of phytoalexin biosynthetic genes and subsequent accumulation of pathway end products. Elicited production of terpenoid phytoalexins exhibit additional biological functions, including root exudate-mediated allelopathy and insect antifeedant activity. Such findings have encouraged consideration of additional interactions that blur traditionally discrete phytoalexin classifications. The establishment of mutant collections and increasing ease of genetic transformation assists critical examination of further biological roles. Future research directions include examination of terpenoid phytoalexin precursors and end products as potential signals mediating plant physiological processes.
Collapse
Affiliation(s)
- Eric A Schmelz
- Center for Medical, Agricultural, and Veterinary Entomology, US Department of Agriculture, Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, 32608, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Phosphocholine-Containing Glycosyl Inositol-Phosphoceramides fromTrichoderma virideInduce Defense Responses in Cultured Rice Cells. Biosci Biotechnol Biochem 2014; 73:74-8. [DOI: 10.1271/bbb.80480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Xiao J, Zhang Q, Gao YQ, Tang JJ, Zhang AL, Gao JM. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3584-3590. [PMID: 24689437 DOI: 10.1021/jf500054f] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two new metabolites, an α-pyridone derivative, 3-hydroxy-2-methoxy-5-methylpyridin-2(1H)-one (1), and a ceramide derivative, 3-hydroxy-N-(1-hydroxy-3-methylpentan-2-yl)-5-oxohexanamide (2), and a new natural product, 3-hydroxy-N-(1-hydroxy-4-methylpentan-2-yl)-5-oxohexanamide (3), along with 15 known compounds including chaetoglobosin C (7) and chaetoglobosin F (8) were isolated from the solid culture of the endophytic fungus Botryosphaeria dothidea KJ-1, collected from the stems of white cedar (Melia azedarach L). The structures were elucidated on the basis of spectroscopic analysis (1D and 2D NMR experiments and by mass spectrometric measurements), and the structure of 1 was confirmed by X-ray single-crystal diffraction. These metabolites were evaluated in vitro for antimicrobial, antioxidant, and cytotoxicity activities. Pycnophorin (4) significantly inhibited the growth of Bacillus subtilis and Staphyloccocus aureus with equal minimum inhibitory concentration (MIC) values of 25 μM. Stemphyperylenol (5) displayed a potent antifungal activity against the plant pathogen Alternaria solani with MIC of 1.57 μM comparable to the commonly used fungicide carbendazim. Both altenusin (9) and djalonensone (10) showed markedly DPPH radical scavenging activities. In addition, stemphyperylenol (5) and altenuene (6) exhibited strong cytotoxicity against HCT116 cancer cell line with a median inhibitory concentration (IC50) value of 3.13 μM in comparison with the positive control etoposide (IC50 = 2.13 μM). This is the first report of the isolation of these compounds from the endophytic B. dothidea.
Collapse
Affiliation(s)
- Jian Xiao
- Shaanxi Engineering Center of Bioresource Chemistry and Sustainable Utilization, College of Science, Northwest A&F University , Yangling 712100, Shaanxi China
| | | | | | | | | | | |
Collapse
|
39
|
Das SN, Madhuprakash J, Sarma PVSRN, Purushotham P, Suma K, Manjeet K, Rambabu S, Gueddari NEE, Moerschbacher BM, Podile AR. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit Rev Biotechnol 2013; 35:29-43. [PMID: 24020506 DOI: 10.3109/07388551.2013.798255] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.
Collapse
Affiliation(s)
- Subha Narayan Das
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad , Hyderabad , India and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rivas-San Vicente M, Larios-Zarate G, Plasencia J. Disruption of sphingolipid biosynthesis in Nicotiana benthamiana activates salicylic acid-dependent responses and compromises resistance to Alternaria alternata f. sp. lycopersici. PLANTA 2013; 237:121-36. [PMID: 22990908 DOI: 10.1007/s00425-012-1758-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/29/2012] [Indexed: 05/08/2023]
Abstract
Sphingolipids play an important role in signal transduction pathways that regulate physiological functions and stress responses in eukaryotes. In plants, recent evidence suggests that their metabolic precursors, the long-chain bases (LCBs) act as bioactive molecules in the immune response. Interestingly, the virulence of two unrelated necrotrophic fungi, Fusarium verticillioides and Alternaria alternata, which are pathogens of maize and tomato plants, respectively, depends on the production of sphinganine-analog mycotoxins (SAMs). These metabolites inhibit de novo synthesis of sphingolipids in their hosts causing accumulation of LCBs, which are key regulators of programmed cell death. Therefore, to gain more insight into the role of sphingolipids in plant immunity against SAM-producing necrotrophic fungi, we disrupted sphingolipid metabolism in Nicotiana benthamiana through virus-induced gene silencing (VIGS) of the serine palmitoyltransfersase (SPT). This enzyme catalyzes the first reaction in LCB synthesis. VIGS of SPT profoundly affected N. benthamiana development as well as LCB composition of sphingolipids. While total levels of phytosphingosine decreased, sphinganine and sphingosine levels increased in SPT-silenced plants, compared with control plants. Plant immunity was also affected as silenced plants accumulated salicylic acid (SA), constitutively expressed the SA-inducible NbPR-1 gene and showed increased susceptibility to the necrotroph A. alternata f. sp. lycopersici. In contrast, expression of NbPR-2 and NbPR-3 genes was delayed in silenced plants upon fungal infection. Our results strongly suggest that LCBs modulate the SA-dependent responses and provide a working model of the potential role of SAMs from necrotrophic fungi to disrupt the plant host response to foster colonization.
Collapse
Affiliation(s)
- Mariana Rivas-San Vicente
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico D.F., Mexico
| | | | | |
Collapse
|
41
|
Wang JW, Wu JY. Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 134:55-89. [PMID: 23467807 DOI: 10.1007/10_2013_183] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This chapter reviews the various biotic and abiotic elicitors applied to hairy root cultures and their stimulating effects on the accumulation of secondary metabolites. Elicitors generally refer to the agents that stimulate the defense responses of plants. As a major response of plants to biotic and abiotic stress, the accumulation of secondary metabolites in plant tissue cultures can be stimulated by the elicitors. Among the many elicitors applied to hairy root cultures as well as plant cell suspension cultures, the most common and effective elicitors are fungal cell extracts, polysaccharides from fungal and plant cells, and heavy metal salts. With the crude fungal cell extracts, it is essential to observe the preparation conditions carefully for achieving reproducible effects. In addition to the chemical agents, UV-radiation, hyperosmotic stress and temperature shift have been shown effective for some plant species/metabolites. Elicitor type, dose, and treatment schedule are major factors determining the effects on the secondary metabolite production. In addition to the accumulation of products in roots, elicitor treatments often stimulate the release of intracellular products. Although elicitation is mainly effective to increase specific product yield on per unit mass of roots, the incorporation of nutrient feeding strategies can be applied to enhance the volumetric product yield. The integration of in situ product recovery from the roots/liquid medium is another synergistic strategy with the elicitor treatment to improve the process.
Collapse
Affiliation(s)
- Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China,
| | | |
Collapse
|
42
|
Avrova A, Knogge W. Rhynchosporium commune: a persistent threat to barley cultivation. MOLECULAR PLANT PATHOLOGY 2012; 13:986-97. [PMID: 22738626 PMCID: PMC6638709 DOI: 10.1111/j.1364-3703.2012.00811.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rhynchosporium commune is a haploid fungus causing scald or leaf blotch on barley, other Hordeum spp. and Bromus diandrus. TAXONOMY Rhynchosporium commune is an anamorphic Ascomycete closely related to the teleomorph Helotiales genera Oculimacula and Pyrenopeziza. DISEASE SYMPTOMS Rhynchosporium commune causes scald-like lesions on leaves, leaf sheaths and ears. Early symptoms are generally pale grey oval lesions. With time, the lesions acquire a dark brown margin with the centre of the lesion remaining pale green or pale brown. Lesions often merge to form large areas around which leaf yellowing is common. Infection frequently occurs in the leaf axil, which can lead to chlorosis and eventual death of the leaf. LIFE CYCLE Rhynchosporium commune is seed borne, but the importance of this phase of the disease is not fully understood. Debris from previous crops and volunteers, infected from the stubble from previous crops, are considered to be the most important sources of the disease. Autumn-sown crops can become infected very soon after sowing. Secondary spread of disease occurs mainly through splash dispersal of conidia from infected leaves. Rainfall at the stem extension growth stage is the major environmental factor in epidemic development. DETECTION AND QUANTIFICATION: Rhynchosporium commune produces unique beak-shaped, one-septate spores both on leaves and in culture. The development of a specific polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) has allowed the identification of asymptomatic infection in seeds and during the growing season. DISEASE CONTROL The main measure for the control of R. commune is the use of fungicides with different modes of action, in combination with the use of resistant cultivars. However, this is constantly under review because of the ability of the pathogen to adapt to host plant resistance and to develop fungicide resistance.
Collapse
Affiliation(s)
- Anna Avrova
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | | |
Collapse
|
43
|
Chen M, Zeng H, Qiu D, Guo L, Yang X, Shi H, Zhou T, Zhao J. Purification and characterization of a novel hypersensitive response-inducing elicitor from Magnaporthe oryzae that triggers defense response in rice. PLoS One 2012; 7:e37654. [PMID: 22624059 PMCID: PMC3356297 DOI: 10.1371/journal.pone.0037654] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/22/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Magnaporthe oryzae, the rice blast fungus, might secrete certain proteins related to plant-fungal pathogen interactions. METHODOLOGY/PRINCIPAL FINDINGS In this study, we report the purification, characterization, and gene cloning of a novel hypersensitive response-inducing protein elicitor (MoHrip1) secreted by M. oryzae. The protein fraction was purified and identified by de novo sequencing, and the sequence matched the genomic sequence of a putative protein from M. oryzae strain 70-15 (GenBank accession No. XP_366602.1). The elicitor-encoding gene mohrip1 was isolated; it consisted of a 429 bp cDNA, which encodes a polypeptide of 142 amino acids with a molecular weight of 14.322 kDa and a pI of 4.53. The deduced protein, MoHrip1, was expressed in E. coli. And the expression protein collected from bacterium also forms necrotic lesions in tobacco. MoHrip1 could induce the early events of the defense response, including hydrogen peroxide production, callose deposition, and alkalization of the extracellular medium, in tobacco. Moreover, MoHrip1-treated rice seedlings possessed significantly enhanced systemic resistance to M. oryzae compared to the control seedlings. The real-time PCR results indicated that the expression of some pathogenesis-related genes and genes involved in signal transduction could also be induced by MoHrip1. CONCLUSION/SIGNIFICANCE The results demonstrate that MoHrip1 triggers defense responses in rice and could be used for controlling rice blast disease.
Collapse
Affiliation(s)
| | - Hongmei Zeng
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinses Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Miyamoto K, Shimizu T, Lin F, Sainsbury F, Thuenemann E, Lomonossoff G, Nojiri H, Yamane H, Okada K. Identification of an E-box motif responsible for the expression of jasmonic acid-induced chitinase gene OsChia4a in rice. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:621-627. [PMID: 22266099 DOI: 10.1016/j.jplph.2011.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 05/31/2023]
Abstract
The plant hormone jasmonic acid (JA) is known to be involved in multiple defence responses against pathogens, which include the production of pathogenesis-related (PR) proteins. In order to investigate the induction mechanism of the rice defence responses by JA, we performed transcriptome analyses and focused on a chitinase gene, OsChia4a, which was identified to be one of the highest JA-inductive genes. The recombinant protein of His-tagged OsChia4a exhibited an inhibitory effect against the spore germination and hyphal growth of Magnaporthe oryzae. The promoter analysis of OsChia4a revealed that the region from -515 bp to -265 bp upstream of the ATG translation initiation site was required for the responsiveness to JA. A subsequent mutation analysis indicated that an E-box (CANNTG) in this region act as a JA-responsive cis element. These results imply that a basic helix-loop-helix transcription factor is likely to be involved in the regulation of the OsChia4a expression in a JA-dependent manner.
Collapse
Affiliation(s)
- Koji Miyamoto
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Berkey R, Bendigeri D, Xiao S. Sphingolipids and plant defense/disease: the "death" connection and beyond. FRONTIERS IN PLANT SCIENCE 2012; 3:68. [PMID: 22639658 PMCID: PMC3355615 DOI: 10.3389/fpls.2012.00068] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/22/2012] [Indexed: 05/19/2023]
Abstract
Sphingolipids comprise a major class of structural materials and lipid signaling molecules in all eukaryotic cells. Over the past two decades, there has been a phenomenal growth in the study of sphingolipids (i.e., sphingobiology) at an average rate of ∼1000 research articles per year. Sphingolipid studies in plants, though accounting for only a small fraction (∼6%) of the total number of publications, have also enjoyed proportionally rapid growth in the past decade. Concomitant with the growth of sphingobiology, there has also been tremendous progress in our understanding of the molecular mechanisms of plant innate immunity. In this review, we (i) cross examine and analyze the major findings that establish and strengthen the intimate connections between sphingolipid metabolism and plant programmed cell death (PCD) associated with plant defense or disease; (ii) highlight and compare key bioactive sphingolipids involved in the regulation of plant PCD and possibly defense; (iii) discuss the potential role of sphingolipids in polarized membrane/protein trafficking and formation of lipid rafts as subdomains of cell membranes in relation to plant defense; and (iv) where possible, attempt to identify potential parallels for immunity-related mechanisms involving sphingolipids across kingdoms.
Collapse
Affiliation(s)
- Robert Berkey
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Dipti Bendigeri
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| |
Collapse
|
46
|
Kim SH, Oikawa T, Kyozuka J, Wong HL, Umemura K, Kishi-Kaboshi M, Takahashi A, Kawano Y, Kawasaki T, Shimamoto K. The bHLH Rac Immunity1 (RAI1) Is Activated by OsRac1 via OsMAPK3 and OsMAPK6 in Rice Immunity. PLANT & CELL PHYSIOLOGY 2012; 53:740-54. [PMID: 22437844 DOI: 10.1093/pcp/pcs033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Rac/Rop GTPase OsRac1 plays an essential role in rice immunity. However, the regulatory genes acting downstream of OsRac1 are largely unknown. We focused on the RAI1 gene, which is up-regulated in suspension cells expressing a constitutively active form of OsRac1. RAI1 encodes a putative basic helix-loop-helix transcription factor. A microarray analysis of cells transformed with an inducible RAI1 construct showed increased expression of PAL1 and OsWRKY19 genes after induction, suggesting that these genes are regulated by RAI1. This was confirmed using RAI1 T-DNA activation-tagged and RNA interference lines. The PAL1 and OsWRKY19 genes were also up-regulated by sphingolipid and chitin elicitors, and the RAI1 activation-tagged plants had increased resistance to a rice blast fungus. These results indicated that RAI1 is involved in defense responses in rice. RAI1 interacted with OsMAPK3 and OsMAPK6 proteins in vivo and in vitro. Also, RAI1 was phosphorylated by OsMAPK3/6 and OsMKK4-dd in vitro. Overexpression of OsMAPK6 and/or OsMAPK3 together with OsMKK4-dd increased PAL1 and OsWRKY19 expression in rice protoplasts. Therefore, the regulation of PAL1 and OsWRKY19 expression by RAI1 could be controlled via an OsMKK4-OsMAPK3/6 cascade. Co-immunoprecipitation assays indicated that OsMAPK3 and OsRac1 occur in the same complex as OsMAPK6. Taken together, our results indicate that RAI1 could be regulated by OsRac1 through an OsMAPK3/6 cascade. In this study, we have identified RAI1 as the first transcription factor acting downstream of OsRac1. This work will help us to understand the immune system regulated by OsRac1 in rice and its orthologs in other plant species.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ligands of RLKs and RLPs Involved in Defense and Symbiosis. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-23044-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Barreto-Bergter E, Sassaki GL, de Souza LM. Structural analysis of fungal cerebrosides. Front Microbiol 2011; 2:239. [PMID: 22164155 PMCID: PMC3230030 DOI: 10.3389/fmicb.2011.00239] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/13/2011] [Indexed: 11/13/2022] Open
Abstract
Of the ceramide monohexosides (CMHs), gluco- and galactosyl-ceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry, electrospray ionization, and energy collision-induced dissociation mass spectrometry. Nuclear magnetic resonance has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as high-performance thin layer chromatography and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, Aspergillus fumigatus, and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH) analysis, we now describe new approaches, combining conventional thin layer chromatography and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by secondary ion mass spectrometry and imaging matrix-assisted laser desorption ionization time-of-flight.
Collapse
Affiliation(s)
- Eliana Barreto-Bergter
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | |
Collapse
|
49
|
Ishikawa T, Watanabe N, Nagano M, Kawai-Yamada M, Lam E. Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ 2011; 18:1271-8. [PMID: 21597463 DOI: 10.1038/cdd.2011.59] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In spite of fundamental differences between plant and animal cells, it is remarkable that some cell death regulators that were identified to control cell death in metazoans can also function in plants. The fact that most of these proteins do not have structural homologs in plant genomes suggests that they may be targeting a highly conserved 'core' mechanism with conserved functions that is present in all eukaryotes. The ubiquitous Bax inhibitor-1 (BI-1) is a common cell death suppressor in eukaryotes that has provided a potential portal to this cell death core. In this review, we will update the current status of our understanding on the function and activities of this intriguing protein. Genetic, molecular and biochemical studies have so far suggested a consistent view that BI-1 is an endoplasmic reticulum (ER)-resident transmembrane protein that can interact with multiple partners to alter intracellular Ca(2+) flux control and lipid dynamics. Functionally, the level of BI-1 protein has been hypothesized to have the role of a rheostat to regulate the threshold of ER-stress inducible cell death. Further, delineation of the cell death suppression mechanism by BI-1 should shed light on an ancient cell death core-control pathway in eukaryotes, as well as novel ways to improve stress tolerance.
Collapse
Affiliation(s)
- T Ishikawa
- Department of Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan
| | | | | | | | | |
Collapse
|
50
|
Kurusu T, Hamada H, Sugiyama Y, Yagala T, Kadota Y, Furuichi T, Hayashi T, Umemura K, Komatsu S, Miyao A, Hirochika H, Kuchitsu K. Negative feedback regulation of microbe-associated molecular pattern-induced cytosolic Ca2+ transients by protein phosphorylation. JOURNAL OF PLANT RESEARCH 2011; 124:415-24. [PMID: 21063744 DOI: 10.1007/s10265-010-0388-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/11/2010] [Indexed: 05/24/2023]
Abstract
Microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) often induce rises in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) and protein phosphorylation. Though they are postulated to play pivotal roles in plant innate immunity, their molecular links and the regulatory mechanisms remain largely unknown. To investigate the regulatory mechanisms for MAMP-induced Ca(2+) mobilization, we have established a transgenic rice (Oryza sativa) cell line stably expressing apoaequorin, and characterized the interrelationship among MAMP-induced changes in [Ca(2+)](cyt), production of reactive oxygen species (ROS) and protein phosphorylation. Oligosaccharide and sphingolipid MAMPs induced Ca(2+) transients mainly due to plasma membrane Ca(2+) influx, which were dramatically suppressed by a protein phosphatase inhibitor, calyculin A (CA). Hydrogen peroxide and hypo-osmotic shock triggered similar [Ca(2+)](cyt) elevations, which were not affected by CA. MAMP-induced protein phosphorylation, which is promoted by CA, has been shown to be required for ROS production and MAPK activation, while it negatively regulates MAMPs-induced Ca(2+) mobilization and may play a crucial role in temporal regulation of [Ca(2+)](cyt) signature.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|