1
|
Mazaud-Guittot S, Prud'homme B, Bouchard MF, Bergeron F, Daems C, Tevosian SG, Viger RS. GATA4 autoregulates its own expression in mouse gonadal cells via its distal 1b promoter. Biol Reprod 2014; 90:25. [PMID: 24352556 DOI: 10.1095/biolreprod.113.113290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Transcription factor GATA4 is required for the development and function of the mammalian gonads. We first reported that the GATA4 gene in both human and rodents is expressed as two major alternative transcripts that differ solely in their first untranslated exon (exon 1a vs. exon 1b). We had also showed by quantitative PCR that in mouse tissues, both Gata4 exon 1a- and 1b-containing transcripts are present in all sites that are normally positive for GATA4 protein. In adult tissues, exon 1a-containing transcripts generally predominate. A notable exception, however, is the testis where the Gata4 exon 1a and 1b transcripts exhibit a similar level of expression. We now confirm by in situ hybridization analysis that each transcript is also strongly expressed during gonad differentiation in both sexes in the rat. To gain further insights into how Gata4 gene expression is controlled, we characterized the mouse Gata4 promoter sequence located upstream of exon 1b. In vitro studies revealed that the Gata4 1b promoter is less active than the 1a promoter in several gonadal cell lines tested. Whereas we have previously shown that endogenous Gata4 transcription driven by the 1a promoter is dependent on a proximally located Ebox motif, we now show using complementary in vitro and in vivo approaches that Gata4 promoter 1b-directed expression is regulated by GATA4 itself. Thus, Gata4 transcription in the gonads and other tissues is ensured by distinct promoters that are regulated differentially and independently.
Collapse
Affiliation(s)
- Séverine Mazaud-Guittot
- Reproduction, Mother and Child Health, Centre de recherche du CHU de Québec and Centre de recherche en biologie de la reproduction (CRBR), Quebec City, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
2
|
Mazaud Guittot S, Bouchard MF, Robert-Grenon JP, Robert C, Goodyer CG, Silversides DW, Viger RS. Conserved usage of alternative 5' untranslated exons of the GATA4 gene. PLoS One 2009; 4:e8454. [PMID: 20041118 PMCID: PMC2795200 DOI: 10.1371/journal.pone.0008454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/07/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND GATA4 is an essential transcription factor required for the development and function of multiple organs. Despite this important role, our knowledge of how the GATA4 gene is regulated remains limited. To better understand this regulation, we characterized the 5' region of the mouse, rat, and human GATA4 genes. METHODOLOGY/PRINCIPAL FINDINGS Using 5' RACE, we identified novel transcription start sites in all three species. GATA4 is expressed as multiple transcripts with varying 5' ends encoded by alternative untranslated first exons. Two of these non-coding first exons are conserved between species: exon 1a located 3.5 kb upstream of the GATA4 ATG site in exon 2, and a second first exon (exon 1b) located 28 kb further upstream. Expression of both mRNA variants was found in all GATA4-expressing organs but with a preference for the exon 1a-containing transcript. The exception was the testis where exon 1a- and 1b-containing transcripts were similarly expressed. In some tissues such as the intestine, alternative transcript expression appears to be regionally regulated. Polysome analysis suggests that both mRNA variants contribute to GATA4 protein synthesis. CONCLUSIONS/SIGNIFICANCE Taken together, our results indicate that the GATA4 gene closely resembles the other GATA family members in terms of gene structure where alternative first exon usage appears to be an important mechanism for regulating its tissue- and cell-specific expression.
Collapse
Affiliation(s)
- Séverine Mazaud Guittot
- Reproduction, Perinatal and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
| | - Marie France Bouchard
- Reproduction, Perinatal and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
| | - Jean-Philippe Robert-Grenon
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
- Department of Animal Science, Laval University, Quebec City, Canada
| | - Claude Robert
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
- Department of Animal Science, Laval University, Quebec City, Canada
| | - Cynthia G. Goodyer
- McGill University Health Centre-Montreal Children's Hospital Research Institute, Montreal, Canada
| | | | - Robert S. Viger
- Reproduction, Perinatal and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
- Department of Obstetrics and Gynecology, Laval University, Quebec City, Canada
- * E-mail:
| |
Collapse
|
3
|
Hoshino T, Shimizu R, Ohmori S, Nagano M, Pan X, Ohneda O, Khandekar M, Yamamoto M, Lim KC, Engel JD. Reduced BMP4 abundance in Gata2 hypomorphic mutant mice result in uropathies resembling human CAKUT. Genes Cells 2008; 13:159-70. [PMID: 18233958 DOI: 10.1111/j.1365-2443.2007.01158.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Constitutive loss of transcription factor GATA-2 leads to embryonic lethality from primitive erythropoietic failure. We serendipitously discovered an essential contribution of GATA-2 to urogenital development when the hematopoietic deficiency of Gata2 null mutant animals was complemented by a Gata2 yeast artificial chromosome (YAC) transgene; these mice died from a perinatal lethal urogenital abnormality. Here, we report the generation and analysis of Gata2 hypomorphic mutant (Gata2(fGN)/(/fGN)) mice, which suffered from hydronephrosis and megaureter, as do the YAC-rescued Gata2 null mutants. Gata2(fGN)/(/fGN) mutants exhibit anteriorly displaced ureteric budding from the Wolffian duct as well as reduced BMP4 expression in the intermediate mesoderm derivatives in a manner that is temporally coincident with ureteric bud emergence. In Bmp4 mutant heterozygotes, rostral displacement of the initial bud site on the Wolffian duct results in abnormal urogenital development. We show here that Bmp4 mRNA is reduced approximately twofold in Gata2(fGN)/(/fGN) mice (as in Bmp4 null heterozygotes), and that GATA-2 trans-activates a Bmp4 first intron element-directed reporter plasmid in co-transfection assays. These experiments taken together implicate GATA-2 as a direct regulator of Bmp4 transcription. The pathophysiology described in Gata2 hypomorphic mutant animals resembles human congenital anomalies of the kidney and urinary tract.
Collapse
Affiliation(s)
- Tomofumi Hoshino
- Graduate School of Comprehensive Human Sciences and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yang Z, Jiang H, Zhao F, Shankar DB, Sakamoto KM, Zhang MQ, Lin S. A highly conserved regulatory element controls hematopoietic expression of GATA-2 in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2007; 7:97. [PMID: 17708765 PMCID: PMC1988811 DOI: 10.1186/1471-213x-7-97] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 08/20/2007] [Indexed: 01/30/2023]
Abstract
Background GATA-2 is a transcription factor required for hematopoietic stem cell survival as well as for neuronal development in vertebrates. It has been shown that specific expression of GATA-2 in blood progenitor cells requires distal cis-acting regulatory elements. Identification and characterization of these elements should help elucidating transcription regulatory mechanisms of GATA-2 expression in hematopoietic lineage. Results By pair-wise alignments of the zebrafish genomic sequences flanking GATA-2 to orthologous regions of fugu, mouse, rat and human genomes, we identified three highly conserved non-coding sequences in the genomic region flanking GATA-2, two upstream of GATA-2 and another downstream. Using both transposon and bacterial artificial chromosome mediated germline transgenic zebrafish analyses, one of the sequences was established as necessary and sufficient to direct hematopoietic GFP expression in a manner that recapitulates that of GATA-2. In addition, we demonstrated that this element has enhancer activity in mammalian myeloid leukemia cell lines, thus validating its functional conservation among vertebrate species. Further analysis of potential transcription factor binding sites suggested that integrity of the putative HOXA3 and LMO2 sites is required for regulating GATA-2/GFP hematopoietic expression. Conclusion Regulation of GATA-2 expression in hematopoietic cells is likely conserved among vertebrate animals. The integrated approach described here, drawing on embryological, transgenesis and computational methods, should be generally applicable to analyze tissue-specific gene regulation involving distal DNA cis-acting elements.
Collapse
Affiliation(s)
- Zhongan Yang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095-1606, USA
| | - Hong Jiang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095-1606, USA
| | - Fang Zhao
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Deepa B Shankar
- Division of Hematology-Oncology and Pathology and Laboratory Medicine, Gwynne Hazen Cherry Memorial Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1752, USA
| | - Kathleen M Sakamoto
- Division of Hematology-Oncology and Pathology and Laboratory Medicine, Gwynne Hazen Cherry Memorial Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1752, USA
| | - Michael Q Zhang
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095-1606, USA
| |
Collapse
|
5
|
Kobayashi-Osaki M, Ohneda O, Suzuki N, Minegishi N, Yokomizo T, Takahashi S, Lim KC, Engel JD, Yamamoto M. GATA motifs regulate early hematopoietic lineage-specific expression of the Gata2 gene. Mol Cell Biol 2005; 25:7005-20. [PMID: 16055713 PMCID: PMC1190224 DOI: 10.1128/mcb.25.16.7005-7020.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factor GATA-2 is essential for definitive hematopoiesis, which developmentally emerges from the para-aortic splanchnopleura (P-Sp). The expression of a green fluorescent protein (GFP) reporter placed under the control of a 3.1-kbp Gata2 gene regulatory domain 5' to the distal first exon (IS) mirrored that of the endogenous Gata2 gene within the P-Sp and yolk sac (YS) blood islands of embryonic day (E) 9.5 murine embryos. The P-Sp- and YS-derived GFP(+) fraction of flow-sorted cells dissociated from E9.5 transgenic embryos contained far more CD34(+)/c-Kit(+) cells than the GFP(-) fraction did. When cultured in vitro, the P-Sp GFP(+) cells generated both immature hematopoietic and endothelial cell clusters. Detailed transgenic mouse reporter expression analyses demonstrate that five GATA motifs within the 3.1-kbp Gata2 early hematopoietic regulatory domain (G2-EHRD) were essential for GFP expression within the dorsal aortic wall, where hemangioblasts, the earliest precursors possessing both hematopoietic and vascular developmental potential, are thought to reside. These results thus show that the Gata2 gene IS promoter is regulated by a GATA factor(s) and selectively marks putative hematopoietic/endothelial precursor cells within the P-Sp.
Collapse
|
6
|
Oren T, Torregroza I, Evans T. An Oct-1 binding site mediates activation of the gata2 promoter by BMP signaling. Nucleic Acids Res 2005; 33:4357-67. [PMID: 16061939 PMCID: PMC1182169 DOI: 10.1093/nar/gki746] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The gata2 gene encodes a transcription factor implicated in regulating early patterning of ectoderm and mesoderm, and later in numerous cell-specific gene expression programs. Activation of the gata2 gene during embryogenesis is dependent on the bone morphogenetic protein (BMP) signaling pathway, but the mechanism for how signaling controls gene activity has not been defined. We developed an assay in Xenopus embryos to analyze regulatory sequences of the zebrafish gata2 promoter that are necessary to mediate the response to BMP signaling during embryogenesis. We show that activation is Smad dependent, since it is blocked by expression of the inhibitory Smad6. Deletion analysis identified an octamer binding site that is necessary for BMP-mediated induction, and that interacts with the POU homeodomain protein Oct-1. However, this element is not sufficient to transfer a BMP response to a heterologous promoter, requiring an additional more proximal cooperating element. Based on recent studies with other BMP-dependent promoters (Drosophila vestigial and Xenopus Xvent-2), our studies of the gata2 gene suggest that POU-domain proteins comprise a common component of the BMP signaling pathway, cooperating with Smad proteins and other transcriptional activators.
Collapse
Affiliation(s)
| | | | - Todd Evans
- To whom correspondence should be addressed at Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Chanin Building, Room 501, Bronx NY 10461, USA. Tel: +1 718 430 3506; Fax: +1 718 430 8988;
| |
Collapse
|
7
|
Abstract
GATA factors regulate critical events in hematopoietic lineages (GATA-1/2/3), the heart and gut (GATA-4/5/6) and various other tissues. Transgenic approaches have revealed that GATA genes are regulated in a modular fashion by sets of enhancers that govern distinct temporal and/or spatial facets of the overall expression patterns. Efforts are underway to resolve how these GATA gene enhancers are themselves regulated in order to elucidate the genetic and molecular hierarchies that govern GATA expression in particular developmental contexts. These enhancers also afford a raft of tools that can be used to selectively perturb and probe various developmental events in transgenic animals.
Collapse
Affiliation(s)
- John B E Burch
- Cell and Developmental Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
8
|
Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci U S A 2003; 100:8811-6. [PMID: 12857954 PMCID: PMC166395 DOI: 10.1073/pnas.1432147100] [Citation(s) in RCA: 282] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2003] [Indexed: 12/29/2022] Open
Abstract
Interplay among GATA transcription factors is an important determinant of cell fate during hematopoiesis. Although GATA-2 regulates hematopoietic stem cell function, mechanisms controlling GATA-2 expression are undefined. Of particular interest is the repression of GATA-2, because sustained GATA-2 expression in hematopoietic stem and progenitor cells alters hematopoiesis. GATA-2 transcription is derepressed in erythroid precursors lacking GATA-1, but the underlying mechanisms are unknown. Using chromatin immunoprecipitation analysis, we show that GATA-1 binds a highly restricted upstream region of the approximately 70-kb GATA-2 domain, despite >80 GATA sites throughout the domain. GATA-2 also binds this region in the absence of GATA-1. Genetic complementation studies in GATA-1-null cells showed that GATA-1 rapidly displaces GATA-2, which is coupled to transcriptional repression. GATA-1 also displaces CREB-binding protein (CBP), despite the fact that GATA-1 binds CBP in other contexts. Repression correlates with reduced histone acetylation domain-wide, but not altered methylation of histone H3 at lysine 4. The GATA factor-binding region exhibited cell-type-specific enhancer activity in transient transfection assays. We propose that GATA-1 instigates GATA-2 repression by means of disruption of positive autoregulation, followed by establishment of a domain-wide repressive chromatin structure. Such a mechanism is predicted to be critical for the control of hematopoiesis.
Collapse
Affiliation(s)
- Jeffrey A Grass
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, University of Wisconsin Medical School, 383 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
9
|
Ko JL, Chen HC, Loh HH. Differential promoter usage of mouse mu-opioid receptor gene during development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 104:184-93. [PMID: 12225873 DOI: 10.1016/s0169-328x(02)00357-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previously, we demonstrated that mouse mu-opioid receptor (MOR) gene expression is regulated by both distal and proximal promoters, with the latter playing a major role in controlling MOR transcription in the adult mouse brain. Here, we report studies of the relative usages of the mouse MOR dual promoters during murine development. We used the reverse transcription-polymerase chain reaction (RT-PCR) method, which gave results similar to those using binding assays or in situ hybridization. However, due to the greater sensitivity of RT-PCR method, we were able to detect the emergence of MOR as early as at embryonic day 8.5 (E8.5). We found that both proximal and distal promoters were active at E8.5. The proximal promoter initiated approximately two-thirds of total MOR transcripts at E8.5, with the distal promoter directing transcription of the remaining one-third. This is the greatest relative contribution of the distal promoter to MOR transcription we have observed during any time in development. Thereafter, the percentage of transcripts directed by the distal promoter gradually declined, and remained at a low but detectable level (approximately 5% of total MOR transcripts) throughout development and adulthood. Conversely, a progressive increase of the contribution of the proximal promoter to MOR transcription was observed during development, reaching its maximum in the adult. In summary, our results demonstrated the pivotal role of the proximal promoter in directing MOR transcription during murine development.
Collapse
Affiliation(s)
- Jane L Ko
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
10
|
Conceição N, Henriques NM, Ohresser MCP, Hublitz P, Schüle R, Cancela ML. Molecular cloning of the Matrix Gla Protein gene from Xenopus laevis. Functional analysis of the promoter identifies a calcium sensitive region required for basal activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1947-56. [PMID: 11952797 DOI: 10.1046/j.1432-1033.2002.02846.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To analyze the regulation of Matrix Gla Protein (MGP) gene expression in Xenopus laevis, we cloned the xMGP gene and its 5' region, determined their molecular organization, and characterized the transcriptional properties of the core promoter. The Xenopus MGP (xMGP) gene is organized into five exons, one more as its mammalian counterparts. The first two exons in the Xenopus gene encode the DNA sequence that corresponds to the first exon in mammals whereas the last three exons show homologous organization in the Xenopus MGP gene and in the mammalian orthologs. We characterized the transcriptional regulation of the xMGP gene in transient transfections using Xenopus A6 cells. In our assay system the identified promoter was shown to be transcriptionally active, resulting in a 12-fold induction of reporter gene expression. Deletional analysis of the 5' end of the xMGP promoter revealed a minimal activating element in the sequence from -70 to -36 bp. Synthetic reporter constructs containing three copies of the defined regulatory element delivered 400-fold superactivation, demonstrating its potential for the recruitment of transcriptional activators. In gel mobility shift assays we demonstrate binding of X. laevis nuclear factors to an extended regulatory element from -180 to -36, the specificity of the interaction was proven in competition experiments using different fragments of the xMGP promoter. By this approach the major site of factor binding was demonstrated to be included in the minimal activating promoter fragment from -70 to -36 bp. In addition, in transient transfection experiments we could show that this element mediates calcium dependent transcription and increasing concentrations of extracellular calcium lead to a significant dose dependent activation of reporter gene expression.
Collapse
|
11
|
Kobayashi M, Nishikawa K, Yamamoto M. Hematopoietic regulatory domain of gata1 gene is positively regulated by GATA1 protein in zebrafish embryos. Development 2001; 128:2341-50. [PMID: 11493553 DOI: 10.1242/dev.128.12.2341] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Expression of gata1 is regulated through multiple cis-acting GATA motifs. To elucidate regulatory mechanisms of the gata1 gene, we have used zebrafish. To this end, we isolated and analyzed zebrafish gata1 genomic DNA, which resulted in the discovery of a novel intron that was unknown in previous analyses. This intron corresponds to the first intron of other vertebrate Gata1 genes. GFP reporter analyses revealed that this intron and a distal double GATA motif in the regulatory region are important for the regulation of zebrafish gata1 gene expression. To examine whether GATA1 regulates its own gene expression, we microinjected into embryos a GFP reporter gene linked successively to the gata1 gene regulatory region and to GATA1 mRNA. Surprisingly, ectopic expression of the reporter gene was induced at the site of GATA1 overexpression and was dependent on the distal double GATA motif. Functional domain analyses using transgenic fish lines that harbor the gata1-GFP reporter construct revealed that both the N- and C-terminal zinc-finger domains of GATA1, hence intact GATA1 function, are required for the ectopic GFP expression. These results provide the first in vivo evidence that gata1 gene expression undergoes positive autoregulation.
Collapse
Affiliation(s)
- M Kobayashi
- Center for Tsukuba Advanced Research Alliance and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | | | | |
Collapse
|
12
|
Metzler DE, Metzler CM, Sauke DJ. Growth and Development. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Brzostowski J, Robinson C, Orford R, Elgar S, Scarlett G, Peterkin T, Malartre M, Kneale G, Wormington M, Guille M. RNA-dependent cytoplasmic anchoring of a transcription factor subunit during Xenopus development. EMBO J 2000; 19:3683-93. [PMID: 10899122 PMCID: PMC313978 DOI: 10.1093/emboj/19.14.3683] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2000] [Revised: 05/30/2000] [Accepted: 05/30/2000] [Indexed: 11/14/2022] Open
Abstract
The CCAAT box transcription factor (CBTF) is a multimeric transcription factor that activates expression of the haematopoietic regulatory factor, GATA-2. The 122 kDa subunit of this complex, CBTF(122), is cytoplasmic in fertilized Xenopus eggs and subsequently translocates to the nucleus prior to activation of zygotic GATA-2 transcription at gastrulation. Here we present data suggesting both a role for CBTF(122) prior to its nuclear translocation and the mechanism that retains it in the cytoplasm before the midblastula transition (MBT). CBTF(122) and its variant CBTF(98) are associated with translationally quiescent mRNP complexes. We show that CBTF(122) RNA binding activity is both necessary and sufficient for its cytoplasmic retention during early development. The introduction of an additional nuclear localization signal to CBTF(122) is insufficient to overcome this retention, suggesting that RNA binding acts as a cytoplasmic anchor for CBTF(122). Destruction of endogenous RNA by microinjection of RNase promotes premature nuclear translocation of CBTF(122). Thus, the nuclear translocation of CBTF(122) at the MBT is likely to be coupled to the degradation of maternal mRNA that occurs at that stage.
Collapse
Affiliation(s)
- J Brzostowski
- Department of Biology, University of Virginia, Gilmer Hall, Charlottesville, VA 22903-2477, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Brewer A, Gove C, Davies A, McNulty C, Barrow D, Koutsourakis M, Farzaneh F, Pizzey J, Bomford A, Patient R. The human and mouse GATA-6 genes utilize two promoters and two initiation codons. J Biol Chem 1999; 274:38004-16. [PMID: 10608869 DOI: 10.1074/jbc.274.53.38004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-6 has been implicated in the regulation of myocardial differentiation during cardiogenesis. To determine how its expression is controlled, we have characterized the human and mouse genes. We have mapped their transcriptional start sites and demonstrate that two alternative promoters and 5' noncoding exons are utilized. Both transcript isoforms are expressed in the same tissue-specific and developmental stage-specific pattern, and their ratio appears similar wherever examined. The more upstream noncoding exon showed a substantial degree of homology between the two mammalian species, suggesting a conserved regulatory function. Moreover, in transfection assays we show that elements within this exon act to promote its transcription. Positive regulatory elements that effect transcription from the more downstream exon were not apparent in this assay, revealing a regulatory distinction between the two promoters. We also demonstrate alternative initiator codon usage in both the human and mouse GATA-6 genes. Both isoforms of the protein are synthesized in vitro regardless of which 5' noncoding exon is present in the RNA, although the larger protein has greater transcriptional activation potential in transfection assays. Thus, GATA-6 function in the cell is controlled by a complex interplay of transcriptional and translational regulation.
Collapse
Affiliation(s)
- A Brewer
- Department of Molecular Medicine, The Rayne Institute, GKT, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|