1
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Poreba M. Protease-activated prodrugs: strategies, challenges, and future directions. FEBS J 2020; 287:1936-1969. [PMID: 31991521 DOI: 10.1111/febs.15227] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
Proteases play critical roles in virtually all biological processes, including proliferation, cell death and survival, protein turnover, and migration. However, when dysregulated, these enzymes contribute to the progression of multiple diseases, with cancer, neurodegenerative disorders, inflammation, and blood disorders being the most prominent examples. For a long time, disease-associated proteases have been used for the activation of various prodrugs due to their well-characterized catalytic activity and ability to selectively cleave only those substrates that strictly correspond with their active site architecture. To date, versatile peptide sequences that are cleaved by proteases in a site-specific manner have been utilized as bioactive linkers for the targeted delivery of multiple types of cargo, including fluorescent dyes, photosensitizers, cytotoxic drugs, antibiotics, and pro-antibodies. This platform is highly adaptive, as multiple protease-labile conjugates have already been developed, some of which are currently in clinical use for cancer treatment. In this review, recent advancements in the development of novel protease-cleavable linkers for selective drug delivery are described. Moreover, the current limitations regarding the selectivity of linkers are discussed, and the future perspectives that rely on the application of unnatural amino acids for the development of highly selective peptide linkers are also presented.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
3
|
Maluch I, Czarna J, Drag M. Applications of Unnatural Amino Acids in Protease Probes. Chem Asian J 2019; 14:4103-4113. [PMID: 31593336 DOI: 10.1002/asia.201901152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Since proteases are involved in a wide range of physiological and disease states, the development of novel tools for imaging proteolytic enzyme activity is attracting increasing interest from scientists. Peptide substrates containing proteinogenic amino acids are often the first line of defining enzyme specificity. This Minireview outlines examples of major recent advances in probing proteases using unnatural amino acid residues, which greatly expands the possibilities for designing substrate probes and inhibitory activity-based probes. This approach already yielded innovative probes that selectively target only one active protease within the group of enzymes exhibiting similar specificity both in cellular assays and in bioimaging research.
Collapse
Affiliation(s)
- Izabela Maluch
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Justyna Czarna
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
4
|
Detection of proteolytic activity by covalent tethering of fluorogenic substrates in zymogram gels. Biotechniques 2019; 64:203-210. [PMID: 29793363 DOI: 10.2144/btn-2018-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Current zymographic techniques detect only a subset of known proteases due to the limited number of native proteins that have been optimized for incorporation into polyacrylamide gels. To address this limitation, we have developed a technique to covalently incorporate fluorescently labeled, protease-sensitive peptides using an azido-PEG3-maleimide crosslinker. Peptides incorporated into gels enabled measurement of MMP-2, -9, -14, and bacterial collagenase. Sensitivity analysis demonstrated that use of peptide functionalized gels could surpass detection limits of current techniques. Finally, electrophoresis of conditioned media from cultured cells resulted in the appearance of several proteolytic bands, some of which were undetectable by gelatin zymography. Taken together, these results demonstrate that covalent incorporation of fluorescent substrates can greatly expand the library of detectable proteases using zymographic techniques.
Collapse
|
5
|
Isaacson KJ, Martin Jensen M, Subrahmanyam NB, Ghandehari H. Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. J Control Release 2017; 259:62-75. [PMID: 28153760 DOI: 10.1016/j.jconrel.2017.01.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
While commonly known for degradation of the extracellular matrix, matrix metalloproteinases (MMPs) exhibit broad potential for use in targeting of bioactive and imaging agents in cancer treatment. MMPs are upregulated at all stages of expression in cancers. A comprehensive analysis of published literature on expression of all MMP subtypes at the genetic, protein, and activity levels in normal and diseased tissues indicate targeting applicability in a variety of cancers. This expression significantly increases at advanced cancer stages, providing an improved opportunity for controlled release in higher-stage patients. Since MMPs are integral at every stage of metastasis, MMP roles in cancer are discussed with a focus on MMP distribution and mobility within cells and tumors for cancer targeting applications. Several strategies for MMP utilization in targeting - such as matrix degradation, MMP cleavage, MMP binding, and MMP-induced environmental changes - are addressed.
Collapse
Affiliation(s)
- Kyle J Isaacson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - M Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Nithya B Subrahmanyam
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Kasperkiewicz P, Poreba M, Groborz K, Drag M. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases. FEBS J 2017; 284:1518-1539. [PMID: 28052575 PMCID: PMC7164106 DOI: 10.1111/febs.14001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022]
Abstract
Proteases are enzymes that hydrolyze the peptide bond of peptide substrates and proteins. Despite significant progress in recent years, one of the greatest challenges in the design and testing of substrates, inhibitors and activity‐based probes for proteolytic enzymes is achieving specificity toward only one enzyme. This specificity is particularly important if the enzyme is present with other enzymes with a similar catalytic mechanism and substrate specificity but completely different functionality. The cross‐reactivity of substrates, inhibitors and activity‐based probes with other enzymes can significantly impair or even prevent investigations of a target protease. In this review, we describe important concepts and the latest challenges, focusing mainly on peptide‐based substrate specificity techniques used to distinguish individual enzymes within major protease families.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Katarzyna Groborz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
7
|
Stawikowski MJ, Stawikowska R, Fields GB. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates. Biochemistry 2015; 54:3110-21. [PMID: 25897652 DOI: 10.1021/acs.biochem.5b00110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.
Collapse
Affiliation(s)
- Maciej J Stawikowski
- †Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States.,‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Roma Stawikowska
- †Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States.,‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Gregg B Fields
- †Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States.,‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States.,§The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
8
|
Haage A, Nam DH, Ge X, Schneider IC. Matrix metalloproteinase-14 is a mechanically regulated activator of secreted MMPs and invasion. Biochem Biophys Res Commun 2014; 450:213-8. [PMID: 24878529 DOI: 10.1016/j.bbrc.2014.05.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are extracellular matrix (ECM) degrading enzymes and have complex and specific regulation networks. This includes activation interactions, where one MMP family member activates another. ECM degradation and MMP activation can be initiated by several different stimuli including changes in ECM mechanical properties or intracellular contractility. These mechanical stimuli are known enhancers of metastatic potential. MMP-14 facilitates local ECM degradation and is well known as a major mediator of cell migration, angiogenesis and invasion. Recently, function blocking antibodies have been developed to specifically block MMP-14, providing a useful tool for research as well as therapeutic applications. Here we utilize a selective MMP-14 function blocking antibody to delineate the role of MMP-14 as an activator of other MMPs in response to changes in cellular contractility and ECM stiffness. Inhibition using function blocking antibodies reveals that MMP-14 activates soluble MMPs like MMP-2 and -9 under various mechanical stimuli in the pancreatic cancer cell line, Panc-1. In addition, inhibition of MMP-14 abates Panc-1 cell extension into 3D gels to levels seen with non-specific pan-MMP inhibitors at higher concentrations. This strengthens the case for MMP function blocking antibodies as more potent and specific MMP inhibition therapeutics.
Collapse
Affiliation(s)
- Amanda Haage
- Department of Genetics, Development and Cell Biology, Iowa State University, 1210 Molecular Biology Building, Ames, IA 50011-3260, United States; Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, 2018 Molecular Biology Building, Ames, IA 50011-3260, United States
| | - Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92512, United States
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92512, United States
| | - Ian C Schneider
- Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230, United States; Department of Genetics, Development and Cell Biology, Iowa State University, 1210 Molecular Biology Building, Ames, IA 50011-3260, United States.
| |
Collapse
|
9
|
Haage A, Schneider IC. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells. FASEB J 2014; 28:3589-99. [PMID: 24784579 DOI: 10.1096/fj.13-245613] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. Cells of a pancreatic cancer cell line, Panc-1, up-regulate MMP activities between 3- and 10-fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with pan-MMP activity inhibitors. Similar, albeit attenuated, responses are seen in other pancreatic cancer cell lines, BxPC-3 and AsPC-1. In addition, MMP activity was modulated by substrate stiffness, collagen gel concentration, and the degree of collagen cross-linking, when cells were plated on collagen gels ranging from 0.5 to 5 mg/ml that span the physiological range of substrate stiffness (50-2000 Pa). Panc-1 cells showed enhanced MMP activity on stiffer substrates, whereas BxPC-3 and AsPC-1 cells showed diminished MMP activity. In addition, eliminating heparan sulfate proteoglycans using heparinase completely abrogated the mechanical induction of MMP activity. These results demonstrate the first functional link between MMP activity, contractility, and ECM stiffness and provide an explanation as to why stiffer environments result in enhanced cell migration and invasion.
Collapse
Affiliation(s)
- Amanda Haage
- Department of Genetics, Development, and Cell Biology, Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, and
| | - Ian C Schneider
- Department of Genetics, Development, and Cell Biology, Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
10
|
Knapinska A, Fields GB. Chemical biology for understanding matrix metalloproteinase function. Chembiochem 2012; 13:2002-20. [PMID: 22933318 PMCID: PMC3951272 DOI: 10.1002/cbic.201200298] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Indexed: 12/20/2022]
Abstract
The matrix metalloproteinase (MMP) family has long been associated with normal physiological processes such as embryonic implantation, tissue remodeling, organ development, and wound healing, as well as multiple aspects of cancer initiation and progression, osteoarthritis, inflammatory and vascular diseases, and neurodegenerative diseases. The development of chemically designed MMP probes has advanced our understanding of the roles of MMPs in disease in addition to shedding considerable light on the mechanisms of MMP action. The first generation of protease-activated agents has demonstrated proof of principle as well as providing impetus for in vivo applications. One common problem has been a lack of agent stability at nontargeted tissues and organs due to activation by multiple proteases. The present review considers how chemical biology has impacted the progress made in understanding the roles of MMPs in disease and the basic mechanisms of MMP action.
Collapse
Affiliation(s)
| | - Gregg B. Fields
- Departments of Chemistry and Biology Torrey Pines Institute for Molecular Studies 11350 SW Village Parkway, Port St. Lucie, FL 34987 (USA)
| |
Collapse
|
11
|
Meyer BS, Rademann J. Extra- and intracellular imaging of human matrix metalloprotease 11 (hMMP-11) with a cell-penetrating FRET substrate. J Biol Chem 2012; 287:37857-67. [PMID: 22927434 DOI: 10.1074/jbc.m112.371500] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Matrix metalloprotease 11 (MMP-11), a protease associated with invasion and aggressiveness of cancerous tissue, was postulated as a prognostic marker for pancreatic, breast, and colon cancer patients. Expression analysis, however, did not reveal localization and regulation of this protease. Thus, cellular tools for the visualization of MMP-11 are highly desirable to monitor presence and activity and to elucidate the functional role of MMP-11. Therefore, fluorescein-Dabcyl-labeled Foerster resonance energy transfer (FRET) substrates were developed. The design focused on enhanced peptide binding to human MMP-11, employing an unusual amino acid for the specificity pocket P1'. The addition of several arginines resulted in a cell-permeable FRET substrate SM-P124 (Ac-GRRRK(Dabcyl)-GGAANC(MeOBn)RMGG-fluorescein). In vitro evaluation of SM-P124 with human MMP-11 showed a 25-fold increase of affinity (k(cat)/K(m) = 9.16 × 10(3) m(-1) s(-1), K(m) = 8 μm) compared with previously published substrates. Incubation of pancreatic adenocarcinoma cell line MIA PaCa-2 and mamma adenocarcinoma cell line MCF-7 with the substrate SM-P124 (5 μm) indicated intra- and extracellular MMP-11 activity. A negative control cell line (Jurkat) showed no fluorescent signal either intra- or extracellularly. Negative control FRET substrate SM-P123 produced only insignificant extracellular fluorescence without any intracellular fluorescence. SM-P124 therefore enabled intra- and extracellular tracking of MMP-11-overexpressing cancers such as pancreatic and breast adenocarcinoma and might contribute to the understanding of the activation pathways leading to MMP-11-mediated invasive processes.
Collapse
Affiliation(s)
- B Sina Meyer
- Department of Organic Chemistry, Freie Universität Berlin, Berlin 14195, Germany
| | | |
Collapse
|
12
|
Aimetti AA, Tibbitt MW, Anseth KS. Human neutrophil elastase responsive delivery from poly(ethylene glycol) hydrogels. Biomacromolecules 2009; 10:1484-9. [PMID: 19408953 PMCID: PMC2699883 DOI: 10.1021/bm9000926] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/16/2009] [Indexed: 11/29/2022]
Abstract
A novel enzyme-responsive hydrogel drug delivery system was developed with the potential to treat inflammation locally. Human neutrophil elastase (HNE) is a serine protease secreted by neutrophils which are the first cells recruited to inflammatory sites. We exploited this cell-secreted enzyme as a biological cue for controlled release. HNE sensitive peptide linkers were immobilized within poly(ethylene glycol) hydrogels using photopolymerization techniques. The kinetics of the enzyme reaction within the gel was tailored by varying the amino acid residues present in the P1 and P1' substrate positions (immediately adjacent to cleavage location). A novel FRET-based hydrogel platform was designed to characterize the accessibility of the substrate within the cross-linked, macroscopic hydrogel. Lastly, a diffusion-reaction mathematical model with Michaelis-Menten kinetics was developed to predict the overall release profile and captured the initial 80% of the experimentally observed release. The hydrogel platform presented shows highly controlled release kinetics with potential applications in cellular responsive drug delivery.
Collapse
|
13
|
Fiorentino M, Fu L, Shi YB. Mutational analysis of the cleavage of the cancer-associated laminin receptor by stromelysin-3 reveals the contribution of flanking sequences to site recognition and cleavage efficiency. Int J Mol Med 2009; 23:389-97. [PMID: 19212658 DOI: 10.3892/ijmm_00000143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The matrix metalloproteinase stromelysin-3 (ST3) has long been implicated to play an important role in cell fate determination during normal and pathological processes. Using the thyroid hormone-dependent Xenopus laevis metamorphosis as a model, we have previously shown that ST3 is required for apoptosis during intestinal remodeling and that laminin receptor (LR) is an in vivo substrate of ST3 during this process. ST3 cleaves LR at two distinct sites that are conserved in mammalian LR. Human ST3 and LR are both associated with tumor development and cancer progression and human LR can also be cleaved by ST3, implicating a role of LR cleavage by ST3 in human cancers. Here, we carried out a series of mutational analyses on the two cleavage sites in LR. Our findings revealed that in addition to primary sequence at the cleavage site (positions P3-P3', with the cleavage occurring between P1-P1'), flanking sequences/conformation also influenced the cleavage of LR by ST3. Furthermore, alanine substitution studies led to a surprising finding that surrounding sequence and/or conformation dictated the site of cleavage in LR by ST3. These results thus have important implications in our understanding of substrate recognition and cleavage by ST3 and argue for the importance of studying ST3 cleavage in the context of full-length substrates. Furthermore, the LR cleavage mutants generated here will also be valuable tools for future studies on the role of LR cleavage by ST3 in vertebrate development and cancer progression.
Collapse
Affiliation(s)
- Maria Fiorentino
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, PCRM, NICHD, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
14
|
Zhong J, Chau Y. Antitumor activity of a membrane lytic peptide cyclized with a linker sensitive to membrane type 1-matrix metalloproteinase. Mol Cancer Ther 2008; 7:2933-40. [DOI: 10.1158/1535-7163.mct-08-0528] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Application of topologically constrained mini-proteins as ligands, substrates, and inhibitors. Methods Mol Biol 2008; 386:125-66. [PMID: 18604945 DOI: 10.1007/978-1-59745-430-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Protein-protein interactions are governed by a variety of structural features. The sequence specificities of such interactions are usually easier to establish than the "topological specificities," whereby interactions may be classified based on recognition of distinct three-dimensional structural motifs. Approaches to explore topological specificities have been based primarily on assembly of mini-proteins with well defined secondary, tertiary, and/or quarternary structures. The present chapter focuses on three approaches for constructing topologically well defined mini-proteins: template-assembled synthetic proteins (TASPs), disulfide-stabilized structures, and peptide-amphiphiles (PAs). Specific examples are given for applying each approach to explore topologically-dependent protein-protein interactions. TASPs are utilized to identify a metastatic melanoma receptor that binds to the alpha1(IV)1263-1277 region of basement membrane (type IV) collagen. A disulfide-stabilized structure incorporating a sarafotoxin (SRT) 6b model was examined as a matrix metalloproteinase (MMP)-3 inhibitor. PAs were developed as (a) fluorogenic triple-helical or polyPro II substrates for MMPs and aggrecanase members of the a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family and (b) glycosylated and nonglycosylated ligands for metastatic melanoma cells. Topologically constrained mini-proteins have proved to be quite versatile, helping to define critical primary, secondary, and tertiary structural elements that modulate enzyme and receptor functions.
Collapse
|
16
|
Troeberg L, Nagase H. Monitoring metalloproteinase activity using synthetic fluorogenic substrates. ACTA ACUST UNITED AC 2008; Chapter 21:21.16.1-21.16.9. [PMID: 18429258 DOI: 10.1002/0471140864.ps2116s33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluorogenic synthetic substrates are commonly used to monitor the activity of peptidases in vitro. This unit presents a representative protocol that employs (7-methoxycoumarin-4-yl)acetyl-Pro-Leu-Gly-Leu-(3-[2,4-dinitrophenyl]-L-2,3-diaminopropionyl)-Ala-Arg-NH2 (Mca-Pro-Leu-Gly~Leu-Dpa-Ala-Arg-NH2) as a substrate to assay matrix metallopeptidases (MMPs). This substrate was first described for the assay of MMP-1, -2 and -3 and it is now widely used as a general MMP substrate. Protocols are given for both stopped-time assays (suitable for assaying MMP activity in a large number of samples) and continuous assays (commonly used when establishing an assay protocol or investigating kinetic aspects of enzyme behavior). Other fluorogenic peptides and protein substrates, together with non-fluorogenic alternatives, are also discussed.
Collapse
|
17
|
Matziari M, Dive V, Yiotakis A. Matrix metalloproteinase 11 (MMP-11; stromelysin-3) and synthetic inhibitors. Med Res Rev 2007; 27:528-52. [PMID: 16710861 DOI: 10.1002/med.20066] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Matrix metalloproteinase (MMP)-11, or Stromelysin 3, is a particular member of MMP family, a group of zinc-dependent endopeptidases involved in matrix degradation and tissue remodeling. Despite intense efforts since its first characterization 15 years ago, its role and target substrates in different diseases remain largely unknown. While mice with MMP-11 deficiency display no particular phenotype, analysis of different tumorigenesis models with these mice lead to the conclusion that MMP-11 promotes tumor development. In contrast with other MMPs, MMP-11 is unable to degrade any major extracellular matrix component and unlike most of other MMPs that are secreted as inactive proenzymes and activated extracellularly, MMP-11 is secreted under active form. MMP-11 may thus play a unique role in tissue remodeling processes, including those associated with tumor progression. Although MMP-11 and other MMPs have been considered as promising targets to combat cancer, a first series of clinical trials using broad-spectrum MMP inhibitors have not led to significant therapeutic benefits. These disappointing results highlight the need for better understanding of the exact role played by each MMP during the different stages of tumor progression. Among the different strategies to fill this gap, highly specific MMP inhibitors would be of great value. This review provides an update on the selectivity profile of phosphinic MMP-11 synthetic inhibitors developed and discusses the opportunities and limitations to identify inhibitors able to fully discriminate MMP-11 from the other MMPs.
Collapse
Affiliation(s)
- Magdalini Matziari
- Department of Chemistry, Laboratory of Organic Chemistry, University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| | | | | |
Collapse
|
18
|
Minond D, Lauer-Fields JL, Cudic M, Overall CM, Pei D, Brew K, Moss ML, Fields GB. Differentiation of secreted and membrane-type matrix metalloproteinase activities based on substitutions and interruptions of triple-helical sequences. Biochemistry 2007; 46:3724-33. [PMID: 17338550 PMCID: PMC2569894 DOI: 10.1021/bi062199j] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The turnover of the collagen triple-helical structure (collagenolysis) is a tightly regulated process in normal physiology and has been ascribed to a small number of proteases. Several members of the matrix metalloproteinase (MMPs) family possess collagenolytic activity, and the mechanisms by which these enzymes process triple helices are beginning to be unraveled. The present study has utilized two triple-helical sequences to compare the cleavage-site specificities of 10 MMPs. One substrate featured a continuous Gly-Xxx-Yyy sequence (Pro-Leu-Gly approximately Met-Arg-Gly), while the other incorporated an interruption in the Gly-Xxx-Yyy repeat (Pro-Val-Asn approximately Phe-Arg-Gly). Both sequences were selectively cleaved by MMP-13 while in linear form, but neither proved to be selective within a triple helix. This suggests that the conformational presentation of substrate sequences to a MMP active site is critical for enzyme specificity, in that activities differ when sequences are presented from an unwound triple helix versus an independent single strand. Differences in specificity between secreted and membrane-type (MT) MMPs were also observed for both sequences, where MMP-2 and MT-MMPs showed an ability to hydrolyze a triple helix at an additional site (Gly-Gln bond). Interruption of the triple helix had different effects on secreted MMPs and MT-MMPs, because MT-MMPs could not hydrolyze the Asn-Phe bond but instead cleaved the triple helix closer to the C terminus at a Gly-Gln bond. It is possible that MT-MMPs have a requirement for Gly in the P1 subsite to be able to efficiently process a triple-helical molecule. Analysis of individual kinetic parameters and activation energies indicated different substrate preferences within secreted MMPs, because MMP-13 preferred the interrupted sequence, while MMP-8 showed little discrimination between non-interrupted and interrupted triple helices. On the basis of the present and prior studies, we can assign unique triple-helical peptidase behaviors to the collagenolytic MMPs. Such differences may be significant for understanding MMP mechanisms of action and aid in the development of selective MMP inhibitors.
Collapse
Affiliation(s)
- Dmitriy Minond
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Janelle L. Lauer-Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Mare Cudic
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Christopher M. Overall
- University of British Columbia Centre for Blood Research and the Canadian Institutes for Health Research Group in Matrix Dynamics and the Departments of Biochemistry and Molecular Biology, Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Duanqing Pei
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Keith Brew
- College of Biomedical Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Marcia L. Moss
- BioZyme, Inc., 1513 Old White Oak Church Road, Apex, NC 27523-9299
| | - Gregg B. Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
- Correspondence should be addressed to this author at the Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431-0991. Tel: 561-297-2093; Fax: 561-297-2759; E-mail:
| |
Collapse
|
19
|
Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem 2007; 15:2223-68. [PMID: 17275314 DOI: 10.1016/j.bmc.2007.01.011] [Citation(s) in RCA: 526] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/09/2007] [Accepted: 01/11/2007] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are a large family of calcium-dependent zinc-containing endopeptidases, which are responsible for the tissue remodeling and degradation of the extracellular matrix (ECM), including collagens, elastins, gelatin, matrix glycoproteins, and proteoglycan. They are regulated by hormones, growth factors, and cytokines, and are involved in ovarian functions. MMPs are excreted by a variety of connective tissue and pro-inflammatory cells including fibroblasts, osteoblasts, endothelial cells, macrophages, neutrophils, and lymphocytes. These enzymes are expressed as zymogens, which are subsequently processed by other proteolytic enzymes (such as serine proteases, furin, plasmin, and others) to generate the active forms. Matrix metalloproteinases are considered as promising targets for the treatment of cancer due to their strong involvement in malignant pathologies. Clinical/preclinical studies on MMP inhibition in tumor models brought positive results raising the idea that the development of strategies to inhibit MMPs may be proved to be a powerful tool to fight against cancer. However, the presence of an inherent flexibility in the MMP active-site limits dramatically the accurate modeling of MMP-inhibitor complexes. The interest in the application of quantitative structure-activity relationships (QSARs) has steadily increased in recent decades and we hope it may be useful in elucidating the mechanisms of chemical-biological interactions for this enzyme. In the present review, an attempt has been made to explore the in-depth knowledge from the classification of this enzyme to the clinical trials of their inhibitors. A total number of 92 QSAR models (44 published and 48 new formulated QSAR models) have also been presented to understand the chemical-biological interactions. QSAR results on the inhibition of various compound series against MMP-1, -2, -3, -7, -8, -9, -12, -13, and -14 reveal a number of interesting points. The most important of these are hydrophobicity and molar refractivity, which are the most important determinants of the activity.
Collapse
Affiliation(s)
- Rajeshwar P Verma
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, CA 91711, USA.
| | | |
Collapse
|
20
|
Baronas-Lowell D, Lauer-Fields JL, Al-Ghoul M, Fields GB. Proteolytic profiling of the extracellular matrix degradome. Methods Mol Biol 2007; 386:167-202. [PMID: 18604946 DOI: 10.1007/978-1-59745-430-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The profiling of protein function is one of the most challenging scientific tasks in the postgenomic age. Traditional protein expression methodologies have focused only on the quantification of proteins under varying conditions or pathologies. Determining the functional differences between protein populations allows for a more accurate view of the outcomes in normal vs diseased proteomes. Because the presence or absence of a protein's function can affect its complex surroundings (consisting of multiple other proteins and substrates), the study of proteome functionality yields information on protein-protein interactions, amplification cascades, signaling pathways, and posttranslational modifications. Of significant interest are proteinases, as proteolysis is responsible for tight regulation of various cellular and tissue processes. Proteinase activities, or lack there of, alter the proteome makeup by regulating other proteins or by generating cleavage products. This chapter describes current proteolytic profiling technologies using activity or target-based formats. In particular, the analysis of collagenolytic matrix metalloproteinase activity using fluorogenic triple-helical substrates is discussed.
Collapse
Affiliation(s)
- Diane Baronas-Lowell
- Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, USA
| | | | | | | |
Collapse
|
21
|
Minond D, Lauer-Fields JL, Cudic M, Overall CM, Pei D, Brew K, Visse R, Nagase H, Fields GB. The Roles of Substrate Thermal Stability and P2 and P1′ Subsite Identity on Matrix Metalloproteinase Triple-helical Peptidase Activity and Collagen Specificity. J Biol Chem 2006; 281:38302-13. [PMID: 17065155 DOI: 10.1074/jbc.m606004200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrolysis of collagen (collagenolysis) is one of the committed steps in extracellular matrix turnover. Within the matrix metalloproteinase (MMP) family distinct preferences for collagen types are seen. The substrate determinants that may guide these specificities are unknown. In this study, we have utilized 12 triple-helical substrates in combination with 10 MMPs to better define the contributions of substrate sequence and thermal stability toward triple helicase activity and collagen specificity. In general, MMP-13 was found to be distinct from MMP-8 and MT1-MMP(Delta279-523), in that enhanced substrate thermal stability has only a modest effect on activity, regardless of sequence. This result correlates to the unique collagen specificity of MMP-13 compared with MMP-8 and MT1-MMP, in that MMP-13 hydrolyzes type II collagen efficiently, whereas MMP-8 and MT1-MMP are similar in their preference for type I collagen. In turn, MMP-1 was the least efficient of the collagenolytic MMPs at processing increasingly thermal stable triple helices and thus favors type III collagen, which has a relatively flexible cleavage site. Gelatinases (MMP-2 and MMP-9(Delta444-707)) appear incapable of processing more stable helices and are thus mechanistically distinct from collagenolytic MMPs. The collagen specificity of MMPs appears to be based on a combination of substrate sequence and thermal stability. Analysis of the hydrolysis of triple-helical peptides by an MMP mutant indicated that Tyr(210) functions in triple helix binding and hydrolysis, but not in processing triple helices of increasing thermal stabilities. Further exploration of MMP active sites and exosites, in combination with substrate conformation, may prove valuable for additional dissection of collagenolysis and yield information useful in the design of more selective MMP inhibitors.
Collapse
Affiliation(s)
- Dmitriy Minond
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Devel L, Rogakos V, David A, Makaritis A, Beau F, Cuniasse P, Yiotakis A, Dive V. Development of Selective Inhibitors and Substrate of Matrix Metalloproteinase-12. J Biol Chem 2006; 281:11152-60. [PMID: 16481329 DOI: 10.1074/jbc.m600222200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four phosphinic peptide libraries with compounds having the general formula p-Br-Ph-(PO2-CH2)-Xaa'-Yaa'-Zaa'-NH2 have been prepared and screened against 10 matrix metalloproteinases (MMPs). We identified two phosphinic peptides with Ki values of 0.19 and 4.4 nM toward MMP-12 (macrophage elastase) that are more than 2-3 orders of magnitude less potent toward the other MMPs tested. These highly selective MMP-12 inhibitors contain a Glu-Glu motif in their Yaa'-Zaa' positions. Incorporation of this Glu-Glu motif into the sequence of a nonspecific fluorogenic peptide cleaved by MMPs provides a highly selective substrate for MMP-12. A model of one of these inhibitors interacting with MMP-12 suggests that the selectivity observed might be due, in part, to the presence of two unique polar residues in MMP-12, Thr239 and Lys177. These MMP-12-selective inhibitors may have important therapeutic applications to diseases in which MMP-12 has been suggested to play a key role, such as in emphysema, atherosclerosis, and aortic abdominal aneurysm.
Collapse
Affiliation(s)
- Laurent Devel
- Commissariat à l'Energie Atomique, Département d'Ingénierie et d'Etudes des Protéines Bat 152, CE-Saclay, 91191 Gif/Yvette, Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hurst D, Schwartz M, Jin Y, Ghaffari M, Kozarekar P, Cao J, Sang QX. Inhibition of enzyme activity of and cell-mediated substrate cleavage by membrane type 1 matrix metalloproteinase by newly developed mercaptosulphide inhibitors. Biochem J 2006; 392:527-36. [PMID: 16026329 PMCID: PMC1316292 DOI: 10.1042/bj20050545] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MT1-MMP (membrane type 1 matrix metalloproteinase, or MMP-14) is a key enzyme in molecular carcinogenesis, tumour-cell growth, invasion and angiogenesis. Novel and potent MMP inhibitors with a mercaptosulphide zinc-binding functionality have been designed and synthesized, and tested against human MT1-MMP and other MMPs. Binding to the MT1-MMP active site was verified by the competitive-inhibition mechanism and stereochemical requirements. MT1-MMP preferred deep P1' substituents, such as homophenylalanine instead of phenylalanine. Novel inhibitors with a non-prime phthalimido substituent had K(i) values in the low-nanomolar range; the most potent of these inhibitors was tested and found to be stable against air-oxidation in calf serum for at least 2 days. To illustrate the molecular interactions of the inhibitor-enzyme complex, theoretical docking of the inhibitors into the active site of MT1-MMP and molecular minimization of the complex were performed. In addition to maintaining the substrate-specificity pocket (S1' site) van der Waals interactions, the P1' position side chain may be critical for the peptide-backbone hydrogen-bonding network. To test the inhibition of cell-mediated substrate cleavage, two human cancer-cell culture models were used. Two of the most potent inhibitors tested reached the target enzyme and effectively inhibited activation of proMMP-2 by endogenous MT1-MMP produced by HT1080 human fibrosarcoma cells, and blocked fibronectin degradation by prostate cancer LNCaP cells stably transfected with MT1-MMP. These results provide a model for mercaptosulphide inhibitor binding to MT1-MMP that may aid in the design of more potent and selective inhibitors for MT1-MMP.
Collapse
Affiliation(s)
- Douglas R. Hurst
- *Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Martin A. Schwartz
- *Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Yonghao Jin
- *Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Mohammad A. Ghaffari
- *Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Pallavi Kozarekar
- †Department of Medicine, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A
| | - Jian Cao
- †Department of Medicine, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A
| | - Qing-Xiang Amy Sang
- *Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
24
|
Pirard B, Matter H. Matrix Metalloproteinase Target Family Landscape: A Chemometrical Approach to Ligand Selectivity Based on Protein Binding Site Analysis. J Med Chem 2005; 49:51-69. [PMID: 16392792 DOI: 10.1021/jm050363f] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To gain insight into the structural determinants for the matrix metalloproteinase (MMP) family, we characterized the binding sites of 56 MMP structures and one TACE (tumor necrosis factor alpha converting enzyme) structure using molecular interaction fields (MIFs). These MIFs were produced by two approaches: the GRID force field and the knowledge-based potential DrugScore. The subsequent statistical analysis using consensus principal component analysis (CPCA) for the entire binding site and each subpockets revealed both approaches to encode similar information about discriminating regions. However, the relative importance of the probes varied between both approaches. The CPCA models provided the following ranking of the six subpockets based on the opportunity for selective interactions with different MMPs: S1' > S2, S3, S3' > S1, S2'. The interpretation of these models agreed with experimental binding modes inferred from crystal structures or docking.
Collapse
Affiliation(s)
- Bernard Pirard
- Science and Medical Affairs, Chemical Sciences, Drug Design, Aventis Pharma Deutschland GmbH, a Company of the Sanofi-Aventis Group, D-65926 Frankfurt am Main, Germany.
| | | |
Collapse
|
25
|
Albright CF, Graciani N, Han W, Yue E, Stein R, Lai Z, Diamond M, Dowling R, Grimminger L, Zhang SY, Behrens D, Musselman A, Bruckner R, Zhang M, Jiang X, Hu D, Higley A, Dimeo S, Rafalski M, Mandlekar S, Car B, Yeleswaram S, Stern A, Copeland RA, Combs A, Seitz SP, Trainor GL, Taub R, Huang P, Oliff A. Matrix metalloproteinase-activated doxorubicin prodrugs inhibit HT1080 xenograft growth better than doxorubicin with less toxicity. Mol Cancer Ther 2005; 4:751-60. [PMID: 15897239 DOI: 10.1158/1535-7163.mct-05-0006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matrix metalloproteinase (MMP)-activated prodrugs were formed by coupling MMP-cleavable peptides to doxorubicin. The resulting conjugates were excellent in vitro substrates for MMP-2, -9, and -14. HT1080, a fibrosarcoma cell line, was used as a model system to test these prodrugs because these cells, like tumor stromal fibroblasts, expressed several MMPs. In cultured HT1080 cells, simple MMP-cleavable peptides were primarily metabolized by neprilysin, a membrane-bound metalloproteinase. MMP-selective metabolism in cultured HT1080 cells was obtained by designing conjugates that were good MMP substrates but poor neprilysin substrates. To determine how conjugates were metabolized in animals, MMP-selective conjugates were given to mice with HT1080 xenografts and the distribution of doxorubicin was determined. These studies showed that MMP-selective conjugates were preferentially metabolized in HT1080 xenografts, relative to heart and plasma, leading to 10-fold increases in the tumor/heart ratio of doxorubicin. The doxorubicin deposited by a MMP-selective prodrug, compound 6, was more effective than doxorubicin at reducing HT1080 xenograft growth. In particular, compound 6 cured 8 of 10 mice with HT1080 xenografts at doses below the maximum tolerated dose, whereas doxorubicin cured 2 of 20 mice at its maximum tolerated dose. Compound 6 was less toxic than doxorubicin at this efficacious dose because mice treated with compound 6 had no detectable changes in body weight or reticulocytes, a marker for marrow toxicity. Hence, MMP-activated doxorubicin prodrugs have a much higher therapeutic index than doxorubicin using HT1080 xenografts as a preclinical model.
Collapse
Affiliation(s)
- Charles F Albright
- Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chang JH, Javier JAD, Chang GY, Oliveira HB, Azar DT. Functional characterization of neostatins, the MMP-derived, enzymatic cleavage products of type XVIII collagen. FEBS Lett 2005; 579:3601-6. [PMID: 15978592 DOI: 10.1016/j.febslet.2005.05.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/10/2005] [Accepted: 05/17/2005] [Indexed: 11/18/2022]
Abstract
Several anti-angiogenic factors are derived from proteolytic processing of large molecules including endostatin from type XVIII collagen and angiostatin from plasminogen. In previous studies we showed that neostatin-7, the C-terminal 28kDa endostatin-spanning proteolytic fragment, is generated from the proteolytic action of matrix metalloproteinase matrilysin (MMP)-7 on type XVIII collagen. Now, we report a second member of the neostatin family of proteins, neostatin-14. Given the small quantities of neostatin-7 and -14 generated by the breakdown of naturally occurring collagen XVIII (using MMP-7 and -14, respectively), we used two other approaches to characterize the anti-angiogenic properties of these molecules: murine recombinant neostatin in vitro, and gene therapy. We demonstrate that murine recombinant neostatin-7 inhibits calf pulmonary artery endothelial cell proliferation and that microinjection of neostatin-7 and neostatin-14 naked DNA into the corneal stroma of mice results in significant reduction of basic fibroblast growth factor-induced corneal neovascularization. These results provide supportive evidence of the possible anti-angiogenic effect of neostatins.
Collapse
Affiliation(s)
- Jin-Hong Chang
- Corneal, External Disease and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary and the Schepens Eye Research Institute, Harvard Medical School, 243 Charles Street, Boston, MA 02114, United States
| | | | | | | | | |
Collapse
|
27
|
Cuniasse P, Devel L, Makaritis A, Beau F, Georgiadis D, Matziari M, Yiotakis A, Dive V. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Biochimie 2005; 87:393-402. [PMID: 15781327 DOI: 10.1016/j.biochi.2004.09.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 09/23/2004] [Indexed: 11/24/2022]
Abstract
Despite a deep knowledge on the 3D-structure of several catalytic domains of MMPs, the development of highly specific synthetic active-site-directed inhibitors of MMPs, able to differentiate the different members of this protease family, remains a strong challenge. Due to the flexible nature of MMP active-site, the development of specific MMP inhibitors will need to combine sophisticated theoretical and experimental approaches to decipher in each MMP the specific structural and dynamic features that can be exploited to obtain the desired selectivity.
Collapse
Affiliation(s)
- P Cuniasse
- CEA, Département d'Ingénierie et d'Etudes des Protéines (DIEP), CE-Saclay, 91191 Gif/Yvette cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Minond D, Lauer-Fields JL, Nagase H, Fields GB. Matrix Metalloproteinase Triple-Helical Peptidase Activities Are Differentially Regulated by Substrate Stability†. Biochemistry 2004; 43:11474-81. [PMID: 15350133 DOI: 10.1021/bi048938i] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Matrix metalloproteinases (MMPs) are involved in physiological remodeling as well as pathological destruction of tissues. The turnover of the collagen triple-helical structure has been ascribed to several members of the MMP family, but the determinants for collagenolytic specificity have not been identified. The present study has compared the triple-helical peptidase activities of MMP-1 and MMP-14 (membrane-type 1 MMP; MT1-MMP). The ability of each enzyme to efficiently hydrolyze the triple helix was quantified using chemically synthesized fluorogenic triple-helical substrates that, via addition of N-terminal alkyl chains, differ in their thermal stabilities. One series of substrates was modeled after a collagenolytic MMP consensus cleavage site from types I-III collagen, while the other series had a single substitution in the P(1)' subsite of the consensus sequence. The substitution of Cys(4-methoxybenzyl) for Leu in the P(1)' subsite was greatly favored by MMP-14 but disfavored by MMP-1. An increase in substrate triple-helical thermal stability led to the decreased ability of the enzyme to cleave such substrates, but with a much more pronounced effect for MMP-1. Increased thermal stability was detrimental to enzyme turnover of substrate (k(cat)), but not binding (K(M)). Activation energies were considerably lower for MMP-14 hydrolysis of triple-helical substrates compared with MMP-1. Overall, MMP-1 was found to be less efficient at processing triple-helical structures than MMP-14. These results demonstrate that collagenolytic MMPs have subtle differences in their abilities to hydrolyze triple helices and may explain the relative collagen specificity of MMP-1.
Collapse
Affiliation(s)
- Dmitriy Minond
- Department of Chemistry and Biochemistry, Florida Atlantic University,777 Glades Road, Boca Raton, Florida 33431-0991, USA
| | | | | | | |
Collapse
|
29
|
Matziari M, Beau F, Cuniasse P, Dive V, Yiotakis A. Evaluation of P1'-diversified phosphinic peptides leads to the development of highly selective inhibitors of MMP-11. J Med Chem 2004; 47:325-36. [PMID: 14711305 DOI: 10.1021/jm0308491] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphinic peptides were previously reported to be potent inhibitors of several matrixins (MMPs). To identify more selective inhibitors of MMP-11, a matrixin overexpressed in breast cancer, a series of phosphinic pseudopeptides bearing a variety of P(1)'-side chains has been synthesized, by parallel diversification of a phosphinic template. The potencies of these compounds were evaluated against a set of seven MMPs (MMP-2, MMP-7, MMP-8, MMP-9, MMP-11, MMP-13, and MMP-14). The chemical strategy applied led to the identification of several phosphinic inhibitors displaying high selectivity toward MMP-11. One of the most selective inhibitors of MMP-11 in this series, compound 22, exhibits a K(i) value of 0.23 microM toward MMP-11, while its potency toward the other MMPs tested is 2 orders of magnitude lower. This remarkable selectivity may rely on interactions of the P(1)'-side chain atoms of these inhibitors with residues located at the entrance of the S(1)'-cavity of MMP-11. The design of inhibitors able to interact with residues located at the entrance of MMPs' S(1)'-cavity might represent an alternative strategy to identify selective inhibitors that will fully differentiate one MMP among the others.
Collapse
Affiliation(s)
- Magdalini Matziari
- Department of Chemistry, Laboratory of Organic Chemistry, University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Park HI, Jin Y, Hurst DR, Monroe CA, Lee S, Schwartz MA, Sang QXA. The Intermediate S1′ Pocket of the Endometase/Matrilysin-2 Active Site Revealed by Enzyme Inhibition Kinetic Studies, Protein Sequence Analyses, and Homology Modeling. J Biol Chem 2003; 278:51646-53. [PMID: 14532275 DOI: 10.1074/jbc.m310109200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human matrix metalloproteinase-26 (MMP-26/endometase/matrilysin-2) is a newly identified MMP and its structure has not been reported. The enzyme active site S1' pocket in MMPs is a well defined substrate P1' amino acid residue-binding site with variable depth. To explore MMP-26 active site structure-activity, a series of new potent mercaptosulfide MMP inhibitors (MMPIs) with Leu or homophenylalanine (Homophe) side chains at the P1' site were selected. The Homephe side chain is designed to probe deep S1' pocket MMPs. These inhibitors were tested against MMP-26 and several MMPs with known x-ray crystal structures to distinguish shallow, intermediate, and deep S1' pocket characteristics. MMP-26 has an inhibition profile most similar to those of MMPs with intermediate S1' pockets. Investigations with hydroxamate MMPIs, including those designed for deep pocket MMPs, also indicated the presence of an intermediate pocket. Protein sequence analysis and homology modeling further verified that MMP-26 has an intermediate S1' pocket formed by Leu-204, His-208, and Tyr-230. Moreover, residue 233 may influence the depth of an MMP S1' pocket. The residue at the equivalent position of MMP-26 residue 233 is hydrophilic in intermediate-pocket MMPs (e.g. MMP-2, -8, and -9) and hydrophobic in deep-pocket MMPs (e.g. MMP-3, -12, and -14). MMP-26 contains a His-233 that renders the S1' pocket to an intermediate size. This study suggests that MMPIs, protein sequence analyses, and molecular modeling are useful tools to understand structure-activity relationships and provides new insight for rational inhibitor design that may distinguish MMPs with deep versus intermediate S1' pockets.
Collapse
Affiliation(s)
- Hyun I Park
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4390, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Pan W, Arnone M, Kendall M, Grafstrom RH, Seitz SP, Wasserman ZR, Albright CF. Identification of peptide substrates for human MMP-11 (stromelysin-3) using phage display. J Biol Chem 2003; 278:27820-7. [PMID: 12738779 DOI: 10.1074/jbc.m304436200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MMP-11 proteinase, also known as stromelysin-3, probably plays an important role in human cancer because MMP-11 is frequently overexpressed in human tumors and MMP-11 levels affect tumorogenesis in mice. Unlike other MMPs, however, human MMP-11 does not cleave extracellular matrix proteins, such as collagen, laminin, fibronectin, and elastin. To help identify physiologic MMP-11 substrates, a phage display library was used to find peptide substrates for MMP-11. One class of peptides containing 26 members had the consensus sequence A(A/Q)(N/A) downward arrow (L/Y)(T/V/M/R)(R/K), where downward arrow denotes the cleavage site. This consensus sequence was similar to that for other MMPs, which also cleave peptides containing Ala in position 3, Ala in position 1, and Leu/Tyr in position 1', but differed from most other MMP substrates in that proline was rarely found in position 3 and Asn was frequently found in position 1. A second class of peptides containing four members had the consensus sequence G(G/A)E downward arrow LR. Although other MMPs also cleave peptides with these residues, other MMPs prefer proline at position 3 in this sequence. In vitro assays with MMP-11 and representative peptides from both classes yielded modest kcat/Km values relative to values found for other MMPs with their preferred peptide substrates. These reactions also showed that peptides with proline in position 3 were poor substrates for MMP-11. A structural basis for the lower kcat/Km values of human MMP-11, relative to other MMPs, and poor cleavage of position 3 proline substrates by MMP-11 is provided. Taken together, these findings explain why MMP-11 does not cleave most other MMP substrates and predict that MMP-11 has unique substrates that may contribute to human cancer.
Collapse
Affiliation(s)
- Weijun Pan
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08534, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Parks WC, Shapiro SD. Matrix metalloproteinases in lung biology. Respir Res 2002; 2:10-9. [PMID: 11686860 PMCID: PMC59564 DOI: 10.1186/rr33] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2000] [Accepted: 12/07/2000] [Indexed: 11/29/2022] Open
Abstract
Despite much information on their catalytic properties and gene regulation, we actually know very little of what matrix metalloproteinases (MMPs) do in tissues. The catalytic activity of these enzymes has been implicated to function in normal lung biology by participating in branching morphogenesis, homeostasis, and repair, among other events. Overexpression of MMPs, however, has also been blamed for much of the tissue destruction associated with lung inflammation and disease. Beyond their role in the turnover and degradation of extracellular matrix proteins, MMPs also process, activate, and deactivate a variety of soluble factors, and seldom is it readily apparent by presence alone if a specific proteinase in an inflammatory setting is contributing to a reparative or disease process. An important goal of MMP research will be to identify the actual substrates upon which specific enzymes act. This information, in turn, will lead to a clearer understanding of how these extracellular proteinases function in lung development, repair, and disease.
Collapse
Affiliation(s)
- W C Parks
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | |
Collapse
|
34
|
English WR, Holtz B, Vogt G, Knäuper V, Murphy G. Characterization of the role of the "MT-loop": an eight-amino acid insertion specific to progelatinase A (MMP2) activating membrane-type matrix metalloproteinases. J Biol Chem 2001; 276:42018-26. [PMID: 11555661 DOI: 10.1074/jbc.m107783200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Progelatinase A (proGLA) activation is thought to be initiated almost exclusively by the type I transmembrane members of the membrane type matrix metalloproteinase family (MT-MMP): MT1, -2, -3, and -5-MMP (MMP14, -15, -16, and -24). One difference between these enzymes and the other MMP family members is the insertion of eight amino acids between strands betaII and III in the catalytic domain. In MT1-MMP, the best characterized of these enzymes to date, these residues consist of (163)PYAYIREG(170). To investigate the role of this region of MT1-MMP on its catalytic activities, we have made a variety of mutations and deletions in both soluble and membrane-bound forms of the enzyme. Characterization of the activity of the soluble forms toward peptides and fibrinogen revealed that neither mutation nor deletion of residues 163-170 significantly impaired catalytic function, suggesting these residues have little influence on conformation of the active site cleft. Equally none of the mutants showed significant differences in K(I)(app) for the N-terminal inhibitory domain of TIMP2, again indicating that mutation or deletion of resides 163-170 has no major effect on the overall topology of the active site of MT1-MMP. However, characterization of the kinetics of activation of proGLA with and without its gelatin binding region by the mutants generated have shown that efficient activation of proGLA is, at least in part, through an interaction with residues 163-170 of MT1-MMP. The expression, localization, and processing from the 63- to the 60/45-kDa forms of wild-type and key mutant forms of MT1-MMP were also examined by transient transfection in Chinese hamster ovary cells, but no differences were observed. Processing and activation of proGLA was also examined in transiently transfected cells. All the mutants examined were able process proGLA but, as found with the soluble forms, were kinetically impaired when compared with wild-type MT1-MMP.
Collapse
Affiliation(s)
- W R English
- School of Biological Sciences, University of East Anglia, University Plain, Norwich, Norfolk NR4 7TJ, United Kingdom.
| | | | | | | | | |
Collapse
|
35
|
Turk BE, Huang LL, Piro ET, Cantley LC. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat Biotechnol 2001; 19:661-7. [PMID: 11433279 DOI: 10.1038/90273] [Citation(s) in RCA: 432] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The number of known proteases is increasing at a tremendous rate as a consequence of genome sequencing projects. Although one can guess at the functions of these novel enzymes by considering sequence homology to known proteases, there is a need for new tools to rapidly provide functional information on large numbers of proteins. We describe a method for determining the cleavage site specificity of proteolytic enzymes that involves pooled sequencing of peptide library mixtures. The method was used to determine cleavage site motifs for six enzymes in the matrix metalloprotease (MMP) family. The results were validated by comparison with previous literature and by analyzing the cleavage of individually synthesized peptide substrates. The library data led us to identify the proteoglycan neurocan as a novel MMP-2 substrate. Our results indicate that a small set of libraries can be used to quickly profile an expanding protease family, providing information applicable to the design of inhibitors and to the identification of protein substrates.
Collapse
Affiliation(s)
- B E Turk
- Department of Medicine, Beth Israel Deaconess Medical Center, Department of Cell Biology, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
36
|
Lohi J, Wilson CL, Roby JD, Parks WC. Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. J Biol Chem 2001; 276:10134-44. [PMID: 11121398 DOI: 10.1074/jbc.m001599200] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have cloned a new human matrix metalloproteinase (MMP-28, epilysin) from human keratinocyte and testis cDNA libraries. Like most MMPs, epilysin contains a signal sequence, a prodomain with a PRCGVTD sequence, a zinc-binding catalytic domain with an HEIGHTLGLTH sequence, and a hemopexin-like domain. In addition, epilysin has a furin activation sequence (RRKKR) but has no transmembrane sequence. The exon-intron organization and splicing pattern of epilysin differ from that of other MMP genes. It has only 8 exons, and 5 exons are spliced at sites not used by other MMPs. Another novel feature of epilysin is that exon 4 is alternatively spliced to a transcript that does not encode the N-terminal half of the catalytic domain. Northern hybridization of tissue RNA indicated that epilysin is expressed at high levels in testis and at lower levels in lungs, heart, colon, intestine, and brain. RNase protection assay with various cell lines indicated that epilysin was selectively expressed in keratinocytes. Recombinant epilysin degraded casein in a zymography assay, and its proteolytic activity was inhibited by EDTA and by batimastat, a selective MMP inhibitor. Immunohistochemical staining showed expression of epilysin protein in the basal and suprabasal epidermis of intact skin. In injured skin, prominent staining for epilysin was seen in basal keratinocytes both at and some distance from the wound edge, a pattern that is quite distinct from that of other MMPs expressed during tissue repair. These findings suggest that this new MMP functions in several tissues both in tissue homeostasis and in repair.
Collapse
Affiliation(s)
- J Lohi
- Departments of Pediatrics (Allergy and Pulmonary Medicine) and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
37
|
Gall AL, Ruff M, Kannan R, Cuniasse P, Yiotakis A, Dive V, Rio MC, Basset P, Moras D. Crystal structure of the stromelysin-3 (MMP-11) catalytic domain complexed with a phosphinic inhibitor mimicking the transition-state. J Mol Biol 2001; 307:577-86. [PMID: 11254383 DOI: 10.1006/jmbi.2001.4493] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stromelysin-3 (ST3) is a matrix metalloproteinase (MMP-11) whose proteolytic activity plays an important role in tumorigenicity enhancement. In breast cancer, ST3 is a bad prognosis marker: its expression is associated with a poor clinical outcome. This enzyme therefore represents an attractive therapeutic target. The topology of matrix metalloproteinases (MMPs) is remarkably well conserved, making the design of highly specific inhibitors difficult. The major difference between MMPs lies in the S(1)' subsite, a well-defined hydrophobic pocket of variable depth. The present crystal structure, the first 3D-structure of the ST3 catalytic domain in interaction with a phosphinic inhibitor mimicking a (d, l) peptide, clearly demonstrates that its S(1)' pocket corresponds to a tunnel running through the enzyme. This open channel is filled by the inhibitor P(1)' group which adopts a constrained conformation to fit this pocket, together with two water molecules interacting with the ST3-specific residue Gln215. These observations provide clues for the design of more specific inhibitors and show how ST3 can accommodate a phosphinic inhibitor mimicking a (d, l) peptide. The presence of a water molecule interacting with one oxygen atom of the inhibitor phosphinyl group and the proline residue of the Met-turn suggests how the intermediate formed during proteolysis may be stabilized. Furthermore, the hydrogen bond distance observed between the methyl of the phosphinic group and the carbonyl group of Ala182 mimics the interaction between this carbonyl group and the amide group of the cleaved peptidic bond. Our crystal structure provides a good model to study the MMPs mechanism of proteolysis.
Collapse
Affiliation(s)
- A L Gall
- Structural Biology and Genomics Laboratory, I.G.B.M.C., B.P. 163, F67404, Illkirch Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Georgiadis D, Vazeux G, Llorens-Cortes C, Yiotakis A, Dive V. Potent and selective inhibition of zinc aminopeptidase A (EC 3.4.11.7, APA) by glutamyl aminophosphinic peptides: importance of glutamyl aminophosphinic residue in the P1 position. Biochemistry 2000; 39:1152-5. [PMID: 10653662 DOI: 10.1021/bi9922345] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Through the development of a new chemical strategy, aminophosphinic peptides containing a pseudoglutamyl residue (Glu Psi(PO2-CH2)Leu-Xaa) in the N-terminal position were synthesized and evaluated as inhibitors of aminopeptidase A (APA). The most potent inhibitor developed in this study, Glu Psi(PO2-CH2)Leu-Ala, displayed a Ki value of 0.8 nM for APA, but was much less effective in blocking aminopeptidase N (APN) (Ki = 31 microM). The critical role of the glutamyl residue in this phosphinic peptide, both in potency and selectivity, is exemplified by the P1 position analogue, Ala Psi(PO2-CH2)Leu-Ala, which exhibited a Ki value of 0.9 microM toward APA but behaved as a rather potent inhibitor of APN (Ki = 25 nM). Glu Psi(PO2-CH2)Leu-Xaa peptides are poor inhibitors of angiotensin converting enzyme (Ki values higher than 1 microM). Depending on the nature of the Xaa residue, the potency of these phosphinic peptides toward neutral endopeptidase 24-11 varied from 50 nM to 3 microM. In view of the in vivo role of APA in the formation of brain angiotensin III, one of the main effector peptides of the renin angiotensin system in the central nervous system, highly potent and selective inhibitors of APA may find important therapeutic applications soon.
Collapse
Affiliation(s)
- D Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry, University of Athens, Panepistiomiopolis, Zografou, Athens, Greece
| | | | | | | | | |
Collapse
|
39
|
Ohkubo S, Miyadera K, Sugimoto Y, Matsuo K, Wierzba K, Yamada Y. Identification of substrate sequences for membrane type-1 matrix metalloproteinase using bacteriophage peptide display library. Biochem Biophys Res Commun 1999; 266:308-13. [PMID: 10600499 DOI: 10.1006/bbrc.1999.1816] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) has been reported to mediate the activation of progelatinase A (proMMP-2) which is associated with tumor invasion and metastasis, and also known to have an ability to digest extracellular matrix components. To clarify substrate specificity of MT1-MMP, we have searched for amino acid sequences cleaved by this protease using the hexamer substrate phage library consisting of a large number of randomized amino acids sequences. The consensus substrate sequences for MT1-MMP were deduced from the selected clones and appeared to be P-X-G/P-L at the P3-P1' sites. Peptide cleavage assay revealed that MT1-MMP preferentially digested a synthetic substrate containing Pro of the P1 position compared to that being substituted with Gly. Our results may have an important implication to identifying new target proteins for MT1-MMP and leading to the design of its selective inhibitors suitable for cancer chemotherapy.
Collapse
Affiliation(s)
- S Ohkubo
- Hanno Research Center, Taiho Pharmaceutical Company, Ltd., 1-27 Misugi-dai, Hanno, Saitama, 357-8527, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Georgiadis D, Matziari M, Vassiliou S, Dive V, Yiotakis A. A convenient method to synthesize phosphinic peptides containing an aspartyl or glutamyl aminophosphinic acid. Use of the phenyl group as the carboxyl synthon. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(99)00910-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Wang Y, Johnson AR, Ye QZ, Dyer RD. Catalytic activities and substrate specificity of the human membrane type 4 matrix metalloproteinase catalytic domain. J Biol Chem 1999; 274:33043-9. [PMID: 10551873 DOI: 10.1074/jbc.274.46.33043] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type (MT) matrix metalloproteinases (MMPs) are recently recognized members of the family of Zn(2+)- and Ca(2+)-dependent MMPs. To investigate the proteolytic capabilities of human MT4-MMP (i.e. MMP-17), we have cloned DNA encoding its catalytic domain (CD) from a breast carcinoma cDNA library. Human membrane type 4 MMP CD (MT4-MMPCD) protein, expressed as inclusion bodies in Escherichia coli, was purified to homogeneity and refolded in the presence of Zn(2+) and Ca(2+). While MT4-MMPCD cleaved synthetic MMP substrates Ac-PLG-[2-mercapto-4-methylpentanoyl]-LG-OEt and Mca-PLGL-Dpa-AR-NH(2) with modest efficiency, it catalyzed with much higher efficiency the hydrolysis of a pro-tumor necrosis factor-alpha converting enzyme synthetic substrate, Mca-PLAQAV-Dpa-RSSSR-NH(2). Catalytic efficiency with the pro-tumor necrosis factor-alpha converting enzyme substrate was maximal at pH 7.4 and was modulated by three ionizable enzyme groups (pK(a3) = 6.2, pK(a2) = 8.3, and pK(a1) = 10.6). MT4-MMPCD cleaved gelatin but was inactive toward type I collagen, type IV collagen, fibronectin, and laminin. Like all known MT-MMPs, MT4-MMPCD was also able to activate 72-kDa progelatinase A to its 68-kDa form. EDTA, 1,10-phenanthroline, reference hydroxamic acid MMP inhibitors, tissue inhibitor of metalloproteinases-1, and tissue inhibitor of metalloproteinases-2 all potently blocked MT4-MMPCD enzymatic activity. MT4-MMP is, therefore, a competent Zn(2+)-dependent MMP with unique specificity among synthetic substrates and the capability to both degrade gelatin and activate progelatinase A.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan 48105, USA
| | | | | | | |
Collapse
|
42
|
Holtz B, Cuniasse P, Boulay A, Kannan R, Mucha A, Beau F, Basset P, Dive V. Role of the S1' subsite glutamine 215 in activity and specificity of stromelysin-3 by site-directed mutagenesis. Biochemistry 1999; 38:12174-9. [PMID: 10508422 DOI: 10.1021/bi990876m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of Gln215 in stromelysin-3 (MMP-11), a residue located in the S1' subsite, was determined by producing three single mutants of this position. As compared to wild-type stromelysin-3, the kinetic parameters K(M) and k(cat) for the degradation of the fluorogenic substrate Dns-Pro-Leu-Ala-Leu-Trp-Ala-Arg-NH(2) (Dns-Leu) by these mutants indicated that the Gln/Leu substitution led to a 4-fold decrease in catalytic efficiency, whereas the mutations Gln/Tyr and Gln/Arg increased this parameter by a factor 10. The cleavage of alpha1-protease inhibitor (alpha1-PI), a natural substrate of stromelysin-3, by these mutants was also determined. Their relative activities for the degradation of alpha1-PI correspond to those observed with the synthetic substrate Dns-Leu. The catalytic efficiency of wild-type stromelysin-3 and its mutants to cleave the P1' analogue of Dns-Leu, containing the unusual amino acid Cys(OMeBn) (Dns-Cys(OMeBn)), was also determined. The values of the specificity factor, calculated as the ratio (k(cat)/K(M))Dns-Cys(OMeBn))/(k(cat)/K(M))Dns-Leu, were observed to vary from 26 for the wild-type stromelysin-3 to 120 for the Gln/Leu mutant and 25 for the Gln/Arg mutant. The Gln/Tyr mutant did not cleave the substrate when its P1' position is substituted by the unusual amino acid Cys(OMeBn). Altogether these observations established that both the catalytic activity and the specificity of stromelysin-3 are dependent on the nature of the residue in position 215. Finally, the cleavage efficiency of the Dns substrates by three representative matrixins, namely, MMP-14 (215 = Leu), MMP-1 (215 = Arg), and MMP-7 (215 = Tyr), was determined. Interestingly, the trends observed for these enzymes were similar to those established for the three mutants of stromelysin-3, pointing out the influence of position 215 toward the selectivity in this family of enzymes.
Collapse
Affiliation(s)
- B Holtz
- CEA, Département d'Ingénierie et d'Etudes des Protéines, CEA-Saclay, Gif/Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Whittaker M, Floyd CD, Brown P, Gearing AJ. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 1999; 99:2735-76. [PMID: 11749499 DOI: 10.1021/cr9804543] [Citation(s) in RCA: 755] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- M Whittaker
- Departments of Medicinal Chemistry, Biology, and Clinical Research, British Biotech Pharmaceuticals Limited, Oxford, U.K
| | | | | | | |
Collapse
|
44
|
Vassiliou S, Mucha A, Cuniasse P, Georgiadis D, Lucet-Levannier K, Beau F, Kannan R, Murphy G, Knäuper V, Rio MC, Basset P, Yiotakis A, Dive V. Phosphinic pseudo-tripeptides as potent inhibitors of matrix metalloproteinases: a structure-activity study. J Med Chem 1999; 42:2610-20. [PMID: 10411481 DOI: 10.1021/jm9900164] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several phosphinic pseudo-tripeptides of general formula R-XaaPsi(PO(2)-CH(2))Xaa'-Yaa'-NH(2) were synthesized and evaluated for their in vitro activities to inhibit stromelysin-3, gelatinases A and B, membrane type-1 matrix metalloproteinase, collagenases 1 and 2, and matrilysin. With the exception of collagenase-1 and matrilysin, phosphinic pseudo-tripeptides behave as highly potent inhibitors of matrix metalloproteinases, provided they contain in P(1)' position an unusual long aryl-alkyl substituent. Study of structure-activity relationships regarding the influence of the R and Xaa' substituents in this series may contribute to the design of inhibitors able to block only a few members of the matrix metalloproteinase family.
Collapse
Affiliation(s)
- S Vassiliou
- CEA, Département d'Ingénierie et d'Etudes des Protéines, 91191 Gif/Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ragusa S, Mouchet P, Lazennec C, Dive V, Meinnel T. Substrate recognition and selectivity of peptide deformylase. Similarities and differences with metzincins and thermolysin. J Mol Biol 1999; 289:1445-57. [PMID: 10373378 DOI: 10.1006/jmbi.1999.2832] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The substrate specificity of Escherichia coli peptide deformylase was investigated by measuring the efficiency of the enzyme to cleave formyl- peptides of the general formula Fo-Xaa-Yaa-NH2, where Xaa represents a set of 27 natural and unusual amino acids and Yaa corresponds to a set of 19 natural amino acids. Substrates with bulky hydrophobic side-chains at the P1' position were the most efficiently cleaved, with catalytic efficiencies greater by two to five orders of magnitude than those associated with polar or charged amino acid side-chains. Among hydrophobic side-chains, linear alkyl groups were preferred at the P1' position, as compared to aryl-alkyl side-chains. Interestingly, in the linear alkyl substituent series, with the exception of norleucine, deformylase exhibits a preference for the substrate containing Met in the P1' position. Next, the influence in catalysis of the second side-chain was studied after synthesis of 20 compounds of the formula Fo-Nle-Yaa-NH2. Their deformylation rates varied within a range of only one order of magnitude. A 3D model of the interaction of PDF with an inhibitor was then constructed and revealed indeed the occurrence of a deep and hydrophobic S1' pocket as well as the absence of a true S2' pocket. These analyses pointed out a set of possible interactions between deformylase and its substrates, which could be the ground driving substrate specificity. The validity of this enzyme:substrate docking was further probed with the help of a set of site-directed variants of the enzyme. From this, the importance of residues at the bottom of the S1' pocket (Ile128 and Leu125) as well as the hydrogen bond network that the main chain of the substrate makes with the enzyme were revealed. Based on the numerous homologies that deformylase displays with thermolysin and metzincins, a mechanism of enzyme:substrate recognition and hydrolysis could finally be proposed. Specific features of PDF with respect to other members of the enzymes with motif HEXXH are discussed.
Collapse
Affiliation(s)
- S Ragusa
- Laboratoire de Biochimie UMR 7654 Ecole Polytechnique-Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau cedex, F-91128, France
| | | | | | | | | |
Collapse
|
46
|
Schönbeck U, Mach F, Sukhova GK, Atkinson E, Levesque E, Herman M, Graber P, Basset P, Libby P. Expression of stromelysin-3 in atherosclerotic lesions: regulation via CD40-CD40 ligand signaling in vitro and in vivo. J Exp Med 1999; 189:843-53. [PMID: 10049948 PMCID: PMC2192948 DOI: 10.1084/jem.189.5.843] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Stromelysin-3 is an unusual matrix metalloproteinase, being released in the active rather than zymogen form and having a distinct substrate specificity, targeting serine proteinase inhibitors (serpins), which regulate cellular functions involved in atherosclerosis. We report here that human atherosclerotic plaques (n = 7) express stromelysin-3 in situ, whereas fatty streaks (n = 5) and normal arterial specimens (n = 5) contain little or no stromelysin-3. Stromelysin-3 mRNA and protein colocalized with endothelial cells, smooth muscle cells, and macrophages within the lesion. In vitro, usual inducers of matrix metalloproteinases such as interleukin-1, interferon-gamma, or tumor necrosis factor alpha did not augment stromelysin-3 in vascular wall cells. However, T cell-derived as well as recombinant CD40 ligand (CD40L, CD154), an inflammatory mediator recently localized in atheroma, induced de novo synthesis of stromelysin-3. In addition, stromelysin-3 mRNA and protein colocalized with CD40L and CD40 within atheroma. In accordance with the in situ and in vitro data obtained with human material, interruption of the CD40-CD40L signaling pathway in low density lipoprotein receptor-deficient hyperlipidemic mice substantially decreased expression of the enzyme within atherosclerotic plaques. These observations establish the expression of the unusual matrix metalloproteinase stromelysin-3 in human atherosclerotic lesions and implicate CD40-CD40L signaling in its regulation, thus providing a possible new pathway that triggers complications within atherosclerotic lesions.
Collapse
Affiliation(s)
- U Schönbeck
- Vascular Medicine and Atherosclerosis Unit, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fernandez-Catalan C, Bode W, Huber R, Turk D, Calvete JJ, Lichte A, Tschesche H, Maskos K. Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J 1998; 17:5238-48. [PMID: 9724659 PMCID: PMC1170851 DOI: 10.1093/emboj/17.17.5238] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The proteolytic activity of matrix metalloproteinases (MMPs) towards extracellular matrix components is held in check by the tissue inhibitors of metalloproteinases (TIMPs). The binary complex of TIMP-2 and membrane-type-1 MMP (MT1-MMP) forms a cell surface located 'receptor' involved in pro-MMP-2 activation. We have solved the 2.75 A crystal structure of the complex between the catalytic domain of human MT1-MMP (cdMT1-MMP) and bovine TIMP-2. In comparison with our previously determined MMP-3-TIMP-1 complex, both proteins are considerably tilted to one another and show new features. CdMT1-MMP, apart from exhibiting the classical MMP fold, displays two large insertions remote from the active-site cleft that might be important for interaction with macromolecular substrates. The TIMP-2 polypeptide chain, as in TIMP-1, folds into a continuous wedge; the A-B edge loop is much more elongated and tilted, however, wrapping around the S-loop and the beta-sheet rim of the MT1-MMP. In addition, both C-terminal edge loops make more interactions with the target enzyme. The C-terminal acidic tail of TIMP-2 is disordered but might adopt a defined structure upon binding to pro-MMP-2; the Ser2 side-chain of TIMP-2 extends into the voluminous S1' specificity pocket of cdMT1-MMP, with its Ogamma pointing towards the carboxylate of the catalytic Glu240. The lower affinity of TIMP-1 for MT1-MMP compared with TIMP-2 might be explained by a reduced number of favourable interactions.
Collapse
Affiliation(s)
- C Fernandez-Catalan
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried-Planegg, Germany
| | | | | | | | | | | | | | | |
Collapse
|