1
|
You Y, Sun X, Ma M, He J, Li L, Porto FW, Lin S. Trypsin is a coordinate regulator of N and P nutrients in marine phytoplankton. Nat Commun 2022; 13:4022. [PMID: 35821503 PMCID: PMC9276738 DOI: 10.1038/s41467-022-31802-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Trypsin is best known as a digestive enzyme in animals, but remains unexplored in phytoplankton, the major primary producers in the ocean. Here we report the prevalence of trypsin genes in global ocean phytoplankton and significant influences of environmental nitrogen (N) and phosphorus (P) on their expression. Using CRISPR/Cas9 mediated-knockout and overexpression analyses, we further reveal that a trypsin in Phaeodactylum tricornutum (PtTryp2) functions to repress N acquisition, but its expression decreases under N-deficiency to promote N acquisition. On the contrary, PtTryp2 promotes phosphate uptake per se, and its expression increases under P-deficiency to further reinforce P acquisition. Furthermore, PtTryp2 knockout led to amplitude magnification of the nitrate and phosphate uptake 'seesaw', whereas PtTryp2 overexpression dampened it, linking PtTryp2 to stabilizing N:P stoichiometry. Our data demonstrate that PtTryp2 is a coordinate regulator of N:P stoichiometric homeostasis. The study opens a window for deciphering how phytoplankton adapt to nutrient-variable marine environments.
Collapse
Affiliation(s)
- Yanchun You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Minglei Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiamin He
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Felipe Wendt Porto
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
2
|
Protein Sorting in Plasmodium Falciparum. Life (Basel) 2021; 11:life11090937. [PMID: 34575086 PMCID: PMC8467625 DOI: 10.3390/life11090937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum is a unicellular eukaryote with a very polarized secretory system composed of micronemes rhoptries and dense granules that are required for host cell invasion. P. falciparum, like its relative T. gondii, uses the endolysosomal system to produce the secretory organelles and to ingest host cell proteins. The parasite also has an apicoplast, a secondary endosymbiotic organelle, which depends on vesicular trafficking for appropriate incorporation of nuclear-encoded proteins into the apicoplast. Recently, the central molecules responsible for sorting and trafficking in P. falciparum and T. gondii have been characterized. From these studies, it is now evident that P. falciparum has repurposed the molecules of the endosomal system to the secretory pathway. Additionally, the sorting and vesicular trafficking mechanism seem to be conserved among apicomplexans. This review described the most recent findings on the molecular mechanisms of protein sorting and vesicular trafficking in P. falciparum and revealed that P. falciparum has an amazing secretory machinery that has been cleverly modified to its intracellular lifestyle.
Collapse
|
3
|
Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, Field MC, Hampl V. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. THE NEW PHYTOLOGIST 2020; 225:1578-1592. [PMID: 31580486 DOI: 10.1111/nph.16237] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/25/2019] [Indexed: 05/20/2023]
Abstract
Euglena spp. are phototrophic flagellates with considerable ecological presence and impact. Euglena gracilis harbours secondary green plastids, but an incompletely characterised proteome precludes accurate understanding of both plastid function and evolutionary history. Using subcellular fractionation, an improved sequence database and MS we determined the composition, evolutionary relationships and hence predicted functions of the E. gracilis plastid proteome. We confidently identified 1345 distinct plastid protein groups and found that at least 100 proteins represent horizontal acquisitions from organisms other than green algae or prokaryotes. Metabolic reconstruction confirmed previously studied/predicted enzymes/pathways and provided evidence for multiple unusual features, including uncoupling of carotenoid and phytol metabolism, a limited role in amino acid metabolism, and dual sets of the SUF pathway for FeS cluster assembly, one of which was acquired by lateral gene transfer from Chlamydiae. Plastid paralogues of trafficking-associated proteins potentially mediating fusion of transport vesicles with the outermost plastid membrane were identified, together with derlin-related proteins, potential translocases across the middle membrane, and an extremely simplified TIC complex. The Euglena plastid, as the product of many genomes, combines novel and conserved features of metabolism and transport.
Collapse
Affiliation(s)
| | - Martin Zoltner
- Faculty of Science, Charles University, BIOCEV, Vestec, 252 50, Czechia
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Petr Soukal
- Faculty of Science, Charles University, BIOCEV, Vestec, 252 50, Czechia
| | - Kristína Záhonová
- Faculty of Science, Charles University, BIOCEV, Vestec, 252 50, Czechia
- Faculty of Science, University of Ostrava, Ostrava, 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
| | - Zoltán Füssy
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
| | - ThankGod E Ebenezer
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Eva Lacová Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
| | - Marek Eliáš
- Faculty of Science, University of Ostrava, Ostrava, 710 00, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czechia
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
| | - Vladimír Hampl
- Faculty of Science, Charles University, BIOCEV, Vestec, 252 50, Czechia
| |
Collapse
|
4
|
Durnford DG, Schwartzbach SD. Protein Targeting to the Plastid of Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:183-205. [PMID: 28429323 DOI: 10.1007/978-3-319-54910-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The lateral transfer of photosynthesis between kingdoms through endosymbiosis is among the most spectacular examples of evolutionary innovation. Euglena, which acquired a chloroplast indirectly through an endosymbiosis with a green alga, represents such an example. As with other endosymbiont-derived plastids from eukaryotes, there are additional membranes that surround the organelle, of which Euglena has three. Thus, photosynthetic genes that were transferred from the endosymbiont to the host nucleus and whose proteins are required in the new plastid, are now faced with targeting and plastid import challenges. Early immunoelectron microscopy data suggested that the light-harvesting complexes, photosynthetic proteins in the thylakoid membrane, are post-translationally targeted to the plastid via the Golgi apparatus, an unexpected discovery at the time. Proteins targeted to the Euglena plastid have complex, bipartite presequences that direct them into the endomembrane system, through the Golgi apparatus and ultimately on to the plastid, presumably via transport vesicles. From transcriptome sequencing, dozens of plastid-targeted proteins were identified, leading to the identification of two different presequence structures. Both have an amino terminal signal peptide followed by a transit peptide for plastid import, but only one of the two classes of presequences has a third domain-the stop transfer sequence. This discovery implied two different transport mechanisms; one where the protein was fully inserted into the lumen of the ER and another where the protein remains attached to, but effectively outside, the endomembrane system. In this review, we will discuss the biochemical and bioinformatic evidence for plastid targeting, discuss the evolution of the targeting system, and ultimately provide a working model for the targeting and import of proteins into the plastid of Euglena.
Collapse
Affiliation(s)
- Dion G Durnford
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, Canada, E3B 5A3
| | | |
Collapse
|
5
|
Krajčovič J, Schwartzbach SD. Euglenoid flagellates: a multifaceted biotechnology platform. J Biotechnol 2014; 202:135-45. [PMID: 25527385 DOI: 10.1016/j.jbiotec.2014.11.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 01/08/2023]
Abstract
Euglenoid flagellates are mainly fresh water protists growing in highly diverse environments making them well-suited for a multiplicity of biotechnology applications. Phototrophic euglenids possesses complex chloroplasts of green algal origin bounded by three membranes. Euglena nuclear and plastid genome organization, gene structure and gene expression are distinctly different from other organisms. Our observations on the model organism Euglena gracilis indicate that transcription of both the plastid and nuclear genome is insensitive to environmental changes and that gene expression is regulated mainly at the post-transcriptional level. Euglena plastids have been proposed as a site for the production of proteins and value added metabolites of biotechnological interest. Euglena has been shown to be a suitable protist species to be used for production of several compounds that are used in the production of cosmeceuticals and nutraceuticals, such as α-tocopherol, wax esters, polyunsaturated fatty acids, biotin and tyrosine. The storage polysaccharide, paramylon, has immunostimulatory properties and has shown a promise for biomaterials production. Euglena biomass can be used as a nutritional supplement in aquaculture and in animal feed. Diverse applications of Euglena in environmental biotechnology include ecotoxicological risk assessment, heavy metal bioremediation, bioremediation of industrial wastewater and contaminated water.
Collapse
Affiliation(s)
- Juraj Krajčovič
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia.
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152-3560, USA
| |
Collapse
|
6
|
Vesicles bearing Toxoplasma apicoplast membrane proteins persist following loss of the relict plastid or Golgi body disruption. PLoS One 2014; 9:e112096. [PMID: 25369183 PMCID: PMC4219833 DOI: 10.1371/journal.pone.0112096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 10/13/2014] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii and malaria parasites contain a unique and essential relict plastid called the apicoplast. Most apicoplast proteins are encoded in the nucleus and are transported to the organelle via the endoplasmic reticulum (ER). Three trafficking routes have been proposed for apicoplast membrane proteins: (i) vesicular trafficking from the ER to the Golgi and then to the apicoplast, (ii) contiguity between the ER membrane and the apicoplast allowing direct flow of proteins, and (iii) vesicular transport directly from the ER to the apicoplast. Previously, we identified a set of membrane proteins of the T. gondii apicoplast which were also detected in large vesicles near the organelle. Data presented here show that the large vesicles bearing apicoplast membrane proteins are not the major carriers of luminal proteins. The vesicles continue to appear in parasites which have lost their plastid due to mis-segregation, indicating that the vesicles are not derived from the apicoplast. To test for a role of the Golgi body in vesicle formation, parasites were treated with brefeldin A or transiently transfected with a dominant-negative mutant of Sar1, a GTPase required for ER to Golgi trafficking. The immunofluorescence patterns showed little change. These findings were confirmed using stable transfectants, which expressed the toxic dominant-negative sar1 following Cre-loxP mediated promoter juxtaposition. Our data support the hypothesis that the large vesicles do not mediate the trafficking of luminal proteins to the apicoplast. The results further show that the large vesicles bearing apicoplast membrane proteins continue to be observed in the absence of Golgi and plastid function. These data raise the possibility that the apicoplast proteome is generated by two novel ER to plastid trafficking pathways, plus the small set of proteins encoded by the apicoplast genome.
Collapse
|
7
|
Keeling PJ. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:583-607. [PMID: 23451781 DOI: 10.1146/annurev-arplant-050312-120144] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plastids (chloroplasts) have long been recognized to have originated by endosymbiosis of a cyanobacterium, but their subsequent evolutionary history has proved complex because they have also moved between eukaryotes during additional rounds of secondary and tertiary endosymbioses. Much of this history has been revealed by genomic analyses, but some debates remain unresolved, in particular those relating to secondary red plastids of the chromalveolates, especially cryptomonads. Here, I examine several fundamental questions and assumptions about endosymbiosis and plastid evolution, including the number of endosymbiotic events needed to explain plastid diversity, whether the genetic contribution of the endosymbionts to the host genome goes far beyond plastid-targeted genes, and whether organelle origins are best viewed as a singular transition involving one symbiont or as a gradual transition involving a long line of transient food/symbionts. I also discuss a possible link between transporters and the evolution of protein targeting in organelle integration.
Collapse
Affiliation(s)
- Patrick J Keeling
- Canadian Institute for Advanced Research and Department of Botany, University of British Columbia, Vancouver, Canada V6T 1Z4.
| |
Collapse
|
8
|
Sheiner L, Striepen B. Protein sorting in complex plastids. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:352-9. [PMID: 22683761 DOI: 10.1016/j.bbamcr.2012.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 12/11/2022]
Abstract
Taming a cyanobacterium in a pivitol event of endosymbiosis brought photosynthesis to eukaryotes, and gave rise to the plastids found in glaucophytes, red and green algae, and the descendants of the latter, the plants. Ultrastructural as well as molecular research over the last two decades has demonstrated that plastids have enjoyed surprising lateral mobility across the tree of life. Numerous independent secondary and tertiary endosymbiosis have led to a spread of plastids into a variety of, up to that point, non-photosynthetic lineages. Happily eating and subsequently domesticating one another protists conquered a wide variety of ecological niches. The elaborate evolution of secondary, or complex, plastids is reflected in the numerous membranes that bound them (three or four compared to the two membranes of the primary plastids). Gene transfer to the host nucleus is a hallmark of endosymbiosis and provides centralized cellular control. Here we review how these proteins find their way back into the stroma of the organelle and describe the advances in the understanding of the molecular mechanisms that allow protein translocation across four membranes. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Lilach Sheiner
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA.
| | | |
Collapse
|
9
|
Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci U S A 2012; 109:5340-5. [PMID: 22371600 DOI: 10.1073/pnas.1118800109] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Endosymbiotic acquisition of bacteria by a protist, with subsequent evolution of the bacteria into mitochondria and plastids, had a transformative impact on eukaryotic biology. Reconstructing events that created a stable association between endosymbiont and host during the process of organellogenesis--including establishment of regulated protein import into nascent organelles--is difficult because they date back more than 1 billion years. The amoeba Paulinella chromatophora contains nascent photosynthetic organelles of more recent evolutionary origin (∼60 Mya) termed chromatophores (CRs). After the initial endosymbiotic event, the CR genome was reduced to approximately 30% of its presumed original size and more than 30 expressed genes were transferred from the CR to the amoebal nuclear genome. Three transferred genes--psaE, psaK1, and psaK2--encode subunits of photosystem I. Here we report biochemical evidence that PsaE, PsaK1, and PsaK2 are synthesized in the amoeba cytoplasm and traffic into CRs, where they assemble with CR-encoded subunits into photosystem I complexes. Additionally, our data suggest that proteins routed to CRs pass through the Golgi apparatus. Whereas genome reduction and transfer of genes from bacterial to host genome have been reported to occur in other obligate bacterial endosymbioses, this report outlines the import of proteins encoded by such transferred genes into the compartment derived from the bacterial endosymbiont. Our study showcases P. chromatophora as an exceptional model in which to study early events in organellogenesis, and suggests that protein import into bacterial endosymbionts might be a phenomenon much more widespread than currently assumed.
Collapse
|
10
|
Danne JC, Waller RF. Analysis of dinoflagellate mitochondrial protein sorting signals indicates a highly stable protein targeting system across eukaryotic diversity. J Mol Biol 2011; 408:643-53. [PMID: 21376056 DOI: 10.1016/j.jmb.2011.02.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 11/17/2022]
Abstract
Protein targeting into mitochondria from the cytoplasm is fundamental to the cell biology of all eukaryotes. Our understanding of this process is heavily biased towards "model" organisms, such as animals and fungi, and it is less clear how conserved this process is throughout diverse eukaryotes. In this study, we have surveyed mitochondrial protein sorting signals from a representative of the dinoflagellate algae. Dinoflagellates are a phylum belonging to the group Alveolata, which also includes apicomplexan parasites and ciliates. We generated 46 mitochondrial gene sequences from the dinoflagellate Karlodinium micrum and analysed these for mitochondrial sorting signals. Most of the sequences contain predicted N-terminal peptide extensions that conform to mitochondrial targeting peptides from animals and fungi in terms of length, amino acid composition, and propensity to form amphipathic α-helices. The remainder lack predicted mitochondrial targeting peptides and represent carrier proteins of the inner mitochondrial membrane that have internal targeting signals in model eukaryotes. We tested for functional conservation of the dinoflagellate mitochondrial sorting signals by expressing K. micrum mitochondrial proteins in the fungus Saccharomyces cerevisiae. Both the N-terminal and internal targeting signals were sufficiently conserved to operate in this distantly related system. This study indicates that the character of mitochondrial sorting signals was well established prior to the radiation of major eukaryotic lineages and has shown remarkable conservation during long periods of evolution.
Collapse
Affiliation(s)
- Jillian C Danne
- School of Botany, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
11
|
Agrawal S, Striepen B. More membranes, more proteins: complex protein import mechanisms into secondary plastids. Protist 2010; 161:672-87. [PMID: 21036664 DOI: 10.1016/j.protis.2010.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plastids are found across the tree of life in a tremendous diversity of life forms. Surprisingly they are not limited to photosynthetic organisms but also found in numerous predators and parasites. An important reason for the pervasiveness of plastids has been their ability to move laterally and to jump from one branch of the tree of life to the next through secondary endosymbiosis. Eukaryotic algae have entered endosymbiotic relationships with other eukaryotes on multiple independent occasions. The descendants of these endosymbiotic events now carry complex plastids, organelles that are bound by three or even four membranes. As in all endosymbiotic organelles most of the symbiont's genes have been transferred to the host and their protein products have to be imported into the organelle. As four membranes might suggest, this is a complex process. The emerging mechanisms display a series of translocons that mirror the divergent ancestry of the membranes they cross. This review is written from the viewpoint of a parasite biologist and seeks to provide a brief overview of plastid evolution in particular for readers not already familiar with plant and algal biology and then focuses on recent molecular discoveries using genetically tractable Apicomplexa and diatoms.
Collapse
Affiliation(s)
- Swati Agrawal
- Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | | |
Collapse
|
12
|
Ouyang H, Luo Y, Zhang L, Li Y, Jin C. Proteome analysis of Aspergillus fumigatus total membrane proteins identifies proteins associated with the glycoconjugates and cell wall biosynthesis using 2D LC-MS/MS. Mol Biotechnol 2010; 44:177-89. [PMID: 19950005 DOI: 10.1007/s12033-009-9224-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We attempted to identify membrane proteins associated with the glycoconjugates and cell wall biosynthesis in the total membrane preparations of Aspergillus fumigatus. The total membrane preparations were first run on 1D gels, and then the stained gels were cut and submitted to in-gel digestion followed by 2D LC-MS/MS and database search. A total of 530 proteins were identified with at least two peptides detected with MS/MS spectra. Seventeen integral membrane proteins were involved in N-, O-glycosylation or GPI anchor biosynthesis. Nine membrane proteins were involved in cell wall biosynthesis. Eight proteins were identified as enzymes involved in sphingolipid synthesis. In addition, the proteins involved in cell wall and ergosterol biosynthesis can potentially be used as antifungal drug targets. Our method, for the first time, clearly provided a global view of the membrane proteins associated with glycoconjugates and cell wall biosynthesis in the total membrane proteome of A. fumigatus.
Collapse
Affiliation(s)
- Haomiao Ouyang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | | | | | | | | |
Collapse
|
13
|
Keeling PJ. The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 2010; 365:729-48. [PMID: 20124341 DOI: 10.1098/rstb.2009.0103] [Citation(s) in RCA: 388] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, Canadian Institute for Advanced Research, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4.
| |
Collapse
|
14
|
Euglena gracilis ascorbate peroxidase forms an intramolecular dimeric structure: its unique molecular characterization. Biochem J 2010; 426:125-34. [PMID: 20015051 DOI: 10.1042/bj20091406] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Euglena gracilis lacks a catalase and contains a single APX (ascorbate peroxidase) and enzymes related to the redox cycle of ascorbate in the cytosol. In the present study, a full-length cDNA clone encoding the Euglena APX was isolated and found to contain an open reading frame encoding a protein of 649 amino acids with a calculated molecular mass of 70.5 kDa. Interestingly, the enzyme consisted of two entirely homologous catalytic domains, designated APX-N and APX-C, and an 102 amino acid extension in the N-terminal region, which had a typical class II signal proposed for plastid targeting in Euglena. A computer-assisted analysis indicated a novel protein structure with an intramolecular dimeric structure. The analysis of cell fractionation showed that the APX protein is distributed in the cytosol, but not the plastids, suggesting that Euglena APX becomes mature in the cytosol after processing of the precursor. The kinetics of the recombinant mature FL (full-length)-APX and the APX-N and APX-C domains with ascorbate and H2O2 were almost the same as that of the native enzyme. However, the substrate specificity of the mature FL-APX and the native enzyme was different from that of APX-N and APX-C. The mature FL-APX, but not the truncated forms, could reduce alkyl hydroperoxides, suggesting that the dimeric structure is correlated with substrate recognition. In Euglena cells transfected with double-stranded RNA, the silencing of APX expression resulted in a significant increase in the cellular level of H2O2, indicating the physiological importance of APX to the metabolism of H2O2.
Collapse
|
15
|
Nishikawa T, Kajitani H, Sato M, Mogi Y, Moriyama Y, Kawano S. Isolation of chloroplast FtsZ and AtpC, and analysis of protein targeting into the complex chloroplast of the haptophyte Pavlova pinguis. CYTOLOGIA 2010. [DOI: 10.1508/cytologia.75.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Toshikazu Nishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Hiroyuki Kajitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Mayuko Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Yuko Mogi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Yohsuke Moriyama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
16
|
Bodył A, Mackiewicz P, Stiller JW. Early steps in plastid evolution: current ideas and controversies. Bioessays 2009; 31:1219-32. [DOI: 10.1002/bies.200900073] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability — review. Folia Microbiol (Praha) 2009; 54:303-21. [DOI: 10.1007/s12223-009-0048-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/31/2009] [Indexed: 10/20/2022]
|
18
|
Parsons M, Karnataki A, Derocher AE. Evolving insights into protein trafficking to the multiple compartments of the apicomplexan plastid. J Eukaryot Microbiol 2009; 56:214-20. [PMID: 19527348 DOI: 10.1111/j.1550-7408.2009.00405.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The apicoplast is a relict plastid found in many medically important apicomplexan parasites, such as Plasmodium and Toxoplasma. Phylogenetic analysis and the presence of four bounding membranes indicate that the apicoplast arose from a secondary endosymbiosis. Here we review what has been discovered about the complex journey proteins take to reach compartments of the apicoplast. The targeting sequences for luminal proteins are well-defined, but those routing proteins to other compartments are only beginning to be studied. Recent work suggests that the trafficking mechanisms involve a variety of molecules of different phylogenetic origins. We highlight some remaining questions regarding protein trafficking to this divergent organelle.
Collapse
Affiliation(s)
- Marilyn Parsons
- Seattle Biomedical Research Institute, Washington 98109, USA.
| | | | | |
Collapse
|
19
|
Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates. Proc Natl Acad Sci U S A 2009; 106 Suppl 1:9963-70. [PMID: 19528647 DOI: 10.1073/pnas.0901004106] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The majority of eukaryotic diversity is hidden in protists, yet our current knowledge of processes and structures in the eukaryotic cell is almost exclusively derived from multicellular organisms. The increasing sensitivity of molecular methods and growing interest in microeukaryotes has only recently demonstrated that many features so far considered to be universal for eukaryotes actually exist in strikingly different versions. In other words, during their long evolutionary histories, protists have solved general biological problems in many more ways than previously appreciated. Interestingly, some groups have broken more rules than others, and the Euglenozoa and the Alveolata stand out in this respect. A review of the numerous odd features in these 2 groups allows us to draw attention to the high level of convergent evolution in protists, which perhaps reflects the limits that certain features can be altered. Moreover, the appearance of one deviation in an ancestor can constrain the set of possible downstream deviations in its descendents, so features that might be independent functionally, can still be evolutionarily linked. What functional advantage may be conferred by the excessive complexity of euglenozoan and alveolate gene expression, organellar genome structure, and RNA editing and processing has been thoroughly debated, but we suggest these are more likely the products of constructive neutral evolution, and as such do not necessarily confer any selective advantage at all.
Collapse
|
20
|
Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S, Maier UG. Protein targeting into secondary plastids. J Eukaryot Microbiol 2009; 56:9-15. [PMID: 19335770 DOI: 10.1111/j.1550-7408.2008.00370.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most of the coding capacity of primary plastids is reserved for expressing some central components of the photosynthesis machinery and the translation apparatus. Thus, for the bulk of biochemical and cell biological reactions performed within the primary plastids, many nucleus-encoded components have to be transported posttranslationally into the organelle. The same is true for plastids surrounded by more than two membranes, where additional cellular compartments have to be supplied with nucleus-encoded proteins, leading to a corresponding increase in complexity of topogenic signals, transport and sorting machineries. In this review, we summarize recent progress in elucidating protein transport across up to five plastid membranes in plastids evolved in secondary endosymbiosis. Current data indicate that the mechanisms for protein transport across multiple membranes have evolved by altering pre-existing ones to new requirements in secondary plastids.
Collapse
Affiliation(s)
- Kathrin Bolte
- Laboratory for Cell Biology, Philipps-University of Marburg, Karl-von-Frisch Strasse 8, D-35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Phylogenetic Analysis of Sulfate Assimilation and Cysteine Biosynthesis in Phototrophic Organisms. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
22
|
Abstract
The ancestors of modern cyanobacteria invented O(2)-generating photosynthesis some 3.6 billion years ago. The conversion of water and CO(2) into energy-rich sugars and O(2) slowly transformed the planet, eventually creating the biosphere as we know it today. Eukaryotes didn't invent photosynthesis; they co-opted it from prokaryotes by engulfing and stably integrating a photoautotrophic prokaryote in a process known as primary endosymbiosis. After approximately a billion of years of coevolution, the eukaryotic host and its endosymbiont have achieved an extraordinary level of integration and have spawned a bewildering array of primary producers that now underpin life on land and in the water. No partnership has been more important to life on earth. Secondary endosymbioses have created additional autotrophic eukaryotic lineages that include key organisms in the marine environment. Some of these organisms have subsequently reverted to heterotrophic lifestyles, becoming significant pathogens, microscopic predators, and consumers. We review the origins, integration, and functions of the different plastid types with special emphasis on their biochemical abilities, transfer of genes to the host, and the back supply of proteins to the endosymbiont.
Collapse
Affiliation(s)
- Sven B Gould
- School of Botany, University of Melbourne, Parkville VIC-3010, Australia.
| | | | | |
Collapse
|
23
|
Hempel F, Bozarth A, Sommer MS, Zauner S, Przyborski JM, Maier UG. Transport of nuclear-encoded proteins into secondarily evolved plastids. Biol Chem 2007; 388:899-906. [PMID: 17696773 DOI: 10.1515/bc.2007.119] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many algal groups evolved by engulfment and intracellular reduction of a eukaryotic phototroph within a heterotrophic cell. Via this process, so-called secondary plastids evolved, surrounded by three or four membranes. In these organisms most of the genetic material encoding plastid functions is localized in the cell nucleus, with the result that many proteins have to pass three, four, or even five membranes to reach their final destination within the plastid. In this article, we review recent models and findings that help to explain important cellular mechanisms involved in the complex process of protein transport into secondary plastids.
Collapse
Affiliation(s)
- Franziska Hempel
- Laboratory for Cell Biology, Philipps-University of Marburg, Karl-von-Frisch Strasse 8, D-35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Patron NJ, Waller RF. Transit peptide diversity and divergence: A global analysis of plastid targeting signals. Bioessays 2007; 29:1048-58. [PMID: 17876808 DOI: 10.1002/bies.20638] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proteins are targeted to plastids by N-terminal transit peptides, which are recognized by protein import complexes in the organelle membranes. Historically, transit peptide properties have been defined from vascular plant sequences, but recent large-scale genome sequencing from the many plastid-containing lineages across the tree of life has provided a much broader representation of targeted proteins. This includes the three lineages containing primary plastids (plants and green algae, rhodophytes and glaucophytes) and also the seven major lineages that contain secondary plastids, "secondhand" plastids derived through eukaryotic endosymbiosis. Despite this extensive spread of plastids throughout Eukaryota, an N-terminal transit peptide has been maintained as an essential plastid-targeting motif. This article provides the first global comparison of transit peptide composition and summarizes conservation of some features, the loss of an ancestral motif from the green lineages including plants, and modifications to transit peptides that have occurred in secondary and even tertiary plastids.
Collapse
Affiliation(s)
- Nicola J Patron
- School of Botany, University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
25
|
Takishita K, Kawachi M, Noël MH, Matsumoto T, Kakizoe N, Watanabe MM, Inouye I, Ishida KI, Hashimoto T, Inagaki Y. Origins of plastids and glyceraldehyde-3-phosphate dehydrogenase genes in the green-colored dinoflagellate Lepidodinium chlorophorum. Gene 2007; 410:26-36. [PMID: 18191504 DOI: 10.1016/j.gene.2007.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/12/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
The dinoflagellate Lepidodinium chlorophorum possesses "green" plastids containing chlorophylls a and b (Chl a+b), unlike most dinoflagellate plastids with Chl a+c plus a carotenoid peridinin (peridinin-containing plastids). In the present study we determined 8 plastid-encoded genes from Lepidodinium to investigate the origin of the Chl a+b-containing dinoflagellate plastids. The plastid-encoded gene phylogeny clearly showed that Lepidodinium plastids were derived from a member of Chlorophyta, consistent with pigment composition. We also isolated three different glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes from Lepidodinium-one encoding the putative cytosolic "GapC" enzyme and the remaining two showing affinities to the "plastid-targeted GapC" genes. In a GAPDH phylogeny, one of the plastid-targeted GapC-like sequences robustly grouped with those of dinoflagellates bearing peridinin-containing plastids, while the other was nested in a clade of the homologues of haptophytes and dinoflagellate genera Karenia and Karlodinium bearing "haptophyte-derived" plastids. Since neither host nor plastid phylogeny suggested an evolutionary connection between Lepidodinium and Karenia/Karlodinium, a lateral transfer of a plastid-targeted GapC gene most likely took place from a haptophyte or a dinoflagellate with haptophyte-derived plastids to Lepidodinium. The plastid-targeted GapC data can be considered as an evidence for the single origin of plastids in haptophytes, cryptophytes, stramenopiles, and alveolates. However, in the light of Lepidodinium GAPDH data, we need to closely examine whether the monophyly of the plastids in the above lineages inferred from plastid-targeted GapC genes truly reflects that of the host lineages.
Collapse
Affiliation(s)
- Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The relict plastid, or apicoplast, of the malaria parasite Plasmodium falciparum is an essential organelle and a promising drug target. Most apicoplast proteins are nuclear encoded and post-translationally targeted into the organelle using a bipartite N-terminal extension, consisting of a typical endomembrane signal peptide and a plant-like transit peptide. Apicoplast protein targeting commences through the parasite's secretory pathway. We review recent experimental evidence suggesting that the apicoplast resides in the mainstream endomembrane system proximal to the Golgi. Further, we explore possible mechanisms for translocation of nuclear-encoded apicoplast proteins across the four bounding membranes. Recent insights into the composition of the transit peptide and how it is cleaved and degraded after use are also examined. Characterization of apicoplast targeting has not only shed light on how this group of parasites mediate intracellular protein trafficking events but also it has helped identify new targets for therapeutics. The distinctive leader sequences of apicoplast proteins make them readily identifiable, allowing assembly of a virtual organelle metabolome from the genome. Such analysis has lead to the identification of several biochemical pathways that are absent from the human host and thus represent novel therapeutic targets for parasitic infection.
Collapse
Affiliation(s)
- Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3050, Australia
| | | | | |
Collapse
|
27
|
Parsons M, Karnataki A, Feagin JE, DeRocher A. Protein trafficking to the apicoplast: deciphering the apicomplexan solution to secondary endosymbiosis. EUKARYOTIC CELL 2007; 6:1081-8. [PMID: 17513565 PMCID: PMC1951102 DOI: 10.1128/ec.00102-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marilyn Parsons
- Seattle Biomedical Research Institute, 307 Westlake Ave. North, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
28
|
Durnford DG, Gray MW. Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. EUKARYOTIC CELL 2006; 5:2079-91. [PMID: 16998072 PMCID: PMC1694827 DOI: 10.1128/ec.00222-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plastid of Euglena gracilis was acquired secondarily through an endosymbiotic event with a eukaryotic green alga, and as a result, it is surrounded by a third membrane. This membrane complexity raises the question of how the plastid proteins are targeted to and imported into the organelle. To further explore plastid protein targeting in Euglena, we screened a total of 9,461 expressed sequence tag (EST) clusters (derived from 19,013 individual ESTs) for full-length proteins that are plastid localized to characterize their targeting sequences and to infer potential modes of translocation. Of the 117 proteins identified as being potentially plastid localized whose N-terminal targeting sequences could be inferred, 83 were unique and could be classified into two major groups. Class I proteins have tripartite targeting sequences, comprising (in order) an N-terminal signal sequence, a plastid transit peptide domain, and a predicted stop-transfer sequence. Within this class of proteins are the lumen-targeted proteins (class IB), which have an additional hydrophobic domain similar to a signal sequence and required for further targeting across the thylakoid membrane. Class II proteins lack the putative stop-transfer sequence and possess only a signal sequence at the N terminus, followed by what, in amino acid composition, resembles a plastid transit peptide. Unexpectedly, a few unrelated plastid-targeted proteins exhibit highly similar transit sequences, implying either a recent swapping of these domains or a conserved function. This work represents the most comprehensive description to date of transit peptides in Euglena and hints at the complex routes of plastid targeting that must exist in this organism.
Collapse
Affiliation(s)
- Dion G Durnford
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3.
| | | |
Collapse
|
29
|
Tonkin CJ, Roos DS, McFadden GI. N-terminal positively charged amino acids, but not their exact position, are important for apicoplast transit peptide fidelity in Toxoplasma gondii. Mol Biochem Parasitol 2006; 150:192-200. [PMID: 16963133 DOI: 10.1016/j.molbiopara.2006.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 08/02/2006] [Accepted: 08/03/2006] [Indexed: 11/17/2022]
Abstract
The non-photosynthetic plastid - or apicoplast - of Toxoplasma gondii and other apicomplexan parasites is an essential organelle and promising drug target. Most apicoplast proteins are encoded in the nucleus and targeted into the organelle through the apicoplast's four membranes courtesy of a bipartite N-terminal leader sequence comprising of an endomembrane signal peptide followed by a plastid transit peptide. Apicoplast transit peptides, like plant plastid transit peptides, have no primary consensus, are variable in length and may be distinguishable only by a relative depletion of negative charged residues and consequent enrichment in basic residues. In this study we examine the role of charged residues within an apicoplast transit peptide in T. gondii by point mutagenesis. We demonstrate that positive charged residues, combined with the absence of negatively charged amino acids, are essential for apicoplast transit peptide fidelity, as also observed in P. falciparum. Furthermore, we show that positive charge is more important at the transit peptide's N-terminus than its C-terminus, and that the nature of the positive residue and the exact position of the N-terminal positive charge are not important. These results suggest that a simple, rule-based prediction for T. gondii transit peptides, similar to that successfully implemented for P. falciparum should help to identify apicoplast proteins and facilitate the identification of drug targets in this important human pathogen.
Collapse
Affiliation(s)
- Christopher J Tonkin
- Plant Cell Biology Research Centre, The School of Botany, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
30
|
Tonkin CJ, Struck NS, Mullin KA, Stimmler LM, McFadden GI. Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Mol Microbiol 2006; 61:614-30. [PMID: 16787449 DOI: 10.1111/j.1365-2958.2006.05244.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The malaria parasite Plasmodium falciparum harbours a relict plastid (termed the apicoplast) that has evolved by secondary endosymbiosis. The apicoplast is surrounded by four membranes, the outermost of which is believed to be part of the endomembrane system. Nuclear-encoded apicoplast proteins have a two-part N-terminal extension that is necessary and sufficient for translocation across these four membranes. The first domain of this N-terminal extension resembles a classical signal peptide and mediates translocation into the secretory pathway, whereas the second domain is homologous to plant chloroplast transit peptides and is required for the remaining steps of apicoplast targeting. We explored the initial, secretory pathway component of this targeting process using green fluorescent reporter protein constructs with modified leaders. We exchanged the apicoplast signal peptide with signal peptides from other secretory proteins and observed correct targeting, demonstrating that apicoplast targeting is initiated at the general secretory pathway of P. falciparum. Furthermore, we demonstrate by immunofluorescent labelling that the apicoplast resides on a small extension of the endoplasmic reticulum (ER) that is separate from the cis-Golgi. To define the position of the apicoplast in the endomembrane pathway in relation to the Golgi we tracked apicoplast protein targeting in the presence of the secretory inhibitor Brefeldin A (BFA), which blocks traffic between the ER and Golgi. We observe apicoplast targeting in the presence of BFA despite clear perturbation of ER to Golgi traffic by the inhibitor, which suggests that the apicoplast resides upstream of the cis-Golgi in the parasite's endomembrane system. The addition of an ER retrieval signal (SDEL) - a sequence recognized by the cis-Golgi protein ERD2 - to the C-terminus of an apicoplast-targeted protein did not markedly affect apicoplast targeting, further demonstrating that the apicoplast is upstream of the Golgi. Apicoplast transit peptides are thus dominant over an ER retention signal. However, when the transit peptide is rendered non-functional (by two point mutations or by complete deletion) SDEL-specific ER retrieval takes over, and the fusion protein is localized to the ER. We speculate either that the apicoplast in P. falciparum resides within the ER directly in the path of the general secretory pathway, or that vesicular trafficking to the apicoplast directly exits the ER.
Collapse
Affiliation(s)
- Christopher J Tonkin
- Plant Cell Biology Research Centre, School of Botany, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | |
Collapse
|
31
|
Patron NJ, Rogers MB, Keeling PJ. Comparative rates of evolution in endosymbiotic nuclear genomes. BMC Evol Biol 2006; 6:46. [PMID: 16772046 PMCID: PMC1523203 DOI: 10.1186/1471-2148-6-46] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/14/2006] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The nucleomorphs associated with secondary plastids of cryptomonads and chlorarachniophytes are the sole examples of organelles with eukaryotic nuclear genomes. Although not as widespread as their prokaryotic equivalents in mitochondria and plastids, nucleomorph genomes share similarities in terms of reduction and compaction. They also differ in several aspects, not least in that they encode proteins that target to the plastid, and so function in a different compartment from that in which they are encoded. RESULTS Here, we test whether the phylogenetically distinct nucleomorph genomes of the cryptomonad, Guillardia theta, and the chlorarachniophyte, Bigelowiella natans, have experienced similar evolutionary pressures during their transformation to reduced organelles. We compared the evolutionary rates of genes from nuclear, nucleomorph, and plastid genomes, all of which encode proteins that function in the same cellular compartment, the plastid, and are thus subject to similar selection pressures. Furthermore, we investigated the divergence of nucleomorphs within cryptomonads by comparing G. theta and Rhodomonas salina. CONCLUSION Chlorarachniophyte nucleomorph genes have accumulated errors at a faster rate than other genomes within the same cell, regardless of the compartment where the gene product functions. In contrast, most nucleomorph genes in cryptomonads have evolved faster than genes in other genomes on average, but genes for plastid-targeted proteins are not overly divergent, and it appears that cryptomonad nucleomorphs are not presently evolving rapidly and have therefore stabilized. Overall, these analyses suggest that the forces at work in the two lineages are different, despite the similarities between the structures of their genomes.
Collapse
Affiliation(s)
- Nicola J Patron
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Matthew B Rogers
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
32
|
Gould SB, Sommer MS, Hadfi K, Zauner S, Kroth PG, Maier UG. Protein targeting into the complex plastid of cryptophytes. J Mol Evol 2006; 62:674-81. [PMID: 16752208 DOI: 10.1007/s00239-005-0099-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 07/25/2005] [Indexed: 11/24/2022]
Abstract
The cryptophyte Guillardia theta harbors a plastid surrounded by four membranes. This turns protein targeting of nucleus-encoded endosymbiont localized proteins into quite a challenge, as the respective precursors have to pass either all four membranes to reach the plastid stroma or only the outermost two membranes to enter the periplastidal compartment. Therefore two sets of nuclear-encoded proteins imported into the endosymbiont can be distinguished and their topogenic signals may serve as good indicators for studying protein targeting and subsequent transport across the outermost membranes of the cryptophyte plastid. We isolated genes encoding enzymes involved in two different biochemical pathways, both of which are predicted to be localized inside the periplastidal compartment, and compared their topogenic signals to those of precursor proteins for the plastid stroma, which are encoded on either the nucleus or the nucleomorph. By this and exemplary in vitro and in vivo analyses of the topogenic signal of one protein localized in the periplastidal compartment, we present new data implicating the mechanism of targeting and transport of proteins to and across the outermost plastid membranes. Furthermore, we demonstrate that one single, but conserved amino acid is the triggering key for the discrimination between nucleus-encoded plastid and periplastidal proteins.
Collapse
Affiliation(s)
- Sven B Gould
- Cell Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, 35042, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Patron NJ, Waller RF, Keeling PJ. A tertiary plastid uses genes from two endosymbionts. J Mol Biol 2006; 357:1373-82. [PMID: 16490209 DOI: 10.1016/j.jmb.2006.01.084] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/21/2006] [Accepted: 01/24/2006] [Indexed: 11/26/2022]
Abstract
The origin and subsequent spread of plastids by endosymbiosis had a major environmental impact and altered the course of a great proportion of eukaryotic biodiversity. The ancestor of dinoflagellates contained a secondary plastid that was acquired in an ancient endosymbiotic event, where a eukaryotic cell engulfed a red alga. This is known as secondary endosymbiosis and has happened several times in eukaryotic evolution. Certain dinoflagellates, however, are unique in having replaced this secondary plastid in an additional (tertiary) round of endosymbiosis. Most plastid proteins are encoded in the nucleus of the host and are targeted to the organelle. When secondary or tertiary endosymbiosis takes place, it is thought that these genes move from nucleus to nucleus, so the plastid retains the same proteome. We have conducted large-scale expressed sequence tag (EST) surveys from Karlodinium micrum, a dinoflagellate with a tertiary haptophyte-derived plastid, and two haptophytes, Isochrysis galbana and Pavlova lutheri. We have identified all plastid-targeted proteins, analysed the phylogenetic origin of each protein, and compared their plastid-targeting transit peptides. Many plastid-targeted genes in the Karlodinium nucleus are indeed of haptophyte origin, but some genes were also retained from the original plastid (showing the two plastids likely co-existed in the same cell), in other cases multiple isoforms of different origins exist. We analysed plastid-targeting sequences and found the transit peptides in K.micrum are different from those found in either dinoflagellates or haptophytes, pointing to a plastid with an evolutionarily chimeric proteome, and a massive remodelling of protein trafficking during plastid replacement.
Collapse
Affiliation(s)
- Nicola J Patron
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada V6T 1Z4
| | | | | |
Collapse
|
34
|
Harb OS, Chatterjee B, Fraunholz MJ, Crawford MJ, Nishi M, Roos DS. Multiple functionally redundant signals mediate targeting to the apicoplast in the apicomplexan parasite Toxoplasma gondii. EUKARYOTIC CELL 2005; 3:663-74. [PMID: 15189987 PMCID: PMC420125 DOI: 10.1128/ec.3.3.663-674.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most species of the protozoan phylum Apicomplexa harbor an endosymbiotic organelle--the apicoplast--acquired when an ancestral parasite engulfed a eukaryotic plastid-containing alga. Several hundred proteins are encoded in the parasite nucleus and are posttranslationally targeted to the apicoplast by a distinctive bipartite signal. The N-terminal 20 to 30 amino acids of nucleus-encoded apicoplast targeted proteins function as a classical signal sequence, mediating entry into the secretory pathway. Cleavage of the signal sequence exposes a transit peptide of variable length (50 to 200 amino acids) that is required for directing proteins to the apicoplast. Although these peptides are enriched in basic amino acids, their structural and functional characteristics are not well understood, which hampers the identification of apicoplast proteins that may constitute novel chemotherapeutic targets. To identify functional domains for a model apicoplast transit peptide, we generated more than 80 deletions and mutations throughout the transit peptide of Toxoplasma gondii ferredoxin NADP+ reductase (TgFNR) and examined the ability of these altered transit peptides to mediate proper targeting and processing of a fluorescent protein reporter. These studies revealed the presence of numerous functional domains. Processing can take place at multiple sites in the protein sequence and may occur outside of the apicoplast lumen. The TgFNR transit peptide contains at least two independent and functionally redundant targeting signals, each of which contains a subdomain that is required for release from or proper sorting within the endoplasmic reticulum. Certain deletion constructs traffic to multiple locations, including the apicoplast periphery, the rhoptries, and the parasitophorous vacuole, suggesting a common thread for targeting to these specialized compartments.
Collapse
Affiliation(s)
- Omar S Harb
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | | | | | | | |
Collapse
|
35
|
Ishida KI. Protein targeting into plastids: a key to understanding the symbiogenetic acquisitions of plastids. JOURNAL OF PLANT RESEARCH 2005; 118:237-45. [PMID: 16044198 DOI: 10.1007/s10265-005-0218-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 05/04/2005] [Indexed: 05/03/2023]
Abstract
Recent progress in molecular phylogenetics has proven that photosynthetic eukaryotes acquired plastids via primary and secondary endosymbiosis and has given us information about the origin of each plastid. How a photosynthetic endosymbiont became a plastid in each group is, however, poorly understood, especially for the organisms with secondary plastids. Investigating how a nuclear-encoded plastid protein is targeted into a plastid in each photosynthetic group is one of the most important keys to understanding the evolutionary process of symbiogenetic plastid acquisition and its diversity. For organisms which originated through primary endosymbiosis, protein targeting into plastids has been well studied at the molecular level. For organisms which originated through secondary endosymbiosis, molecular-level studies have just started on the plastid-targeted protein-precursor sequences and the targeting pathways of the precursors. However, little information is available about how the proteins get across the inner two or three envelope membranes in organisms with secondary plastids. A good in vitro protein-import system for isolated plastids and a cell transformation system must be established for each group of photosynthetic eukaryotes in order to understand the mechanisms, the evolutionary processes and the diversity of symbiogenetic plastid acquisitions in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Ken-ichiro Ishida
- Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| |
Collapse
|
36
|
Patron NJ, Waller RF, Archibald JM, Keeling PJ. Complex protein targeting to dinoflagellate plastids. J Mol Biol 2005; 348:1015-24. [PMID: 15843030 DOI: 10.1016/j.jmb.2005.03.030] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/09/2005] [Accepted: 03/11/2005] [Indexed: 11/30/2022]
Abstract
Protein trafficking pathways to plastids are directed by N-terminal targeting peptides. In plants this consists of a relatively simple transit peptide, while in organisms with secondary plastids (which reside within the endomembrane system) a signal peptide is appended to the transit peptide. Despite amino acid compositional differences between organisms, often due to nucleotide biases, the features of plastid targeting sequences are generally consistent within species. Dinoflagellate algae deviate from this trend. We have conducted an expressed sequence tag (EST) survey of the peridinin-plastid containing dinoflagellate Heterocapsa triquetra to identify and characterize numerous targeting presequences of plastid proteins encoded in the nucleus. Consistent with targeting systems present in other secondary plastid-containing organisms, these all possess a canonical signal peptide at their N termini, however two major classes of transit peptides occur. Both classes possess a common N-terminal portion of the transit peptide, but one class of transit peptides contains a hydrophobic domain that has been reported to act as a stop-transfer membrane anchor, temporarily arresting protein insertion into the endoplasmic reticulum. A second class of transit peptide lacks this feature. These two classes are represented approximately equally, and for any given protein the class is conserved across all dinoflagellate taxa surveyed to date. This dichotomy suggests that two mechanisms, perhaps even trafficking routes, may direct proteins to dinoflagellate plastids. A four-residue phenylalanine-based motif is also a consistent feature of H. triquetra transit peptides, which is an ancient feature predating red algae and galucophytes that was lost in green plastids.
Collapse
Affiliation(s)
- Nicola J Patron
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Botany, University of British Columbia, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | | | | | | |
Collapse
|
37
|
Asatsuma S, Sawada C, Itoh K, Okito M, Kitajima A, Mitsui T. Involvement of alpha-amylase I-1 in starch degradation in rice chloroplasts. PLANT & CELL PHYSIOLOGY 2005; 46:858-69. [PMID: 15821023 DOI: 10.1093/pcp/pci091] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To determine the role of alpha-amylase isoform I-1 in the degradation of starch in rice leaf chloroplasts, we generated a series of transgenic rice plants with suppressed expression or overexpression of alpha-amylase I-1. In the lines with suppressed expression of alpha-amylase I-1 at both the mRNA and protein levels, seed germination and seedling growth were markedly delayed in comparison with those in the wild-type plants. However, the growth retardation was overcome by supplementation of sugars. Interestingly, a significant increase of starch accumulation in the young leaf tissues was observed under a sugar-supplemented condition. In contrast, the starch content of leaves was reduced in the plants overexpressing alpha-amylase I-1. In immunocytochemical analysis with specific anti-alpha-amylase I-1 antiserum, immuno-gold particles deposited in the chloroplasts and extracellular space in young leaf cells. We further examined the expression and targeting of alpha-amylase I-1 fused with the green fluorescent protein in re-differentiated green cells, and showed that the fluorescence of the expressed fusion protein co-localized with the chlorophyll autofluorescence in the transgenic cells. In addition, mature protein species of alpha-amylase I-1 bearing an oligosaccharide side chain were detected in the isolated chloroplasts. Based on these results, we concluded that alpha-amylase I-1 targets the chloroplasts through the endoplasmic reticulum-Golgi system and plays a significant role in the starch degradation in rice leaves.
Collapse
Affiliation(s)
- Satoru Asatsuma
- Laboratories of Plant and Microbial Genome Control, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181 Japan
| | | | | | | | | | | |
Collapse
|
38
|
Nassoury N, Wang Y, Morse D. Brefeldin A Inhibits Circadian Remodeling of Chloroplast Structure in the Dinoflagellate Gonyaulax. Traffic 2005; 6:548-61. [PMID: 15941407 DOI: 10.1111/j.1600-0854.2005.00296.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circadian increases in the rate of carbon fixation in the dinoflagellate Gonyaulax are correlated with extensive plastid remodeling. One marker for this remodeling is mobilization of ribulose bisphosphate carboxylase/oxygenase (Rubisco) from the plastid periphery to plastid regions nearer the cell center called pyrenoids. Nuclear-encoded proteins such as Rubisco transit through the Golgi in dinoflagellates; hence, we blocked protein import into the plastids using Brefeldin A (BFA) to explore the mechanism for plastid remodeling. We find that pyrenoid formation normally occurs concurrently with increased Rubisco synthesis rates in vivo, and when BFA is given prior to the onset of Rubisco synthesis, pyrenoid formation is partially or completely inhibited by 0.1 or 0.3 microg/mL BFA, respectively. Rubisco synthesis itself is not affected, and BFA-treated cells accumulate Rubisco in novel structures we term BFA bodies. Interestingly, when given just after the onset of Rubisco synthesis, BFA delays but does not block Rubisco mobilization, suggesting that a timing signal for plastid remodeling is delivered to the organelles at the same time as newly synthesized Rubisco. BFA also inhibits the circadian increases in carbon fixation rates, supporting the hypothesis that the biochemical basis for this circadian rhythm may be Rubisco distribution within the plastid.
Collapse
Affiliation(s)
- Nasha Nassoury
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke est, Montreal, Quebec, Canada H1X2B2
| | | | | |
Collapse
|
39
|
Köhler S. Multi-membrane-bound structures of Apicomplexa: I. the architecture of the Toxoplasma gondii apicoplast. Parasitol Res 2005; 96:258-72. [PMID: 15895255 DOI: 10.1007/s00436-005-1338-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
Apicomplexan parasites carry a plastid-like organelle termed apicoplast. The previous documentation of four membranes bordering the Toxoplasma gondii apicoplast suggested a secondary endosymbiotic ancestry of this organelle. However, a four-membraned apicoplast wall could not be confirmed for all Apicomplexa including the malarial agents. The latter reportedly possesses a mostly tri-laminar plastid wall but also displays two multi-laminar wall partitions. Since these sectors apparently evolved from regional wall membrane infoldings, the malarial plastid could have lost one secondary wall membrane in the course of evolution. Such wall construction was however not unambiguously resolved. To examine whether the wall of the T. gondii apicoplast is comparably complex, serial ultra-thin sections of tachyzoites were analyzed. This investigation revealed a single pocket-like invagination within a four-laminar wall segment but also disclosed that four individual membranes do not surround the entire T. gondii apicoplast. Instead, this organelle possesses an extensive sector that is bordered by two membranes. Such heterogeneous wall construction could be explained if the inner two membranes of a formerly four-membraned endosymbiont are partially lost. However, our findings are more consistent with an essentially dual-membraned organelle that creates four-laminar wall sectors by expansive infoldings of its interior border. Given this architecture, the T. gondii apicoplast depicts a residual primary plastid not a secondary one as presently proposed.
Collapse
Affiliation(s)
- Sabine Köhler
- Institute for Zoomorphology, Cell Biology and Parasitology, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
40
|
Levitan A, Trebitsh T, Kiss V, Pereg Y, Dangoor I, Danon A. Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc Natl Acad Sci U S A 2005; 102:6225-30. [PMID: 15837918 PMCID: PMC1087927 DOI: 10.1073/pnas.0500676102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Indexed: 11/18/2022] Open
Abstract
RB60 is an atypical protein disulfide isomerase (PDI) that functions as a member of a redox regulatory protein complex controlling translation in the chloroplast of Chlamydomonas reinhardtii, but also contains a C-terminal endoplasmic reticulum (ER) retention signal, -KDEL. Here, we show by fluorescence microscopy that RB60 resides in the chloroplast but also outside of the chloroplast colocalized with BiP, an ER marker protein. RB60 accumulates in microsomes that exhibit a typical ER magnesium-shift, and cotranslationally translocates into ER microsomes. The first 50-aa leader of RB60 is sufficient for both chloroplast and ER targeting. The leader is cleaved upon translocation into the ER, whereas it remains intact after import to the chloroplast. The leader sequence also contains an acidic domain that appears necessary for the protein's association with the thylakoid membranes. Based on these and additional results, we propose that the dual localization of RB60 occurs via the two conserved transport mechanisms, to the chloroplast and to the ER, that the chloroplast RB60 most likely carries an additional function in the ER, and that its mode of transport, including the differential cleavage of its N terminus, plays an important role in its suborganellar localization and organellar-specific function.
Collapse
Affiliation(s)
- Alexander Levitan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
41
|
Sláviková S, Vacula R, Fang Z, Ehara T, Osafune T, Schwartzbach SD. Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena. J Cell Sci 2005; 118:1651-61. [PMID: 15797929 DOI: 10.1242/jcs.02277] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Euglena complex chloroplasts evolved through secondary endosymbiosis between a phagotrophic trypanosome host and eukaryotic algal endosymbiont. Cytoplasmically synthesized chloroplast proteins are transported in vesicles as integral membrane proteins from the ER to the Golgi apparatus to the Euglena chloroplast. Euglena chloroplast preprotein pre-sequences contain a functional N-terminal ER-targeting signal peptide and a domain having characteristics of a higher plant chloroplast targeting transit peptide, which contains a hydrophobic stop-transfer membrane anchor sequence that anchors the precursor in the vesicle membrane. Pulse-chase subcellular fractionation studies showed that (35)S-labeled precursor to the light harvesting chlorophyll a/b binding protein accumulated in the Golgi apparatus of Euglena incubated at 15 degrees C and transport to the chloroplast resumed after transfer to 26 degrees C. Transport of the (35)S-labeled precursor to the chlorophyll a/b binding protein from Euglena Golgi membranes to Euglena chloroplasts and import into chloroplasts was reconstituted using Golgi membranes isolated from 15 degrees C cells returned to 26 degrees C. Transport was dependent upon extra- and intrachloroplast ATP and GTP hydrolysis. Golgi to chloroplast transport was not inhibited by N-ethylmaleimide indicating that fusion of Golgi vesicles to the chloroplast envelope does not require N-ethylmaleimide-sensitive factor (NSF). This suggests that N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are not utilized in the targeting fusion reaction. The Euglena precursor to the chloroplast-localized small subunit of ribulose-1,5-bisphosphate carboxylase was not imported into isolated pea chloroplasts. A precursor with the N-terminal signal peptide deleted was imported, indicating that the Euglena pre-sequence has a transit peptide that functions in pea chloroplasts. A precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase with the hydrophobic membrane anchor and the pre-sequence region C-terminal to the hydrophobic membrane anchor deleted was imported localizing the functional transit peptide to the Euglena pre-sequence region between the signal peptidase cleavage site and the hydrophobic membrane anchor. The Euglena precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase and the deletion constructs were not post-translationally imported into isolated Euglena chloroplasts indicating that vesicular transport is the obligate import mechanism. Taken together, these studies suggest that protein import into complex Euglena chloroplasts evolved by developing a novel vesicle fusion targeting system to link the host secretory system to the transit peptide-dependent chloroplast protein import system of the endosymbiont.
Collapse
Affiliation(s)
- Silvia Sláviková
- School of Biological Sciences, E207 Beadle Center, University of Nebraska, Lincoln, NE 68588, USA
| | | | | | | | | | | |
Collapse
|
42
|
Nassoury N, Morse D. Protein targeting to the chloroplasts of photosynthetic eukaryotes: getting there is half the fun. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:5-19. [PMID: 15777835 DOI: 10.1016/j.bbamcr.2004.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 08/10/2004] [Accepted: 09/17/2004] [Indexed: 11/19/2022]
Abstract
The plastids of many algae are surrounded by three or four membranes, thought to be a consequence of their evolutionary origin through secondary endosymbiosis between photosynthetic and non-photosynthetic eukaryotes. Each membrane constitutes a barrier to the passage of proteins, so protein targeting in these complex plastids has an extra level of difficulty when compared to higher plants. In the latter, protein translocation across the two membranes uses multi-protein complexes that together import proteins possessing an N-terminal leader sequence rich in serine and threonine (S/T). In contrast, while targeting to most complex plastids also involves an S/T-rich region, this region is preceded by an N-terminal hydrophobic signal peptide. This arrangement of peptide sequences suggests that proteins directed to complex plastids pass through the ER, as do other proteins with hydrophobic signal peptides. However, this simplistic view is not always easy to reconcile with what is known about the different secondary plastids. In the first group, with plastids bounded by three membranes, plastid-directed proteins do indeed arrive in Golgi-derived vesicles, but a second hydrophobic region follows the S/T-rich region in all leaders. In the second group, where four membranes completely surround the plastids, it is still not known how the proteins arrive at the plastids, and in addition, one member of this group uses a targeting signal rich in asparagine and lysine in place of the S/T-rich region. In the third group, the fourth bounding membrane is contiguous with the ER, but it is not clear what distinguishes plastid membranes from others in the endomembrane system. Knowing what to expect is important, as genomic sequencing programs may soon be turning up some of the missing pieces in these translocation puzzles.
Collapse
Affiliation(s)
- Nasha Nassoury
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke est, Montreal, Quebec, Canada H1X 2B2
| | | |
Collapse
|
43
|
Abstract
Considerable work still needs to be done to understand more fully the basic processes going on inside the non-photosynthetic plastid organelle of Plasmodium spp., the causative agent of malaria. Following an explosion of genomic and transcriptional information in recent years, research workers are still analysing these data looking for new material relevant to the plastid. Several metabolic and housekeeping functions based on bacterial biochemistry have been elucidated and this has given impetus to finding lead inhibitors based on established anti-microbials. Structural investigations of plastid-associated enzymes identified as potential targets have begun. This review gives a perspective on the research to date and hopes to emphasize that a practical outcome for the clinic should be an important focus of future efforts. Malaria parasites have become resistant to front-line anti-malarials that are widely used and were formerly dependable. This has become a worrying problem in many regions where malaria is endemic. The time lag between hunting for new inhibitors and their application as pharmaceuticals is so long and costly that a steady stream of new ventures has to be undertaken to give a reasonable chance of finding affordable and appropriate anti-malarials for the future. Attempts to find inhibitors of the plastid organelle of the malaria parasite should be intensified in such programmes.
Collapse
Affiliation(s)
- R J M Iain Wilson
- National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK.
| |
Collapse
|
44
|
DeRocher A, Gilbert B, Feagin JE, Parsons M. Dissection of brefeldin A-sensitive and -insensitive steps in apicoplast protein targeting. J Cell Sci 2005; 118:565-74. [PMID: 15657083 DOI: 10.1242/jcs.01627] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The apicoplast is a relict plastid found in many apicomplexans, including the pathogens Toxoplasma gondii and Plasmodium falciparum. Nucleus-encoded apicoplast proteins enter the ER, and after cleavage of the signal sequence, are routed to the apicoplast by virtue of a transit peptide, which is subsequently removed. To assess the mechanisms of localization we examined stable transfectants of T. gondii for the localization and processing of various GFP fusion proteins. GFP fusions bearing apicoplast targeting sequences targeted efficiently to the plastid, with no retention in the ER, even when an ER retention/retrieval sequence was added. Incubation with brefeldin A, which blocks ER-to-Golgi trafficking by inhibiting a GTP exchange factor required for retrograde trafficking, blocked the processing of the protein. Surprisingly, it did not affect the immunofluorescence pattern. To avoid the potentially misleading presence of pre-existing GFP fusion protein in the apicoplast, we used a ligand-regulated aggregation system to arrest the GFP fusion protein in the ER prior to trafficking. Upon addition of ligand to promote disaggregation, the fusion protein targeted to the plastid, even in the presence of brefeldin A. Ligand release at 15 degrees C, which blocks trafficking of Golgi-routed proteins, also allowed significant localization to the plastid. Our data indicate that apicoplast proteins can localize to the region of the plastid when Golgi trafficking is inhibited, but suggest that some steps in import or maturation of the proteins may require a brefeldin A-sensitive GTP exchange factor.
Collapse
Affiliation(s)
- Amy DeRocher
- Seattle Biomedical Research Institute, 307 Westlake Avenue N., Suite 500 Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
45
|
Kilian O, Kroth PG. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:175-83. [PMID: 15634195 DOI: 10.1111/j.1365-313x.2004.02294.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Several groups of algae evolved by secondary endocytobiosis, which is defined as the uptake of a eukaryotic alga into a eukaryotic host cell and the subsequent transformation of the endosymbiont into an organelle. Due to this explicit evolutionary history such algae possess plastids that are surrounded by either three or four membranes. Protein targeting into plastids of these organisms depends on N-terminal bipartite presequences consisting of a signal and a transit peptide domain. This suggests that different protein targeting systems may have been combined during establishment of secondary endocytobiosis to enable the transport of proteins into the plastids. Here we demonstrate the presence of an apparently new type of transport into diatom plastids. We analyzed protein targeting into the plastids of diatoms and identified a conserved amino acid sequence motif within plastid preprotein targeting sequences. We expressed several diatom plastid presequence:GFP fusion proteins with or without modifications within that motif in the diatom Phaeodactylum tricornutum and found that a single conserved phenylalanine is crucial for protein transport into the diatom plastids in vivo, thus indicating the presence of a so far unknown new type of targeting signal. We also provide experimental data about the minimal requirements of a diatom plastid targeting presequence and demonstrate that the signal peptides of plastid preproteins and of endoplasmic reticulum-targeted preproteins in diatoms are functionally equivalent. Furthermore we show that treatment of the cells with Brefeldin A arrests protein transport into the diatom plastids suggesting that a vesicular transport step within the plastid membranes may occur.
Collapse
Affiliation(s)
- Oliver Kilian
- Fachbereich Biologie, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
46
|
Kilian O, Kroth PG. Presequence acquisition during secondary endocytobiosis and the possible role of introns. J Mol Evol 2004; 58:712-21. [PMID: 15461428 DOI: 10.1007/s00239-004-2593-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Targeting of nucleus-encoded proteins into chloroplasts is mediated by N-terminal presequences. During evolution of plastids from formerly free-living cyanobacteria by endocytobiosis, genes for most plastid proteins have been transferred from the plastid genome to the nucleus and subsequently had to be equipped with such plastid targeting sequences. So far it is unclear how the gene domains coding for presequences and the respective mature proteins may have been assembled. While land plant plastids are supposed to originate from a primary endocytobiosis event (a prokaryotic cyanobacterium was taken up by a eukaryotic cell), organisms with secondary plastids like diatoms experienced a second endocytobiosis step involving a eukaryotic alga taken up by a eukaryotic host cell. In this group of algae, apparently most genes encoding chloroplast proteins have been transferred a second time (from the nucleus of the endosymbiont to the nucleus of the secondary host) and thus must have been equipped with additional targeting signals. We have analyzed cDNAs and the respective genomic DNA fragments of seven plastid preproteins from the diatom Phaeodactylum tricornutum. In all of these genes we found single spliceosomal introns, generally located within the region coding for the N-terminal plastid targeting sequences or shortly downstream of it. The positions of the introns can be related to the putative phylogenetic histories of the respective genes, indicating that the bipartite targeting sequences in these secondary algae might have evolved by recombination events via introns.
Collapse
Affiliation(s)
- Oliver Kilian
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
47
|
Keeling PJ. Diversity and evolutionary history of plastids and their hosts. AMERICAN JOURNAL OF BOTANY 2004; 91:1481-93. [PMID: 21652304 DOI: 10.3732/ajb.91.10.1481] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
By synthesizing data from individual gene phylogenies, large concatenated gene trees, and other kinds of molecular, morphological, and biochemical markers, we begin to see the broad outlines of a global phylogenetic tree of eukaryotes. This tree is apparently composed of five large assemblages, or "supergroups." Plants and algae, or more generally eukaryotes with plastids (the photosynthetic organelle of plants and algae and their nonphotosynthetic derivatives) are scattered among four of the five supergroups. This is because plastids have had a complex evolutionary history involving several endosymbiotic events that have led to their transmission from one group to another. Here, the history of the plastid and of its various hosts is reviewed with particular attention to the number and nature of the endosymbiotic events that led to the current distribution of plastids. There is accumulating evidence to support a single primary origin of plastids from a cyanobacterium (with one intriguing possible exception in the little-studied amoeba Paulinella), followed by the diversification of glaucophytes, red and green algae, with plants evolving from green algae. Following this, some of these algae were themselves involved in secondary endosymbiotic events. The best current evidence indicates that two independent secondary endosymbioses involving green algae gave rise to euglenids and chlorarachniophytes, whereas a single endosymbiosis with a red algae gave rise to the chromalveolates, a diverse group including cryptomonads, haptophytes, heterokonts, and alveolates. Dinoflagellates (alveolates) have since taken up other algae in serial secondary and tertiary endosymbioses, raising a number of controversies over the origin of their plastids, and by extension, the recently discovered cryptic plastid of the closely related apicomplexan parasites.
Collapse
Affiliation(s)
- Patrick J Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4 Canada
| |
Collapse
|
48
|
Rogers MB, Archibald JM, Field MA, Li C, Striepen B, Keeling PJ. Plastid-Targeting Peptides from the Chlorarachniophyte Bigelowiella natans. J Eukaryot Microbiol 2004; 51:529-35. [PMID: 15537087 DOI: 10.1111/j.1550-7408.2004.tb00288.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorarachniophytes are marine amoeboflagellate protists that have acquired their plastid (chloroplast) through secondary endosymbiosis with a green alga. Like other algae, most of the proteins necessary for plastid function are encoded in the nuclear genome of the secondary host. These proteins are targeted to the organelle using a bipartite leader sequence consisting of a signal peptide (allowing entry in to the endomembrane system) and a chloroplast transit peptide (for transport across the chloroplast envelope membranes). We have examined the leader sequences from 45 full-length predicted plastid-targeted proteins from the chlorarachniophyte Bigelowiella natans with the goal of understanding important features of these sequences and possible conserved motifs. The chemical characteristics of these sequences were compared with a set of 10 B. natans endomembrane-targeted proteins and 38 cytosolic or nuclear proteins, which show that the signal peptides are similar to those of most other eukaryotes, while the transit peptides differ from those of other algae in some characteristics. Consistent with this, the leader sequence from one B. natans protein was tested for function in the apicomplexan parasite, Toxoplasma gondii, and shown to direct the secretion of the protein.
Collapse
Affiliation(s)
- Matthew B Rogers
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Kempner ES, Miller JH. The molecular biology of Euglena gracilis. XV. Recovery from centrifugation-induced stratification. ACTA ACUST UNITED AC 2004; 56:219-24. [PMID: 14584024 DOI: 10.1002/cm.10145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The contents of Euglena gracilis cells can be separated in vivo by ultracentrifugation. Within the unbroken cell, each set of components forms a distinct layer according to their respective densities. The degree of segregation increases with both the g-force and the time of centrifugation, up to a maximum at 100,000 x g for 1 h, when six distinct strata can be observed. When returned to normal growth conditions, essentially all the cells return to the normal state and growth pattern. Greater g-forces or longer exposures do not alter the observable strata, but the ability of the cells to recover is diminished. Smaller g-forces result in less separation of cellular contents and all cells recover, even after 18 h of exposure. Euglena cells stratified at 100,000 x g for 1 h were returned to normal growth conditions; recovery was followed microscopically and by the rate of utilization of oxygen as well as that of the single carbon source. The cells recovered their normal state within 1 to 2 h, which is only a tenth of the normal doubling time. The mechanism for this recovery involves a natural process of change in cell shape caused by contraction and relaxation of the pellicle, a cell surface structure.
Collapse
Affiliation(s)
- E S Kempner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
50
|
Chen MH, Huang LF, Li HM, Chen YR, Yu SM. Signal peptide-dependent targeting of a rice alpha-amylase and cargo proteins to plastids and extracellular compartments of plant cells. PLANT PHYSIOLOGY 2004; 135:1367-77. [PMID: 15235120 PMCID: PMC519054 DOI: 10.1104/pp.104.042184] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Revised: 04/05/2004] [Accepted: 04/06/2004] [Indexed: 05/18/2023]
Abstract
alpha-Amylases are important enzymes for starch degradation in plants. However, it has been a long-running debate as to whether alpha-amylases are localized in plastids where starch is stored. To study the subcellular localization of alpha-amylases in plant cells, a rice (Oryza sativa) alpha-amylase, alphaAmy3, with or without its own signal peptide (SP) was expressed in transgenic tobacco (Nicotiana tabacum) and analyzed. Loss-of-function analyses revealed that SP was required for targeting of alphaAmy3 to chloroplasts and/or amyloplasts and cell walls and/or extracellular compartments of leaves and suspension cells. SP was also required for in vitro transcribed and/or translated alphaAmy3 to be cotranslationally imported and processed in canine microsomes. alphaAmy3, present in chloroplasts of transgenic tobacco leaves, was processed to a product with Mr similar to alphaAmy3 minus its SP. Amino acid sequence analysis revealed that the SP of chloroplast localized alphaAmy3 was cleaved at a site only one amino acid preceding the predicted cleavage site. Function of the alphaAmy3 SP was further studied by gain-of-function analyses. beta-Glucuronidase (GUS) and green fluorescence protein fused with or without the alphaAmy3 SP was expressed in transgenic tobacco or rice. The alphaAmy3 SP directed translocation of GUS and green fluorescence protein to chloroplasts and/or amyloplasts and cell walls in tobacco leaves and rice suspension cells. The SP of another rice alpha-amylase, alphaAmy8, similarly directed the dual localizations of GUS in transgenic tobacco leaves. This study is the first evidence of SP-dependent dual translocations of proteins to plastids and extracellular compartments, which provides new insights into the role of SP in protein targeting and the pathways of SP-dependent protein translocation in plants.
Collapse
Affiliation(s)
- Min-Huei Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 11529 Taiwan, Republic of China
| | | | | | | | | |
Collapse
|