1
|
Chakraborty S, Mishra A, Choudhuri A, Bhaumik T, Sengupta R. Leveraging the redundancy of S-denitrosylases in response to S-nitrosylation of caspases: Experimental strategies and beyond. Nitric Oxide 2024; 149:18-31. [PMID: 38823434 DOI: 10.1016/j.niox.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Redox-based protein posttranslational modifications, such as S-nitrosylation of critical, active site cysteine thiols have garnered significant clinical attention and research interest, reasoning for one of the crucial biological implications of reactive messenger molecule, nitric oxide in the cellular repertoire. The stringency of the S-(de)nitrosylation-based redox switch governs the activity and contribution of several susceptible enzymes in signal transduction processes and diverse pathophysiological settings, thus establishing it as a transient yet reasonable, and regulated mechanism of NO adduction and release. Notably, endogenous proteases like cytosolic and mitochondrial caspases with a molecular weight ranging from 33 to 55 kDa are susceptible to performing this biochemistry in the presence of major oxidoreductases, which further unveils the enormous redox-mediated regulational control of caspases in the etiology of diseases. In addition to advancing the progress of the current state of understanding of 'redox biochemistry' in the field of medicine and enriching the existing dynamic S-nitrosoproteome, this review stands as a testament to an unprecedented shift in the underpinnings for redundancy and redox relay between the major redoxin/antioxidant systems, fine-tuning of which can command the apoptotic control of caspases at the face of nitro-oxidative stress. These intricate functional overlaps and cellular backups, supported rationally by kinetically favorable reaction mechanisms suggest the physiological relevance of identifying and involving such cognate substrates for cellular S-denitrosylases that can shed light on the bigger picture of extensively proposing targeted therapies and redox-based drug designing to potentially alleviate the side effects of NOx/ROS in disease pathogenesis.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Tamal Bhaumik
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
2
|
Wang L, Guo Y, Shen Y, Yang K, Cai X, Zhang B, Liu Z, Zheng Y. Microbial production of sulfur-containing amino acids using metabolically engineered Escherichia coli. Biotechnol Adv 2024; 73:108353. [PMID: 38593935 DOI: 10.1016/j.biotechadv.2024.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
L-Cysteine and L-methionine, as the only two sulfur-containing amino acids among the canonical 20 amino acids, possess distinct characteristics and find wide-ranging industrial applications. The use of different organisms for fermentative production of L-cysteine and L-methionine is gaining increasing attention, with Escherichia coli being extensively studied as the preferred strain. This preference is due to its ability to grow rapidly in cost-effective media, its robustness for industrial processes, the well-characterized metabolism, and the availability of molecular tools for genetic engineering. This review focuses on the genetic and molecular mechanisms involved in the production of these sulfur-containing amino acids in E. coli. Additionally, we systematically summarize the metabolic engineering strategies employed to enhance their production, including the identification of new targets, modulation of metabolic fluxes, modification of transport systems, dynamic regulation strategies, and optimization of fermentation conditions. The strategies and design principles discussed in this review hold the potential to facilitate the development of strain and process engineering for direct fermentation of sulfur-containing amino acids.
Collapse
Affiliation(s)
- Lijuan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yingying Guo
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yizhou Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Kun Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
3
|
Anjou C, Lotoux A, Morvan C, Martin-Verstraete I. From ubiquity to specificity: The diverse functions of bacterial thioredoxin systems. Environ Microbiol 2024; 26:e16668. [PMID: 38899743 DOI: 10.1111/1462-2920.16668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The thioredoxin (Trx) system, found universally, is responsible for the regeneration of reversibly oxidized protein thiols in living cells. This system is made up of a Trx and a Trx reductase, and it plays a central role in maintaining thiol-based redox homeostasis by reducing oxidized protein thiols, such as disulfide bonds in proteins. Some Trxs also possess a chaperone function that is independent of thiol-disulfide exchange, in addition to their thiol-disulfide reductase activity. These two activities of the Trx system are involved in numerous physiological processes in bacteria. This review describes the diverse physiological roles of the Trx system that have emerged throughout bacterial evolution. The Trx system is essential for responding to oxidative and nitrosative stress. Beyond this primary function, the Trx system also participates in redox regulation and signal transduction, and in controlling metabolism, motility, biofilm formation, and virulence. This range of functions has evolved alongside the diversity of bacterial lifestyles and their specific constraints. This evolution can be characterized by the multiplication of the systems and by the specialization of cofactors or targets to adapt to the constraints of atypical lifestyles, such as photosynthesis, insect endosymbiosis, or spore-forming bacteria.
Collapse
Affiliation(s)
- Cyril Anjou
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Aurélie Lotoux
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Geissel F, Lang L, Husemann B, Morgan B, Deponte M. Deciphering the mechanism of glutaredoxin-catalyzed roGFP2 redox sensing reveals a ternary complex with glutathione for protein disulfide reduction. Nat Commun 2024; 15:1733. [PMID: 38409212 PMCID: PMC10897161 DOI: 10.1038/s41467-024-45808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Glutaredoxins catalyze the reduction of disulfides and are key players in redox metabolism and regulation. While important insights were gained regarding the reduction of glutathione disulfide substrates, the mechanism of non-glutathione disulfide reduction remains highly debated. Here we determined the rate constants for the individual redox reactions between PfGrx, a model glutaredoxin from Plasmodium falciparum, and redox-sensitive green fluorescent protein 2 (roGFP2), a model substrate and versatile tool for intracellular redox measurements. We show that the PfGrx-catalyzed oxidation of roGFP2 occurs via a monothiol mechanism and is up to three orders of magnitude faster when roGFP2 and PfGrx are fused. The oxidation kinetics of roGFP2-PfGrx fusion constructs reflect at physiological GSSG concentrations the glutathionylation kinetics of the glutaredoxin moiety, thus allowing intracellular structure-function analysis. Reduction of the roGFP2 disulfide occurs via a monothiol mechanism and involves a ternary complex with GSH and PfGrx. Our study provides the mechanistic basis for understanding roGFP2 redox sensing and challenges previous mechanisms for protein disulfide reduction.
Collapse
Affiliation(s)
- Fabian Geissel
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Britta Husemann
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, D-66123, Saarbrücken, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
5
|
Patel A, Tiwari K, Asrani P, Alothaid H, Alahmari AFA, Mirdad R, Ajmal MR, Tarique M. Glutaredoxin proteins from E. coli isoforms were compared in terms of energy frustration. BRAZ J BIOL 2023; 83:e273091. [PMID: 37729314 DOI: 10.1590/1519-6984.273091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 09/22/2023] Open
Abstract
Glutaredoxin (GRXs) protein plays a vital role inside the cell, including redox control of transcription to the cell's antioxidant defense, apoptosis, and cellular differentiation regulation. In this study, we have investigated the energy landscape and characterized the pattern of local frustration in different forms and states of the GRX protein ofE. coli.Analysis was done on the conformational alterations, significant changes in the frustration pattern, and different GRXs such as GRX-II, GRX-III, GRX-II-GSH, and GRX-III-GSH complex. We have found the practice of frustration, and structure was quite similar in the same isoform having different states of protein; however, a significant difference was observed between different isoforms. Moreover, oxidation of GRX-I introduced an extra α-helix increasing the destabilizing interactions within the protein. The study of frustrated contacts on oxidized and reduced GRX and with bound and unbound Glutathione indicates its potential application in activating and regulating the behavior of GRXs.
Collapse
Affiliation(s)
- A Patel
- King Khalid University, College of Medicine, Department of Clinical Biochemistry, Abha, Kingdom of Saudi Arabia
| | - K Tiwari
- King Khalid University, College of Medicine, Department of Clinical Biochemistry, Abha, Kingdom of Saudi Arabia
- Amity University, Amity Institute of Microbial Biotechnology, Noida, UP, India
| | - P Asrani
- Amity University, Amity Institute of Microbial Biotechnology, Noida, UP, India
| | - H Alothaid
- Al Baha University, Faculty of Applied Medical Sciences, Department of Basic Medical Sciences, Al Baha, Al Baha Province, Saudi Arabia
| | - A F A Alahmari
- King Khalid University, College of Medicine, Department of Clinical Biochemistry, Abha, Saudi Arabia
| | - R Mirdad
- King Khalid University, Department of Surgery, Abha, Saudi Arabia
| | - M R Ajmal
- University of Tabuk, Faculty of Science, Biochemistry Department, Physical Biochemistry Research Laboratory, Tabuk, Saudi Arabia
| | - M Tarique
- Almanac Life Science India Private Limited, New Delhi, India
| |
Collapse
|
6
|
Chakraborty S, Sircar E, Mishra A, Choudhuri A, Dutta S, Bhattacharyya C, Chakraborty S, Bhaumik T, Si S, Rao S, Sarma A, Ray A, Sachin K, Sengupta R. De-glutathionylases: The resilient underdogs to keep neurodegeneration at bay. Biochem Biophys Res Commun 2023; 653:83-92. [PMID: 36863212 DOI: 10.1016/j.bbrc.2023.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Proteins become S-glutathionylated as a result of the derivatization of their cysteine thiols with the thiolate anion derivative of glutathione; this process is frequently linked to diseases and protein misbehavior. Along with the other well-known oxidative modifications like S-nitrosylation, S-glutathionylation has quickly emerged as a major contributor to a number of diseases, with a focus on neurodegeneration. The immense clinical significance of S-glutathionylation in cell signaling and the genesis of diseases are progressively coming to light with advanced research, which is also creating new opportunities for prompt diagnostics that utilize this phenomenon. In-depth investigation in recent years has revealed other significant deglutathionylases in addition to glutaredoxin, necessitating the hunt for their specific substrates. The precise catalytic mechanisms of these enzymes must also be understood, along with how the intracellular environment affects their impact on protein conformation and function. These insights must then be extrapolated to the understanding of neurodegeneration and the introduction of novel and clever therapeutic approaches to clinics. Clarifying the importance of the functional overlap of glutaredoxin and other deglutathionylases and examining their complementary functions as defense systems in the face of stress are essential prerequisites for predicting and promoting cell survival under high oxidative/nitrosative stress.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Esha Sircar
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India; Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Camelia Bhattacharyya
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Souhridhra Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Tamal Bhaumik
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Somsundar Si
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Suhasini Rao
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Anish Sarma
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Anirban Ray
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Kumar Sachin
- Himalayan School of Biosciences, Swami Rama Himalayan University, 248016, Jolly Grant, Dehradun, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
7
|
Dong Q, Yan Q, Zhang B, Zhang LQ, Wu X. Effect of the Monothiol Glutaredoxin GrxD on 2,4-Diacetylphloroglucinol Biosynthesis and Biocontrol Activity of Pseudomonas fluorescens 2P24. Front Microbiol 2022; 13:920793. [PMID: 35875535 PMCID: PMC9304865 DOI: 10.3389/fmicb.2022.920793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas fluorescens 2P24 is a plant root-associated bacterium that suppresses several soilborne plant diseases due to its production of the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG). The biosynthesis of 2,4-DAPG is controlled by many regulatory elements, including the global regulator of the Gac/Rsm regulon and the pathway-specific repressor PhlF. In this work, a novel genetic element grxD, which encodes the monothiol glutaredoxin GrxD, was identified and characterized in the production of 2,4-DAPG in P. fluorescens 2P24. Our data showed that the mutation of grxD remarkably decreased 2,4-DAPG production. GrxD lost its ability to alter the production of 2,4-DAPG when the active-site CGFS motif of GrxD was mutated by site-directed mutagenesis. Further studies showed that the RsmA and RsmE proteins were essential for the GrxD-mediated regulation of 2,4-DAPG and exoprotease production. In addition, our data revealed that the deletion of grxD increased the expression of phlF, which negatively regulated the production of 2,4-DAPG. In addition, the grxD mutant was severely impaired in the biocontrol effect against the bacterial wilt of tomato. Overall, our results indicated that the monothiol glutaredoxin GrxD is involved in the production of 2,4-DAPG of P. fluorescens by influencing the Gac/Rsm global signaling pathway and transcriptional regulator PhlF and is essential for the biocontrol properties.
Collapse
Affiliation(s)
- Qiuling Dong
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Bo Zhang
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Li-qun Zhang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaogang Wu
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, China
- *Correspondence: Xiaogang Wu,
| |
Collapse
|
8
|
Nishikawa M, Noda S, Henmi K, Ogawa K. Sulphate repression of ssuD-dependent alkanesulphonate-sulphur assimilation in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35704379 DOI: 10.1099/mic.0.001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli cells utilize alkanesulphonates including taurine as the sulphur source. We previously reported that when E. coli cells carrying a double deletion in tauD and cysN were inoculated into a taurine-containing minimal medium, they started to grow only after long-term incubation (Nishikawa et al. 2018, Microbiology 164: 1446-1456). We show here that cells that can induce ssuD-dependent alkanesulphonate-sulphur assimilation (SASSA) are essentially rare, but suppressors that can induce SASSA appear during long-term incubation. Mutant cells carrying ΔtauD and ΔcysN, ΔcysC or ΔcysH generated suppressor cells that can induce SASSA at a frequency of about 10-6 in a population. Whereas ΔtauD ΔcysN cells without prior SASSA did not express ssuD even when necessary, the cells with prior SASSA properly expressed ssuD. Whole-genome DNA sequencing of a clone isolated from ΔtauD ΔcysN cells with prior SASSA revealed that the influx of sulphate or thiosulphate may be related to the regulation of SASSA. To clarify whether sulphate or thiosulphate affects the induction of SASSA, the effect of mutations in sbp and cysP, which are responsible for sulphate and thiosulphate uptake with different preferences for substrates, was examined. Only the ΔtauD ΔcysN Δsbp mutant did not show repression of SASSA when no sulphate was added to the medium. When the concentration of the sulphate added was over 10 μM, the Δsbp mutant showed repression of SASSA. Therefore, it was considered that the influx of extracellular sulphate resulted in repression of SASSA.
Collapse
Affiliation(s)
- Masanobu Nishikawa
- Research Institute for Biological Sciences Okayama (RIBS Okayama), Okayama, Japan
| | - Soichiro Noda
- Research Institute for Biological Sciences Okayama (RIBS Okayama), Okayama, Japan
| | - Kenji Henmi
- Research Institute for Biological Sciences Okayama (RIBS Okayama), Okayama, Japan
| | - Ken'ichi Ogawa
- Research Institute for Biological Sciences Okayama (RIBS Okayama), Okayama, Japan
| |
Collapse
|
9
|
Ma Z, Higgs M, Alqahtani M, Bakshi CS, Malik M. ThioredoxinA1 Controls the Oxidative Stress Response of Francisella tularensis Live Vaccine Strain (LVS). J Bacteriol 2022; 204:e0008222. [PMID: 35475633 PMCID: PMC9112935 DOI: 10.1128/jb.00082-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is an intracellular, Gram-negative bacterium known for causing a disease known as tularemia in the Northern Hemisphere. F. tularensis is classified as a category A select agent by the CDC based on its possible use as a bioterror agent. F. tularensis overcomes oxidative stress encountered during its growth in the environment or host macrophages by encoding antioxidant enzymes such as superoxide dismutases, catalase, and alkylhydroperoxy reductase. These antioxidant enzymes are regulated by the oxidative stress response regulator, OxyR. In addition to these antioxidant enzymes, F. tularensis also encodes two thioredoxins, TrxA1 (FTL_0611) and TrxA2 (FTL_1224); however, their role in the oxidative stress response of F. tularensis is not known. This study investigated the role of thioredoxins of F. tularensis in the oxidative stress response and intracellular survival. Our results demonstrate that TrxA1 but not TrxA2 plays a major role in the oxidative stress response of F. tularensis. Most importantly, this study elucidates a novel mechanism through which the TrxA1 of F. tularensis controls the oxidative stress response by regulating the expression of the master regulator, oxyR. Further, TrxA1 is required for the intramacrophage survival and growth of Francisella. Overall, this study describes a novel role of thioredoxin, TrxA1, in regulating the oxidative stress response of F. tularensis. IMPORTANCE The role of thioredoxins in the oxidative stress response of F. tularensis is not known. This study demonstrates that of the two thioredoxins, TrxA1 is vital to counter the oxidative stress in F. tularensis live vaccine strain (LVS). Furthermore, this study shows differences in the well-studied thioredoxins of Escherichia coli. First, the expression of TrxA1 of F. tularensis is independent of the oxidative stress response regulator, OxyR. Second and most importantly, TrxA1 regulates the expression of oxyR and, therefore, the OxyR-dependent oxidative stress response of F. tularensis. Overall, this study reports a novel regulatory role of TrxA1 of F. tularensis in the oxidative stress response.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Matthew Higgs
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Maha Alqahtani
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Chandra Shekhar Bakshi
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Meenakshi Malik
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
10
|
Liu X, Zhang Y, Zhuang L, Olszewski K, Gan B. NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes Dis 2021; 8:731-745. [PMID: 34522704 PMCID: PMC8427322 DOI: 10.1016/j.gendis.2020.11.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 01/18/2023] Open
Abstract
Cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11; also known as xCT) plays a key role in antioxidant defense by mediating cystine uptake, promoting glutathione synthesis, and maintaining cell survival under oxidative stress conditions. Recent studies showed that, to prevent toxic buildup of highly insoluble cystine inside cells, cancer cells with high expression of SLC7A11 (SLC7A11high) are forced to quickly reduce cystine to more soluble cysteine, which requires substantial NADPH supply from the glucose-pentose phosphate pathway (PPP) route, thereby inducing glucose- and PPP-dependency in SLC7A11high cancer cells. Limiting glucose supply to SLC7A11high cancer cells results in significant NADPH “debt”, redox “bankruptcy”, and subsequent cell death. This review summarizes our current understanding of NADPH-generating and -consuming pathways, discusses the opposing role of SLC7A11 in protecting cells from oxidative stress–induced cell death such as ferroptosis but promoting glucose starvation–induced cell death, and proposes the concept that SLC7A11-mediated cystine uptake acts as a double-edged sword in cellular redox regulation. A detailed understanding of SLC7A11 in redox biology may identify metabolic vulnerabilities in SLC7A11high cancer for therapeutic targeting.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas, MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
11
|
Molecular Basis for the Interactions of Human Thioredoxins with Their Respective Reductases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6621292. [PMID: 34122725 PMCID: PMC8189816 DOI: 10.1155/2021/6621292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 12/03/2022]
Abstract
The mammalian cytosolic thioredoxin (Trx) system consists of Trx1 and its reductase, the NADPH-dependent seleno-enzyme TrxR1. These proteins function as electron donor for metabolic enzymes, for instance in DNA synthesis, and the redox regulation of numerous processes. In this work, we analysed the interactions between these two proteins. We proposed electrostatic complementarity as major force controlling the formation of encounter complexes between the proteins and thus the efficiency of the subsequent electron transfer reaction. If our hypothesis is valid, formation of the encounter complex should be independent of the redox reaction. In fact, we were able to confirm that also a redox inactive mutant of Trx1 lacking both active site cysteinyl residues (C32,35S) binds to TrxR1 in a similar manner and with similar kinetics as the wild-type protein. We have generated a number of mutants with alterations in electrostatic properties and characterised their interaction with TrxR1 in kinetic assays. For human Trx1 and TrxR1, complementary electrostatic surfaces within the area covered in the encounter complex appear to control the affinity of the reductase for its substrate Trx. Electrostatic compatibility was even observed in areas that do not form direct molecular interactions in the encounter complex, and our results suggest that the electrostatic complementarity in these areas influences the catalytic efficiency of the reduction. The human genome encodes ten cytosolic Trx-like or Trx domain-containing proteins. In agreement with our hypothesis, the proteins that have been characterised as TrxR1 substrates also show the highest similarity in their electrostatic properties.
Collapse
|
12
|
Cao Y, Jiang G, Li M, Fang X, Zhu D, Qiu W, Zhu J, Yu D, Xu Y, Zhong Z, Zhu J. Glutaredoxins Play an Important Role in the Redox Homeostasis and Symbiotic Capacity of Azorhizobium caulinodans ORS571. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1381-1393. [PMID: 32970520 DOI: 10.1094/mpmi-04-20-0098-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glutaredoxin (GRX) plays an essential role in the control of the cellular redox state and related pathways in many organisms. There is limited information on GRXs from the model nitrogen (N2)-fixing bacterium Azorhizobium caulinodans. In the present work, we identified and performed functional analyses of monothiol and dithiol GRXs in A. caulinodans in the free-living state and during symbiosis with Sesbania rostrata. Our data show that monothiol GRXs may be very important for bacterial growth under normal conditions and in response to oxidative stress due to imbalance of the redox state in grx mutants of A. caulinodans. Functional redundancies were also observed within monothiol and dithiol GRXs in terms of different physiological functions. The changes in catalase activity and iron content in grx mutants were assumed to favor the maintenance of bacterial resistance against oxidants, nodulation, and N2 fixation efficiency in this bacterium. Furthermore, the monothiol GRX12 and dithiol GRX34 play a collective role in symbiotic associations between A. caulinodans and Sesbania rostrata. Our study provided systematic evidence that further investigations are required to understand the importance of glutaredoxins in A. caulinodans and other rhizobia.
Collapse
Affiliation(s)
- Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Mingxu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Xingxing Fang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Dan Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Wei Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Juanjuan Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Daogeng Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, 571737 Danzhou, Hainan, PR China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Jun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| |
Collapse
|
13
|
Li X, Liu Y, Zhong J, Che C, Gong Z, Si M, Yang G. Molecular mechanisms of Mycoredoxin-1 in resistance to oxidative stress in Corynebacterium glutamicum. J GEN APPL MICROBIOL 2020; 67:15-23. [PMID: 33148889 DOI: 10.2323/jgam.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Glutaredoxins (Grxs) with Cys-Pro-Phe (Tyr)-Cys motif and a thioredoxin fold structure play an important role in the anti-oxidant system of bacteria by catalyzing a variety of thiol-disulfide exchange reactions with a 2-Cys mechanism or a 1-Cys mechanism. However, the catalytic and physiological mechanism of Corynebacterium glutamicum Mycoredoxin 1 (Mrx1) that shares a high amino acid sequence similarity to Grxs has not been fully elucidated. Here, we report that Mrx1 has a protective function against various adverse conditions, and the decrease of cell viability to various stress conditions by deletion of the Mrx1 in C. glutamicum was confirmed in the mrx1 mutant. The physiological roles of Mrx1 in defence to oxidative stress were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic function-sigma (ECF-σ) factor SigH. As well as reducing mycothiol (MSH) mixed disulfide bonds via a 1-Cys mechanism, C. glutamicum Mrx1 catalytically reduced the disulfides in the Ib RNR, insulin and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) by exclusively linking the MSH/Mtr (mycothiol disulfide reductase)/NADPH electron pathway via a 2-Cys mechanism. Thus, we present the first evidence that the Mrx1 is able to protect against the damaging effects of various exogenous stresses by acting as a disulfide oxidoreductase, thereby giving a new insight in how C. glutamicum survives oxidative stressful conditions.
Collapse
Affiliation(s)
- Xiaona Li
- College of Life Sciences, Qufu Normal University
| | - Yang Liu
- College of Life Sciences, Qufu Normal University
| | - Jingyi Zhong
- College of Life Sciences, Qufu Normal University
| | | | - Zhijin Gong
- College of Life Sciences, Qufu Normal University
| | - Meiru Si
- College of Life Sciences, Qufu Normal University
| | - Ge Yang
- College of Life Sciences, Qufu Normal University
| |
Collapse
|
14
|
Zimmermann J, Oestreicher J, Hess S, Herrmann JM, Deponte M, Morgan B. One cysteine is enough: A monothiol Grx can functionally replace all cytosolic Trx and dithiol Grx. Redox Biol 2020; 36:101598. [PMID: 32521506 PMCID: PMC7286987 DOI: 10.1016/j.redox.2020.101598] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
Glutaredoxins are small proteins of the thioredoxin superfamily that are present throughout life. Most glutaredoxins fall into two major subfamilies. Class I glutaredoxins are glutathione-dependent thiol-disulfide oxidoreductases whilst class II glutaredoxins coordinate Fe–S clusters. Class I glutaredoxins are typically dithiol enzymes with two active-site cysteine residues, however, some enzymatically active monothiol glutaredoxins are also known. Whilst both monothiol and dithiol class I glutaredoxins mediate protein deglutathionylation, it is widely claimed that only dithiol glutaredoxins are competent to reduce protein disulfide bonds. In this study, using a combination of yeast ‘viability rescue’, growth, and redox-sensitive GFP-based assays, we show that two different monothiol class I glutaredoxins can each facilitate the reduction of protein disulfide bonds in ribonucleotide reductase, methionine sulfoxide reductase and roGFP2. Our observations thus challenge the generalization of the dithiol mechanism for glutaredoxin catalysis and raise the question of why most class I glutaredoxins have two active-site cysteine residues.
Collapse
Affiliation(s)
- Jannik Zimmermann
- Institute of Biochemistry, Zentrum für Human- und Molekularbiologie (ZHMB), Saarland University, Saarbrücken, Germany
| | - Julian Oestreicher
- Institute of Biochemistry, Zentrum für Human- und Molekularbiologie (ZHMB), Saarland University, Saarbrücken, Germany
| | - Steffen Hess
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Marcel Deponte
- Faculty of Chemistry, Department of Biochemistry, University of Kaiserslautern, Kaiserslautern, Germany.
| | - Bruce Morgan
- Institute of Biochemistry, Zentrum für Human- und Molekularbiologie (ZHMB), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
15
|
Gellert M, Hossain MF, Berens FJF, Bruhn LW, Urbainsky C, Liebscher V, Lillig CH. Substrate specificity of thioredoxins and glutaredoxins - towards a functional classification. Heliyon 2019; 5:e02943. [PMID: 31890941 PMCID: PMC6928294 DOI: 10.1016/j.heliyon.2019.e02943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
The spatio-temporal reduction and oxidation of protein thiols is an essential mechanism in signal transduction in all kingdoms of life. Thioredoxin (Trx) family proteins efficiently catalyze thiol-disulfide exchange reactions and the proteins are widely recognized for their importance in the operation of thiol switches. Trx family proteins have a broad and at the same time very distinct substrate specificity – a prerequisite for redox switching. Despite of multiple efforts, the true nature for this specificity is still under debate. Here, we comprehensively compare the classification/clustering of various redoxins from all domains of life based on their similarity in amino acid sequence, tertiary structure, and their electrostatic properties. We correlate these similarities to the existence of common interaction partners, identified in various previous studies and suggested by proteomic screenings. These analyses confirm that primary and tertiary structure similarity, and thereby all common classification systems, do not correlate to the target specificity of the proteins as thiol-disulfide oxidoreductases. Instead, a number of examples clearly demonstrate the importance of electrostatic similarity for their target specificity, independent of their belonging to the Trx or glutaredoxin subfamilies.
Collapse
Affiliation(s)
- Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| | - Md Faruq Hossain
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| | - Felix Jacob Ferdinand Berens
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany.,Institute for Mathematics and Informatics, University of Greifswald, Germany
| | - Lukas Willy Bruhn
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany.,Institute for Mathematics and Informatics, University of Greifswald, Germany
| | - Claudia Urbainsky
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| | - Volkmar Liebscher
- Institute for Mathematics and Informatics, University of Greifswald, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| |
Collapse
|
16
|
Chia SB, Elko EA, Aboushousha R, Manuel AM, van de Wetering C, Druso JE, van der Velden J, Seward DJ, Anathy V, Irvin CG, Lam YW, van der Vliet A, Janssen-Heininger YMW. Dysregulation of the glutaredoxin/ S-glutathionylation redox axis in lung diseases. Am J Physiol Cell Physiol 2019; 318:C304-C327. [PMID: 31693398 DOI: 10.1152/ajpcell.00410.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Evan A Elko
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph E Druso
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Charles G Irvin
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
17
|
Balsera M, Buchanan BB. Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free Radic Biol Med 2019; 140:28-35. [PMID: 30862542 DOI: 10.1016/j.freeradbiomed.2019.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
Thioredoxins (Trxs) are low-molecular-weight proteins that participate in the reduction of target enzymes. Trxs contain a redox-active disulfide bond, in the form of a WCGPC amino acid sequence motif, that enables them to perform dithiol-disulfide exchange reactions with oxidized protein substrates. Widely distributed across the three domains of life, Trxs form an evolutionarily conserved family of ancient origin. Thioredoxin reductases (TRs) are enzymes that reduce Trxs. According to their evolutionary history, TRs have diverged, thereby leading to the emergence of variants of the enzyme that in combination with different types of Trxs meet the needs of the cell. In addition to participating in the regulation of metabolism and defense against oxidative stress, Trxs respond to environmental signals-an ability that developed early in evolution. Redox regulation of proteins targeted by Trx is accomplished with a pair of redox-active cysteines located in strategic positions on the polypeptide chain to enable reversible oxidative changes that result in structural and functional modifications target proteins. In this review, we present a general overview of the thioredoxin system and describe recent structural studies on the diversity of its components.
Collapse
Affiliation(s)
- Monica Balsera
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain.
| | - Bob B Buchanan
- Department of Plant & Microbial Biology, University of California, Berkeley, 94720 CA, USA.
| |
Collapse
|
18
|
Napolitano S, Reber RJ, Rubini M, Glockshuber R. Functional analyses of ancestral thioredoxins provide insights into their evolutionary history. J Biol Chem 2019; 294:14105-14118. [PMID: 31366732 PMCID: PMC6755812 DOI: 10.1074/jbc.ra119.009718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Thioredoxin (Trx) is a conserved, cytosolic reductase in all known organisms. The enzyme receives two electrons from NADPH via thioredoxin reductase (TrxR) and passes them on to multiple cellular reductases via disulfide exchange. Despite the ubiquity of thioredoxins in all taxa, little is known about the functions of resurrected ancestral thioredoxins in the context of a modern mesophilic organism. Here, we report on functional in vitro and in vivo analyses of seven resurrected Precambrian thioredoxins, dating back 1–4 billion years, in the Escherichia coli cytoplasm. Using synthetic gene constructs for recombinant expression of the ancestral enzymes, along with thermodynamic and kinetic assays, we show that all ancestral thioredoxins, as today's thioredoxins, exhibit strongly reducing redox potentials, suggesting that thioredoxins served as catalysts of cellular reduction reactions from the beginning of evolution, even before the oxygen catastrophe. A detailed, quantitative characterization of their interactions with the electron donor TrxR from Escherichia coli and the electron acceptor methionine sulfoxide reductase, also from E. coli, strongly hinted that thioredoxins and thioredoxin reductases co-evolved and that the promiscuity of thioredoxins toward downstream electron acceptors was maintained during evolution. In summary, our findings suggest that thioredoxins evolved high specificity for their sole electron donor TrxR while maintaining promiscuity to their multiple electron acceptors.
Collapse
Affiliation(s)
- Silvia Napolitano
- Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Robin J Reber
- Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| |
Collapse
|
19
|
Xiao Z, La Fontaine S, Bush AI, Wedd AG. Molecular Mechanisms of Glutaredoxin Enzymes: Versatile Hubs for Thiol-Disulfide Exchange between Protein Thiols and Glutathione. J Mol Biol 2018; 431:158-177. [PMID: 30552876 DOI: 10.1016/j.jmb.2018.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Abstract
The tripeptide glutathione (GSH) and its oxidized form glutathione disulfide (GSSG) constitute a key redox couple in cells. In particular, they partner protein thiols in reversible thiol-disulfide exchange reactions that act as switches in cell signaling and redox homeostasis. Disruption of these processes may impair cellular redox signal transduction and induce redox misbalances that are linked directly to aging processes and to a range of pathological conditions including cancer, cardiovascular diseases and neurological disorders. Glutaredoxins are a class of GSH-dependent oxidoreductase enzymes that specifically catalyze reversible thiol-disulfide exchange reactions between protein thiols and the abundant thiol pool GSSG/GSH. They protect protein thiols from irreversible oxidation, regulate their activities under a variety of cellular conditions and are key players in cell signaling and redox homeostasis. On the other hand, they may also function as metal-binding proteins with a possible role in the cellular homeostasis and metabolism of essential metals copper and iron. However, the molecular basis and underlying mechanisms of glutaredoxin action remain elusive in many situations. This review focuses specifically on these aspects in the context of recent developments that illuminate some of these uncertainties.
Collapse
Affiliation(s)
- Zhiguang Xiao
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia; School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Sharon La Fontaine
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia; School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Anthony G Wedd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
20
|
Sousa SF, Neves RP, Waheed SO, Fernandes PA, Ramos MJ. Structural and mechanistic aspects of S-S bonds in the thioredoxin-like family of proteins. Biol Chem 2018; 400:575-587. [DOI: 10.1515/hsz-2018-0319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Disulfide bonds play a critical role in a variety of structural and mechanistic processes associated with proteins inside the cells and in the extracellular environment. The thioredoxin family of proteins like thioredoxin (Trx), glutaredoxin (Grx) and protein disulfide isomerase, are involved in the formation, transfer or isomerization of disulfide bonds through a characteristic thiol-disulfide exchange reaction. Here, we review the structural and mechanistic determinants behind the thiol-disulfide exchange reactions for the different enzyme types within this family, rationalizing the known experimental data in light of the results from computational studies. The analysis sheds new atomic-level insight into the structural and mechanistic variations that characterize the different enzymes in the family, helping to explain the associated functional diversity. Furthermore, we review here a pattern of stabilization/destabilization of the conserved active-site cysteine residues presented beforehand, which is fully consistent with the observed roles played by the thioredoxin family of enzymes.
Collapse
Affiliation(s)
- Sérgio F. Sousa
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Rui P.P. Neves
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Sodiq O. Waheed
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Pedro A. Fernandes
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Maria João Ramos
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| |
Collapse
|
21
|
Miller CG, Holmgren A, Arnér ESJ, Schmidt EE. NADPH-dependent and -independent disulfide reductase systems. Free Radic Biol Med 2018; 127:248-261. [PMID: 29609022 PMCID: PMC6165701 DOI: 10.1016/j.freeradbiomed.2018.03.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
Over the past seven decades, research on autotrophic and heterotrophic model organisms has defined how the flow of electrons ("reducing power") from high-energy inorganic sources, through biological systems, to low-energy inorganic products like water, powers all of Life's processes. Universally, an initial major biological recipient of these electrons is nicotinamide adenine dinucleotide-phosphate, which thereby transits from an oxidized state (NADP+) to a reduced state (NADPH). A portion of this reducing power is then distributed via the cellular NADPH-dependent disulfide reductase systems as sequential reductions of disulfide bonds. Along the disulfide reduction pathways, some enzymes have active sites that use the selenium-containing amino acid, selenocysteine, in place of the common but less reactive sulfur-containing cysteine. In particular, the mammalian/metazoan thioredoxin systems are usually selenium-dependent as, across metazoan phyla, most thioredoxin reductases are selenoproteins. Among the roles of the NADPH-dependent disulfide reductase systems, the most universal is that they provide the reducing power for the production of DNA precursors by ribonucleotide reductase (RNR). Some studies, however, have uncovered examples of NADPH-independent disulfide reductase systems that can also support RNR. These systems are summarized here and their implications are discussed.
Collapse
Affiliation(s)
- Colin G Miller
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Edward E Schmidt
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
22
|
Shen ZJ, Liu YJ, Gao XH, Liu XM, Zhang SD, Li Z, Zhang QW, Liu XX. Molecular Identification of Two Thioredoxin Genes From Grapholita molesta and Their Function in Resistance to Emamectin Benzoate. Front Physiol 2018; 9:1421. [PMID: 30410444 PMCID: PMC6210739 DOI: 10.3389/fphys.2018.01421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Thioredoxins (Trxs), a member of the thioredoxin system, play crucial roles in maintaining intracellular redox homeostasis and protecting organisms against oxidative stress. In this study, we cloned and characterized two genes, GmTrx2 and GmTrx-like1, from Grapholita molesta. Sequence analysis showed that GmTrx2 and GmTrx-like1 had highly conserved active sites CGPC and CXXC motif, respectively, and shared high sequence identity with selected insect species. The quantitative real-time polymerase chain reaction results revealed that GmTrx2 was mainly detected at first instar, whereas GmTrx-like1 was highly concentrated at prepupa day. The transcripts of GmTrx2 and GmTrx-like1 were both highly expressed in the head and salivary glands. The expression levels of GmTrx2 and GmTrx-like1 were induced by low or high temperature, E. coli, M. anisopliae, H2O2, and pesticides (emamectin benzoate). We further detected interference efficiency of GmTrx2 and GmTrx-like1 in G. molesta larvae and found that peroxidase capacity, hydrogen peroxide content, and ascorbate content all increased after knockdown of GmTrx2 or GmTrx-like1. Furthermore, the hydrogen peroxide concentration was increased by emamectin benzoate and the sensitivity for larvae to emamectin benzoate was improved after GmTrx2 or GmTrx-like1 was silenced. Our results indicated that GmTrx2 and GmTrx-like1 played vital roles in protecting G. molesta against oxidative damage and also provided the theoretical basis for understanding the antioxidant defense mechanisms of the Trx system in insects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiao-Xia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Kawano Y, Suzuki K, Ohtsu I. Current understanding of sulfur assimilation metabolism to biosynthesize L-cysteine and recent progress of its fermentative overproduction in microorganisms. Appl Microbiol Biotechnol 2018; 102:8203-8211. [PMID: 30046857 DOI: 10.1007/s00253-018-9246-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/01/2022]
Abstract
To all organisms, sulfur is an essential and important element. The assimilation of inorganic sulfur molecules such as sulfate and thiosulfate into organic sulfur compounds such as L-cysteine and L-methionine (essential amino acid for human) is largely contributed by microorganisms. Of these, special attention is given to thiosulfate (S2O32-) assimilation, because thiosulfate relative to often utilized sulfate (SO42-) as a sulfur source is proposed to be more advantageous in microbial growth and biotechnological applications like L-cysteine fermentative overproduction toward industrial manufacturing. In Escherichia coli as well as other many bacteria, the thiosulfate assimilation pathway is known to depend on O-acetyl-L-serine sulfhydrylase B. Recently, another yet-unidentified CysM-independent thiosulfate pathway was found in E. coli. This pathway is expected to consist of the initial part of the thiosulfate to sulfite (SO32-) conversion, and the latter part might be shared with the final part of the known sulfate assimilation pathway [sulfite → sulfide (S2-) → L-cysteine]. The catalysis of thiosulfate to sulfite is at least partly mediated by thiosulfate sulfurtransferase (GlpE). In this mini-review, we introduce updated comprehensive information about sulfur assimilation in microorganisms, including this topic. Also, we introduce recent advances of the application study about L-cysteine overproduction, including the GlpE overexpression.
Collapse
Affiliation(s)
- Yusuke Kawano
- Innovation Medical Research Institute, University of Tsukuba, Tsukuba, Japan
| | - Kengo Suzuki
- Department of Research and Development, Euglena Co., Ltd., Minato-ku, Tokyo, Japan
| | - Iwao Ohtsu
- Innovation Medical Research Institute, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
24
|
May HC, Yu JJ, Guentzel MN, Chambers JP, Cap AP, Arulanandam BP. Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System. Front Microbiol 2018; 9:336. [PMID: 29556223 PMCID: PMC5844926 DOI: 10.3389/fmicb.2018.00336] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/12/2018] [Indexed: 01/23/2023] Open
Abstract
As microbial resistance to drugs continues to rise at an alarming rate, finding new ways to combat pathogens is an issue of utmost importance. Development of novel and specific antimicrobial drugs is a time-consuming and expensive process. However, the re-purposing of previously tested and/or approved drugs could be a feasible way to circumvent this long and costly process. In this review, we evaluate the U.S. Food and Drug Administration tested drugs auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. These drugs have been shown to act on bacterial, fungal, protozoan, and helminth pathogens without significant toxicity to the host. We propose that the thioredoxin system could serve as a useful therapeutic target with broad spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Holly C. May
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - M. N. Guentzel
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Andrew P. Cap
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, TX, United States
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
25
|
Hudson DA, Caplan JL, Thorpe C. Designing Flavoprotein-GFP Fusion Probes for Analyte-Specific Ratiometric Fluorescence Imaging. Biochemistry 2018; 57:1178-1189. [PMID: 29341594 DOI: 10.1021/acs.biochem.7b01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of genetically encoded fluorescent probes for analyte-specific imaging has revolutionized our understanding of intracellular processes. Current classes of intracellular probes depend on the selection of binding domains that either undergo conformational changes on analyte binding or can be linked to thiol redox chemistry. Here we have designed novel probes by fusing a flavoenzyme, whose fluorescence is quenched on reduction by the analyte of interest, with a GFP domain to allow for rapid and specific ratiometric sensing. Two flavoproteins, Escherichia coli thioredoxin reductase and Saccharomyces cerevisiae lipoamide dehydrogenase, were successfully developed into thioredoxin and NAD+/NADH specific probes, respectively, and their performance was evaluated in vitro and in vivo. A flow cell format, which allowed dynamic measurements, was utilized in both bacterial and mammalian systems. In E. coli the first reported intracellular steady-state of the cytoplasmic thioredoxin pool was measured. In HEK293T mammalian cells, the steady-state cytosolic ratio of NAD+/NADH induced by glucose was determined. These genetically encoded fluorescent constructs represent a modular approach to intracellular probe design that should extend the range of metabolites that can be quantitated in live cells.
Collapse
Affiliation(s)
- Devin A Hudson
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Jeffrey L Caplan
- Bioimaging Center, Delaware Biotechnology Institute , Newark, Delaware 19716, United States
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
26
|
Ukuwela AA, Bush AI, Wedd AG, Xiao Z. Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides. Chem Sci 2017; 9:1173-1183. [PMID: 29675162 PMCID: PMC5885593 DOI: 10.1039/c7sc04416j] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/05/2017] [Indexed: 12/02/2022] Open
Abstract
Glutaredoxins were demonstrated to be a family of versatile enzymes capable of catalyzing thiol–disulfide exchange involving GSSG/GSH via different catalytic routes either alone or in parallel.
Glutaredoxins (Grxs) are a family of glutathione (GSH)-dependent thiol–disulfide oxidoreductases. They feature GSH-binding sites that directly connect the reversible redox chemistry of protein thiols to the abundant cellular nonprotein thiol pool GSSG/GSH. This work studied the pathways for oxidation of protein dithiols P(SH)2 and reduction of protein disulfides P(SS) catalyzed by Homo sapiens HsGrx1 and Escherichia coli EcGrx1. The metal-binding domain HMA4n(SH)2 was chosen as substrate as it contains a solvent-exposed CysCys motif. Quenching of the reactions with excess iodoacetamide followed by protein speciation analysis via ESI-MS allowed interception and characterization of both substrate and enzyme intermediates. The enzymes shuttle between three catalytically-competent forms (Grx(SH)(S–), Grx(SH)(SSG) and Grx(SS)) and employ conserved parallel monothiol and dithiol mechanisms. Experiments with dithiol and monothiol versions of both Grx enzymes demonstrate which monothiol (plus GSSG or GSH) or dithiol pathways dominate a specific oxidation or reduction reaction. Grxs are shown to be a class of versatile enzymes with diverse catalytic functions that are driven by specific interactions with GSSG/GSH.
Collapse
Affiliation(s)
- Ashwinie A Ukuwela
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre , Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3052 , Australia .
| | - Anthony G Wedd
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Zhiguang Xiao
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia.,Melbourne Dementia Research Centre , Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3052 , Australia .
| |
Collapse
|
27
|
Abstract
SIGNIFICANCE Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. CRITICAL ISSUES Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. FUTURE DIRECTIONS The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.
Collapse
Affiliation(s)
- Carsten Berndt
- 1 Department of Neurology, Medical Faculty, Life Science Center , Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Christopher Horst Lillig
- 2 Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald , Greifswald, Germany
| |
Collapse
|
28
|
Iqbal A, Almeida FCL. 1H, 13C and 15N chemical shift assignments of Saccharomyces cerevisiae type 1 thioredoxin in the oxidized state by solution NMR spectroscopy. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:221-224. [PMID: 28808882 DOI: 10.1007/s12104-017-9752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Thioredoxins (Trx) are ubiquitous proteins that regulate several biochemical processes inside the cell. Trx is an important player, displaying oxidoreductase activity and helping to keep and regulate the oxidative state of the cellular environment. Trx also participates in the regulation of many cellular functions, such as DNA synthesis, protection against oxidative stress, cell cycle and signal transduction. The oxidized Trx is the target for another set of proteins, such as thioredoxin reductase (TrR), which used the reductive potential of NADPH. The oxidized state of Trx also plays important role in regulation of redox state in the cells. In this regard, the oxidized form of Trx is a putative conformer that contributes to the cellular redox environment. Here we report the chemical shift assignments (1H, 13C and 15N) in solution at 15 °C. We also showed the secondary structure analysis of the oxidized form of yeast thioredoxin (yTrx1) as basis for future NMR studies of protein-target interactions and dynamics. The assignment was done at low concentration (200 µM) because it is important to keep intact the water cavity.
Collapse
Affiliation(s)
- Anwar Iqbal
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS/CNRMN, Rio de Janeiro, RJ, 21941-599, Brazil
- National Center for Structural Biology and Bioimaging (CENABIO), National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS/CNRMN, Rio de Janeiro, RJ, 21941-599, Brazil.
- National Center for Structural Biology and Bioimaging (CENABIO), National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
29
|
Methylmercury alters glutathione homeostasis by inhibiting glutaredoxin 1 and enhancing glutathione biosynthesis in cultured human astrocytoma cells. Toxicol Lett 2016; 256:1-10. [PMID: 27180086 DOI: 10.1016/j.toxlet.2016.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/28/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
Methylmercury (MeHg) is a neurotoxin that binds strongly to thiol residues on protein and low molecular weight molecules like reduced glutathione (GSH). The mechanism of its effects on GSH homeostasis particularly at environmentally relevant low doses is not fully known. We hypothesized that exposure to MeHg would lead to a depletion of reduced glutathione (GSH) and an accumulation of glutathione disulfide (GSSG) leading to alterations in S-glutathionylation of proteins. Our results showed exposure to low concentrations of MeHg (1μM) did not significantly alter GSH levels but increased GSSG levels by ∼12-fold. This effect was associated with a significant increase in total cellular glutathione content and a decrease in GSH/GSSG. Immunoblot analyses revealed that proteins involved in glutathione synthesis were upregulated accounting for the increase in cellular glutathione. This was associated an increase in cellular Nrf2 protein levels which is required to induce the expression of antioxidant genes in response to cellular stress. Intriguingly, we noted that a key enzyme involved in reversing protein S-glutathionylation and maintaining glutathione homeostasis, glutaredoxin-1 (Grx1), was inhibited by ∼50%. MeHg treatment also increased the S-glutathionylation of a high molecular weight protein. This observation is consistent with the inhibition of Grx1 and elevated H2O2 production however; contrary to our original hypothesis we found few S-glutathionylated proteins in the astrocytoma cells. Collectively, MeHg affects multiple arms of glutathione homeostasis ranging from pool management to protein S-glutathionylation and Grx1 activity.
Collapse
|
30
|
Jeelani G, Nozaki T. Entamoeba thiol-based redox metabolism: A potential target for drug development. Mol Biochem Parasitol 2016; 206:39-45. [PMID: 26775086 DOI: 10.1016/j.molbiopara.2016.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 02/06/2023]
Abstract
Amebiasis is an intestinal infection widespread throughout the world caused by the human pathogen Entamoeba histolytica. Metronidazole has been a drug of choice against amebiasis for decades despite its low efficacy against asymptomatic cyst carriers and emergence of resistance in other protozoa with similar anaerobic metabolism. Therefore, identification and characterization of specific targets is urgently needed to design new therapeutics for improved treatment against amebiasis. Toward this goal, thiol-dependent redox metabolism is of particular interest. The thiol-dependent redox metabolism in E. histolytica consists of proteins including peroxiredoxin, rubrerythrin, Fe-superoxide dismutase, flavodiiron proteins, NADPH: flavin oxidoreductase, and amino acids including l-cysteine, S-methyl-l-cysteine, and thioprolines (thiazolidine-4-carboxylic acids). E. histolytica completely lacks glutathione and its metabolism, and l-cysteine is the major intracellular low molecular mass thiol. Moreover, this parasite possesses a functional thioredoxin system consisting of thioredoxin and thioredoxin reductase, which is a ubiquitous oxidoreductase system with antioxidant and redox regulatory roles. In this review, we summarize and highlight the thiol-based redox metabolism and its control mechanisms in E. histolytica, in particular, the features of the system unique to E. histolytica, and its potential use for drug development against amebiasis.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
31
|
Berndt C, Schwenn JD, Lillig CH. The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity. Chem Sci 2015; 6:7049-7058. [PMID: 29861944 PMCID: PMC5947528 DOI: 10.1039/c5sc01501d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Thiol-disulfide oxidoreductases from the thioredoxin (Trx) family of proteins have a broad range of well documented functions and possess distinct substrate specificities. The mechanisms and characteristics that control these specificities are key to the understanding of both the reduction of catalytic disulfides as well as allosteric disulfides (thiol switches). Here, we have used the catalytic disulfide of E. coli 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase (PR) that forms between the single active site thiols of two monomers during the reaction cycle as a model system to investigate the mechanisms of Trx and Grx protein specificity. Enzyme kinetics, ΔE'0 determination, and structural analysis of various Trx and Grx family members suggested that the redox potential does not determine specificity nor efficiency of the redoxins as reductant for PR. Instead, the efficiency of PR with various redoxins correlated strongly to the extent of a negative electric field of the redoxins reaching into the solvent outside the active site, and electrostatic and geometric complementary contact surfaces. These data suggest that, in contrast to common assumption, the composition of the active site motif is less important for substrate specificity than other amino acids in or even outside the immediate contact area.
Collapse
Affiliation(s)
- Carsten Berndt
- From the Department of Neurology , Medical Faculty , Heinrich-Heine Universität , Merowingerplatz 1a , 40225 Düsseldorf , Germany
| | - Jens-Dirk Schwenn
- Biochemistry of Plants , Ruhr-Universität Bochum , Universitätsstraße 150 , 44780 Bochum , Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology , Universitätsmedizin Greifswald , Ernst-Moritz-Arndt Universität , Ferdinand Sauerbruch Straße , DE-17475 Greifswald , Germany . ; ; Tel: +49 3834 86 5407
| |
Collapse
|
32
|
Adolfsen KJ, Brynildsen MP. A Kinetic Platform to Determine the Fate of Hydrogen Peroxide in Escherichia coli. PLoS Comput Biol 2015; 11:e1004562. [PMID: 26545295 PMCID: PMC4636272 DOI: 10.1371/journal.pcbi.1004562] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022] Open
Abstract
Hydrogen peroxide (H2O2) is used by phagocytic cells of the innate immune response to kill engulfed bacteria. H2O2 diffuses freely into bacteria, where it can wreak havoc on sensitive biomolecules if it is not rapidly detoxified. Accordingly, bacteria have evolved numerous systems to defend themselves against H2O2, and the importance of these systems to pathogenesis has been substantiated by the many bacteria that require them to establish or sustain infections. The kinetic competition for H2O2 within bacteria is complex, which suggests that quantitative models will improve interpretation and prediction of network behavior. To date, such models have been of limited scope, and this inspired us to construct a quantitative, systems-level model of H2O2 detoxification in Escherichia coli that includes detoxification enzymes, H2O2-dependent transcriptional regulation, enzyme degradation, the Fenton reaction and damage caused by •OH, oxidation of biomolecules by H2O2, and repair processes. After using an iterative computational and experimental procedure to train the model, we leveraged it to predict how H2O2 detoxification would change in response to an environmental perturbation that pathogens encounter within host phagosomes, carbon source deprivation, which leads to translational inhibition and limited availability of NADH. We found that the model accurately predicted that NADH depletion would delay clearance at low H2O2 concentrations and that detoxification at higher concentrations would resemble that of carbon-replete conditions. These results suggest that protein synthesis during bolus H2O2 stress does not affect clearance dynamics and that access to catabolites only matters at low H2O2 concentrations. We anticipate that this model will serve as a computational tool for the quantitative exploration and dissection of oxidative stress in bacteria, and that the model and methods used to develop it will provide important templates for the generation of comparable models for other bacterial species.
Collapse
Affiliation(s)
- Kristin J Adolfsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
33
|
Acceleration of protein folding by four orders of magnitude through a single amino acid substitution. Sci Rep 2015; 5:11840. [PMID: 26121966 PMCID: PMC4485320 DOI: 10.1038/srep11840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/04/2015] [Indexed: 11/23/2022] Open
Abstract
Cis prolyl peptide bonds are conserved structural elements in numerous protein
families, although their formation is energetically unfavorable, intrinsically slow
and often rate-limiting for folding. Here we investigate the reasons underlying the
conservation of the cis proline that is diagnostic for the fold of
thioredoxin-like thiol-disulfide oxidoreductases. We show that replacement of the
conserved cis proline in thioredoxin by alanine can accelerate spontaneous
folding to the native, thermodynamically most stable state by more than four orders
of magnitude. However, the resulting trans alanine bond leads to small
structural rearrangements around the active site that impair the function of
thioredoxin as catalyst of electron transfer reactions by more than 100-fold. Our
data provide evidence for the absence of a strong evolutionary pressure to achieve
intrinsically fast folding rates, which is most likely a consequence of proline
isomerases and molecular chaperones that guarantee high in vivo folding rates
and yields.
Collapse
|
34
|
Comparative Roles of the Two Helicobacter pylori Thioredoxins in Preventing Macromolecule Damage. Infect Immun 2015; 83:2935-43. [PMID: 25964471 DOI: 10.1128/iai.00232-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/30/2015] [Indexed: 12/29/2022] Open
Abstract
Thioredoxins are highly conserved throughout a wide range of organisms, and they are essential for the isurvival of oxygen-sensitive cells. The gastric pathogen Helicobacter pylori uses the thioredoxin system to maintain its thiol/disulfide balance. There are two thioredoxins present in H. pylori, Trx1 and Trx2 (herein referred to as TrxA and TrxC). TrxA has been shown to be important as an electron donor for some antioxidant enzymes, but the function of TrxC remains unknown (L. M. Baker, A. Raudonikiene, P. S. Hoffman, and L. B. Poole, J Bacteriol 183:1961-1973, 2001; P. Alamuri and R. J. Maier, J Bacteriol 188:5839-5850, 2006). We demonstrate that both TrxA and TrxC are important in protecting H. pylori from oxidative stress. Individual ΔtrxA and ΔtrxC deletion mutant strains each show a greater abundance of lipid peroxides and suffer more DNA damage and more protein carbonylation than the parent. Both deletion mutants were much more sensitive to O2-mediated viability loss than the parent. Unexpectedly, the oxidative DNA damage and protein carbonylation was more severe in the ΔtrxC mutant than in the ΔtrxA mutant; it had 20-fold- and 4-fold-more carbonylated protein content than the wild type and the ΔtrxA strain, respectively, after 4 h of atmospheric O2 stress. trx transcript abundance was altered by the deletion of the heterologous trx gene. The ΔtrxC mutant lacked mouse colonization ability, while the ability to colonize mouse stomachs was significantly reduced in the ΔtrxA mutant.
Collapse
|
35
|
Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.). PLoS One 2014; 9:e88310. [PMID: 24520364 PMCID: PMC3919742 DOI: 10.1371/journal.pone.0088310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022] Open
Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.
Collapse
|
36
|
NrdH Redoxin enhances resistance to multiple oxidative stresses by acting as a peroxidase cofactor in Corynebacterium glutamicum. Appl Environ Microbiol 2013; 80:1750-62. [PMID: 24375145 DOI: 10.1128/aem.03654-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
NrdH redoxins are small protein disulfide oxidoreductases behaving like thioredoxins but sharing a high amino acid sequence similarity to glutaredoxins. Although NrdH redoxins are supposed to be another candidate in the antioxidant system, their physiological roles in oxidative stress remain unclear. In this study, we confirmed that the Corynebacterium glutamicum NrdH redoxin catalytically reduces the disulfides in the class Ib ribonucleotide reductases (RNR), insulin and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), by exclusively receiving electrons from thioredoxin reductase. Overexpression of NrdH increased the resistance of C. glutamicum to multiple oxidative stresses by reducing ROS accumulation. Accordingly, elevated expression of the nrdH gene was observed when the C. glutamicum wild-type strain was exposed to oxidative stress conditions. It was discovered that the NrdH-mediated resistance to oxidative stresses was largely dependent on the presence of the thiol peroxidase Prx, as the increased resistance to oxidative stresses mediated by overexpression of NrdH was largely abrogated in the prx mutant. Furthermore, we showed that NrdH facilitated the hydroperoxide reduction activity of Prx by directly targeting and serving as its electron donor. Thus, we present evidence that the NrdH redoxin can protect against the damaging effects of reactive oxygen species (ROS) induced by various exogenous oxidative stresses by acting as a peroxidase cofactor.
Collapse
|
37
|
Abstract
SIGNIFICANCE Glutaredoxins (Grxs) are small oxidoreductases of the thioredoxin family of proteins regulating the thiol redox state of several proteins. Thereby, Grxs are key elements in redox signaling. RECENT ADVANCES Redox signaling via protein thiols depends on reversible oxidative modifications induced mainly by reactive oxygen/nitrogen species and glutathione (GSH) in form of its oxidized disulfide or S-nitroso-glutathione. Grxs contribute to redox signaling by the catalysis of glutathionylation, de-glutathionylation, as well as reduction of disulfide bridges via two distinct enzymatic mechanisms. The dithiol mechanism utilizes both active site cysteines to reduce disulfides, whereas the monothiol mechanism utilizes only the N-terminal active site cysteine for the reduction of GSH mixed disulfides. The sphere of action of Grxs continues to grow with the recent identification of novel targets. CRITICAL ISSUES Because of limited methodological tools, the identification of new substrates for oxidoreductases in general is one of the biggest challenges in this research area. FUTURE DIRECTIONS With this review, we provide a condensed summary of the current knowledge of thiol/disulfide exchange reactions catalyzed by Grxs regarding the mechanistic, structural, and functional aspects. The latter will be of high importance for future research directions, gaining novel insights into redox signaling in general, and the role of Grxs in particular.
Collapse
Affiliation(s)
- Christopher Horst Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst Moritz Arndt-Universität Greifswald, Greifswald, Germany
| | | |
Collapse
|
38
|
Bhattacharyya S, Tobacman JK. Hypoxia reduces arylsulfatase B activity and silencing arylsulfatase B replicates and mediates the effects of hypoxia. PLoS One 2012; 7:e33250. [PMID: 22428001 PMCID: PMC3302843 DOI: 10.1371/journal.pone.0033250] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/13/2012] [Indexed: 12/24/2022] Open
Abstract
This report presents evidence of 1) a role for arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) in mediating intracellular oxygen signaling; 2) replication between the effects of ARSB silencing and hypoxia on sulfated glycosaminoglycan content, cellular redox status, and expression of hypoxia-associated genes; and 3) a mechanism whereby changes in chondroitin-4-sulfation that follow either hypoxia or ARSB silencing can induce transcriptional changes through galectin-3. ARSB removes 4-sulfate groups from the non-reducing end of chondroitin-4-sulfate and dermatan sulfate and is required for their degradation. For activity, ARSB requires modification of a critical cysteine residue by the formylglycine generating enzyme and by molecular oxygen. When primary human bronchial and human colonic epithelial cells were exposed to 10% O2×1 h, ARSB activity declined by ∼41% and ∼30% from baseline, as nuclear hypoxia inducible factor (HIF)-1α increased by ∼53% and ∼37%. When ARSB was silenced, nuclear HIF-1α increased by ∼81% and ∼61% from baseline, and mRNA expression increased to 3.73 (±0.34) times baseline. Inversely, ARSB overexpression reduced nuclear HIF-1α by ∼37% and ∼54% from baseline in the epithelial cells. Hypoxia, like ARSB silencing, significantly increased the total cellular sulfated glycosaminoglycans and chondroitin-4-sulfate (C4S) content. Both hypoxia and ARSB silencing had similar effects on the cellular redox status and on mRNA expression of hypoxia-associated genes. Transcriptional effects of both ARSB silencing and hypoxia may be mediated by reduction in galectin-3 binding to more highly sulfated C4S, since the galectin-3 that co-immunoprecipitated with C4S declined and the nuclear galectin-3 increased following ARSB knockdown and hypoxia.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Joanne K. Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
39
|
Fink RC, Black EP, Hou Z, Sugawara M, Sadowsky MJ, Diez-Gonzalez F. Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves. Appl Environ Microbiol 2012; 78:1752-64. [PMID: 22247152 PMCID: PMC3298177 DOI: 10.1128/aem.07454-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/05/2012] [Indexed: 01/08/2023] Open
Abstract
An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.
Collapse
Affiliation(s)
| | - Elaine P. Black
- Department of Food Science and Nutrition
- Biotechnology Institute
| | - Zhe Hou
- Department of Food Science and Nutrition
- Biotechnology Institute
| | - Masayuki Sugawara
- Biotechnology Institute
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - Michael J. Sadowsky
- Biotechnology Institute
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | | |
Collapse
|
40
|
Lindahl M, Mata-Cabana A, Kieselbach T. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance. Antioxid Redox Signal 2011; 14:2581-642. [PMID: 21275844 DOI: 10.1089/ars.2010.3551] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ten years ago, proteomics techniques designed for large-scale investigations of redox-sensitive proteins started to emerge. The proteomes, defined as sets of proteins containing reactive cysteines that undergo oxidative post-translational modifications, have had a particular impact on research concerning the redox regulation of cellular processes. These proteomes, which are hereafter termed "disulfide proteomes," have been studied in nearly all kingdoms of life, including animals, plants, fungi, and bacteria. Disulfide proteomics has been applied to the identification of proteins modified by reactive oxygen and nitrogen species under stress conditions. Other studies involving disulfide proteomics have addressed the functions of thioredoxins and glutaredoxins. Hence, there is a steadily growing number of proteins containing reactive cysteines, which are probable targets for redox regulation. The disulfide proteomes have provided evidence that entire pathways, such as glycolysis, the tricarboxylic acid cycle, and the Calvin-Benson cycle, are controlled by mechanisms involving changes in the cysteine redox state of each enzyme implicated. Synthesis and degradation of proteins are processes highly represented in disulfide proteomes and additional biochemical data have established some mechanisms for their redox regulation. Thus, combined with biochemistry and genetics, disulfide proteomics has a significant potential to contribute to new discoveries on redox regulation and signaling.
Collapse
Affiliation(s)
- Marika Lindahl
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, Seville, Spain
| | | | | |
Collapse
|
41
|
Jacob C, Kriznik A, Boschi-Muller S, Branlant G. Thioredoxin 2 from Escherichia coli is not involved in vivo in the recycling process of methionine sulfoxide reductase activities. FEBS Lett 2011; 585:1905-9. [PMID: 21570393 DOI: 10.1016/j.febslet.2011.04.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 11/17/2022]
Abstract
Thioredoxins (Trx) 1 and 2, and three methionine sulfoxide reductases (Msr) whose activities are Trx-dependent, are expressed in Escherichia coli. A metB(1)trxA mutant was shown to be unable to grow on methionine sulfoxide (Met-O) suggesting that Trx2 is not essential in the Msr-recycling process. In the present study, we have determined the kinetic parameters of the recycling process of the three Msrs by Trx2 and the in vivo expression of Trx2 in a metB(1)trxA mutant. The data demonstrate that the lack of growth of the metB(1)trxA mutant on Met-O is due to low in vivo expression of Trx2 and not to the lower catalytic efficiency of Msrs for Trx2.
Collapse
Affiliation(s)
- Christophe Jacob
- Nancy-Université-Université Henri Poincaré, UMR CNRS-UHP 7214, ARN-RNP, Enzymologie Moléculaire et Structurale, Nancy Université, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | | | | | | |
Collapse
|
42
|
Murray DB, Haynes K, Tomita M. Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2011; 1810:945-58. [PMID: 21549177 DOI: 10.1016/j.bbagen.2011.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/16/2011] [Accepted: 04/17/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND In biological systems, redox reactions are central to most cellular processes and the redox potential of the intracellular compartment dictates whether a particular reaction can or cannot occur. Indeed the widespread use of redox reactions in biological systems makes their detailed description outside the scope of one review. SCOPE OF THE REVIEW Here we will focus on how system-wide redox changes can alter the reaction and transcriptional landscape of Saccharomyces cerevisiae. To understand this we explore the major determinants of cellular redox potential, how these are sensed by the cell and the dynamic responses elicited. MAJOR CONCLUSIONS Redox regulation is a large and complex system that has the potential to rapidly and globally alter both the reaction and transcription landscapes. Although we have a basic understanding of many of the sub-systems and a partial understanding of the transcriptional control, we are far from understanding how these systems integrate to produce coherent responses. We argue that this non-linear system self-organises, and that the output in many cases is temperature-compensated oscillations that may temporally partition incompatible reactions in vivo. GENERAL SIGNIFICANCE Redox biochemistry impinges on most of cellular processes and has been shown to underpin ageing and many human diseases. Integrating the complexity of redox signalling and regulation is perhaps one of the most challenging areas of biology. This article is part of a Special Issue entitled Systems Biology of Microorganisms.
Collapse
Affiliation(s)
- Douglas B Murray
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
| | | | | |
Collapse
|
43
|
Pillay CS, Hofmeyr JHS, Rohwer JM. The logic of kinetic regulation in the thioredoxin system. BMC SYSTEMS BIOLOGY 2011; 5:15. [PMID: 21266044 PMCID: PMC3045320 DOI: 10.1186/1752-0509-5-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 01/25/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system. RESULTS Analysis of a realistic computational model of the Escherichia coli thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models. CONCLUSIONS Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions.
Collapse
Affiliation(s)
- Ché S Pillay
- Discipline of Genetics, University of KwaZulu-Natal, South Africa, Carbis Road, Pietermaritzburg, 3201, South Africa.
| | | | | |
Collapse
|
44
|
Lee JS, White E, Kim SG, Schlesinger SR, Lee SY, Kim SK. Discovery of a novel adenosine 5′-phosphosulfate (APS) reductase from the methanarcheon Methanocaldococcus jannaschii. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Determinants of activity in glutaredoxins: an in vitro evolved Grx1-like variant of Escherichia coli Grx3. Biochem J 2010; 430:487-95. [DOI: 10.1042/bj20100289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Escherichia coli glutaredoxins 1 and 3 (Grx1 and Grx3) are structurally similar (37% sequence identity), yet have different activities in vivo. Unlike Grx3, Grx1 efficiently reduces protein disulfides in proteins such as RR (ribonucleotide reductase), whereas it is poor at reducing S-glutathionylated proteins. An E. coli strain lacking genes encoding thioredoxins 1 and 2 and Grx1 is not viable on either rich or minimal medium; however, a M43V mutation in Grx3 restores growth under these conditions and results in a Grx1-like protein [Ortenberg, Gon, Porat and Beckwith (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 7439–7944]. To uncover the structural basis of this change in activity, we have compared wild-type and mutant Grx3 using CD and NMR spectroscopy. Ligand-induced stability measurements demonstrate that the Grx3(M43V/C65Y) mutant has acquired affinity for RR. Far-UV CD spectra reveal no significant differences, but differences are observed in the near-UV region indicative of tertiary structural changes. NMR 1H-15N HSQC (heteronuclear single quantum coherence) spectra show that approximately half of the 82 residues experience significant (Δδ>0.03 p.p.m.) chemical shift deviations in the mutant, including nine residues experiencing extensive (Δδ≥0.15 p.p.m.) deviations. To test whether the M43V mutation alters dynamic properties of Grx3, H/D (hydrogen/deuterium) exchange experiments were performed demonstrating that the rate at which backbone amides exchange protons with the solvent is dramatically enhanced in the mutant, particularly in the core of the protein. These data suggest that the Grx1-like activity of the Grx3(M43V/C65Y) mutant may be explained by enhanced intrinsic motion allowing for increased specificity towards larger substrates such as RR.
Collapse
|
46
|
Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. Mol Cell Biol 2010; 30:4550-63. [PMID: 20679492 DOI: 10.1128/mcb.00313-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ability of the major systemic fungal pathogen of humans, Candida albicans, to sense and respond to reactive oxygen species (ROS), such as H(2)O(2) generated by the host immune system, is required for survival in the host. However, the intracellular signaling mechanisms underlying such responses are poorly understood. Here, we show that thioredoxin (Trx1), in addition to its antioxidant activity, plays a central role in coordinating the response of C. albicans to ROS by regulating multiple pathways. In particular, Trx1 function is important for H(2)O(2)-induced phosphorylation of the Hog1 stress-activated protein kinase and to reverse H(2)O(2)-induced oxidation and activation of the AP-1 like transcription factor Cap1. Furthermore, Trx1 regulates H(2)O(2)-induced hyperpolarized bud growth in a mechanism that involves activation of the Rad53 checkpoint kinase. Consistent with its key roles in responses to ROS, cells lacking Trx1 displayed significantly attenuated virulence in a murine model of C. albicans systemic infection. Collectively, our data indicate that Trx1 has a multifaceted role in H(2)O(2) signaling and promotes C. albicans survival in the host.
Collapse
|
47
|
Rodrigues VD, Martins PF, Gaziola SA, Azevedo RA, Ottoboni LM. Antioxidant enzyme activity in Acidithiobacillus ferrooxidans LR maintained in contact with chalcopyrite. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Chung JS, Noguera-Mazon V, Lancelin JM, Kim SK, Hirasawa M, Hologne M, Leustek T, Knaff DB. Interaction domain on thioredoxin for Pseudomonas aeruginosa 5'-adenylylsulfate reductase. J Biol Chem 2009; 284:31181-9. [PMID: 19744922 DOI: 10.1074/jbc.m109.035634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NMR spectroscopy has been used to map the interaction domain on Escherichia coli thioredoxin for the thioredoxin- dependent 5'-adenylylsulfate reductase from Pseudomonas aeruginosa (PaAPR). Seventeen thioredoxin amino acids, all clustered around Cys-32 (the more surface-exposed of the two active-site cysteines), have been located at the PaAPR binding site. The center of the binding domain is dominated by nonpolar amino acids, with a smaller number of charged and polar amino acids located on the periphery of the site. Twelve of the amino acids detected by NMR have non-polar, hydrophobic side chains, including one aromatic amino acid (Trp-31). Four of the thioredoxin amino acids at the PaAPR binding site have polar side chains (Lys-36, Asp-61, Gln-62 and Arg-73), with three of the four having charged side chains. Site-directed mutagenesis experiments have shown that replacement of Lys-36, Asp-61, and Arg-73 and of the absolutely conserved Trp-31 significantly decreases the V(max) for the PaAPR-catalyzed reduction of 5'-adenylylsulfate, with E. coli thioredoxin serving as the electron donor. The most dramatic effect was observed with the W31A variant, which showed no activity as a donor to PaAPR. Although the thiol of the active-site Cys-256 of PaAPR is the point of the initial nucleophilic attack by reduced thioredoxin, mutagenic replacement of Cys-256 by serine has no effect on thioredoxin binding to PaAPR.
Collapse
Affiliation(s)
- Jung-Sung Chung
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Leitsch D, Kolarich D, Binder M, Stadlmann J, Altmann F, Duchêne M. Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Mol Microbiol 2009; 72:518-36. [PMID: 19415801 DOI: 10.1111/j.1365-2958.2009.06675.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infections with the microaerophilic parasite Trichomonas vaginalis are treated with the 5-nitroimidazole drug metronidazole, which is also in use against Entamoeba histolytica, Giardia intestinalis and microaerophilic/anaerobic bacteria. Here we report that in T. vaginalis the flavin enzyme thioredoxin reductase displays nitroreductase activity with nitroimidazoles, including metronidazole, and with the nitrofuran drug furazolidone. Reactive metabolites of metronidazole and other nitroimidazoles form covalent adducts with several proteins that are known or assumed to be associated with thioredoxin-mediated redox regulation, including thioredoxin reductase itself, ribonucleotide reductase, thioredoxin peroxidase and cytosolic malate dehydrogenase. Disulphide reducing activity of thioredoxin reductase was greatly diminished in extracts of metronidazole-treated cells and intracellular non-protein thiol levels were sharply decreased. We generated a highly metronidazole-resistant cell line that displayed only minimal thioredoxin reductase activity, not due to diminished expression of the enzyme but due to the lack of its FAD cofactor. Reduction of free flavins, readily observed in metronidazole-susceptible cells, was also absent in the resistant cells. On the other hand, iron-depleted T. vaginalis cells, expressing only minimal amounts of PFOR and hydrogenosomal malate dehydrogenase, remained fully susceptible to metronidazole. Thus, taken together, our data suggest a flavin-based mechanism of metronidazole activation and thereby challenge the current model of hydrogenosomal activation of nitroimidazole drugs.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine at the Center for Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
50
|
Couturier J, Koh CS, Zaffagnini M, Winger AM, Gualberto JM, Corbier C, Decottignies P, Jacquot JP, Lemaire SD, Didierjean C, Rouhier N. Structure-function relationship of the chloroplastic glutaredoxin S12 with an atypical WCSYS active site. J Biol Chem 2009; 284:9299-310. [PMID: 19158074 PMCID: PMC2666582 DOI: 10.1074/jbc.m807998200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/16/2009] [Indexed: 01/08/2023] Open
Abstract
Glutaredoxins (Grxs) are efficient catalysts for the reduction of mixed disulfides in glutathionylated proteins, using glutathione or thioredoxin reductases for their regeneration. Using GFP fusion, we have shown that poplar GrxS12, which possesses a monothiol (28)WCSYS(32) active site, is localized in chloroplasts. In the presence of reduced glutathione, the recombinant protein is able to reduce in vitro substrates, such as hydroxyethyldisulfide and dehydroascorbate, and to regenerate the glutathionylated glyceraldehyde-3-phosphate dehydrogenase. Although the protein possesses two conserved cysteines, it is functioning through a monothiol mechanism, the conserved C terminus cysteine (Cys(87)) being dispensable, since the C87S variant is fully active in all activity assays. Biochemical and crystallographic studies revealed that Cys(87) exhibits a certain reactivity, since its pK(a) is around 5.6. Coupled with thiol titration, fluorescence, and mass spectrometry analyses, the resolution of poplar GrxS12 x-ray crystal structure shows that the only oxidation state is a glutathionylated derivative of the active site cysteine (Cys(29)) and that the enzyme does not form inter- or intramolecular disulfides. Contrary to some plant Grxs, GrxS12 does not incorporate an iron-sulfur cluster in its wild-type form, but when the active site is mutated into YCSYS, it binds a [2Fe-2S] cluster, indicating that the single Trp residue prevents this incorporation.
Collapse
Affiliation(s)
- Jeremy Couturier
- Unité Mixte de Recherches 1136 UHP-INRA Interaction Arbres-Microorganismes, IFR 110 GEEF, Nancy Université, Faculté des Sciences, 54506 Vandoeuvre Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|