1
|
Srivastava M, Bera A, Eidelman O, Tran MB, Jozwik C, Glasman M, Leighton X, Caohuy H, Pollard HB. A Dominant-Negative Mutant of ANXA7 Impairs Calcium Signaling and Enhances the Proliferation of Prostate Cancer Cells by Downregulating the IP3 Receptor and the PI3K/mTOR Pathway. Int J Mol Sci 2023; 24:ijms24108818. [PMID: 37240163 DOI: 10.3390/ijms24108818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Annexin A7/ANXA7 is a calcium-dependent membrane fusion protein with tumor suppressor gene (TSG) properties, which is located on chromosome 10q21 and is thought to function in the regulation of calcium homeostasis and tumorigenesis. However, whether the molecular mechanisms for tumor suppression are also involved in the calcium- and phospholipid-binding properties of ANXA7 remain to be elucidated. We hypothesized that the 4 C-terminal endonexin-fold repeats in ANXA7 (GX(X)GT), which are contained within each of the 4 annexin repeats with 70 amino acids, are responsible for both calcium- and GTP-dependent membrane fusion and the tumor suppressor function. Here, we identified a dominant-negative triple mutant (DNTM/DN-ANXA7J) that dramatically suppressed the ability of ANXA7 to fuse with artificial membranes while also inhibiting tumor cell proliferation and sensitizing cells to cell death. We also found that the [DNTM]ANA7 mutation altered the membrane fusion rate and the ability to bind calcium and phospholipids. In addition, in prostate cancer cells, our data revealed that variations in phosphatidylserine exposure, membrane permeabilization, and cellular apoptosis were associated with differential IP3 receptor expression and PI3K/AKT/mTOR modulation. In conclusion, we discovered a triple mutant of ANXA7, associated with calcium and phospholipid binding, which leads to the loss of several essential functions of ANXA7 pertinent to tumor protection and highlights the importance of the calcium signaling and membrane fusion functions of ANXA7 for preventing tumorigenesis.
Collapse
Affiliation(s)
- Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Uniformed Services University of Health Sciences (USUHS) School of Medicine, Bethesda, MD 20814, USA
| | - Alakesh Bera
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Uniformed Services University of Health Sciences (USUHS) School of Medicine, Bethesda, MD 20814, USA
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Uniformed Services University of Health Sciences (USUHS) School of Medicine, Bethesda, MD 20814, USA
| | - Minh B Tran
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Uniformed Services University of Health Sciences (USUHS) School of Medicine, Bethesda, MD 20814, USA
| | - Catherine Jozwik
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Uniformed Services University of Health Sciences (USUHS) School of Medicine, Bethesda, MD 20814, USA
| | - Mirta Glasman
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Uniformed Services University of Health Sciences (USUHS) School of Medicine, Bethesda, MD 20814, USA
| | - Ximena Leighton
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Uniformed Services University of Health Sciences (USUHS) School of Medicine, Bethesda, MD 20814, USA
| | - Hung Caohuy
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Uniformed Services University of Health Sciences (USUHS) School of Medicine, Bethesda, MD 20814, USA
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Uniformed Services University of Health Sciences (USUHS) School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Abstract
Many diseases are related to age, among these neurodegeneration is particularly important. Alzheimer's disease Parkinson's and Glaucoma have many common pathogenic events including oxidative damage, Mitochondrial dysfunction, endothelial alterations and changes in the visual field. These are well known in the case of glaucoma, less in the case of neurodegeneration of the brain. Many other molecular aspects are common, such as the role of endoplasmic reticulum autophagy and neuronal apoptosis while others have been neglected due to lack of space such as inflammatory cytokine or miRNA. Moreover, the loss of specific neuronal populations, the induction of similar mechanisms of cell injury and the deposition of protein aggregates in specific anatomical areas are very similar events between these diseases. Intracellular and/or extracellular accumulation of protein aggregates is a key feature of many neurodegenerative disorders. The existence of abnormal protein aggregates has been documented in the RGCs of glaucomatous patients such as the anomalous Tau protein or the β-amyloid accumulations. Intra-cell catabolic processes also appear to be common in both glaucoma and neurodegeneration. They also help us to understand how the basis between these diseases is common and how the visual aspects can be a serious problem for those who are affected.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy.
| | - Carlo Alberto Cutolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Science, University of Genoa, Policlinico San Martino Hospital, Eye Clinic Genoa, Genoa, Italy
| | - Tommaso Rossi
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy
| |
Collapse
|
3
|
Sukumaran P, Sun Y, Schaar A, Selvaraj S, Singh BB. TRPC Channels and Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 976:85-94. [PMID: 28508315 DOI: 10.1007/978-94-024-1088-4_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder, which involves degeneration of dopaminergic neurons that are present in the substantia nigra pars compacta (SNpc) region. Many factors have been identified that could lead to Parkinson's disease; however, almost all of them are directly or indirectly dependent on Ca2+ signaling. Importantly, though disturbances in Ca2+ homeostasis have been implicated in Parkinson's disease and other neuronal diseases, the identity of the calcium channel remains elusive. Members of the transient receptor potential canonical (TRPC) channel family have been identified as a new class of Ca2+ channels, and it could be anticipated that these channels could play important roles in neurodegenerative diseases, especially in PD. Thus, in this chapter we have entirely focused on TRPC channels and elucidated its role in PD.
Collapse
Affiliation(s)
- Pramod Sukumaran
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Yuyang Sun
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Anne Schaar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Senthil Selvaraj
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Brij B Singh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA.
| |
Collapse
|
4
|
Deng W, Wang J, Zhang J, Cai J, Bai Z, Zhang Z. Orai1, a Direct Target of microRNA-519, Promotes Progression of Colorectal Cancer via Akt/GSK3β Signaling Pathway. Dig Dis Sci 2016; 61:1553-60. [PMID: 26792278 DOI: 10.1007/s10620-015-4029-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Orai1, which is involved in store-operated calcium entry, has recently been implicated in cancer progression. However, the role of Orai1 in colorectal cancer (CRC) progression remains unclear. METHODS We used real-time PCR and western blot to measure Orai1 expression in four CRC cell lines, 60 tumor pairs, and corresponding non-tumor tissues from CRC patients. Immunohistochemistry was performed to examine Orai1 expression in CRC and corresponding non-tumor tissues. Statistical analyses were applied to evaluate the prognostic value and associations of Orai1 expression with clinical parameters. Furthermore, the Orai1 gene was overexpressed in HCT116 cell and silenced with siRNA in LOVO cell. Moreover, cell proliferation and apoptosis were measured using MTT assay and flow cytometry, and a molecular mechanism of Orai1 regulation by miR-519 was explored. RESULTS Orai1 expression was higher in CRC tissues than adjacent non-cancerous tissues, and this was positively correlated in CRC patients with distant metastasis and poor prognosis. Also, increased expression of Orai1 was observed in highly invasive CRC cell lines and ectopic expression of Orai1 enhanced cell proliferation and inhibited apoptosis; silencing Orai1 suppressed cell proliferation and induced apoptosis. The Akt/GSK3β pathway contributed to Orai1 effects in CRC cells, and Orai1 was a direct target of miR-519, a microRNA not previously reported to be involved in both CRC tissues and cell lines. CONCLUSIONS We identified a novel CRC regulatory circuit involving the miR-519-Orai1 axis, and dysfunction of this drives diverse aspects of CRC pathogenesis.
Collapse
Affiliation(s)
- Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Jin Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Jun Cai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China. .,National Clinical Research Center of Digestive Diseases, Beijing, 100050, China.
| |
Collapse
|
5
|
Selli C, Erac Y, Kosova B, Erdal ES, Tosun M. Silencing of TRPC1 regulates store-operated calcium entry and proliferation in Huh7 hepatocellular carcinoma cells. Biomed Pharmacother 2015; 71:194-200. [DOI: 10.1016/j.biopha.2015.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/21/2015] [Indexed: 01/23/2023] Open
|
6
|
Pan Z, Avila A, Gollahon L. Paclitaxel induces apoptosis in breast cancer cells through different calcium--regulating mechanisms depending on external calcium conditions. Int J Mol Sci 2014; 15:2672-94. [PMID: 24549172 PMCID: PMC3958875 DOI: 10.3390/ijms15022672] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/19/2022] Open
Abstract
Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis.
Collapse
Affiliation(s)
- Zhi Pan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - Andrew Avila
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
7
|
The apoptosis of non-small cell lung cancer induced by cisplatin through modulation of STIM1. ACTA ACUST UNITED AC 2013; 65:1073-81. [PMID: 23714431 DOI: 10.1016/j.etp.2013.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/19/2013] [Indexed: 11/21/2022]
Abstract
Cis-diamminedichloroplatinum (II) (cisplatin) is one of the most active antitumor agents used in human chemotherapy of non-small cell lung cancer. Cisplatin forms crosslinked DNA adducts and its cytotoxicity has been shown to be mediated by propagation of DNA damage recognition signals to downstream pathways prompting apoptosis. The steps involved in the process include changes in Ca(2+) signaling with dysregulated tumor cell turn-over. Stromal interaction molecules 1 (STIM1), as one of the most potent tumor suppressor genes, are identified as the endoplasmic-reticulum (ER) Ca(2+) sensor controlling store-operated Ca(2+) entry (SOCE) in non-excitable cells, which is main pathway to extracellular Ca(2+) influx. Its role in STIM1 cisplatin-induced apoptosis of non-small cell lung cancer was the focus of study with focus on SOCE inhibitors 2-APB- and SKF96365-cisplatin-induced apoptosis in the non-small cell lung cancer (NSCLC) cell lines A549 and H460. In this experimental model, cisplatin-induced apoptosis and decreased concentration of intracellular Ca(2+) was demonstrated. The expression of STIM1 was significantly higher in carcinoma tissue than in the adjacent non-neoplastic lung tissue. These findings support the conclusion that STIM1 may play an important role in the development of NSCLC which makes drugs that repress the expression of STIM1 to be a potential target for lung cancer therapy.
Collapse
|
8
|
Chi X, Wang S, Huang Y, Stamnes M, Chen JL. Roles of rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci 2013; 14:7089-108. [PMID: 23538840 PMCID: PMC3645678 DOI: 10.3390/ijms14047089] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 01/21/2023] Open
Abstract
Rho family GTPases belong to the Ras GTPase superfamily and transduce intracellular signals known to regulate a variety of cellular processes, including cell polarity, morphogenesis, migration, apoptosis, vesicle trafficking, viral transport and cellular transformation. The three best-characterized Rho family members are Cdc42, RhoA and Rac1. Cdc42 regulates endocytosis, the transport between the endoplasmic reticulum and Golgi apparatus, post-Golgi transport and exocytosis. Cdc42 influences trafficking through interaction with Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, leading to changes in actin dynamics. Rac1 mediates endocytic and exocytic vesicle trafficking by interaction with its effectors, PI3kinase, synaptojanin 2, IQGAP1 and phospholipase D1. RhoA participates in the regulation of endocytosis through controlling its downstream target, Rho kinase. Interestingly, these GTPases play important roles at different stages of viral protein and genome transport in infected host cells. Importantly, dysregulation of Cdc42, Rac1 and RhoA leads to numerous disorders, including malignant transformation. In some cases, hyperactivation of Rho GTPases is required for cellular transformation. In this article, we review a number of findings related to Rho GTPase function in intracellular transport and cellular transformation.
Collapse
Affiliation(s)
- Xiaojuan Chi
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
| | - Song Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail:
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
| | - Mark Stamnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; E-Mail:
| | - Ji-Long Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-6480-7300; Fax: +86-10-6480-7980
| |
Collapse
|
9
|
Liu H, Hughes JD, Rollins S, Chen B, Perkins E. Calcium entry via ORAI1 regulates glioblastoma cell proliferation and apoptosis. Exp Mol Pathol 2011; 91:753-60. [PMID: 21945734 DOI: 10.1016/j.yexmp.2011.09.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/02/2011] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Calcium entry plays a critical role in the proliferation and survival of certain tumors. Ca(2+) release activated Ca(2+) (CRAC) channels constitute one of the most important pathways for calcium entry especially that of store-operated calcium entry (SOCE). ORAI1 and stromal interaction molecule1 (STIM1) are essential protein components of CRAC channels. In this study we tested the effect of inhibiting CRAC through ORAI1 and STIM1 on glioblastoma multiforme (GBM) tumor cell proliferation and survival. METHODS Two glioblastoma cell lines, C6 (rat) and U251 (human), were used in the study. ORAI1 and STIM1 expressions were examined using Western blot and immunohistochemistry. CRAC channel activity and its components were inhibited with ion channel blockers and using siRNA knockdown. Changes in intracellular calcium concentration were recorded using Fura-2 fluorescent calcium imaging. Cell proliferation and apoptosis were examined using MTS and TUNEL assays, respectively. RESULTS CRAC blockers, such as SKF-96365 (1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl) propoxy]ethyl-1H-imidazole), 2-aminoethoxydiphenyl borate (2-APB) and Diethylstilbestrol (DES), inhibited cell proliferations and SOCE in GBM cells. Knockdown of ORAI1 and STIM1 proteins using siRNA significantly inhibited C6 cell proliferation and SOCE compared with those in control cells, and a more significant effect was observed in cells with ORAI1 siRNA knockdown than that of STIM1-treated cells. Both CRAC blockers and siRNA treatments increased apoptosis in C-6 cells compared with control. CONCLUSION Calcium entry via ORAI1 and CRAC channels are important for GBM proliferation and survival.
Collapse
Affiliation(s)
- Huiling Liu
- Department of Neurosurgery, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | | | | | | | | |
Collapse
|
10
|
Selvaraj S, Watt JA, Singh BB. TRPC1 inhibits apoptotic cell degeneration induced by dopaminergic neurotoxin MPTP/MPP(+). Cell Calcium 2009; 46:209-18. [PMID: 19695701 DOI: 10.1016/j.ceca.2009.07.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/09/2009] [Accepted: 07/21/2009] [Indexed: 12/19/2022]
Abstract
Disturbances in Ca(2+) homeostasis have been implicated in a variety of neuropathological conditions including Parkinson's disease (PD). However, the importance of store-operated Ca(2+) entry (SOCE) channels in PD remains to be investigated. In the present study, we have scrutinized the significance of TRPC1 in 1-methyl-4-phenyl-1,2,3,6-tetrahyrdro-pyridine (MPTP)-induced PD using C57BL/6 animal model and PC12 cell culture model. Both sub-acute and sub-chronic treatments of MPTP significantly reduced TRPC1, and tyrosine hydroxylase levels, but not TRPC3, along with increased neuronal death. Furthermore, MPTP induces mitochondrial dysfunction, which was associated with reduced mitochondrial membrane potential, decreased level of Bcl(2), Bcl-xl, and an altered Bcl-xl/Bax ratio thereby initiating apoptosis. Importantly, TRPC1 overexpression in PC12 cells showed significant protection against MPP(+) induced neuronal apoptosis, which was attributed to the restoration of cytosolic Ca(2+) and preventing loss of mitochondrial membrane potential. Silencing of TRPC1 or addition of TRPC1 channel blockers decreased mitochondrial membrane potential, whereas activation of TRPC1 restored mitochondrial membrane potential in cells overexpressing TRPC1. TRPC1 overexpression also inhibited Bax translocation to the mitochondria and thereby prevented cytochrome c release and mitochondrial-mediated apoptosis. Overall, these results provide compelling evidence for the role of TRPC1 in either onset/progression of PD and restoration of TRPC1 levels could limit neuronal degeneration in MPTP mediated PD.
Collapse
Affiliation(s)
- Senthil Selvaraj
- Department of Biochemistry & Molecular Biology, University of North Dakota, Grand Forks, 58201, United States
| | | | | |
Collapse
|
11
|
Lee SY, Choi BH, Hur EM, Lee JH, Lee SJ, Lee CO, Kim KT. Norepinephrine activates store-operated Ca2+entry coupled to large-conductance Ca2+-activated K+channels in rat pinealocytes. Am J Physiol Cell Physiol 2006; 290:C1060-6. [PMID: 16282194 DOI: 10.1152/ajpcell.00343.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Norepinephrine (NE) is one of the major neurotransmitters that determine melatonin production in the pineal gland. Although a substantial amount of Ca2+influx is triggered by NE, the Ca2+entry pathway and its physiological relevance have not been elucidated adequately. Herein we report that the Ca2+influx triggered by NE significantly regulates the protein level of serotonin N-acetyltransferase, or arylalkylamine N-acetyltransferase (AANAT), a critical enzyme in melatonin production, and is responsible for maintaining the Ca2+response after repetitive stimulation. Ca2+entry evoked by NE was dependent on PLC activation. NE evoked a substantial amount of Ca2+entry even after cells were treated with 1-oleoyl-2-acetyl- sn-glycerol (OAG), an analog of diacylglycerol. To the contrary, further OAG treatment after cells had been exposed to OAG did not evoke additional Ca2+entry. Moreover, NE failed to induce further Ca2+entry after the development of Ca2+entry induced by thapsigargin (Tg), suggesting that the pathway of Ca2+entry induced by NE might be identical to that of Tg. Interestingly, Ca2+entry evoked by NE or Tg induced membrane hyperpolarization that was reversed by iberiotoxin (IBTX), a specific inhibitor of large-conductance Ca2+-activated K+(BK) channels. Moreover, IBTX-sensitive BK current was observed during application of NE, suggesting that activation of the BK channels was responsible for the hyperpolarization. Furthermore, the activation of BK channels triggered by NE contributed to regulation of the protein level of AANAT. Collectively, these results suggest that NE triggers Ca2+entry coupled to BK channels and that NE-induced Ca2+entry is important in the regulation of AANAT.
Collapse
Affiliation(s)
- So-Young Lee
- Division of Molecular and Life Science, National Core Research Center for System Bio-Dynamics, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyung-buk 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Cantiello HF, Montalbetti N, Goldmann WH, Raychowdhury MK, González-Perrett S, Timpanaro GA, Chasan B. Cation channel activity of mucolipin-1: the effect of calcium. Pflugers Arch 2005; 451:304-12. [PMID: 16133264 DOI: 10.1007/s00424-005-1448-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 04/12/2005] [Indexed: 12/12/2022]
Abstract
Mucolipidosis type IV (MLIV) is a rare, neurogenetic disorder characterized by developmental abnormalities of the brain, and impaired neurological, ophthalmological, and gastric function. Considered a lysosomal disease, MLIV is characterized by the accumulation of large vacuoles in various cell types. Recent evidence indicates that MLIV is caused by mutations in MCOLN1, the gene that encodes mucolipin-1 (ML1), a 65-kDa protein showing sequence homology and topological similarities with polycystin-2 and other transient receptor potential (TRP) channels. In this report, our observations on the channel properties of ML1, and molecular pathophysiology of MLIV are reviewed and expanded. Our studies have shown that ML1 is a multiple sub-conductance, non-selective cation channel. MLIV-causing mutations result in functional differences in the channel protein. In particular, the V446L and DeltaF408 mutations retain channel function but have interesting functional differences with regards to pH dependence and Ca(2+) transport. While the wild-type protein is inhibited by Ca(2+) transport, mutant ML1 is not. Atomic force microscopy imaging of ML1 channels shows that changes in pH modify the aggregation and size of the ML1 channels, which has an impact on vesicular fusogenesis. The new evidence provides support for a novel role of ML1 cation channels in vesicular acidification and normal endosomal function.
Collapse
Affiliation(s)
- Horacio F Cantiello
- Renal Unit, Massachusetts General Hospital East, 149 13th Street, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Thebault S, Zholos A, Enfissi A, Slomianny C, Dewailly E, Roudbaraki M, Parys J, Prevarskaya N. Receptor-operated Ca2+ entry mediated by TRPC3/TRPC6 proteins in rat prostate smooth muscle (PS1) cell line. J Cell Physiol 2005; 204:320-8. [PMID: 15672411 DOI: 10.1002/jcp.20301] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prostate smooth muscle cells predominantly express alpha1-adrenoceptors (alpha1-AR). alpha1-AR antagonists induce prostate smooth muscle relaxation and therefore they are useful therapeutic compounds for the treatment of benign prostatic hyperplasia symptoms. However, the Ca(2+) entry pathways associated with the activation of alpha1-AR in the prostate have yet to be elucidated. In many cell types, mammalian homologues of transient receptor potential (TRP) genes, first identified in Drosophila, encode TRPC (canonical TRP) proteins. They function as receptor-operated channels (ROCs) which are involved in various physiological processes such as contraction, proliferation, apoptosis, and differentiation. To date, the expression and function of TRPC channels have not been studied in prostate smooth muscle. In fura-2 loaded PS1 (a prostate smooth muscle cell line) which express endogenous alpha1A-ARs, alpha-agonists epinephrine (EPI), and phenylephrine (PHE) induced Ca(2+) influx which depended on the extracellular Ca(2+) and PLC activation but was independent of PKC activation. Thus, we have tested two membrane-permeable analogues of diacylglycerol (DAG), oleoyl-acyl-sn-glycerol (OAG) and 1,2-dioctanoyl-sn-glycerol (DOG). They initiated Ca(2+) influx whose properties were similar to those induced by the alpha-agonists. Sensitivity to 2-aminoethyl diphenylborate (2-APB), SKF-96365 and flufenamate implies that Ca(2+)-permeable channels mediated both alpha-agonist- and OAG-evoked Ca(2+) influx. Following the sarcoplasmic reticulum (SR) Ca(2+) store depletion by thapsigargin (Tg), a SERCA inhibitor, OAG and PHE were both still able to activate Ca(2+) influx. However, OAG failed to enhance Ca(2+) influx when added in the presence of an alpha-agonist. RT-PCR and Western blotting performed on PS1 cells revealed the presence of mRNAs and the corresponding TRPC3 and TRPC6 proteins. Experiments using an antisense strategy showed that both alpha-agonist- and OAG-induced Ca(2+) influx required TRPC3 and TRPC6, whereas the Tg-activated ("capacitative") Ca(2+) entry involved only TRPC3 encoded protein. It may be thus concluded that PS1 cells express TRPC3 and TRPC6 proteins which function as receptor- and store-operated Ca(2+) entry pathways.
Collapse
Affiliation(s)
- S Thebault
- Laboratoire de Physiologie Cellulaire, INSERM EMI 0228, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tong H, Rockman HA, Koch WJ, Steenbergen C, Murphy E. G Protein-Coupled Receptor Internalization Signaling Is Required for Cardioprotection in Ischemic Preconditioning. Circ Res 2004; 94:1133-41. [PMID: 15031261 DOI: 10.1161/01.res.0000126048.32383.6b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study is designed to explore the role of G protein-coupled receptors (GPCRs) in the protection afforded by ischemic preconditioning (PC). We used TG mice with cardiac-specific overexpression of a Gβγ-sequestering peptide, βARKct (TG βARKct mice), to test whether the protection of PC is Gβγ-dependent. To test the role of G
i
protein, we used wild-type mice pretreated with the G
i
inhibitor pertussis toxin. Recovery of left ventricular developed pressure and infarct size were measured as indices of protection. PC induced protection in wild-type mice, but this protection was blocked by pertussis toxin treatment and was also blocked in TG βARKct mice. To determine the mechanism of Gβγ-induced protection in PC, we investigated one of the downstream targets of Gβγ, the PI3K/p70S6K pathway. PC-induced phosphorylation of p70S6K was not blocked in TG βARKct hearts; therefore, we investigated other targets of Gβγ. Recent studies suggest a role for Gβγ in GPCR internalization. We found that βARKct, a specific PI3K inhibitor wortmannin, and bafilomycin A
1
, which all block receptor recycling, all blocked the protective effect of PC. To additionally test whether PI3K is involved in PC-activated receptor internalization and endosomal signaling, we used TG mice with cardiac-specific overexpression of a catalytically inactive mutant PI3Kγ, which disrupts the recruitment of functional PI3K to agonist-activated GPCRs in vivo. We found that the catalytically inactive mutant of PI3Kγ blocks the protection of PC. In summary, these data suggest the novel finding that the cardioprotective effect of PC requires receptor internalization.
Collapse
Affiliation(s)
- Haiyan Tong
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
15
|
Ayub K, Hallett MB. Ca2+ influx shutdown during neutrophil apoptosis: importance and possible mechanism. Immunology 2004; 111:8-12. [PMID: 14678192 PMCID: PMC1782384 DOI: 10.1111/j.1365-2567.2004.01766.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 09/15/2003] [Accepted: 09/19/2003] [Indexed: 12/19/2022] Open
Affiliation(s)
- Khurram Ayub
- Neutrophil Signalling Group, University Department of Surgery, University of Wales College of Medicine, Cardiff, UK
| | | |
Collapse
|
16
|
Vacas J, Fernández M, Ros M, Blanco P. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved. Brain Res 2003; 992:272-80. [PMID: 14625066 DOI: 10.1016/j.brainres.2003.08.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/deficiency
- Adenosine/metabolism
- Adenosine/pharmacology
- Adenosine A1 Receptor Agonists
- Adenosine Deaminase/pharmacology
- Animals
- Animals, Newborn
- Calcium/metabolism
- Calcium Channels, R-Type/drug effects
- Calcium Channels, R-Type/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cells, Cultured
- Cerebellar Cortex/cytology
- Cerebellar Cortex/drug effects
- Cerebellar Cortex/metabolism
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Nickel/pharmacology
- Phenethylamines/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A1/metabolism
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
Collapse
Affiliation(s)
- Javier Vacas
- Area de Bioquímica-C.R.I.B., Facultad de Químicas, Universidad de Castilla-La Mancha, Camilo Jose Cela, 10, Ciudad Real, 13071, Spain
| | | | | | | |
Collapse
|
17
|
Vanden Abeele F, Shuba Y, Roudbaraki M, Lemonnier L, Vanoverberghe K, Mariot P, Skryma R, Prevarskaya N. Store-operated Ca2+ channels in prostate cancer epithelial cells: function, regulation, and role in carcinogenesis. Cell Calcium 2003; 33:357-73. [PMID: 12765682 DOI: 10.1016/s0143-4160(03)00049-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ca2+ homeostasis mechanisms, in which the Ca2+ entry pathways play a key role, are critically involved in both normal function and cancerous transformation of prostate epithelial cells. Here, using the lymph node carcinoma of the prostate (LNCaP) cell line as a major experimental model, we characterize prostate-specific store-operated Ca2+ channels (SOCs)--a primary Ca2+ entry pathway for non-excitable cells--for the first time. We show that prostate-specific SOCs share major store-dependent, kinetic, permeation, inwardly rectifying, and pharmacological (including dual, potentiation/inhibition concentration-dependent sensitivity to 2-APB) properties with "classical" Ca2+ release-activated Ca2+ channels (CRAC), but have a higher single channel conductance (3.2 and 12pS in Ca2+- and Na+-permeable modes, respectively). They are subject to feedback inhibition via Ca2+-dependent PKC, CaMK-II and CaM regulatory pathways and are functionally dependent on caveolae integrity. Caveolae also provide a scaffold for spatial co-localization of SOCs with volume-regulated anion channels (VRAC) and their Ca2+-mediated interaction. The TRPC1 and TRPV6 members of the transient receptor potential (TRP) channel family are the most likely molecular candidates for the formation of prostate-specific endogenous SOCs. Differentiation of LNCaP cells to an androgen-insensitive, apoptotic-resistant neuroendocrine phenotype downregulates SOC current. We conclude that prostate-specific SOCs are important determinants in the transition to androgen-independent prostate cancer.
Collapse
Affiliation(s)
- F Vanden Abeele
- Laboratoire de Physiologie Cellulaire, INSERM EMI 0228, Bâtiment SN3, USTL, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Xu J, Feng HT, Wang C, Yip KHM, Pavlos N, Papadimitriou JM, Wood D, Zheng MH. Effects of Bafilomycin A1: an inhibitor of vacuolar H (+)-ATPases on endocytosis and apoptosis in RAW cells and RAW cell-derived osteoclasts. J Cell Biochem 2003; 88:1256-64. [PMID: 12647307 DOI: 10.1002/jcb.10477] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bafilomycin A1, a specific inhibitor of V-ATPases, is a potent inhibitor of bone resorption, but the underlying mechanisms of its action remain unclear. In this study, we investigated the effect of Bafilomycin A1 on endocytosis and apoptosis in RAW cells and RAW cell-derived osteoclasts. Quantitative analysis by flow cytometry showed that Bafilomycin A1 increased total transferrin levels when RAW cells were exposed to labeled transferrin and decreased the total uptake of Dextran-rhodamine B, both in a dose- and time-dependent fashion, indicating that Bafilomycin influences receptor-mediated and fluid phase endocytosis in these cells. Furthermore, Bafilomycin A1 induced apoptosis of RAW cells in a dose dependent manner as evidenced by Annexin V flow cytometry. The action of Bafilomycin A1 on endocytotic events appeared to be more sensitive and occurred earlier than on its apoptosis inducing effects, suggesting that interrupting of endocytosis might be an early sign of Bafilomycin-mediated osteoclast inhibition. Semi-quantitative RT-PCR analysis showed that the gene transcripts of putative Bafilomycin A1 binding subunit, V-ATPase-subunit a3, were expressed in the preosteoclastic RAW cell line, and up-regulated during RANKL-induced osteoclastogenesis. Osteoclasts treated with Bafilomycin A1 exhibited apoptosis as well as altered cellular localization of Transferrin Alexa 647. Given that endocytosis and apoptosis are important processes during osteoclastic bone resorption, the potent effect of Bafilomycin A1 on endocytosis and apoptosis of osteoclasts and their precursor cells may in part account for Bafilomycin A1 inhibited bone resorption.
Collapse
Affiliation(s)
- Jiake Xu
- Department of Surgery (Orthopaedics), University of Western Australia, QEII Medical Center, Nedlands WA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Venkatachalam K, van Rossum DB, Patterson RL, Ma HT, Gill DL. The cellular and molecular basis of store-operated calcium entry. Nat Cell Biol 2002; 4:E263-72. [PMID: 12415286 DOI: 10.1038/ncb1102-e263] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The impact of calcium signalling on so many areas of cell biology reflects the crucial role of calcium signals in the control of diverse cellular functions. Despite the precision with which spatial and temporal details of calcium signals have been resolved, a fundamental aspect of the generation of calcium signals -- the activation of 'store-operated channels' (SOCs) -- remains a molecular and mechanistic mystery. Here we review new insights into the exchange of signals between the endoplasmic reticulum (ER) and plasma membrane that result in activation of calcium entry channels mediating crucial long-term calcium signals.
Collapse
Affiliation(s)
- Kartik Venkatachalam
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
20
|
Vanden Abeele F, Skryma R, Shuba Y, Van Coppenolle F, Slomianny C, Roudbaraki M, Mauroy B, Wuytack F, Prevarskaya N. Bcl-2-dependent modulation of Ca(2+) homeostasis and store-operated channels in prostate cancer cells. Cancer Cell 2002; 1:169-79. [PMID: 12086875 DOI: 10.1016/s1535-6108(02)00034-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antiapoptotic oncoprotein Bcl-2 has extramitochondrial actions due to its localization on the endoplasmic reticulum (ER); however, the specific mechanisms of such actions remain unclear. Here we show that Bcl-2 overexpression in LNCaP prostate cancer epithelial cells results in downregulation of store-operated Ca(2+) current by decreasing the number of functional channels and inhibiting ER Ca(2+) uptake through a reduction in the expression of calreticulin and SERCA2b, two key proteins controlling ER Ca(2+) content. Furthermore, we demonstrate that Ca(2+) store depletion by itself is not sufficient to induce apoptosis in Bcl-2 overexpressing cells, and that sustained Ca(2+) entry via activated store-operated channels (SOCs) is required as well. Our data therefore suggest the pivotal role of SOCs in apoptosis and cancer progression.
Collapse
Affiliation(s)
- Fabien Vanden Abeele
- Laboratoire de Physiologie Cellulaire, INSERM EPI-9938, Universite des Sciences et Technologies de Lille, Batiment SN3, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Levine A, Belenghi B, Damari-Weisler H, Granot D. Vesicle-associated membrane protein of Arabidopsis suppresses Bax-induced apoptosis in yeast downstream of oxidative burst. J Biol Chem 2001; 276:46284-9. [PMID: 11551960 DOI: 10.1074/jbc.m107375200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Programmed cell death (PCD) in many systems is controlled by relative amounts of the apoptosis-regulating proteins Bax and Bcl-2 through homo- or heterodimerization. Here we show that Bax-induced PCD of yeast was suppressed by transformation with a vesicle-associated membrane protein from Arabidopsis (AtVAMP), which was isolated by screening a cDNA expression library against sugar-induced cell death in yeast. AtVAMP expression blocked Bax-induced PCD downstream of oxidative burst. AtVAMP also prevented H(2)O(2)-induced apoptosis in yeast and in Arabidopsis cells. Reduced oxidation of lipids and plasma membrane proteins was detected in the AtVAMP-transformed yeast, suggesting improved membrane repair. Inhibition of intracellular vesicle trafficking by brefeldin A induced apoptosis from a sublethal concentration of H(2)O(2). No protection occurred by overexpression of the yeast homolog SCN2. However, efficient suppression of yeast PCD occurred by expression of a chimeric gene, composed of the conserved domains from yeast, fused to the variable N-terminal domain from Arabidopsis, resulting in exchange of the proline-rich N-terminal domain of SCN2 with a proline-poor Arabidopsis sequence. Our results suggest that intracellular vesicle traffic can regulate execution of apoptosis by affecting the rate of membrane recycling and that the proline-rich N-terminal domain of VAMP inhibited this process.
Collapse
Affiliation(s)
- A Levine
- Department of Plant Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
22
|
Zhu L, Yu Y, Chua BH, Ho YS, Kuo TH. Regulation of sodium-calcium exchange and mitochondrial energetics by Bcl-2 in the heart of transgenic mice. J Mol Cell Cardiol 2001; 33:2135-44. [PMID: 11735260 DOI: 10.1006/jmcc.2001.1476] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Our previous work in cultured cells has shown that the maintenance of mitochondrial Ca(2+) homeostasis is essential for cell survival, and that the anti-apoptotic protein Bcl-2 is able to maintain a threshold level of mitochondrial Ca(2+) by the inhibition of permeability transition. To test whether Bcl-2 also affects the mitochondrial Na(+)-Ca(2+) exchange (NCE), a major efflux pathway for mitochondrial Ca(2+), studies using transgenic mice that overexpress Bcl-2 in the heart have been performed. NCE activity was determined as the Na(+)-dependent Ca(2+) efflux in the isolated mitochondria. Overexpression of Bcl-2 led to a significant reduction of NCE activity as well as increased resistance to permeability transition in the mitochondria of transgenic heart. This was accompanied by increased matrix Ca(2+) level, enhanced formation of NADH and enhanced oxidation of pyruvate, an NAD(+)-linked substrate. Furthermore, there was induction of cellular Ca(2+) transport proteins including the Na(+)-Ca(2+) exchanger of the sarcolemma (NCX). Bcl-2 not only stimulates NCX expression in the sarcolemma but also attenuates the Na(+)-Ca(2+) exchange in the mitochondria. These results are consistent with the protection by Bcl-2 against apoptosis in heart following ischemia/reperfusion.
Collapse
Affiliation(s)
- L Zhu
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
23
|
Martínez MC, Freyssinet JM. Deciphering the plasma membrane hallmarks of apoptotic cells: phosphatidylserine transverse redistribution and calcium entry. BMC Cell Biol 2001; 2:20. [PMID: 11701087 PMCID: PMC59679 DOI: 10.1186/1471-2121-2-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2001] [Accepted: 10/17/2001] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND During apoptosis, Ca2+-dependent events participate in the regulation of intracellular and morphological changes including phosphatidylserine exposure in the exoplasmic leaflet of the cell plasma membrane. The occurrence of phosphatidylserine at the surface of specialized cells, such as platelets, is also essential for the assembly of the enzyme complexes of the blood coagulation cascade, as demonstrated by hemorrhages in Scott syndrome, an extremely rare genetic deficiency of phosphatidylserine externalization, without other apparent pathophysiologic consequences. We have recently reported a reduced capacitative Ca2+ entry in Scott cells which may be part of the Scott phenotype. RESULTS Taking advantage of these mutant lymphoblastoid B cells, we have studied the relationship between this mode of Ca2+ entry and phosphatidylserine redistribution during apoptosis. Ca2+ ionophore induced apoptosis in Scott but not in control cells. However, inhibition of store-operated Ca2+ channels led to caspase-independent DNA fragmentation and decrease of mitochondrial membrane potential in both control and Scott cells. Inhibition of cytochrome P450 also reduced capacitative Ca2+ entry and induced apoptosis at comparable extents in control and Scott cells. During the apoptotic process, both control and more markedly Scott cells externalized phosphatidylserine, but in the latter, this membrane feature was however dissociated from several other intracellular changes. CONCLUSIONS The present results suggest that different mechanisms account for phosphatidylserine transmembrane migration in cells undergoing stimulation and programmed death. These observations testify to the plasticity of the plasma membrane remodeling process, allowing normal apoptosis even when less fundamental functions are defective.
Collapse
Affiliation(s)
- M Carmen Martínez
- Institut d'Hématologie et d'Immunologie, Faculté de Médecine, Université Louis Pasteur, 4, rue Kirschleger, 67085, Strasbourg, France
- Unité 143 INSERM, Hôpital de Bicêtre, 94276, Le Kremlin-Bicêtre, France
| | - Jean-Marie Freyssinet
- Institut d'Hématologie et d'Immunologie, Faculté de Médecine, Université Louis Pasteur, 4, rue Kirschleger, 67085, Strasbourg, France
- Unité 143 INSERM, Hôpital de Bicêtre, 94276, Le Kremlin-Bicêtre, France
| |
Collapse
|
24
|
Petranka J, Wright G, Forbes RA, Murphy E. Elevated calcium in preneoplastic cells activates NF-kappa B and confers resistance to apoptosis. J Biol Chem 2001; 276:37102-8. [PMID: 11479282 DOI: 10.1074/jbc.m008448200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Early preneoplastic cells (sup+) exhibit increased susceptibility to apoptosis, which is lost in late stage preneoplastic cells (sup-). Sup+ cells, which undergo apoptosis when cultured in low serum, show little or no DNA binding activity to nuclear factor (NF)-kappa B either in 10% or 0.2% serum. In contrast sup- cells, which are resistant to apoptosis in low serum, show a sustained constitutive activation of NF-kappa B. The constitutive activation of NF-kappa B observed in sup- cells is not due to loss of I kappa B alpha. We considered that the activation of NF-kappa B in sup- cells might be secondary to an increase in cytosolic Ca(2+), since sup- cells have a cytosolic Ca(2+) level that is double that in sup+ cells. In support of a role for Ca(2+), lowering cytosolic Ca(2+) in sup- cells by addition of the cell-permeable Ca(2+) chelator 1,2 bis(O-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) reduced cytosolic Ca(2+) by approximately 31% relative to untreated sup- cells, concomitant with a 65% reduction in NF-kappa B DNA binding activity and a reduction in I kappa B kinase (IKK) activity. In sup- cells in low serum, addition of BAPTA-AM also resulted in a significant ( approximately 50%) increase in caspase-3 activity. Raising extracellular Ca(2+) in sup+ cells resulted in a slight activation of I kappa B kinase and in enhanced NF-kappa B DNA binding activity. Using proteasome and calpain inhibitors, we determined that the basal activity of NF-kappa B in sup- cells is largely proteasome-independent, but sensitive to calpain inhibitors. Taken together these data suggest that the elevated Ca(2+) in sup- cells causes a modest activation of IKK, which likely contributes to the enhanced basal activation of NF-kappa B in sup- cells; however, the predominant effect of Ca(2+) appears to be mediated by Ca(2+)-enhanced degradation by calpain.
Collapse
Affiliation(s)
- J Petranka
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
25
|
Sheridan AM, Force T, Yoon HJ, O'Leary E, Choukroun G, Taheri MR, Bonventre JV. PLIP, a novel splice variant of Tip60, interacts with group IV cytosolic phospholipase A(2), induces apoptosis, and potentiates prostaglandin production. Mol Cell Biol 2001; 21:4470-81. [PMID: 11416127 PMCID: PMC87107 DOI: 10.1128/mcb.21.14.4470-4481.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2000] [Accepted: 03/28/2001] [Indexed: 02/05/2023] Open
Abstract
The group IV cytosolic phospholipase A(2) (cPLA(2)) has been localized to the nucleus (M. R. Sierra-Honigmann, J. R. Bradley, and J. S. Pober, Lab. Investig. 74:684-695, 1996) and is known to translocate from the cytosolic compartment to the nuclear membrane (S. Glover, M. S. de Carvalho, T. Bayburt, M. Jonas, E. Chi, C. C. Leslie, and M. H. Gelb, J. Biol. Chem. 270:15359-15367, 1995; A. R. Schievella, M. K. Regier, W. L. Smith, and L. L. Lin, J. Biol. Chem. 270:30749-30754, 1995). We hypothesized that nuclear proteins interact with cPLA(2) and participate in the functional effects of this translocation. We have identified a nuclear protein, cPLA(2)-interacting protein (PLIP), a splice variant of human Tip60, which interacts with the amino terminal region of cPLA(2). Like Tip60, PLIP cDNA includes the MYST domain containing a C2HC zinc finger and well-conserved similarities to acetyltransferases. Both PLIP and Tip60 coimmunoprecipitate and colocalize with cPLA(2) within the nuclei of transfected COS cells. A polyclonal antibody raised to PLIP recognizes both PLIP and Tip60. Endogenous Tip60 and/or PLIP in rat mesangial cells is localized to the nucleus in response to serum deprivation. Nuclear localization coincides temporally with apoptosis. PLIP expression, mediated by adenoviral gene transfer, potentiates serum deprivation-induced prostaglandin E(2) (PGE(2)) production and apoptosis in mouse mesangial cells from cPLA(2)(+/+) mice but not in mesangial cells derived from cPLA(2)(-/-) mice. Thus PLIP, a splice variant of Tip60, interacts with cPLA(2) and potentiates cPLA(2)-mediated PGE(2) production and apoptosis.
Collapse
Affiliation(s)
- A M Sheridan
- Medical Services, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Kunzelmann-Marche C, Freyssinet JM, Martínez MC. Regulation of phosphatidylserine transbilayer redistribution by store-operated Ca2+ entry: role of actin cytoskeleton. J Biol Chem 2001; 276:5134-9. [PMID: 11076944 DOI: 10.1074/jbc.m007924200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylserine transmembrane redistribution at the cell surface is one of the early characteristics of cells undergoing apoptosis and also occurs in cells fulfilling a more specialized function, such as the phosphatidylserine-dependent procoagulant response of platelets after appropriate activation. Although an increase in cytoplasmic Ca2+ is essential to trigger the remodeling of the plasma membrane, little is known about intracellular signals leading to phosphatidylserine externalization. Here, the role of store-operated Ca2+ entry on phosphatidylserine exposure was investigated in human erythroleukemia HEL cells, a pluripotent lineage with megakaryoblastic properties. Ca2+ entry inhibitors (SKF-96365, LaCl(3), and miconazole) inhibited store-operated Ca2+ entry in A23187- or thapsigargin-stimulated cells and reduced the degree of phosphatidylserine externalization concomitantly, providing evidence for a close link between the two processes. In cells pretreated with cytochalasin D, an agent that disrupts the microfilament network of the cytoskeleton, store-operated Ca2+ entry and phosphatidylserine externalization at the cell surface were inhibited. In a context where most of the key actors remain to be identified, these results provide evidence for the implication of both store-operated Ca2+ entry and cytoskeleton architectural organization in the regulation of phosphatidylserine transbilayer migration.
Collapse
Affiliation(s)
- C Kunzelmann-Marche
- Institut d'Hématologie et d'Immunologie, Université Louis Pasteur, Faculté de Médecine, 4 rue Kirschleger, Strasbourg 67085, France
| | | | | |
Collapse
|
27
|
Xu SZ, Beech DJ. TrpC1 is a membrane-spanning subunit of store-operated Ca(2+) channels in native vascular smooth muscle cells. Circ Res 2001; 88:84-7. [PMID: 11139478 DOI: 10.1161/01.res.88.1.84] [Citation(s) in RCA: 307] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mammalian counterparts of the Drosophila trp gene have been suggested to encode store-operated Ca(2+) channels. These specialized channels are widely distributed and may have a general function to reload Ca(2+) into sarcoplasmic reticulum as well as specific functions, including the control of cell proliferation and muscle contraction. Heterologous expression of mammalian trp genes enhances or generates Ca(2+) channel activity, but the crucial question of whether any of the genes encode native subunits of store-operated channels remains unanswered. We have investigated if TrpC1 protein (encoded by trp1 gene) is a store-operated channel in freshly isolated smooth muscle cells of resistance arterioles, arteries, and veins from human, mouse, or rabbit. Messenger RNA encoding TrpC1 was broadly expressed. TrpC1-specific antibody targeted to peptide predicted to contribute to the outer vestibule of TrpC1 channels revealed that TrpC1 is localized to the plasma membrane and has an extracellular domain. Peptide-specific binding of the antibody had a functional effect, selectively blocking store-operated Ca(2+) channel activity. The antibody is a powerful new tool for the study of mammalian trp1 gene product. The study shows that TrpC1 is a novel physiological Ca(2+) channel subunit in arterial smooth muscle cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/pharmacology
- Blood Vessels/metabolism
- Blotting, Western
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/immunology
- Calcium Channels/metabolism
- Gene Expression
- Humans
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rabbits
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Homology, Amino Acid
- TRPC Cation Channels
- Thapsigargin/pharmacology
Collapse
Affiliation(s)
- S Z Xu
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
28
|
Jayadev S, Barrett JC, Murphy E. Elevated ceramide is downstream of altered calcium homeostasis in low serum-induced apoptosis. Am J Physiol Cell Physiol 2000; 279:C1640-7. [PMID: 11029312 DOI: 10.1152/ajpcell.2000.279.5.c1640] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two immortalized cell lines, sup (+) and sup (-), derived from mutagenized Syrian hamster embryo cells, were used to study the relationship and temporal order between calcium and ceramide signals during apoptosis. The early preneoplastic cells, termed sup (+), suppress tumorigenicity when hybridized with tumor cells, whereas later-stage sup (-) cells do not. In reduced serum conditions, sup (+) cells cease proliferating and undergo apoptosis; in contrast, sup (-) cells continue slow growth and undergo necrosis. In sup (+) cells, decreased endoplasmic reticulum (ER) calcium occurs 4 h after low serum treatment and precedes apoptosis. Significant elevations in ceramide are observed 16 h after reduced serum treatment of sup (+) cells but are not found in sup (-) cells. Inhibiting ER calcium depletion in low serum-treated sup (+) cells by treating with high levels of calcium prevents both ceramide generation and apoptosis. Conversely, inducing ER calcium depletion in sup (-) cells by treating with low serum plus thapsigargin results in elevated ceramide levels and apoptosis. Furthermore, C(6)-ceramide treatment induced apoptosis of sup (-) cells in low serum, a condition that does not normally cause apoptosis. C(6)-ceramide treatment did not induce apoptosis in either sup (+) or sup (-) cells in 10% serum but did cause G(2)/M arrest. These studies show that ceramide production is downstream of ER calcium release.
Collapse
Affiliation(s)
- S Jayadev
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
29
|
Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Ding K, Frosch MP, Tanzi RE, Kim TW. Presenilin-mediated modulation of capacitative calcium entry. Neuron 2000; 27:561-72. [PMID: 11055438 DOI: 10.1016/s0896-6273(00)00066-0] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied a novel function of the presenilins (PS1 and PS2) in governing capacitative calcium entry (CCE), a refilling mechanism for depleted intracellular calcium stores. Abrogation of functional PS1, by either knocking out PS1 or expressing inactive PS1, markedly potentiated CCE, suggesting a role for PS1 in the modulation of CCE. In contrast, familial Alzheimer's disease (FAD)-linked mutant PS1 or PS2 significantly attenuated CCE and store depletion-activated currents. While inhibition of CCE selectively increased the amyloidogenic amyloid beta peptide (Abeta42), increased accumulation of the peptide had no effect on CCE. Thus, reduced CCE is most likely an early cellular event leading to increased Abeta42 generation associated with FAD mutant presenilins. Our data indicate that the CCE pathway is a novel therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- A S Yoo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhu LP, Yu XD, Ling S, Brown RA, Kuo TH. Mitochondrial Ca(2+)homeostasis in the regulation of apoptotic and necrotic cell deaths. Cell Calcium 2000; 28:107-17. [PMID: 10970767 DOI: 10.1054/ceca.2000.0138] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using distinct models of apoptosis and necrosis, we have investigated the effect of mitochondrial Ca(2+)(Ca(m)) homeostasis in the regulation of cell death in neuroblastoma cells as well as cardiac myocytes. The steady state level of Ca(m)was determined as the FCCP-releasable Ca(2+). Culturing cells with low concentration of extracellular Ca(2+)(Ca(o)) or with EGTA triggered an early reduction in both the Ca(m)store and the membrane potential (DeltaPsi(m)). This was followed by the detection of cytochrome c release, caspase activation, and apoptosis. Inhibitors of the mitochondrial permeability transition pore such as cyclosporin A and Bcl-2 blocked the release of Ca(m)and inhibited apoptosis. In contrast, mitochondrial Ca(2+)overload resulted in necrotic cell death. Culturing cells in the presence of excess Ca(o)led to increased Ca(m)load together with a decrease of DeltaPsi(m)that reached maximum at 1 h, with necrosis occurring at 2 h. While the decline of Ca(m)and DeltaPsi(m)was a coupled reaction for apoptosis, this relationship was uncoupled during necrosis. Clonazepam, a relatively specific inhibitor of the mitochondrial Na/Ca exchanger, was able to protect the cells from necrosis by reducing Ca(m)overload. Importantly, combination of clonazepam and cyclosporin showed a cooperative effect in further reducing the Ca(m)overload and abolished cell death. The data imply the participation of Ca(m)homeostasis in the regulation of apoptosis and necrosis.
Collapse
Affiliation(s)
- L P Zhu
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
31
|
Filipeanu CM, Nelemans A, Veldman RJ, de Zeeuw D, Kok JW. Regulation of [Ca(2+)](i) homeostasis in MRP1 overexpressing cells. FEBS Lett 2000; 474:107-10. [PMID: 10828460 DOI: 10.1016/s0014-5793(00)01585-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of capacitative Ca(2+) entry was studied in two different multidrug resistance (MDR) protein (MRP1) overexpressing cell lines, HT29(col) and GLC4/ADR. MRP1 overexpression was accompanied by a decreased response to thapsigargin. Moreover, inhibition of capacitative Ca(2+) entry by D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) was abolished in MRP1 overexpressing cells. Both PDMP and the MRP1 inhibitor MK571 greatly reduced InsP(3)-mediated (45)Ca(2+) release from intracellular stores in HT29 cells. Again, these effects were virtually abolished in HT29(col) cells. Our results point to a modulatory role of MRP1 on intracellular calcium concentration ([Ca(2+)](i)) homeostasis which may contribute to the MDR phenotype.
Collapse
Affiliation(s)
- C M Filipeanu
- Groningen University Institute for Drug Exploration, Department of Clinical Pharmacology, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Zhu L, Ling S, Yu XD, Venkatesh LK, Subramanian T, Chinnadurai G, Kuo TH. Modulation of mitochondrial Ca(2+) homeostasis by Bcl-2. J Biol Chem 1999; 274:33267-73. [PMID: 10559201 DOI: 10.1074/jbc.274.47.33267] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the role of mitochondrial Ca(2+) (Ca(m)) homeostasis in cell survival. Disruption of Ca(m) homeostasis via depletion of the mitochondrial Ca(2+) store was the earliest event that occurred during staurosporine-induced apoptosis in neuroblastoma cells (SH-SY5Y). The decrease of Ca(m) preceded activation of the caspase cascade and DNA fragmentation. Overexpression of the anti-apoptosis protein Bcl-2 led to increased Ca(m) load, increased mitochondrial membrane potential (DeltaPsi(m)), and inhibition of staurosporine-induced apoptosis. On the other hand, ectopic expression of the pro-apoptotic protein Bik led to decreased Ca(m) load and decreased DeltaPsi(m). Inhibition of calcium uptake into mitochondria by ruthenium red induced a dose-dependent apoptosis as determined by nuclear staining and DNA ladder assay. Similarly, reducing the Ca(m) load by lowering the extracellular calcium concentration also led to apoptosis. We suggest that the anti-apoptotic effect of Bcl-2 is related to its ability to maintain a threshold level of Ca(m) and DeltaPsi(m) while the pro-apoptotic protein Bik has the opposite effect. Furthermore, both ER and mitochondrial Ca(2+) stores are important, and the depletion of either one will result in apoptosis. Thus, our results, for the first time, provide evidence that the maintenance of Ca(m) homeostasis is essential for cell survival.
Collapse
Affiliation(s)
- L Zhu
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|