1
|
Finding the balance: The elusive mechanisms underlying auditory hair cell mitochondrial biogenesis and mitophagy. Hear Res 2023; 428:108664. [PMID: 36566644 DOI: 10.1016/j.heares.2022.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
In all cell types, mitochondrial biogenesis is balanced with mitophagy to maintain a healthy mitochondrial pool that sustains specific energetic demands. Cell types that have a higher energetic burden, such as skeletal muscle cells and cardiomyocytes, will subsequently develop high mitochondrial volumes. In these cells, calcium influx during activity triggers cascades leading to activation of the co-transcriptional regulation factor PGC-1α, a master regulator of mitochondrial biogenesis, in a well-defined pathway. Despite the advantages in ATP production, high mitochondrial volumes might prove to be perilous, as it increases exposure to reactive oxygen species produced during oxidative phosphorylation. Mechanosensory hair cells are highly metabolically active cells, with high total mitochondrial volumes to meet that demand. However, the mechanisms leading to expansion and maintenance of the hair cell mitochondrial pool are not well defined. Calcium influx during mechanotransduction and synaptic transmission regulate hair cell mitochondria, leading to a possibility that similar to skeletal muscle and cardiomyocytes, intracellular calcium underlies the expansion of the hair cell mitochondrial volume. This review briefly summarizes the potential mechanisms underlying mitochondrial biogenesis in other cell types and in hair cells. We propose that hair cell mitochondrial biogenesis is primarily product of cellular differentiation rather than calcium influx, and that the hair cell high mitochondrial volume renders them more susceptible to reactive oxygen species increased by calcium flux than other cell types.
Collapse
|
2
|
Zhao F, Sun L, Yang N, Zheng W, Shen P, Huang Y, Lu Y. Increased release of microvesicles containing mitochondria is associated with the myeloid differentiation of AML-M5 leukaemia cells. Exp Cell Res 2020; 395:112213. [DOI: 10.1016/j.yexcr.2020.112213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
|
3
|
Stay Fit, Stay Young: Mitochondria in Movement: The Role of Exercise in the New Mitochondrial Paradigm. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7058350. [PMID: 31320983 PMCID: PMC6607712 DOI: 10.1155/2019/7058350] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022]
Abstract
Skeletal muscles require the proper production and distribution of energy to sustain their work. To ensure this requirement is met, mitochondria form large networks within skeletal muscle cells, and during exercise, they can enhance their functions. In the present review, we discuss recent findings on exercise-induced mitochondrial adaptations. We emphasize the importance of mitochondrial biogenesis, morphological changes, and increases in respiratory supercomplex formation as mechanisms triggered by exercise that may increase the function of skeletal muscles. Finally, we highlight the possible effects of nutraceutical compounds on mitochondrial performance during exercise and outline the use of exercise as a therapeutic tool in noncommunicable disease prevention. The resulting picture shows that the modulation of mitochondrial activity by exercise is not only fundamental for physical performance but also a key point for whole-organism well-being.
Collapse
|
4
|
Balbaa AO, El-Fattah AA, Awad NM, Abdellatif A. Effects of nanoscale electric fields on the histology of liver cell dysplasia. Nanomedicine (Lond) 2019; 14:515-528. [PMID: 30807249 DOI: 10.2217/nnm-2018-0260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cells electrical fields have a significant role in cell function. AIM The current study examined the effects of nanoscale electric fields generated by magneto-electric nanoparticles (MENs) on precancerous liver tissue. METHODS & RESULTS A total of 30 nm MENs synthesized by sol-gel method were tested in vitro on HepG2 cells and in vivo on liver cell dysplasia in mice, which were exposed to 50 Hz 2 mT for 2 weeks, +/- MENs. MENs with alternating field (AF) reversed liver cells dysplastic features. In vitro cytotoxicity assay showed high lethal dose (LD 50) of 1.4 mg/ml. We also report on the expression of alpha-fetoprotein and cytochrome C. CONCLUSION MEN-generated nanoscale electric fields have significant biological effects on precancerous liver cells.
Collapse
Affiliation(s)
- Aya O Balbaa
- Medical Research Institute, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Biology Department, School of Sciences & Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies & Research, Alexandria University, Alexandria, Egypt.,Department of Chemistry, College of Science, University of Bahrain
| | - Nahla M Awad
- Early Cancer Detection Unit. Ain Shams University Hospitals, Cairo, Egypt
| | - Ahmed Abdellatif
- Biology Department, School of Sciences & Engineering, American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
5
|
Hood DA, Memme JM, Oliveira AN, Triolo M. Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging. Annu Rev Physiol 2018; 81:19-41. [PMID: 30216742 DOI: 10.1146/annurev-physiol-020518-114310] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are critical organelles responsible for regulating the metabolic status of skeletal muscle. These organelles exhibit remarkable plasticity by adapting their volume, structure, and function in response to chronic exercise, disuse, aging, and disease. A single bout of exercise initiates signaling to provoke increases in mitochondrial biogenesis, balanced by the onset of organelle turnover carried out by the mitophagy pathway. This accelerated turnover ensures the presence of a high functioning network of mitochondria designed for optimal ATP supply, with the consequence of favoring lipid metabolism, maintaining muscle mass, and reducing apoptotic susceptibility over the longer term. Conversely, aging and disuse are associated with reductions in muscle mass that are in part attributable to dysregulation of the mitochondrial network and impaired mitochondrial function. Therefore, exercise represents a viable, nonpharmaceutical therapy with the potential to reverse and enhance the impaired mitochondrial function observed with aging and chronic muscle disuse.
Collapse
Affiliation(s)
- David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, M3J 1P3, Canada;
| | - Jonathan M Memme
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, M3J 1P3, Canada;
| | - Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, M3J 1P3, Canada;
| | - Matthew Triolo
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, M3J 1P3, Canada;
| |
Collapse
|
6
|
Bishnoi M, Khare P, Brown L, Panchal SK. Transient receptor potential (TRP) channels: a metabolic TR(i)P to obesity prevention and therapy. Obes Rev 2018; 19:1269-1292. [PMID: 29797770 DOI: 10.1111/obr.12703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Cellular transport of ions, especially by ion channels, regulates physiological function. The transient receptor potential (TRP) channels, with 30 identified so far, are cation channels with high calcium permeability. These ion channels are present in metabolically active tissues including adipose tissue, liver, gastrointestinal tract, brain (hypothalamus), pancreas and skeletal muscle, which suggests a potential role in metabolic disorders including obesity. TRP channels have potentially important roles in adipogenesis, obesity development and its prevention and therapy because of their physiological properties including calcium permeability, thermosensation and taste perception, involvement in cell metabolic signalling and hormone release. This wide range of actions means that organ-specific actions are unlikely, thus increasing the possibility of adverse effects. Delineation of responses to TRP channels has been limited by the poor selectivity of available agonists and antagonists. Food constituents that can modulate TRP channels are of interest in controlling metabolic status. TRP vanilloid 1 channels modulated by capsaicin have been the most studied, suggesting that this may be the first target for effective pharmacological modulation in obesity. This review shows that most of the TRP channels are potential targets to reduce metabolic disorders through a range of mechanisms.
Collapse
Affiliation(s)
- M Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India.,Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - P Khare
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India
| | - L Brown
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - S K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
7
|
Impact of Aging and Exercise on Mitochondrial Quality Control in Skeletal Muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3165396. [PMID: 28656072 PMCID: PMC5471566 DOI: 10.1155/2017/3165396] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022]
Abstract
Mitochondria are characterized by its pivotal roles in managing energy production, reactive oxygen species, and calcium, whose aging-related structural and functional deteriorations are observed in aging muscle. Although it is still unclear how aging alters mitochondrial quality and quantity in skeletal muscle, dysregulation of mitochondrial biogenesis and dynamic controls has been suggested as key players for that. In this paper, we summarize current understandings on how aging regulates muscle mitochondrial biogenesis, while focusing on transcriptional regulations including PGC-1α, AMPK, p53, mtDNA, and Tfam. Further, we review current findings on the muscle mitochondrial dynamic systems in aging muscle: fusion/fission, autophagy/mitophagy, and protein import. Next, we also discuss how endurance and resistance exercises impact on the mitochondrial quality controls in aging muscle, suggesting possible effective exercise strategies to improve/maintain mitochondrial health.
Collapse
|
8
|
Gamu D, Trinh A, Fajardo VA, Bombardier E, Tupling AR. Sarcolipin expression is not required for the mitochondrial enzymatic response to physical activity or diet. J Appl Physiol (1985) 2017; 122:1276-1283. [PMID: 28183820 DOI: 10.1152/japplphysiol.00833.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 11/22/2022] Open
Abstract
In mice, transgenic manipulation of Ca2+-handling proteins is sufficient to alter the metabolic phenotype of muscle. We have previously shown that ablation of sarcolipin (SLN), a regulatory protein and uncoupler of sarco(endo)plasmic reticulum Ca2+-ATPases, leads to excessive diet-induced obesity and glucose intolerance in mice. However, it is unclear how loss of SLN per se affects muscle oxidative capacity and the ability of mitochondria to adapt to physiological stimuli, such as exercise training or calorie overload. To address this question, Sln-/- and wild-type (WT) littermates were given access to voluntary running wheels or underwent a treadmill training protocol for 8 wk. Furthermore, a separate group of mice were given a high-fat diet (42% kcal from fat for 8 wk) to determine whether the excessively obese phenotype of Sln-/- mice is associated with altered oxidative capacity. While voluntary running was insufficient to elicit mitochondrial adaptations, treadmill-trained mice showed significant increases (P < 0.05) in the maximal activities of succinate dehydrogenase (+11%), citrate synthase (+12%), cytochrome oxidase (COX: +17%), along with increased protein expression of cytochrome c (+34%) and COX IV (+28%), which were irrespective of SLN expression. Lastly, no changes in the activities of mitochondrial marker enzymes existed with high-fat feeding, regardless of genotype. Together, these findings indicate that SLN is not required for the regulation of oxidative capacity in response to physiological stress, namely exercise or caloric surfeit.NEW & NOTEWORTHY Sarcolipin (SLN) has gained considerable attention for its uncoupling role of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA). Because of SLN's ability to alter both cellular energy use and cytosolic [Ca2+], the potential exists for a regulatory role of mitochondrial biogenesis. Herein, we show skeletal muscle oxidative capacity to be unaltered in mice lacking SLN following exercise training or high-fat feeding. Our results contrast with published studies of SLN-overexpressing mice, possibly owing to supraphysiological uncoupling of SERCA.
Collapse
Affiliation(s)
- Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Anton Trinh
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Val A Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
9
|
Okubo-Kurihara E, Ohtani M, Kurihara Y, Kakegawa K, Kobayashi M, Nagata N, Komatsu T, Kikuchi J, Cutler S, Demura T, Matsui M. Modification of plant cell wall structure accompanied by enhancement of saccharification efficiency using a chemical, lasalocid sodium. Sci Rep 2016; 6:34602. [PMID: 27694977 PMCID: PMC5046155 DOI: 10.1038/srep34602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/15/2016] [Indexed: 11/25/2022] Open
Abstract
The cell wall is one major determinant of plant cell morphology, and is an attractive bioresource. Here, we report a novel strategy to modify plant cell wall property by small molecules. Lasalocid sodium (LS) was isolated by chemical screening to identify molecules that affect the cell morphology of tobacco BY-2 cells. LS treatment led to an increase in cell wall thickness, whilst the quantity and sugar composition of the cell wall remained unchanged in BY-2 cells. The chemical also disordered the cellular arrangement of hypocotyls of Arabidopsis plants, resulting in a decrease in hypocotyl length. LS treatment enhanced enzymatic saccharification efficiency in both BY-2 cells and Arabidopsis plants. Microarray analysis on Arabidopsis showed that exposure to LS upregulated type III peroxidase genes, of which some are involved in lignin biogenesis, and jasmonic acid response genes, and phloroglucinol staining supported the activation of lignification by the LS treatment. As jasmonic acid-mediated lignification is a typical reaction to cell wall damage, it is possible that LS induces cell wall loosening, which can trigger cell wall damage response. Thus, LS is a unique chemical for modification of cell wall and morphology through changes in cell wall architecture.
Collapse
Affiliation(s)
- Emiko Okubo-Kurihara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Misato Ohtani
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yukio Kurihara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Koichi Kakegawa
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305–8687, Japan
| | - Megumi Kobayashi
- Faculty of Science, Japan Woman’s University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Noriko Nagata
- Faculty of Science, Japan Woman’s University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Takanori Komatsu
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Sean Cutler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, 5451 Boyce Hall, Riverside, CA 92521, USA
| | - Taku Demura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
10
|
Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J 2016; 473:2295-314. [DOI: 10.1042/bcj20160009] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/18/2016] [Indexed: 11/17/2022]
Abstract
Skeletal muscle is a tissue with a low mitochondrial content under basal conditions, but it is responsive to acute increases in contractile activity patterns (i.e. exercise) which initiate the signalling of a compensatory response, leading to the biogenesis of mitochondria and improved organelle function. Exercise also promotes the degradation of poorly functioning mitochondria (i.e. mitophagy), thereby accelerating mitochondrial turnover, and preserving a pool of healthy organelles. In contrast, muscle disuse, as well as the aging process, are associated with reduced mitochondrial quality and quantity in muscle. This has strong negative implications for whole-body metabolic health and the preservation of muscle mass. A number of traditional, as well as novel regulatory pathways exist in muscle that control both biogenesis and mitophagy. Interestingly, although the ablation of single regulatory transcription factors within these pathways often leads to a reduction in the basal mitochondrial content of muscle, this can invariably be overcome with exercise, signifying that exercise activates a multitude of pathways which can respond to restore mitochondrial health. This knowledge, along with growing realization that pharmacological agents can also promote mitochondrial health independently of exercise, leads to an optimistic outlook in which the maintenance of mitochondrial and whole-body metabolic health can be achieved by taking advantage of the broad benefits of exercise, along with the potential specificity of drug action.
Collapse
|
11
|
Hood DA, Tryon LD, Vainshtein A, Memme J, Chen C, Pauly M, Crilly MJ, Carter H. Exercise and the Regulation of Mitochondrial Turnover. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:99-127. [PMID: 26477912 DOI: 10.1016/bs.pmbts.2015.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exercise is a well-known stimulus for the expansion of the mitochondrial pool within skeletal muscle. Mitochondria have a remarkable ability to remodel their networks and can respond to an array of signaling stimuli following contractile activity to adapt to the metabolic demands of the tissue, synthesizing proteins to expand the mitochondrial reticulum. In addition, when they become dysfunctional, these organelles can be recycled by a specialized intracellular system. The signals regulating this mitochondrial life cycle of synthesis and degradation during exercise are still an area of great research interest. As mitochondrial turnover has valuable consequences in physical performance, in addition to metabolic health, disease, and aging, consideration of the signals which control this cycle is vital. This review focuses on the regulation of mitochondrial turnover in skeletal muscle and summarizes our current understanding of the impact that exercise has in modulating this process.
Collapse
Affiliation(s)
- David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
| | - Liam D Tryon
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Anna Vainshtein
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Jonathan Memme
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Chris Chen
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Marion Pauly
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Matthew J Crilly
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Heather Carter
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
12
|
AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood 2015; 125:2120-30. [PMID: 25631767 DOI: 10.1182/blood-2014-08-594408] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial respiration is a crucial component of cellular metabolism that can become dysregulated in cancer. Compared with normal hematopoietic cells, acute myeloid leukemia (AML) cells and patient samples have higher mitochondrial mass, without a concomitant increase in respiratory chain complex activity. Hence these cells have a lower spare reserve capacity in the respiratory chain and are more susceptible to oxidative stress. We therefore tested the effects of increasing the electron flux through the respiratory chain as a strategy to induce oxidative stress and cell death preferentially in AML cells. Treatment with the fatty acid palmitate induced oxidative stress and cell death in AML cells, and it suppressed tumor burden in leukemic cell lines and primary patient sample xenografts in the absence of overt toxicity to normal cells and organs. These data highlight a unique metabolic vulnerability in AML, and identify a new therapeutic strategy that targets abnormal oxidative metabolism in this malignancy.
Collapse
|
13
|
Hoppeler H, Baum O, Lurman G, Mueller M. Molecular mechanisms of muscle plasticity with exercise. Compr Physiol 2013; 1:1383-412. [PMID: 23733647 DOI: 10.1002/cphy.c100042] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.
Collapse
Affiliation(s)
- Hans Hoppeler
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
14
|
Holloszy JO. Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr Physiol 2013; 1:921-40. [PMID: 23737207 DOI: 10.1002/cphy.c100052] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endurance exercise training can induce large increases mitochondria and the GLUT4 isoform of the glucose transporter in skeletal muscle. For a long time after the discovery in the 1960s that exercise results in an increase in muscle mitochondria, there was no progress in elucidation of the mechanisms involved. The reason for this lack of progress was that nothing was known regarding how expression of the genes-encoding mitochondrial proteins is coordinately regulated. This situation changed rapidly after discovery of transcription factors that control transcription of genes-encoding mitochondrial proteins and, most importantly, the discovery of peroxisome proliferator-gamma coactivator-1α (PGC-1α). This transcription coactivator binds to and activates transcription factors that regulate transcription of genes-encoding mitochondrial proteins. Thus, PGC-1α activates and coordinates mitochondrial biogenesis. It is now known that exercise rapidly activates and induces increased expression of PGC-1α. The exercise-generated signals that lead to PGC-1α activation and increased expression are the increases in cytosolic Ca(2+) and decreases in ATP and creatine phosphate (∼P). Ca(2+) mediates its effect by activating CAMKII, while the decrease in ∼P mediates its effect via activation of AMPK. Expression of the GLUT4 isoform of the glucose transporter is regulated in parallel with mitochondrial biogenesis via the same signaling pathways. This review describes what is known regarding the regulation of mitochondrial biogenesis and GLUT4 expression by exercise. A major component of this review deals with the physiological and metabolic consequences of the exercise-induced increase in mitochondria and GLUT4.
Collapse
Affiliation(s)
- John O Holloszy
- Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
15
|
Kim SH, Asaka M, Higashida K, Takahashi Y, Holloszy JO, Han DH. β-Adrenergic stimulation does not activate p38 MAP kinase or induce PGC-1α in skeletal muscle. Am J Physiol Endocrinol Metab 2013; 304:E844-52. [PMID: 23443926 PMCID: PMC3625780 DOI: 10.1152/ajpendo.00581.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
Abstract
There are reports that the β-adrenergic agonist clenbuterol induces a large increase in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in skeletal muscle. This has led to the hypothesis that the increases in PGC-1α and mitochondrial biogenesis induced in muscle by endurance exercise are mediated by catecholamines. In the present study, we evaluated this possibility and found that injecting rats with clenbuterol or norepinephrine induced large increases in PGC-1α and mitochondrial proteins in brown adipose tissue but had no effect on PGC-1α expression or mitochondrial biogenesis in skeletal muscle. In brown adipocytes, the increase in PGC-1α expression induced by β-adrenergic stimulation is mediated by activation of p38 mitogen-activated protein kinase (p38 MAPK), which phosphorylates and activates the cAMP response element binding protein (CREB) family member activating transcription factor 2 (ATF2), which binds to a cyclic AMP response element (CRE) in the PGC-1α promoter and mediates the increase in PGC-1α transcription. Phospho-CREB does not have this effect. Our results show that the reason for the lack of effect of β-adrenergic stimulation on PGC-1α expression in muscle is that catecholamines do not activate p38 or increase ATF2 phosphorylation in muscle.
Collapse
MESH Headings
- Activating Transcription Factor 2/metabolism
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/enzymology
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Aminoimidazole Carboxamide/analogs & derivatives
- Aminoimidazole Carboxamide/pharmacology
- Animals
- Cells, Cultured
- Clenbuterol/pharmacology
- Cyclic AMP Response Element-Binding Protein/metabolism
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Gene Expression/drug effects
- Gene Expression/physiology
- Hypoglycemic Agents/pharmacology
- Male
- Mice
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/physiology
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/drug effects
- Myoblasts, Skeletal/enzymology
- Norepinephrine/pharmacology
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Phosphorylation/drug effects
- Phosphorylation/physiology
- Physical Endurance/physiology
- Propranolol/pharmacology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Wistar
- Ribonucleotides/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Sang Hyun Kim
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
16
|
Piantadosi CA, Suliman HB. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 2012; 53:2043-53. [PMID: 23000245 PMCID: PMC3604744 DOI: 10.1016/j.freeradbiomed.2012.09.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 12/21/2022]
Abstract
The cell renews, adapts, or expands its mitochondrial population during episodes of cell damage or periods of intensified energy demand by the induction of mitochondrial biogenesis. This bigenomic program is modulated by redox-sensitive signals that respond to physiological nitric oxide (NO), carbon monoxide (CO), and mitochondrial reactive oxygen species production. This review summarizes our current ideas about the pathways involved in the activation of mitochondrial biogenesis by the physiological gases leading to changes in the redox milieu of the cell, with an emphasis on the responses to oxidative stress and inflammation. The cell's energy supply is protected from conditions that damage mitochondria by an inducible transcriptional program of mitochondrial biogenesis that operates in large part through redox signals involving the nitric oxide synthase and the heme oxygenase-1/CO systems. These redox events stimulate the coordinated activities of several multifunctional transcription factors and coactivators also involved in the elimination of defective mitochondria and the expression of counterinflammatory and antioxidant genes, such as IL10 and SOD2, as part of a unified damage-control network. The redox-regulated mechanisms of mitochondrial biogenesis schematically outlined in the graphical abstract link mitochondrial quality control to an enhanced capacity to support the cell's metabolic needs while improving its resistance to metabolic failure and avoidance of cell death during periods of oxidative stress.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Department of Medicine, Duke University Medical Center and the Durham VA Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
17
|
Ludlow AT, Lima LCJ, Wang J, Hanson ED, Guth LM, Spangenburg EE, Roth SM. Exercise alters mRNA expression of telomere-repeat binding factor 1 in skeletal muscle via p38 MAPK. J Appl Physiol (1985) 2012; 113:1737-46. [PMID: 23042912 DOI: 10.1152/japplphysiol.00200.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Telomeres protect chromosome ends and shorten with age in most tissues. Integral to the maintenance of telomeres is the protein complex shelterin. The gene expression regulation of shelterin proteins to physiological stressors is not understood in vivo. We have recently reported increased telomere-repeat binding factor 1 (TRF1) protein expression and longer telomere length in skeletal muscle of sedentary compared with chronically active mice. These provocative observations led us to examine the effects of acute physiological stress on shelterin expression in vivo in mice and to further define potential mechanisms associated with gene regulation of shelterin. Three groups of female C57Bl/6 mice were studied: one control group and two groups that underwent a 30-min treadmill running bout and were killed either immediately following or 1-h after the exercise. Following the exercise bout, mRNA expression of Trf1 was significantly reduced in the plantaris muscle, and this reduction was paralleled by significant increases in p38 MAPK phosphorylation. To determine if p38 mediated the decreases in Trf1 mRNA expression, C2C12 myotubes were treated with the calcium ionophore, A23187. In response to the A23187, Trf1 gene expression was significantly reduced, coupled with significant increases in p38 phosphorylation, similar to in vivo data. C2C12 myotubes pretreated with a p38 inhibitor (SB-202190) prevented the A23187-induced decrease in Trf1 mRNA expression, indicating a link between Trf1 gene expression and p38 MAPK activation. While it is too early to definitively report the effect of exercise on telomere biology in rodents or humans, these data provide important mechanistic insights into the paradoxical telomere shortening that occurs in skeletal muscle in response to chronic exercise in mice.
Collapse
Affiliation(s)
- Andrew T Ludlow
- Department of Kinesiology, School of Public Health, University of Maryland at College Park, College Park, Maryland 20742, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Devin A, Rigoulet M. Regulation of mitochondrial biogenesis in eukaryotic cells. Toxicol Mech Methods 2012; 14:271-9. [PMID: 20021106 DOI: 10.1080/15376520490479620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mitochondria amount within a cell is modulated in response to energy demand. This involves a tight regulation of mitochondrial biogenesis and the coordinated expression of hundreds of genes, both at the nuclear and at the mitochondrial level. This review will focus on two aspects of mitochondrial biogenesis regulation: (i) In mammalian cells, physiological effectors, and the regulatory proteins that control the expression of the respiratory apparatus, will be considered, and different kinds of tissue will be addressed. (ii) In yeast, the regulation of mitochondrial biogenesis in response to growth conditions as well as the signaling pathway involved will be considered.
Collapse
Affiliation(s)
- Anne Devin
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS/Université Victor Segalen, 1 rue Camille Saint-Saëns, Bordeaux cedex, 33077, France
| | | |
Collapse
|
19
|
Ducreux S, Gregory P, Schwaller B. Inverse regulation of the cytosolic Ca²⁺ buffer parvalbumin and mitochondrial volume in muscle cells via SIRT1/PGC-1α axis. PLoS One 2012; 7:e44837. [PMID: 23028640 PMCID: PMC3441610 DOI: 10.1371/journal.pone.0044837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/09/2012] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscles show a high plasticity to cope with various physiological demands. Different muscle types can be distinguished by the force, endurance, contraction/relaxation kinetics (fast-twitch vs. slow-twitch muscles), oxidative/glycolytic capacity, and also with respect to Ca²⁺-signaling components. Changes in Ca²⁺ signaling and associated Ca²⁺-dependent processes are thought to underlie the high adaptive capacity of muscle fibers. Here we investigated the consequences and the involved mechanisms caused by the ectopic expression of the Ca²⁺-binding protein parvalbumin (PV) in C2C12 myotubes in vitro, and conversely, the effects caused by its absence in in fast-twitch muscles of parvalbumin null-mutant (PV⁻/⁻) mice in vivo. The absence of PV in fast-twitch muscle tibialis anterior (TA) resulted in an increase in the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and of its positive regulator, the deacetylase sirtuin 1 (SIRT1). TA muscles from PV⁻/⁻ mice also have an increased mitochondrial volume. Mild ionophore treatment of control (PV-devoid) C2C12 myotubes causing a moderate elevation in [Ca²⁺](c) resulted in an increase in mitochondrial volume, together with elevated PGC-1α and SIRT1 expression levels, whilst it increased PV expression levels in myotubes stably transfected with PV. In PV-expressing myotubes the mitochondrial volume, PGC-1α and SIRT1 were significantly lower than in control C2C12 myotubes already at basal conditions and application of ionophore had no effect on either one. SIRT1 activation causes a down-regulation of PV in transfected myotubes, whilst SIRT1 inhibition has the opposite effect. We conclude that PV expression and mitochondrial volume in muscle cells are inversely regulated via a SIRT1/PGC-1α signaling axis.
Collapse
Affiliation(s)
- Sylvie Ducreux
- Unit of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrick Gregory
- Unit of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Beat Schwaller
- Unit of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
20
|
Piantadosi CA, Suliman HB. Transcriptional control of mitochondrial biogenesis and its interface with inflammatory processes. Biochim Biophys Acta Gen Subj 2012; 1820:532-41. [PMID: 22265687 DOI: 10.1016/j.bbagen.2012.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/23/2011] [Accepted: 01/07/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cells avoid major mitochondrial damage and energy failure during systemic inflammatory states, such as severe acute infections, by specific targeting of the inflammatory response and by inducing anti-inflammatory and anti-oxidant defenses. Recent evidence indicates that these cell defenses also include mitochondrial biogenesis and the clearance of damaged mitochondria through autophagy. SCOPE OF REVIEW This review addresses a group of transcriptional signaling mechanisms that engage mitochondrial biogenesis, including energy-sensing and redox-regulated transcription factors and co-activators, after major inflammatory events. MAJOR CONCLUSIONS Stimulation of the innate immune system by activation of toll-like receptors (TLR) generates pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α)and interleukin-1β (IL-1β), necessary for optimal host defense, but which also contribute to mitochondrial damage through oxidative stress and other mechanisms. To protect its energy supply, host cells sense mitochondrial damage and initiate mitochondrial biogenesis under the control of an inducible transcriptional program that also activates anti-oxidant and anti-inflammatory gene expression. This multifunctional network not only increases cellular resistance to metabolic failure, oxidative stress, and cell death, but promotes immune tolerance as shown in the graphical abstract. GENERAL SIGNIFICANCE The post-inflammatory induction of mitochondrial biogenesis supports metabolic function and cell viability while helping to control inflammation. In clinical settings, patients recovering from severe systemic infections may develop transient immune suppression, placing them at risk for recurrent infection, but there may be therapeutic opportunities to enhance mitochondrial quality control that would improve the resolution of life-threatening host responses to such infections.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Department of Medicine, Duke University Medical Center, and Durham VA Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
21
|
Hanke N, Scheibe RJ, Manukjan G, Ewers D, Umeda PK, Chang KC, Kubis HP, Gros G, Meissner JD. Gene regulation mediating fiber-type transformation in skeletal muscle cells is partly glucose- and ChREBP-dependent. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:377-89. [PMID: 21215280 DOI: 10.1016/j.bbamcr.2010.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 12/24/2022]
Abstract
Adaptations in the oxidative capacity of skeletal muscle cells can occur under several physiological or pathological conditions. We investigated the effect of increasing extracellular glucose concentration on the expression of markers of energy metabolism in primary skeletal muscle cells and the C2C12 muscle cell line. Growth of myotubes in 25mM glucose (high glucose, HG) compared with 5.55mM led to increases in the expression and activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a marker of glycolytic energy metabolism, while oxidative markers peroxisome proliferator-activated receptor γ coactivator 1α and citrate synthase decreased. HG induced metabolic adaptations as are seen during a slow-to-fast fiber transformation. Furthermore, HG increased fast myosin heavy chain (MHC) IId/x but did not change slow MHCI/β expression. Protein phosphatase 2A (PP2A) was shown to mediate the effects of HG on GAPDH and MHCIId/x. Carbohydrate response element-binding protein (ChREBP), a glucose-dependent transcription factor downstream of PP2A, partially mediated the effects of glucose on metabolic markers. The glucose-induced increase in PP2A activity was associated with an increase in p38 mitogen-activated protein kinase activity, which presumably mediates the increase in MHCIId/x promoter activity. Liver X receptor, another possible mediator of glucose effects, induced only an incomplete metabolic shift, mainly increasing the expression of the glycolytic marker. Taken together, HG induces a partial slow-to-fast transformation comprising metabolic enzymes together with an increased expression of MHCIId/x. This work demonstrates a functional role for ChREBP in determining the metabolic type of muscle fibers and highlights the importance of glucose as a signaling molecule in muscle.
Collapse
Affiliation(s)
- Nina Hanke
- Department of Physiology, Vegetative Physiology 4220, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Al-Shanti N, Stewart CE. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development. Biol Rev Camb Philos Soc 2009; 84:637-52. [PMID: 19725819 DOI: 10.1111/j.1469-185x.2009.00090.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The loss of muscle mass with age and disuse has a significant impact on the physiological and social well-being of the aged; this is an increasingly important problem as the population becomes skewed towards older age. Exercise has psychological benefits but it also impacts on muscle protein synthesis and degradation, increasing muscle tissue volume in both young and older individuals. Skeletal muscle hypertrophy involves an increase in muscle mass and cross-sectional area and associated increased myofibrillar protein content. Attempts to understand the molecular mechanisms that underlie muscle growth, development and maintenance, have focused on characterising the molecular pathways that initiate, maintain and regenerate skeletal muscle. Such understanding may aid in improving targeted interventional therapies for age-related muscle loss and muscle wasting associated with diseases. Two major routes through which skeletal muscle development and growth are regulated are insulin-like growth factor I (IGF-I) and Ca(2+)/calmodulin-dependent transcriptional pathways. Many reviews have focused on understanding the signalling pathways of IGF-I and its receptor, which govern skeletal muscle hypertrophy. However, alternative molecular signalling pathways such as the Ca(2+)/calmodulin-dependent transcriptional pathways should also be considered as potential mediators of muscle growth. These latter pathways have received relatively little attention and the purpose herein is to highlight the progress being made in the understanding of these pathways and associated molecules: calmodulin, calmodulin kinases (CaMKs), calcineurin and nuclear factor of activated T-cell (NFAT), which are involved in skeletal muscle regulation. We describe: (1) how conformational changes in the Ca(2+) sensor calmodulin result in the exposure of binding pockets for the target proteins (CaMKs and calcineurin). (2) How Calmodulin consequently activates either the Ca(2+)/calmodulin-dependent kinases pathways (via CaMKs) or calmodulin-dependent serine/threonine phosphatases (via calcineurin). (3) How calmodulin kinases alter transcription in the nucleus through the phosphorylation, deactivation and translocation of histone deacetylase 4 (HDAC4) from the nucleus to the cytoplasm. (4) How calcineurin transmits signals to the nucleus through the dephosphorylation and translocation of NFAT from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Nasser Al-Shanti
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building, Oxford Road, Manchester, M1 5GD, UK.
| | | |
Collapse
|
23
|
Ljubicic V, Hood DA. Specific attenuation of protein kinase phosphorylation in muscle with a high mitochondrial content. Am J Physiol Endocrinol Metab 2009; 297:E749-58. [PMID: 19549794 DOI: 10.1152/ajpendo.00130.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute contractile activity increases the activation of protein kinases involved in signal transduction. We hypothesized that the contractile activity-induced kinase phosphorylation would occur to a lesser degree in muscle with elevated mitochondrial content. We compared red and white sections of tibialis anterior (TA) muscle with two- to threefold differences in mitochondrial volume, and we increased the mitochondrial content in the TA muscle by 40% with unilateral chronic stimulation-induced contractile activity (10 Hz, 7 days, 3 h/day). Both the chronically stimulated and the contralateral control muscles were then acutely stimulated in situ for 15 min (10 Hz). We investigated 1) the total protein content and 2) the phosphorylation of kinases important for mitochondrial biogenesis in skeletal muscle, including AMPKalpha and p44, p42, and p38 MAPKs, as well as Akt by immunoblotting. In response to chronic stimulation, a selective upregulation of kinase protein content was observed, suggesting unique transcriptional/translational processing for these enzymes. Inverse relationships were observed between mitochondrial volume and 1) kinase protein content and 2) basal levels of kinase phosphorylation. In general, the kinase phosphorylation response to acute exercise depended, in part, on the oxidative capacity of the fiber type, evidenced by a greater absolute level of acute contractile activity-induced kinase signaling in muscle with a lower mitochondrial volume. The attenuation of contraction-evoked kinase phosphorylation in muscle with high mitochondrial content suggests that these proteins may become less sensitive to upstream signaling and require greater stimulation for activation to propagate these adaptive cues downstream toward transcription or translation events.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | | |
Collapse
|
24
|
Mallinson J, Meissner J, Chang KC. Chapter 2. Calcineurin signaling and the slow oxidative skeletal muscle fiber type. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:67-101. [PMID: 19766967 DOI: 10.1016/s1937-6448(09)77002-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcineurin, also known as protein phosphatase 2B (PP2B), is a calcium-calmodulin-dependent phosphatase. It couples intracellular calcium to dephosphorylate selected substrates resulting in diverse biological consequences depending on cell type. In mammals, calcineurin's functions include neuronal growth, development of cardiac valves and hypertrophy, activation of lymphocytes, and the regulation of ion channels and enzymes. This chapter focuses on the key roles of calcineurin in skeletal muscle differentiation, regeneration, and fiber type conversion to an oxidative state, all of which are crucial to muscle development, metabolism, and functional adaptations. It seeks to integrate the current knowledge of calcineurin signaling in skeletal muscle and its interactions with other prominent regulatory pathways and their signaling intermediates to form a molecular overview that could provide directions for possible future exploitations in human metabolic health.
Collapse
Affiliation(s)
- Joanne Mallinson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | | | | |
Collapse
|
25
|
Park SK, Gunawan AM, Scheffler TL, Grant AL, Gerrard DE. Myosin heavy chain isoform content and energy metabolism can be uncoupled in pig skeletal muscle. J Anim Sci 2008; 87:522-31. [PMID: 18820156 DOI: 10.2527/jas.2008-1269] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic selection for improved growth and overall meatiness has resulted in the occurrence of 2 major mutations in pigs, the Rendement Napole (RN) and Halothane (Hal) gene mutations. At the tissue level, these mutations influence energy metabolism in skeletal muscle and muscle fiber type composition, yet also influence total body composition. The RN mutation affects the adenosine monophosphate-activated protein kinase gamma subunit and results in increased glycogen deposition in the muscle, whereas the Hal mutation alters sarcoplasmic calcium release mechanisms and results in altered energy metabolism. From a meat quality standpoint, these mutations independently influence the extent and rate of muscle energy metabolism postmortem, respectively. Even though these mutations alter overall muscle energy metabolism and histochemically derived muscle fiber type independently, their effects have not been yet fully elucidated in respect to myosin heavy chain (MyHC) isoform content and those enzymes responsible for defining energetics of the tissue. Therefore, the objective of this study was to determine the collective effects of the RN and Hal genes on genes and gene products associated with different muscle fiber types in pig skeletal muscle. To overcome potential pitfalls associated with traditional muscle fiber typing, real-time PCR, gel electrophoresis, and Western blotting were used to evaluate MyHC composition and several energy-related gene expressions in muscles from wild-type, RN, Hal, and Hal-RN mutant pigs. The MyHC mRNA levels displayed sequential transitions from IIb to IIx and IIa in pigs bearing the RN mutation. In addition, our results showed MyHC protein isoform abundance is correlated with mRNA level supporting the hypothesis that MyHC genes are transcriptionally controlled. However, transcript abundance of genes involved in energy metabolism, including lactate dehydrogenase, citrate synthase, glycogen synthase, and peroxisome proliferator-activated receptor alpha, was not different between genotypes. These data show that the RN and Hal gene mutations alter muscle fiber type composition and suggest that muscle fiber energy metabolism and speed of contraction, the 2 determinants of muscle fiber type, can be uncoupled.
Collapse
Affiliation(s)
- S K Park
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
26
|
Ljubicic V, Hood DA. Kinase-specific responsiveness to incremental contractile activity in skeletal muscle with low and high mitochondrial content. Am J Physiol Endocrinol Metab 2008; 295:E195-204. [PMID: 18492778 DOI: 10.1152/ajpendo.90276.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle contractions activate protein kinases, leading to signal transduction. We hypothesized that kinase activation would be influenced by mitochondrial content, as well as by contractile activity-induced increases in muscle O(2) consumption (Vo(2)). Kinase phosphorylation in high-oxidative red and low-oxidative white tibialis anterior (TA) muscle (RTA and WTA, respectively) with 2.5-fold differences in mitochondrial content were compared. Stimulation of the TA muscle elicited large increases in Vo(2) (3- to 6-fold and 4- to 60-fold above resting levels in WTA and RTA, respectively). At rest, AMP-activated protein kinase (AMPK), p38, p42, and p44 activation were nearly twofold greater in WTA than in RTA, suggesting an inverse relationship between mitochondrial content and kinase activation in resting muscle. During contractions, similar degrees of phosphorylation in RTA and WTA were evident as a function of Vo(2) for p38 and p42. During increases in Vo(2) up to sixfold above rest, greater responses were observed in RTA than in WTA for AMPK and p44, whereas Akt activation was greater in WTA. In RTA, elevations in Vo(2) elicited increases in AMPK and p44 activation, whereas Akt, p38, and p42 were less sensitive to increments in Vo(2). Reactive oxygen species (ROS) production was greater in mitochondria from white muscle, but when it was calculated in the context of the whole muscle, ROS production was twofold greater in red than in white myofibers. Thus mitochondrial content influences ROS production and is inversely related to kinase activation in resting muscle. During contractions, kinases are differentially sensitive to contraction-induced increments in Vo(2), suggesting that muscle mitochondrial content is important, but it is not the sole determinant of kinase activation during exercise of different intensities.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada M3J 1P3
| | | |
Collapse
|
27
|
Röckl KSC, Witczak CA, Goodyear LJ. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life 2008; 60:145-53. [PMID: 18380005 DOI: 10.1002/iub.21] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chronic exercise training induces alterations in the expression of metabolic genes, such as those involved in muscle fiber type, mitochondrial biogenesis, or glucose transporter 4 (GLUT4) protein levels. A primary goal of exercise research is to elucidate the mechanisms that regulate these important metabolic and transcriptional events in skeletal muscle. In this review, we briefly summarize the current literature describing the molecular signals underlying skeletal muscle responses to acute and chronic exercise. The search for possible exercise/contraction-stimulated signaling proteins involved in glucose transport, muscle fiber type, and mitochondrial biogenesis is ongoing. Further research is needed because full elucidation of exercise-mediated signaling pathways would represent a significant step toward the development of new pharmacological targets for the treatment of metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Katja S C Röckl
- Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
28
|
Diaz F, Moraes CT. Mitochondrial biogenesis and turnover. Cell Calcium 2008; 44:24-35. [PMID: 18395251 DOI: 10.1016/j.ceca.2007.12.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 11/17/2022]
Abstract
Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last 20 years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium-dependent protein kinases that in turn activate transcription factors and coactivators such as PGC-1alpha that regulates the expression of genes coding for mitochondrial components. In addition, mitochondrial biogenesis involves the balance of mitochondrial fission-fusion. Mitochondrial malfunction or defects in any of the many pathways involved in mitochondrial biogenesis can lead to degenerative diseases and possibly play an important part in aging.
Collapse
Affiliation(s)
- Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | |
Collapse
|
29
|
CREB-1alpha is recruited to and mediates upregulation of the cytochrome c promoter during enhanced mitochondrial biogenesis accompanying skeletal muscle differentiation. Mol Cell Biol 2008; 28:2446-59. [PMID: 18227154 DOI: 10.1128/mcb.00980-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To further understand pathways coordinating the expression of nuclear genes encoding mitochondrial proteins, we studied mitochondrial biogenesis during differentiation of myoblasts to myotubes. This energy-demanding process was accompanied by a fivefold increase of ATP turnover, covered by an eightfold increase of mitochondrial activity. While no change in mitochondrial DNA copy number was observed, mRNAs as well as proteins for nucleus-encoded cytochrome c, cytochrome c oxidase subunit IV, and mitochondrial transcription factor A (TFAM) increased, together with total cellular RNA and protein levels. Detailed analysis of the cytochrome c promoter by luciferase reporter, binding affinity, and electrophoretic mobility shift assays as well as mutagenesis studies revealed a critical role for cyclic AMP responsive element binding protein 1 (CREB-1) for promoter activation. Expression of two CREB-1 isoforms was observed by using specific antibodies and quantitative reverse transcription-PCR, and a shift from phosphorylated CREB-1Delta in myoblasts to phosphorylated CREB-1alpha protein in myotubes was shown, while mRNA ratios remained unchanged. Chromatin immunoprecipitation assays confirmed preferential binding of CREB-1alpha in situ to the cytochrome c promoter in myotubes. Overexpression of constitutively active and dominant-negative forms supported the key role of CREB-1 in regulating the expression of genes encoding mitochondrial proteins during myogenesis and probably also in other situations of enhanced mitochondrial biogenesis.
Collapse
|
30
|
Bigard AX, Sanchez H, Koulmann N. Modulations du génome exprimé dans le muscle squelettique avec l’entraînement physique. Sci Sports 2007. [DOI: 10.1016/j.scispo.2007.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Regulation of mitochondrial oxidative phosphorylation through cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1701-20. [DOI: 10.1016/j.bbamcr.2007.10.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Wright DC, Geiger PC, Han DH, Jones TE, Holloszy JO. Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem 2007; 282:18793-9. [PMID: 17488713 DOI: 10.1074/jbc.m611252200] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that raising cytosolic calcium in myotubes induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha expression and mitochondrial biogenesis. This finding suggests that the increases in cytosolic calcium in skeletal muscle during exercise may mediate the exercise-induced increase in mitochondria. The initial aim of this study was to determine whether raising calcium in skeletal muscle induces the same adaptations as in myotubes. We found that treatment of rat epitrochlearis muscles with a concentration of caffeine that raises cytosolic calcium to a concentration too low to cause contraction induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha expression and mitochondrial biogenesis. Our second aim was to elucidate the pathway by which calcium induces these adaptations. Raising cytosolic calcium has been shown to activate calcium/calmodulin-dependent protein kinase in muscle. In the present study raising cytosolic calcium resulted in increases in phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor-2, which were blocked by the calcium/calmodulin-dependent protein kinase inhibitor KN93 and by the p38 mitogen-activated protein kinase inhibitor SB202190. The increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha expression and mitochondrial biogenesis were also prevented by inhibiting p38 activation. We interpret these findings as evidence that p38 mitogen-activated protein kinase is downstream of calcium/calmodulin-dependent protein kinase in a signaling pathway by which increases in cytosolic calcium lead to increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha expression and mitochondrial biogenesis in muscle.
Collapse
Affiliation(s)
- David C Wright
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
33
|
Guerfali I, Manissolle C, Durieux AC, Bonnefoy R, Bartegi A, Freyssenet D. Calcineurin A and CaMKIV transactivate PGC-1α promoter, but differentially regulate cytochrome c promoter in rat skeletal muscle. Pflugers Arch 2007; 454:297-305. [PMID: 17273866 DOI: 10.1007/s00424-007-0206-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/21/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
In skeletal muscle, slow-twitch fibers are highly dependent on mitochondrial oxidative metabolism suggesting the existence of common regulatory pathways in the control of slow muscle-specific protein expression and mitochondrial biogenesis. In this study, we determined whether peroxisome proliferator-activated receptor gamma co-activator-1alpha (PGC-1alpha) could transactivate promoters of nuclear-encoded mitochondrial protein (cytochrome c) and muscle-specific proteins (fast troponin I, MyoD). We also investigated if calcineurin A (CnA) and calcium/calmodulin kinase IV (CaMKIV) were involved in the regulation of PGC-1alpha and cytochrome c promoter. For this purpose, we took advantage of the gene electrotransfer technique, which allows acute expression of a gene of interest. Electrotransfer of a PGC-1alpha expression vector into rat Tibialis anterior muscle induced a strong transactivation of cytochrome c promoter (P < 0.001) independent of nuclear respiratory factor 1. PGC-1alpha gene electrotransfer did not transactivate fast troponin I promoter, whereas it did transactivate MyoD promoter (P < 0.05). Finally, whereas electrotransfers of CnA or CaMKIV expression vectors transactivated PGC-1alpha promoter (P < 0.001), gene electrotransfer of CaMKIV was only able to transactivate cytochrome c promoter. Taken together, these data suggest that CnA triggers PGC-1alpha promoter transactivation to drive the expression of non-mitochondrial proteins.
Collapse
Affiliation(s)
- Ibtissem Guerfali
- Unité Physiologie et Physiopathologie de l'Exercice et Handicap EA 3062, Faculté de Médecine, Université Jean Monnet, 15 rue Ambroise Paré, 42023 Saint-Etienne Cedex 2, France
| | | | | | | | | | | |
Collapse
|
34
|
Webb SE, Miller AL. Ca2+ signaling and early embryonic patterning during the Blastula and Gastrula Periods of Zebrafish and Xenopus development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1192-208. [PMID: 16962186 DOI: 10.1016/j.bbamcr.2006.08.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 08/02/2006] [Indexed: 11/23/2022]
Abstract
It has been proposed that Ca(2+) signaling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern forming events during early vertebrate development [L.F. Jaffe, Organization of early development by calcium patterns, BioEssays 21 (1999) 657-667; M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signaling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21; S.E. Webb, A.L. Miller, Calcium signalling during embryonic development, Nat. Rev. Mol. Cell Biol. 4 (2003) 539-551]. With reference to the embryos of zebrafish (Danio rerio) and the frog, Xenopus laevis, we review the Ca(2+) signals reported during the Blastula and Gastrula Periods. This developmental window encompasses the major pattern forming events of epiboly, involution, and convergent extension, which result in the establishment of the basic germ layers and body axes [C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310]. Data will be presented to support the suggestion that propagating waves (both long and short range) of Ca(2+) release, followed by sequestration, may play a crucial role in: (1) Coordinating cell movements during these pattern forming events and (2) Contributing to the establishment of the basic embryonic axes, as well as (3) Helping to define the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen [E. Gilland, A.L. Miller, E. Karplus, R. Baker, S.E. Webb, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96 (1999) 157-161; J.B. Wallingford, A.J. Ewald, R.M. Harland, S.E. Fraser, Calcium signaling during convergent extension in Xenopus, Curr. Biol. 11 (2001) 652-661]. The various potential targets of these Ca(2+) transients will also be discussed, as well as how they might integrate with other known pattern forming pathways known to modulate early developmental events (such as the Wnt/Ca(2+)pathway; [T.A. Westfall, B. Hjertos, D.C. Slusarski, Requirement for intracellular calcium modulation in zebrafish dorsal-ventral patterning, Dev. Biol. 259 (2003) 380-391]).
Collapse
Affiliation(s)
- Sarah E Webb
- Department of Biology, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | |
Collapse
|
35
|
Devin A, Rigoulet M. Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells. Am J Physiol Cell Physiol 2006; 292:C52-8. [PMID: 16943247 DOI: 10.1152/ajpcell.00208.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review focuses on the different mechanisms involved in the adjustment of mitochondrial ATP production to cellular energy demand. The oxidative phosphorylation steady state at constant mitochondrial enzyme content can vary in response to energy demand. However, such an adaptation is tightly linked to a modification in both oxidative phosphorylation yield and phosphate potential and is obviously very limited in eukaryotic cells. We describe the three main mechanisms involved in mitochondrial response to energy demand. In heart cells, a short-term adjustment can be reached mainly through metabolic signaling via phosphotransfer networks by the compartmentalized energy transfer and signal transmission. In such a complex regulatory mechanism, Ca(2+) signaling participates in activation of matricial dehydrogenases as well as mitochondrial ATP synthase. These processes allow a large increase in ATP production rate without an important modification in thermodynamic forces. For a long-term adaptation, two main mechanisms are involved: modulation of the mitochondrial enzyme content as a function of energy demand and/or kinetic regulation by covalent modifications (phosphorylations) of some respiratory chain complex subunits. Regardless of the mechanism involved (kinetic regulation by covalent modification or adjustment of mitochondrial enzyme content), the cAMP signaling pathway plays a major role in molecular signaling, leading to the mitochondrial response. We discuss the energetic advantages of these mechanisms.
Collapse
Affiliation(s)
- Anne Devin
- IBGC du CNRS, UMR 5095, Université Victor Segalen Bordeaux 2, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | | |
Collapse
|
36
|
Passos JF, von Zglinicki T. Mitochondria, telomeres and cell senescence. Exp Gerontol 2006; 40:466-72. [PMID: 15963673 DOI: 10.1016/j.exger.2005.04.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/14/2005] [Accepted: 04/14/2005] [Indexed: 01/21/2023]
Abstract
The accumulation of oxidative damage is one of the most widely accepted causes of ageing. Mitochondrial dysfunction, in particular damage to the mitochondrial DNA has been hypothesised, more than thirty years ago, as responsible for increased production of reactive oxygen species (ROS) and, thus, as one possible causal factor for ageing. There is now a wealth of data that supports this hypothesis, which is mostly derived from models considering the ageing of post-mitotic or slowly dividing cells in vivo. One major cellular model of ageing, however, is replicative senescence, the irreversible loss of division potential of somatic cells after a more or less constant number of cell divisions. Not much data exists concerning the role of mitochondria in this model. Here, we review evidence supporting an involvement of mitochondria in replicative senescence and a possible link to telomere shortening.
Collapse
Affiliation(s)
- João F Passos
- Henry Wellcome Laboratory for Biogerontology Research, Newcastle University, Newcastle NE4 6BE, UK
| | | |
Collapse
|
37
|
Garcia-Roves PM, Huss J, Holloszy JO. Role of calcineurin in exercise-induced mitochondrial biogenesis. Am J Physiol Endocrinol Metab 2006; 290:E1172-9. [PMID: 16403773 DOI: 10.1152/ajpendo.00633.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Raising cytosolic Ca2+ induces an increase in mitochondrial biogenesis in myotubes. This phenomenon mimics the adaptive responses of skeletal muscle to exercise. It has been hypothesized that increases in cytosolic Ca2+ during motor nerve activity stimulate mitochondrial biogenesis by activating calcineurin. Overexpression of constitutively active calcineurin increases expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and induction of genes involved in mitochondrial energy metabolism in muscle cells. The purpose of this study was to determine whether calcineurin plays a role in the stimulation of mitochondrial biogenesis by exercise. Rats were exercised on 5 successive days by means of swimming. Inhibition of calcineurin with cyclosporin did not prevent the exercise-induced increases in PGC-1alpha and a range of mitochondrial proteins. In contrast to the other mitochondrial proteins, the increases in cytochrome oxidase (COX)-I and -IV proteins were blocked by cyclosporin treatment. This inhibitory effect of cyclosporin occurred at the posttranscriptional level, as evidenced by normal increases in COX-I and COX-IV mRNAs in response to exercise in the cyclosporin-treated rats. This toxic effect of cyclosporin may account for the decrease in muscle respiratory capacity reported to occur with cyclosporin treatment. In conclusion, inhibition of calcineurin does not prevent the exercise-induced increase in mitochondrial biogenesis in skeletal muscles, providing evidence that the adaptive response is not mediated by activation of calcineurin.
Collapse
Affiliation(s)
- Pablo M Garcia-Roves
- Department of Medicine, Washington University School of Medicine, Applied Physiology, Campus Box 8113, 4566 Scott Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
38
|
Racay P, Gregory P, Schwaller B. Parvalbumin deficiency in fast-twitch muscles leads to increased 'slow-twitch type' mitochondria, but does not affect the expression of fiber specific proteins. FEBS J 2006; 273:96-108. [PMID: 16367751 DOI: 10.1111/j.1742-4658.2005.05046.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parvalbumin (PV), a small cytosolic protein belonging to the family of EF-hand calcium-binding proteins, is highly expressed in mammalian fast-twitch muscle fibers. By acting as a 'slow-onset' Ca2+ buffer, PV does not affect the rapid contraction phase, but significantly contributes to increase the rate of relaxation, as demonstrated in PV-/- mice. Unexpectedly, PV-/- fast-twitch muscles were considerably more resistant to fatigue than the wild-type fast-twitch muscles. This effect was attributed mainly to the increased fractional volume of mitochondria in PV-/- fast-twitch muscle, extensor digitorum longus, similar to levels observed in the slow-twitch muscle, soleus. Quantitative analysis of selected mitochondrial proteins, mitochondrial DNA-encoded cytochrome oxidase c subunit I and nuclear DNA-encoded cytochrome oxidase c subunit Vb and F1-ATPase subunit beta revealed the PV-/- tibialis anterior mitochondria composition to be almost identical to that in wild-type soleus, but not in wild-type fast-twitch muscles. Northern and western blot analyses of the same proteins in different muscle types and in liver are indicative of a complex regulation, probably also at the post-transcriptional level. Besides the function in energy metabolism, mitochondria in both fast- and slow-twitch muscles act as temporary Ca2+ stores and are thus involved in the shaping of Ca2+ transients in these cells. Previously observed altered spatio-temporal aspects of Ca2+ transients in PV-/- muscles are sufficient to up-regulate mitochondria biogenesis through the probable involvement of both calcineurin- and Ca2+/calmodulin-dependent kinase II-dependent pathways. We propose that 'slow-twitch type' mitochondria in PV-/- fast muscles are aimed to functionally replace the slow-onset buffer PV based on similar kinetic properties of Ca2+ removal.
Collapse
Affiliation(s)
- Peter Racay
- Department of Medicine, Division of Histology and General Embryology, University of Fribourg, Switzerland
| | | | | |
Collapse
|
39
|
Koulmann N, Bigard AX. Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise. Pflugers Arch 2006; 452:125-39. [PMID: 16437222 DOI: 10.1007/s00424-005-0030-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/23/2005] [Accepted: 11/24/2005] [Indexed: 12/29/2022]
Abstract
The purpose of this review is to summarise the latest literature on the signalling pathways involved in transcriptional modulations of genes that encode contractile and metabolic proteins in response to endurance exercise. A special attention has been paid to the cooperation between signalling pathways and coordinated expression of protein families that establish myofibre phenotype. Calcium acts as a second messenger in skeletal muscle during exercise, conveying neuromuscular activity into changes in the transcription of specific genes. Three main calcium-triggered regulatory pathways acting through calcineurin, Ca(2+)-calmodulin-dependent protein kinases (CaMK) and Ca(2+)-dependent protein kinase C, transduce alterations in cytosolic calcium concentration to target genes. Calcineurin signalling, the most important of these Ca(2+)-dependent pathways, stimulates the activation of many slow-fibre gene expression, including genes encoding proteins involved in contractile process, Ca(2+) uptake and energy metabolism. It involves the interaction between multiple transcription factors and the collaboration of other Ca(2+)-dependent CaMKs. Although members of mitogen-activated protein kinase (MAPK) pathways are activated during exercise, their integration into other signalling pathways remains largely unknown. The peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) constitutes a pivotal factor of the circuitry which coordinates mitochondrial biogenesis and which couples to the expression of contractile and metabolic genes with prolonged exercise.
Collapse
Affiliation(s)
- Nathalie Koulmann
- Département des Facteurs Humains, Centre de Recherches du Service de Santé des Armées, BP 87 38 702 La Tronche cedex, France
| | | |
Collapse
|
40
|
Chabi B, Adhihetty PJ, Ljubicic V, Hood DA. How is Mitochondrial Biogenesis Affected in Mitochondrial Disease? Med Sci Sports Exerc 2005; 37:2102-10. [PMID: 16331136 DOI: 10.1249/01.mss.0000177426.68149.83] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondrial biogenesis occurs when the tissue energy demand is chronically increased to stress the ATP producing capacity of the preexisting mitochondria. In muscle, endurance training is a metabolic stress that is capable of inducing mitochondrial biogenesis, the consequence of which is improved performance during exercise. Expansion of the mitochondrial volume requires the coordinated response of the nuclear and mitochondrial genomes. During acute exercise, the initial signaling events are the perturbations in ATP turnover and calcium (Ca) concentrations caused by the contractile process. These alterations activate signal transduction pathways which target transcription factors involved in gene expression. Nuclear gene products are then posttranslationally imported into mitochondria. One of these, Tfam, is important for the regulation of mitochondrial DNA (mtDNA) gene expression. In muscle, a broad range of mitochondrial-specific diseases due to mutations in nuclear DNA or mtDNA exist, termed mitochondrial myopathies. These mutations result in dysfunctional mitochondrial assembly which ultimately leads to reduced ATP production. Mitochondrial myopathy patients exhibit a variety of compensatory responses which attempt to reconcile this energy deficiency, but the extent and the type of compensatory adaptations are disease-specific. Understanding the role of exercise in mediating these compensatory responses leading to mitochondrial biogenesis could help us in prescribing exercise designed to improve mitochondrial function in patients with mitochondrial myopathies. In addition, numerous other diseases (e.g., neurological disorders, cancer, diabetes, and cardiomyopathies), as well as the aging process, have etiologies or consequences attributed, in part, to mitochondrial dysfunction. Thus, insight gained by investigating the steps involved in exercise-induced mitochondrial biogenesis may help us to understand the underlying basis of these other disease states.
Collapse
Affiliation(s)
- Beatrice Chabi
- Department of Biology, York University, Toronto, Ontario, CANADA
| | | | | | | |
Collapse
|
41
|
Mercy L, Pauw AD, Payen L, Tejerina S, Houbion A, Demazy C, Raes M, Renard P, Arnould T. Mitochondrial biogenesis in mtDNA-depleted cells involves a Ca2+-dependent pathway and a reduced mitochondrial protein import. FEBS J 2005; 272:5031-55. [PMID: 16176275 DOI: 10.1111/j.1742-4658.2005.04913.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Alterations in mitochondrial activity resulting from defects in mitochondrial DNA (mtDNA) can modulate the biogenesis of mitochondria by mechanisms that are still poorly understood. In order to study mitochondrial biogenesis in cells with impaired mitochondrial activity, we used rho-L929 and rho(0)143 B cells (partially and totally depleted of mtDNA, respectively), that maintain and even up-regulate mitochondrial population, to characterize the activity of major transcriptional regulators (Sp1, YY1, MEF2, PPARgamma, NRF-1, NRF-2, CREB and PGC-1alpha) known to control the expression of numerous nuclear genes encoding mitochondrial proteins. Among these regulators, cyclic AMP-responsive element binding protein (CREB) activity was the only one to be increased in mtDNA-depleted cells. CREB activation mediated by a calcium-dependent pathway in these cells also regulates the expression of cytochrome c and the abundance of mitochondrial population as both are decreased in mtDNA-depleted cells that over-express CREB dominant negative mutants. Mitochondrial biogenesis in mtDNA-depleted cells is also dependent on intracellular calcium as its chelation reduces mitochondrial mass. Despite a slight increase in mitochondrial mass in mtDNA-depleted cells, the mitochondrial protein import activity was reduced as shown by a decrease in the import of radiolabeled matrix-targeted recombinant proteins into isolated mitochondria and by the reduced mitochondrial localization of ectopically expressed HA-apoaequorin targeted to the mitochondria. Decrease in ATP content, in mitochondrial membrane potential as well as reduction in mitochondrial Tim44 abundance could explain the lower mitochondrial protein import in mtDNA-depleted cells. Taken together, these results suggest that mitochondrial biogenesis is stimulated in mtDNA-depleted cells and involves a calcium-CREB signalling pathway but is associated with a reduced mitochondrial import for matrix proteins.
Collapse
Affiliation(s)
- Ludovic Mercy
- Laboratory of Biochemistry and Cellular Biology, University of Namur (FUNDP), Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ljubicic V, Adhihetty PJ, Hood DA. Application of Animal Models: Chronic Electrical Stimulation-Induced Contractile Activity. ACTA ACUST UNITED AC 2005; 30:625-43. [PMID: 16293907 DOI: 10.1139/h05-144] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unilateral, chronic low-frequency electrical stimulation (CLFS) is an experimental model that evokes numerous biochemical and physiological adaptations in skeletal muscle. These occur within a short time frame and are restricted to the stimulated muscle. The humoral effects of whole body exercise are eliminated and the nonstimulated contralaterai limb can often be used as a control muscle, if possible effects on the contralateral side are considered. CLFS induces a fast-to-slow transformation of muscle because of alterations in calcium dynamics and myofibrillar proteins, and a white-to-red transformation because of changes in mitochondrial enzymes, myoglobin, and the induction of angiogenesis. These adaptations occur in a coordinated time-dependent manner and result from altered gene expression, including transcriptional and posttranscriptional processes. CLFS techniques have also been applied to myocytes in cell culture, which provide a greater opportunity for the delivery of pharmacological agents or for the application of gene transfer methodologies. Clinical applications of the CLFS technique have been limited, but they have shown potential therapeutic value in patients in whom voluntary muscle contraction is not possible due to debilitating disease and/or injury. Thus the CLFS technique has great value for studying various aspects of muscle adaptation, and its wider scientific application to a variety of neuromuscular-based disorders in humans appears to be warranted. Key words: skeletal muscle, muscle plasticity, endurance training, mitochondrial biogenesis, fiber types
Collapse
Affiliation(s)
- Vladimir Ljubicic
- School of Kinesiology and Health Science and Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | |
Collapse
|
43
|
Durieux AC, Bonnefoy R, Freyssenet D. Kinetic of transgene expression after electrotransfer into skeletal muscle: Importance of promoter origin/strength. Biochim Biophys Acta Gen Subj 2005; 1725:403-9. [PMID: 16054757 DOI: 10.1016/j.bbagen.2005.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/21/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
We determined over a 3-week period some of the factors that may influence the kinetic of gene expression following in vivo gene electrotransfer. Histochemical analysis of beta-galactosidase and biochemical analysis of luciferase expressions were used to determine reporter gene activity in the Tibialis anterior muscles of young Sprague-Dawley male rats. Transfection efficiency peaked 5 days after gene electrotransfer and then exponentially decreased to reach non-detectable levels at day 28. Reduction of muscle damage by decreasing the amount of DNA injected or the cumulated pulse duration did not improve the kinetic of gene expression. Electrotransfer of luciferase expression plasmids driven either by viral or mammalian promoters rather show that most of the decrease in transgene expression was related to promoter origin/strength. By regulating the amount of transgene expression, the promoter origin/strength could modulate the immune response triggered against the foreign protein and ultimately the kinetic of transgene expression.
Collapse
Affiliation(s)
- Anne-Cécile Durieux
- Laboratoire de Physiologie, Unité Physiologie et Physiopathologie de l'Exercice et Handicap, Université Jean Monnet, Faculté de Médecine, 42023 Saint-Etienne, France
| | | | | |
Collapse
|
44
|
Abstract
In skeletal muscle, the increase in intracellular Ca(2+) resulting from motor activation plays a key role in both contractile activity-dependent and fiber type-specific gene expression. These motor activation-dependent signals are linked to the amplitude and duration of the Ca(2+) transients that are decoded downstream by Ca(2+)-dependent transcriptional pathways. Evidence is mounting that the Ca(2+)/calmodulin-dependent kinases (CaMKs) such as CaMKII play an important role in regulating oxidative enzyme expression, mitochondrial biogenesis, and expression of fiber type-specific myofibrillar proteins. CaMKIV has been shown to promote mitochondrial biogenesis and a mild fast-to-slow fiber type transition but has recently been shown to not be required for activity-dependent changes in muscle phenotype. CaMKII is known to decode frequency-dependent information and is activated during hypertrophic growth and endurance adaptations and also is upregulated during muscle atrophy. CaMKII has also been shown to remain active in a Ca(2+)-independent manner after acute and prolonged exercise, and, therefore, is implicated as a mechanism for muscle memory. This mechanism can sense altered functional demands and trigger activation of an adaptational response that is dose dependently related to the activation level. This class of enzymes may therefore be the ideal decoders of information encoded by the intensity, frequency, and duty cycle of muscle activation and thus translate level of muscle activation into phenotypic adaptations through regulation of important muscle genes.
Collapse
Affiliation(s)
- Eva R Chin
- Research Pharmacology, Pfizer Global Research & Development, La Jolla Laboratories, 10724 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|
45
|
Lee HC, Wei YH. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 2005; 37:822-34. [PMID: 15694841 DOI: 10.1016/j.biocel.2004.09.010] [Citation(s) in RCA: 475] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 09/15/2004] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
Mitochondrial biogenesis and mitochondrial DNA (mtDNA) maintenance depend on coordinated expression of genes in the nucleus and mitochondria. A variety of intracellular and extracellular signals transmitted by hormones and second messengers have to be integrated to provide mammalian cells with a suitable abundance of mitochondria and mtDNA to meet their energy demand. It has been proposed that reactive oxygen species (ROS) and free radicals generated from respiratory chain are involved in the signaling from mitochondria to the nucleus. Increased oxidative stress may contribute to alterations in the abundance of mitochondria as well as the copy number and integrity of mtDNA in human cells in pathological conditions and in aging process. Within a certain level, ROS may induce stress responses by altering expression of specific nuclear genes to uphold the energy metabolism to rescue the cell. Once beyond the threshold, ROS may cause oxidative damage to mtDNA and other components of the affected cells and to elicit apoptosis by induction of mitochondrial membrane permeability transition and release of pro-apoptotic proteins such as cytochrome c. On the basis of recent findings gathered from this and other laboratories, we review the alterations in the abundance of mitochondria and mtDNA copy number of mammalian cells in response to oxidative stress and the signaling pathways that are involved.
Collapse
Affiliation(s)
- Hsin-Chen Lee
- Department of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | | |
Collapse
|
46
|
Ojuka EO. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc 2005; 63:275-8. [PMID: 15294043 DOI: 10.1079/pns2004339] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Contractile activity induces mitochondrial biogenesis and increases glucose transport capacity in muscle. There has been much research on the mechanisms responsible for these adaptations. The present paper reviews the evidence, which indicates that the decrease in the levels of high-energy phosphates, leading to activation of AMP kinase (AMPK), and the increase in cytosolic Ca(2+), which activates Ca(2+)/calmodulin-dependent protein kinase (CAMK), are signals that initiate these adaptative responses. Although the events downstream of AMPK and CAMK have not been well characterized, these events lead to activation of various transcription factors, including: nuclear respiratory factors (NRF) 1 and 2, which cause increased expression of proteins of the respiratory chain; PPAR-alpha, which up regulates the levels of enzymes of beta oxidation; mitochondrial transcription factor A, which activates expression of the mitochondrial genome; myocyte-enhancing factor 2A, the transcription factor that regulates GLUT4 expression. The well-orchestrated expression of the multitude of proteins involved in these adaptations is mediated by the rapid activation of PPAR gamma co-activator (PGC) 1, a protein that binds to various transcription factors to maximize transcriptional activity. Activating AMPK using 5-aminoimidizole-4-carboxamide-1-beta-D-riboside (AICAR) and increasing cytoplasmic Ca(2+) using caffeine, W7 or ionomycin in L6 myotubes increases the concentration of mitochondrial enzymes and GLUT4 and enhances the binding of NRF-1 and NRF-2 to DNA. AICAR and Ca-releasing agents also increase the levels of PGC-1, mitochondrial transcription factor A and myocyte-enhancing factors 2A and 2D. These results are similar to the responses seen in muscle during the adaptation to endurance exercise and show that L6 myotubes are a suitable model for studying the mechanisms by which exercise causes the adaptive responses in muscle mitochondria and glucose transport.
Collapse
Affiliation(s)
- Edward O Ojuka
- Department of Human Biology, University of Cape Town, Cape Town 7700, South Africa.
| |
Collapse
|
47
|
Chin ER. The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proc Nutr Soc 2005; 63:279-86. [PMID: 15294044 DOI: 10.1079/pns2004335] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intracellular Ca(2+) plays an important role in skeletal muscle excitation-contraction coupling and also in excitation-transcription coupling. Activity-dependent alterations in muscle gene expression as a result of increased load (i.e. resistance or endurance training) or decreased activity (i.e. immobilization or injury) are tightly linked to the level of muscle excitation. Differential expression of genes in slow- and fast-twitch fibres is also dependent on fibre activation. Both these biological phenomena are, therefore, tightly linked to the amplitude and duration of the Ca(2+) transient, a signal decoded downstream by Ca(2+)-dependent transcriptional pathways. Evidence is mounting that the calcineurin-nuclear factor of activated T-cells pathway and the Ca(2+)/calmodulin-dependent kinases (CaMK) II and IV play important roles in regulating oxidative enzyme expression, mitochondrial biogenesis and expression of fibre-type specific myofibrillar proteins. CaMKII is known to decode frequency-dependent information and is activated during hypertrophic growth and endurance adaptations. Thus, it was hypothesized that CaMKII, and possibly CaMKIV, are down regulated during muscle atrophy and levels of expression of CaMKII alpha, -II beta, -II gamma and -IV were assessed in skeletal muscles from young, aged and denervated rats. The results indicate that CaMKII gamma, but not CaMKIIalpha or -beta, is up regulated in aged and denervated soleus muscle and that CaMKIV is absent in skeletal but not cardiac muscle. Whether CaMKII gamma up-regulation is part of the pathology of wasting or a result of some adaptational response to atrophy is not known. Future studies will be important in determining whether insights from the adaptational response of muscle to increased loads will provide pharmacological approaches for increasing muscle strength or endurance to counter muscle wasting.
Collapse
Affiliation(s)
- Eva R Chin
- Department of Cardiovascular and Metabolic Diseases, Pfizer Global Research & Development, Eastern Point Rd., MS8220-3120, Groton, CT 06340, USA.
| |
Collapse
|
48
|
|
49
|
Freyssenet D, Irrcher I, Connor MK, Di Carlo M, Hood DA. Calcium-regulated changes in mitochondrial phenotype in skeletal muscle cells. Am J Physiol Cell Physiol 2004; 286:C1053-61. [PMID: 15075204 DOI: 10.1152/ajpcell.00418.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome c expression and mitochondrial biogenesis can be invoked by elevated intracellular Ca2+in muscle cells. To characterize the potential role of Ca2+as a messenger involved in mitochondrial biogenesis in muscle, we determined the effects of the Ca2+ionophore A-23187 on the expression of nuclear- and mitochondrially encoded genes. Treatment of myotubes with 1 μM A-23187 for 48–96 h increased nuclear-encoded β-subunit F1ATPase and malate dehydrogenase (MDH) mRNA levels by 50–100% ( P < 0.05) but decreased mRNA levels of glutamate dehydrogenase (GDH) by 19% ( P < 0.05). mRNA levels of the cytochrome c oxidase (COX) nuclear-encoded subunits IV, Vb, and VIc were unchanged, whereas the mitochondrially encoded subunits COX II and COX III were decreased by 30 and 70%, respectively ( P < 0.05). This was paralleled by a 20% decrease ( P < 0.05) in COX activity. These data suggest that cytoplasmic Ca2+differentially regulates the mRNA level of nuclear and mitochondrial genes. The decline in COX II and III mRNA may be mediated by Tfam, because A-23187 modestly reduced Tfam levels by 48 h. A-23187 induced time-dependent increases in Egr-1 mRNA, along with the activation of ERK1/2 and AMP-activated protein kinase. MEK inhibition with PD-98059 attenuated the increase in Egr-1 mRNA. A-23187 also increased Egr-1, serum response factor, and Sp1 protein expression, transcription factors implicated in mitochondrial biogenesis. Egr-1 overexpression increased nuclear-encoded cytochrome c transcriptional activation by 1.5-fold ( P < 0.05) and reduced GDH mRNA by 37% ( P < 0.05) but had no effect on MDH or β-subunit F1ATPase mRNA. These results indicate that changes in intracellular Ca2+can modify mitochondrial phenotype, in part via the involvement of Egr-1.
Collapse
|
50
|
Lew RR, Levina NN. Oxygen flux magnitude and location along growing hyphae ofNeurospora crassa. FEMS Microbiol Lett 2004; 233:125-30. [PMID: 15043878 DOI: 10.1016/j.femsle.2004.01.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 01/28/2004] [Accepted: 01/30/2004] [Indexed: 11/17/2022] Open
Abstract
Oxygen fluxes were mapped at the growing apices and along mycelial hyphal segments of the ascomycete Neurospora crassa. High spatial resolution was obtained using micro-oxygen probes (2-3 microm tip diameters) and the self-referencing technique to maximize the sensitivity of oxygen flux measurements. As expected, oxygen influx was inhibited by cyanide, although oxygen influx (and hyphal growth) resumed with the induction of an alternate oxidase activity. Along hyphal segments, variations in oxygen influx were not correlated with location, near or far from septa, and varied over time along the same hyphal segment. Growing hyphae had a region of maximal oxygen influx greater than 10 microm behind the hyphal tip, the oxygen influx was correlated with hyphal growth rate. The region of maximal oxygen influx did not correspond with mitochondrial density, which is maximal (about 30% of hyphal volume) 5-10 microm behind the tip. Therefore, tip-localized mitochondria do not contribute to the respiratory requirements of the growing hypha. The tip-localized mitochondria may function in clearing calcium from the cytoplasm, although a decline in chlortetracycline fluorescence after cyanide inhibition could also be due to ATP-depletion due to inhibition of actively respiring mitochondria. Alternatively, the growing tip may be the site of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Roger R Lew
- Department of Biology, York University, 4700 Keele Street, Toronto, Ont., Canada M3J 1P3.
| | | |
Collapse
|