1
|
Wynsberghe JV, Vanakker OM. Significance of Premature Vertebral Mineralization in Zebrafish Models in Mechanistic and Pharmaceutical Research on Hereditary Multisystem Diseases. Biomolecules 2023; 13:1621. [PMID: 38002303 PMCID: PMC10669475 DOI: 10.3390/biom13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Zebrafish are increasingly becoming an important model organism for studying the pathophysiological mechanisms of human diseases and investigating how these mechanisms can be effectively targeted using compounds that may open avenues to novel treatments for patients. The zebrafish skeleton has been particularly instrumental in modeling bone diseases as-contrary to other model organisms-the lower load on the skeleton of an aquatic animal enables mutants to survive to early adulthood. In this respect, the axial skeletons of zebrafish have been a good read-out for congenital spinal deformities such as scoliosis and degenerative disorders such as osteoporosis and osteoarthritis, in which aberrant mineralization in humans is reflected in the respective zebrafish models. Interestingly, there have been several reports of hereditary multisystemic diseases that do not affect the vertebral column in human patients, while the corresponding zebrafish models systematically show anomalies in mineralization and morphology of the spine as their leading or, in some cases, only phenotype. In this review, we describe such examples, highlighting the underlying mechanisms, the already-used or potential power of these models to help us understand and amend the mineralization process, and the outstanding questions on how and why this specific axial type of aberrant mineralization occurs in these disease models.
Collapse
Affiliation(s)
- Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| |
Collapse
|
2
|
El Fersioui Y, Pinton G, Allaman-Pillet N, Schorderet DF. Premature Vertebral Mineralization in hmx1-Mutant Zebrafish. Cells 2022; 11:cells11071088. [PMID: 35406651 PMCID: PMC8997757 DOI: 10.3390/cells11071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
H6 family homeobox 1 (HMX1) regulates multiple aspects of craniofacial development, and mutations in HMX1 are linked to an ocular defect termed oculoauricular syndrome of Schorderet–Munier–Franceschetti (OAS) (MIM #612109). Recently, additional altered orofacial features have been reported, including short mandibular rami, asymmetry of the jaws, and altered premaxilla. We found that in two mutant zebrafish lines termed hmx1mut10 and hmx1mut150, precocious mineralization of the proximal vertebrae occurred. Zebrafish hmx1mut10 and hmx1mut150 report mutations in the SD1 and HD domains, which are essential for dimerization and activity of hmx1. In hmx1mut10, the bone morphogenetic protein (BMP) antagonists chordin and noggin1 were downregulated, while bmp2b and bmp4 were highly expressed and specifically localized to the dorsal region prior to the initiation of the osteogenic process. The osteogenic promoters runx2b and spp1 were also upregulated. Supplementation with DMH1—an inhibitor of the BMP signaling pathway—at the specific stage in which bmp2b and bmp4 are highly expressed resulted in reduced vertebral mineralization, resembling the wildtype mineralization progress of the axial skeleton. These results point to a possible role of hmx1 as part of a complex gene network that inhibits bmp2b and bmp4 in the dorsal region, thus regulating early axial skeleton development.
Collapse
Affiliation(s)
- Younes El Fersioui
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
- Jules-Gonin Eye Hospital, Unit of Gene Therapy and Stem Cell Biology, 1004 Lausanne, Switzerland
- Correspondence:
| | - Gaëtan Pinton
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
| | - Nathalie Allaman-Pillet
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
| | - Daniel F. Schorderet
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
- Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
3
|
Li H, Wang J, Huang K, Zhang T, Gao L, Yang S, Yi W, Niu Y, Liu H, Wang Z, Wang G, Tao K, Wang L, Cai K. Nkx2.5 Functions as a Conditional Tumor Suppressor Gene in Colorectal Cancer Cells via Acting as a Transcriptional Coactivator in p53-Mediated p21 Expression. Front Oncol 2021; 11:648045. [PMID: 33869046 PMCID: PMC8047315 DOI: 10.3389/fonc.2021.648045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
NK2 homeobox 5 (Nkx2.5), a homeobox-containing transcription factor, is associated with a spectrum of congenital heart diseases. Recently, Nkx2.5 was also found to be differentially expressed in several kinds of tumors. In colorectal cancer (CRC) tissue and cells, hypermethylation of Nkx2.5 was observed. However, the roles of Nkx2.5 in CRC cells have not been fully elucidated. In the present study, we assessed the relationship between Nkx2.5 and CRC by analyzing the expression pattern of Nkx2.5 in CRC samples and the adjacent normal colonic mucosa (NCM) samples, as well as in CRC cell lines. We found higher expression of Nkx2.5 in CRC compared with NCM samples. CRC cell lines with poorer differentiation also had higher expression of Nkx2.5. Although this expression pattern makes Nkx2.5 seem like an oncogene, in vitro and in vivo tumor suppressive effects of Nkx2.5 were detected in HCT116 cells by establishing Nkx2.5-overexpressed CRC cells. However, Nkx2.5 overexpression was incapacitated in SW480 cells. To further assess the mechanism, different expression levels and mutational status of p53 were observed in HCT116 and SW480 cells. The expression of p21WAF1/CIP1, a downstream antitumor effector of p53, in CRC cells depends on both expression level and mutational status of p53. Overexpressed Nkx2.5 could elevate the expression of p21WAF1/CIP1 only in CRC cells with wild-type p53 (HCT116), rather than in CRC cells with mutated p53 (SW480). Mechanistically, Nkx2.5 could interact with p53 and increase the transcription of p21WAF1/CIP1 without affecting the expression of p53. In conclusion, our findings demonstrate that Nkx2.5 could act as a conditional tumor suppressor gene in CRC cells with respect to the mutational status of p53. The tumor suppressive effect of Nkx2.5 could be mediated by its role as a transcriptional coactivator in wild-type p53-mediated p21WAF1/CIP1 expression.
Collapse
Affiliation(s)
- Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangyang Yi
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, China
| | - Yanfeng Niu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
El Fersioui Y, Pinton G, Allaman-Pillet N, Schorderet DF. Hmx1 regulates urfh1 expression in the craniofacial region in zebrafish. PLoS One 2021; 16:e0245239. [PMID: 33465110 PMCID: PMC7815118 DOI: 10.1371/journal.pone.0245239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
H6 family homeobox 1 (HMX1) regulates multiple aspects of craniofacial development as it is widely expressed in the eye, peripheral ganglia and branchial arches. Mutations in HMX1 are linked to an ocular defect termed Oculo-auricular syndrome of Schorderet-Munier-Franceschetti (MIM #612109). We identified UHRF1 as a target of HMX1 during development. UHRF1 and its partner proteins actively regulate chromatin modifications and cellular proliferation. Luciferase assays and in situ hybridization analyses showed that HMX1 exerts a transcriptional inhibitory effect on UHRF1 and a modification of its expression pattern. Overexpression of hmx1 in hsp70-hmx1 zebrafish increased uhrf1 expression in the cranial region, while mutations in the hmx1 dimerization domains reduced uhrf1 expression. Moreover, the expression level of uhrf1 and its partner dnmt1 was increased in the eye field in response to hmx1 overexpression. These results indicate that hmx1 regulates uhrf1 expression and, potentially through regulating the expression of factors involved in DNA methylation, contribute to the development of the craniofacial region of zebrafish.
Collapse
Affiliation(s)
- Younes El Fersioui
- IRO – Institute for Research in Ophthalmology, Sion, Switzerland
- * E-mail: (YEF); (DFS)
| | - Gaëtan Pinton
- IRO – Institute for Research in Ophthalmology, Sion, Switzerland
| | | | - Daniel F. Schorderet
- IRO – Institute for Research in Ophthalmology, Sion, Switzerland
- Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail: (YEF); (DFS)
| |
Collapse
|
5
|
Nagel S, Pommerenke C, Meyer C, MacLeod RAF, Drexler HG. Aberrant expression of NKL homeobox genes HMX2 and HMX3 interferes with cell differentiation in acute myeloid leukemia. PLoS One 2020; 15:e0240120. [PMID: 33048949 PMCID: PMC7553312 DOI: 10.1371/journal.pone.0240120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022] Open
Abstract
The NKL-code describes normal expression patterns of NKL homeobox genes in hematopoiesis. Aberrant expression of NKL homeobox gene subclass members have been reported in several hematopoietic malignancies including acute myeloid leukemia (AML). Here, we analyzed the oncogenic role of the HMX-group of NKL homeobox genes in AML. Public expression profiling data–available for HMX1 and HMX2—indicate aberrant activity of HMX2 in circa 2% AML patients overall, rising to 31% in those with KMT2A/MLL rearrangements whereas HMX1 expression remains inconspicuous. AML cell lines EOL-1, MV4-11 and MOLM-13 expressed both, HMX2 and neighboring HMX3 genes, and harbored KMT2A aberrations, suggesting their potential functional association. Surprisingly, knockdown experiments in these cell lines demonstrated that KMT2A inhibited HMX2/3 which, in turn, did not regulate KMT2A expression. Furthermore, karyotyping and genomic profiling analysis excluded rearrangements of the HMX2/3 locus in these cell lines. However, comparative expression profiling and subsequent functional analyses revealed that IRF8, IL7- and WNT-signalling activated HMX2/3 expression while TNFa/NFkB- signalling proved inhibitory. Whole genome sequencing of EOL-1 identified two mutations in the regulatory upstream regions of HMX2/3 resulting in generation of a consensus ETS-site and transformation of a former NFkB-site into an SP1-site. Reporter-gene assays demonstrated that both mutations contributed to HMX2/3 activation, modifying ETS1/ELK1- and TNFalpha-mediated gene regulation. Moreover, DMSO-induced eosinophilic differentiation of EOL-1 cells coincided with HMX2/3 downregulation while knockdown of HMX2 induced cell differentiation, collectively supporting a fundamental role for these genes in myeloid differentiation arrest. Finally, target genes of HMX2/3 were identified in EOL-1 and included suppression of differentiation gene EPX, and activation of fusion gene FIP1L1-PDGFRA and receptor-encoding gene HTR7, both of which enhanced oncogenic ERK-signalling. Taken together, our study documents a leukemic role for deregulated NKL homeobox genes HMX2 and HMX3 in AML, revealing molecular mechanisms of myeloid differentiation arrest.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
6
|
RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nat Genet 2020; 52:931-938. [PMID: 32632336 DOI: 10.1038/s41588-020-0662-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Many chromatin-binding proteins and protein complexes that regulate transcription also bind RNA. One of these, Polycomb repressive complex 2 (PRC2), deposits the H3K27me3 mark of facultative heterochromatin and is required for stem cell differentiation. PRC2 binds RNAs broadly in vivo and in vitro. Yet, the biological importance of this RNA binding remains unsettled. Here, we tackle this question in human induced pluripotent stem cells by using multiple complementary approaches. Perturbation of RNA-PRC2 interaction by RNase A, by a chemical inhibitor of transcription or by an RNA-binding-defective mutant all disrupted PRC2 chromatin occupancy and localization genome wide. The physiological relevance of PRC2-RNA interactions is further underscored by a cardiomyocyte differentiation defect upon genetic disruption. We conclude that PRC2 requires RNA binding for chromatin localization in human pluripotent stem cells and in turn for defining cellular state.
Collapse
|
7
|
Mano H, Asaoka Y, Kojima D, Fukada Y. Brain-specific homeobox Bsx specifies identity of pineal gland between serially homologous photoreceptive organs in zebrafish. Commun Biol 2019; 2:364. [PMID: 31602413 PMCID: PMC6779754 DOI: 10.1038/s42003-019-0613-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/16/2019] [Indexed: 01/11/2023] Open
Abstract
The pineal gland functioning as a photoreceptive organ in non-mammalian species is a serial homolog of the retina. Here we found that Brain-specific homeobox (Bsx) is a key regulator conferring individuality on the pineal gland between the two serially homologous photoreceptive organs in zebrafish. Bsx knock-down impaired the pineal development with reduced expression of exorh, the pineal-specific gene responsible for the photoreception, whereas it induced ectopic expression of rho, a retina-specific gene, in the pineal gland. Bsx remarkably transactivated the exorh promoter in combination with Otx5, but not with Crx, through its binding to distinct subtypes of PIRE, a DNA cis-element driving Crx/Otx-dependent pineal-specific gene expression. These results demonstrate that the identity of pineal photoreceptive neurons is determined by the combinatorial code of Bsx and Otx5, the former confers the pineal specificity at the tissue level and the latter determines the photoreceptor specificity at the cellular level.
Collapse
Affiliation(s)
- Hiroaki Mano
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yoichi Asaoka
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Daisuke Kojima
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| |
Collapse
|
8
|
Differential transactivation of the upstream aggrecan enhancer regulated by PAX1/9 depends on SOX9-driven transactivation. Sci Rep 2019; 9:4605. [PMID: 30872687 PMCID: PMC6418084 DOI: 10.1038/s41598-019-40810-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/22/2019] [Indexed: 01/07/2023] Open
Abstract
A previously identified enhancer 10 kb upstream of the Aggrecan (Acan) gene (UE) can drive cartilage specific reporter expression in vivo. Here, we report that the paralogous transcription factors PAX1 and PAX9 differentially drive UE, depending on the presence or absence of SOX9-driven transactivation. In the developing vertebral column, PAX1/9 expression was inversely correlated with Acan expression. Moreover, PAX1/9 was co-expressed with SOX9/5/6 in the intervertebral mesenchyme and the inner annulus fibrosus (AF), and with SOX9 in the outer AF. Significant Acan upregulation was observed during chondrification of Pax1-silenced AF cells, while, Acan was significantly downregulated by persistent expression of Pax1 in cartilage. Deletion of UE using CRISPR/Cas9 resulted in ~30% and ~40% reduction of Acan expression in cartilage and the AF, respectively. In the UE, PAX1/9 acts as weak transactivators through a PAX1/9-binding site partially overlapped with a SOX9-binding site. In the presence of SOX9, which otherwise drives robust Acan expression along with SOX5/6, PAX1/9 competes with SOX9 for occupancy of the binding site, resulting in reduced transactivation of Acan. Coimmunoprecipitation revealed the physical interaction of Pax1 with SOX9. Thus, transactivation of the UE is differentially regulated by concerted action of PAX1/9, SOX9, and SOX5/6 in a context-dependent manner.
Collapse
|
9
|
Zhao Y, Yu J, Zhao J, Chen X, Xiong N, Wang T, Qing H, Lin Z. Intragenic Transcriptional cis-Antagonism Across SLC6A3. Mol Neurobiol 2018; 56:4051-4060. [PMID: 30259411 DOI: 10.1007/s12035-018-1357-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022]
Abstract
A promoter can be regulated by various cis-acting elements so that delineation of the regulatory modes among them may help understand developmental, environmental and genetic mechanisms in gene activity. Here we report that the human dopamine transporter gene SLC6A3 carries a 5' distal 5-kb super enhancer (5KSE) which upregulated the promoter by 5-fold. Interestingly, 5KSE is able to prevent 3' downstream variable number tandem repeats (3'VNTRs) from silencing the promoter. This new enhancer consists of a 5'VNTR and three repetitive sub-elements that are conserved in primates. Two of 5KSE's sub-elements, E-9.7 and E-8.7, upregulate the promoter, but only the later could continue doing so in the presence of 3'VNTRs. Finally, E-8.7 is activated by novel dopaminergic transcription factors including SRP54 and Nfe2l1. Together, these results reveal a multimodal regulatory mechanism in SLC6A3.
Collapse
Affiliation(s)
- Ying Zhao
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.,School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jinlong Yu
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA
| | - Juan Zhao
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.,College of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaowu Chen
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.,Department of Neurology, Shenzhen University General Hospital, Shenzhen, Guangzhou, 518060, China
| | - Nian Xiong
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.,Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Qing
- College of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.
| |
Collapse
|
10
|
Marcelli F, Boisset G, Schorderet DF. A dimerized HMX1 inhibits EPHA6/epha4b in mouse and zebrafish retinas. PLoS One 2014; 9:e100096. [PMID: 24945320 PMCID: PMC4063770 DOI: 10.1371/journal.pone.0100096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 05/22/2014] [Indexed: 12/29/2022] Open
Abstract
HMX1 is a homeobox-containing transcription factor implicated in eye development and responsible for the oculo-auricular syndrome of Schorderet-Munier-Franceschetti. HMX1 is composed of two exons with three conserved domains in exon 2, a homeobox and two domains called SD1 and SD2. The function of the latter two domains remains unknown. During retinal development, HMX1 is expressed in a polarized manner and thus seems to play a role in the establishment of retinal polarity although its exact role and mode of action in eye development are unknown. Here, we demonstrated that HMX1 dimerized and that the SD1 and homeodomains are required for this function. In addition, we showed that proper nuclear localization requires the presence of the homeodomain. We also identified that EPHA6, a gene implicated in retinal axon guidance, is one of its targets in eye development and showed that a dimerized HMX1 is needed to inhibit EPHA6 expression.
Collapse
Affiliation(s)
- Fabienne Marcelli
- IRO – Institute for Research in Ophthalmology, Sion, Switzerland
- Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Gaëlle Boisset
- IRO – Institute for Research in Ophthalmology, Sion, Switzerland
| | - Daniel F. Schorderet
- IRO – Institute for Research in Ophthalmology, Sion, Switzerland
- Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
11
|
Gay I, Cavender A, Peto D, Sun Z, Speer A, Cao H, Amendt BA. Differentiation of human dental stem cells reveals a role for microRNA-218. J Periodontal Res 2013; 49:110-20. [PMID: 23662917 DOI: 10.1111/jre.12086] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Regeneration of lost periodontium is the ultimate goal of periodontal therapy. Advances in tissue engineering have demonstrated the multilineage potential and plasticity of adult stem cells located in periodontal apparatus. However, it remains unclear how epigenetic mechanisms controlling signals determine tissue specification and cell lineage decisions. To date, no data are available on micro-RNA (miRNA) activity behind human-derived dental stem cells (DSCs). MATERIAL AND METHODS In this study, we isolated periodontal ligament stem cells, dental pulp stem cells and gingival stem cells from extracted third molars; human bone marrow stem cells were used as a positive control. The expression of OCT4A and NANOG was confirmed in these undifferentiated cells. All cells were cultured under osteogenic inductive conditions and RUNX2 expression was analyzed as a marker of mineralized tissue differentiation. The miRNA expression profile was obtained at baseline and after osteogenic induction in all cell types. RESULTS The expression of RUNX2 demonstrated successful osteogenic induction of all cell types, which was confirmed by alizarin red stain. The analysis of 765 miRNAs demonstrated a shift in miRNA expression that occurred in all four stem cell types, including a decrease in hsa-mir-218 across all differentiated cell populations. Hsa-mir-218 targets RUNX2 and decreases RUNX2 expression in undifferentiated human DSCs. DSC mineralized tissue type differentiation is associated with a decrease in hsa-mir-218 expression. CONCLUSION These data reveal a miRNA-regulated pathway for the differentiation of human DSCs and a select network of human miRNAs that control DSC osteogenic differentiation.
Collapse
Affiliation(s)
- I Gay
- Dental School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Petkova TD, Seigel GM, Otteson DC. A role for DNA methylation in regulation of EphA5 receptor expression in the mouse retina. Vision Res 2010; 51:260-8. [PMID: 20875442 DOI: 10.1016/j.visres.2010.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 01/15/2023]
Abstract
Understanding the mechanisms regulating expression of retinal ganglion cell (RGC) specific and axon-guidance genes during development and in retinal stem cells will be critical for successful optic nerve regeneration. Müller glia have some characteristics of retinal stem cells but in mammals have demonstrated limited potential to differentiate into RGCs. Chromatin remodeling through histone deacetylation and DNA methylation are a potential mechanism for silencing genes necessary for neuronal differentiation of glial cells. We investigated DNA methylation as a mechanism for regulating expression of mouse EphA5, one member of a large family of ephrin receptor genes that regulate patterning of the topographic connections of RGCs during visual system development. We analyzed spatial and age-related patterns of EphA5 promoter methylation by bisulfite sequencing and mRNA expression by quantitative RT-PCR in the mouse retina. The CpG island in the EphA5 promoter was hypomethylated in the retina and showed no change in overall methylation with age, despite a decline in EphA5 mRNA expression levels in the adult retina. In the nasal retina of post-natal day 0 mice, there was a modest, but statistically significant increase in methylation. Increased methylation corresponded with lower levels of receptor mRNA expression in the nasal retina. We cloned the EphA5 promoter and found that site-specific differences in methylation could preferentially activate or repress promoter activity in transient transfections of rat retinal progenitor cells (R28) using luciferase assays. In sphere cultures generated by EGF/FGF2 stimulation of conditionally immortalized mouse Müller glia (ImM10), EphA5 promoter was hypermethylated and EphA5 mRNA was not detected. Demethylation using 5-azadeoxycytidine (AzadC) resulted in a significant decrease of methylation of the EphA5 promoter and re-expression of the EphA5 mRNA. The inverse relationship between EphA5 promoter methylation and mRNA expression is consistent with a role for DNA methylation in modulating the spatial patterns of EphA5 gene expression in the retina and in silencing EphA5 expression in ImM10 cells. The robust up-regulation of EphA5 in ImM10 cells following demethylation suggests that modulation of chromatin structure may be a useful approach for promoting expression of silenced developmental genes and increasing the neurogenic potential of Müller glia.
Collapse
Affiliation(s)
- Tihomira D Petkova
- Department of Vision Science, College of Optometry, Houston, TX 77204-2020, USA.
| | | | | |
Collapse
|
13
|
Kim K, Kim R, Sengupta P. The HMX/NKX homeodomain protein MLS-2 specifies the identity of the AWC sensory neuron type via regulation of the ceh-36 Otx gene in C. elegans. Development 2010; 137:963-74. [PMID: 20150279 DOI: 10.1242/dev.044719] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The differentiated features of postmitotic neurons are dictated by the expression of specific transcription factors. The mechanisms by which the precise spatiotemporal expression patterns of these factors are regulated are poorly understood. In C. elegans, the ceh-36 Otx homeobox gene is expressed in the AWC sensory neurons throughout postembryonic development, and regulates terminal differentiation of this neuronal subtype. Here, we show that the HMX/NKX homeodomain protein MLS-2 regulates ceh-36 expression specifically in the AWC neurons. Consequently, the AWC neurons fail to express neuron type-specific characteristics in mls-2 mutants. mls-2 is expressed transiently in postmitotic AWC neurons, and directly initiates ceh-36 expression. CEH-36 subsequently interacts with a distinct site in its cis-regulatory sequences to maintain its own expression, and also directly regulates the expression of AWC-specific terminal differentiation genes. We also show that MLS-2 acts in additional neuron types to regulate their development and differentiation. Our analysis describes a transcription factor cascade that defines the unique postmitotic characteristics of a sensory neuron subtype, and provides insights into the spatiotemporal regulatory mechanisms that generate functional diversity in the sensory nervous system.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
14
|
Functional mode of FoxD1/CBF2 for the establishment of temporal retinal specificity in the developing chick retina. Dev Biol 2009; 331:300-10. [PMID: 19450575 DOI: 10.1016/j.ydbio.2009.05.549] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 12/13/2022]
Abstract
Two winged-helix transcription factors, FoxG1 (previously called chick brain factor1, CBF1) and FoxD1 (chick brain factor2, CBF2), are expressed specifically in the nasal and temporal regions of the developing chick retina, respectively. We previously demonstrated that FoxG1 controls the expression of topographic molecules including FoxD1, and determines the regional specificity of the nasal retina. FoxD1 is known to prescribe temporal specificity, however, molecular mechanisms and downstream targets have not been elucidated. Here we addressed the genetic mechanisms for establishing temporal specificity in the developing retina using an in ovo electroporation technique. Fibroblast growth factor (Fgf) and Wnt first play pivotal roles in inducing the region-specific expression of FoxG1 and FoxD1 in the optic vesicle. Misexpression of FoxD1 represses the expression of FoxG1, GH6, SOHo1, and ephrin-A5, and induces that of EphA3 in the retina. GH6 and SOHo1 repress the expression of FoxD1. In contrast to the inhibitory effect of FoxG1 on bone morphogenic protein (BMP) signaling, FoxD1 does not alter the expression of BMP4 or BMP2. Studies with chimeric mutants of FoxD1 showed that FoxD1 acts as a transcription repressor in controlling its downstream targets in the retina. Taken together with previous findings, our data suggest that FoxG1 and FoxD1 are located at the top of the gene cascade for regional specification along the nasotemporal (anteroposterior) axis in the retina, and FoxD1 determines temporal specificity.
Collapse
|
15
|
Lania A, Mantovani G, Spada A. Genetic abnormalities of somatostatin receptors in pituitary tumors. Mol Cell Endocrinol 2008; 286:180-6. [PMID: 17913341 DOI: 10.1016/j.mce.2007.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/01/2007] [Accepted: 08/24/2007] [Indexed: 10/22/2022]
Abstract
Somatostatin exerts antisecretive and antiproliferative effects on different endocrine cells by acting through a family of G protein-coupled receptors that includes five subtypes (SST1-5). Normal human pituitary and pituitary adenomas have been shown to express almost all SST subtypes, with the exception of SST4. Consistent with the observation that octreotide and other somatostatin analogs bind to SST2 and SST5 with high affinity, these genes have been screened for quantitative/qualitative abnormalities in tumors removed from patients with poor responsiveness to somatostatin analogs treatment. Data obtained in GH-secreting adenomas suggested that resistance to octreotide was frequently associated with low expression of SST2 mRNA, although other authors failed to confirm this finding. To date, the only mutational change involving SST2 and SST5 is the Arg to Trp substitution in codon 240 of the SST5 gene that was found in one acromegalic patient resistant to octreotide. Similarly, loss of heterozygosis at SST5 gene locus in pituitary adenomas has been described in individual tumors. In recent years, molecular studies investigated the possible association of gene polymorphisms and susceptibility to diseases and/or resistance to drugs. As far as polymorphic variants of SST genes are concerned, a possible role of SST5 C1004T and T-461C alleles in influencing GH and IGF-I levels in patients with acromegaly has been proposed. Nevertheless, polymorphic variants in SST2 and SST5 genes seem to have a minor, if any, role in determining the different responsiveness to somatostatin analogs in patients with acromegaly.
Collapse
Affiliation(s)
- A Lania
- Department of Medical Sciences, University of Milan, Fondazione Ospedale Maggiore IRCCS, Milan, Italy
| | | | | |
Collapse
|
16
|
Abstract
In this review we discuss the major morphogenetic and regulative events that control myocardial progenitor cells from the time that they delaminate from the epiblast in the primitive streak to their differentiation into cardiomyocytes in the heart tube. During chick and mouse embryogenesis, myocardial progenitor cells go through four specific processes that are sequential but overlapping: specification of the cardiogenic mesoderm, determination of the bilaterally symmetric heart fields, patterning of the heart field, and finally cardiomyocyte differentiation and formation of the heart tube. We describe the morphological and molecular events that play a pivotal role in each of these four processes.
Collapse
Affiliation(s)
- Radwan Abu-Issa
- Department of Pediatrics, Neonatal-Perinatal Research Institute, Duke University, Durham, NC 27712, USA.
| | | |
Collapse
|
17
|
Mysliwiec MR, Kim TG, Lee Y. Characterization of zinc finger protein 496 that interacts with Jumonji/Jarid2. FEBS Lett 2007; 581:2633-40. [PMID: 17521633 PMCID: PMC2002548 DOI: 10.1016/j.febslet.2007.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 04/23/2007] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
Jumonij (JMJ)/Jarid2 plays important roles in embryonic development and functions as a transcriptional repressor. Using yeast two-hybrid screening, we have identified a cofactor of JMJ, the zinc finger protein 496 (Zfp496) that contains a SCAN, KRAB and zinc finger domain. Our molecular analyses indicate that Zfp496 functions as a transcriptional activator. Further, Zfp496 inhibits the transcriptional repression of JMJ and JMJ represses the transcriptional activation of Zfp496. This study demonstrates that JMJ physically and functionally interacts with Zfp496, which will provide important insights into endogenous target gene regulation by both factors.
Collapse
|
18
|
Bulyk ML. Protein binding microarrays for the characterization of DNA-protein interactions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 104:65-85. [PMID: 17290819 PMCID: PMC2727742 DOI: 10.1007/10_025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A number of important cellular processes, such as transcriptional regulation, recombination, replication, repair, and DNA modification, are performed by DNA binding proteins. Of particular interest are transcription factors (TFs) which, through their sequence-specific interactions with DNA binding sites, modulate gene expression in a manner required for normal cellular growth and differentiation, and also for response to environmental stimuli. Despite their importance, the DNA binding specificities of most DNA binding proteins still remain unknown, since prior technologies aimed at identifying DNA-protein interactions have been laborious, not highly scalable, or have required limiting biological reagents. Recently a new DNA microarray-based technology, termed protein binding microarrays (PBMs), has been developed that allows rapid, high-throughput characterization of the in vitro DNA binding site sequence specificities of TFs, other DNA binding proteins, or synthetic compounds. DNA binding site data from PBMs combined with gene annotation data, comparative sequence analysis, and gene expression profiling, can be used to predict what genes are regulated by a given TF, what the functions are of a given TF and its predicted target genes, and how that TF may fit into the cell's transcriptional regulatory network.
Collapse
Affiliation(s)
- Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Harvard Medical School New Research Bldg., Room 466D, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Ivins S, Lammerts van Beuren K, Roberts C, James C, Lindsay E, Baldini A, Ataliotis P, Scambler PJ. Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking Tbx1. Dev Biol 2006; 285:554-69. [PMID: 16109395 DOI: 10.1016/j.ydbio.2005.06.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
22q11-deletion (DiGeorge/velocardiofacial) syndrome (22q11DS) is modeled by mutation of murine transcription factor Tbx1. As part of efforts to identify transcriptional targets of Tbx1, we analyzed the transcriptome of the pharyngeal region of Df1/+;Tbx1+/- embryos at 9.5 days of embryonic development using two independent microarray platforms. In this model, embryos are null for Tbx1, with hemizygosity of genes in cis with Tbx1 on one chromosome providing a positive control for array sensitivity. Reduced mRNA levels of genes deleted from Df1 were detected on both platforms. Expression level filtering and statistical analysis identified several genes that were consistently differentially expressed between mutant and wild type embryos. Real-time quantitative PCR and in situ hybridization validated diminished expression of Pax9 and Gcm2, genes known to be required for normal thymus and parathyroid gland morphogenesis, whereas Pax1, Hoxa3, Eya1, and Foxn1, which are similarly required, were not down-regulated. Gbx2, a gene required for normal arch artery development, was down-regulated specifically in the pharyngeal endoderm and the posterior part of pharyngeal arch 1, and is a potential point of cross talk between the Tbx1 and Fgf8 controlled pathways. These experiments highlight which genes and pathways potentially affected by lack of Tbx1, and whose role may be explored further by testing for epistasis using mouse mutants.
Collapse
Affiliation(s)
- Sarah Ivins
- Molecular Medicine Unit, Institute of Child Health, London WC1N 1EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhu F, Liu ZC, Li WX, Xu XL. Rapid identification of Quox-1 homeodomain DNA-binding sequence using SAAB. BIOCHEMISTRY (MOSCOW) 2005; 70:920-5. [PMID: 16212549 DOI: 10.1007/s10541-005-0203-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quox-1 is the only gene in the hox family whose expression occurs throughout the development of the central nervous system. Using the Quox-1 homeodomain produced in a bacterial expression system, we were able to identify DNA-binding targets of the Quox-1 protein from a library of randomly generated oligonucleotides by the selection and amplification binding (SAAB) technique. The results indicated that the Quox-1 protein recognizes a new consensus sequence, 5'-CAATC-3', which has not been reported for any other Hox family homeoprotein. In addition, electromobility shift assay further confirmed that the Quox-1 homeoprotein preferentially binds to the 5'-CAATC-3' sequence, but not to the binding sites for other Hox class homeoprotein (TAAT) or NKX class homeoprotein (CAAG). Based on mutation analyses of the DNA sequences, we found that the 5'-CAATC-3' core sequences are required for high affinity binding by the Quox-1 protein. Furthermore, mutation analyses of the Quox-1 homeodomain showed that one of the major determinants participating in recognition of a minor groove is the Gln6 and Thr7 in the N-terminal arm of the homeodomain.
Collapse
Affiliation(s)
- Fan Zhu
- College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | | | | | | |
Collapse
|
21
|
Akazawa H, Komuro I. Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases. Pharmacol Ther 2005; 107:252-68. [PMID: 15925411 DOI: 10.1016/j.pharmthera.2005.03.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2005] [Indexed: 11/20/2022]
Abstract
During the past decade, an emerging body of evidence has accumulated that cardiac transcription factors control a cardiac gene program and play a critical role in transcriptional regulation during cardiogenesis and during the adaptive process in adult hearts. Especially, an evolutionally conserved homeobox transcription factor Csx/Nkx2-5 has been in the forefront in the field of cardiac biology, providing molecular insights into the mechanisms of cardiac development and diseases. Csx/Nkx2-5 is indispensable for normal cardiac development, and mutations of the gene are associated with human congenital heart diseases (CHD). In the present review, the regulation of a cardiac gene program by Csx/Nkx2-5 is summarized, with an emphasis on its role in the cardiac development and diseases.
Collapse
Affiliation(s)
- Hiroshi Akazawa
- Division of Cardiovascular Pathophysiology and Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | |
Collapse
|
22
|
Filopanti M, Ronchi C, Ballarè E, Bondioni S, Lania AG, Losa M, Gelmini S, Peri A, Orlando C, Beck-Peccoz P, Spada A. Analysis of somatostatin receptors 2 and 5 polymorphisms in patients with acromegaly. J Clin Endocrinol Metab 2005; 90:4824-8. [PMID: 15914528 DOI: 10.1210/jc.2005-0132] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the possible correlation of single nucleotide polymorphisms in somatostatin receptor (SSTR)2 and SSTR5 genes with the responsiveness to somatostatin analogs in a cohort of acromegalic patients. STUDY DESIGN Three single nucleotide polymorphisms (a-83 g, c-57 g, and t80c) of SSTR2 and three (t-461c, c325t, and c1004t) of SSTR5 were analyzed in 66 acromegalic patients with different responsiveness to somatostatin analogs and 66 healthy controls. RESULTS Allele frequencies in patients and controls were similar. No association between SSTR2 genotypes and GH and IGF-I levels was found. When considering SSTR5 variants, patients homozygous or heterozygous for the substitution c1004 (P+) showed basal IGF-I levels significantly lower than patients homozygous for 1004t (P-). Moreover, serum GH levels were lower in patients with P+/T- haplotype (having c1004 allele and no t-461 allele) than in those with P-/T+. No correlation between SSTR2 and SSTR5 genotypes, responsiveness to somatostatin therapy, and mRNA expression in the removed adenomas (n = 10) was found. CONCLUSIONS These data suggest a role for SSTR5 t-461c and c1004t alleles in influencing GH and IGF-I levels in patients with acromegaly, whereas SSTR2 and SSTR5 variants seem to have a minor role in determining the responsiveness to somatostatin analogs.
Collapse
Affiliation(s)
- M Filopanti
- Institute of Endocrine Sciences, University of Milan, Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Istituto di Ricovero e Cura a Curattere Scientifico, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang W, Grimmer JF, Van De Water TR, Lufkin T. Hmx2 and Hmx3 Homeobox Genes Direct Development of the Murine Inner Ear and Hypothalamus and Can Be Functionally Replaced by Drosophila Hmx. Dev Cell 2004; 7:439-53. [PMID: 15363417 DOI: 10.1016/j.devcel.2004.06.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 06/16/2004] [Accepted: 06/17/2004] [Indexed: 11/19/2022]
Abstract
The Hmx homeobox gene family appears to play a conserved role in CNS development in all animal species examined, and in higher vertebrates has an additional role in sensory organ development. Here, we show that murine Hmx2 and Hmx3 have both overlapping and distinct functions in the development of the inner ear's vestibular system, whereas their functions in the hypothalamic/pituitary axis of the CNS appear to be interchangeable. As in analogous knockin studies of Otx and En function, Drosophila Hmx can rescue conserved functions in the murine CNS. However, in contrast to Otx and En, Drosophila Hmx also rescues significant vertebrate-specific functions outside the CNS. Our work suggests that the evolution of the vertebrate inner ear may have involved (1) the redeployment of ancient Hmx activities to regulate the cell proliferation of structural components and (2) the acquisition of additional, vertebrate-specific Hmx activities to regulate the sensory epithelia.
Collapse
Affiliation(s)
- Weidong Wang
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
24
|
Orfali KA, Ohene-Abuakwa Y, Ball SE. Diamond Blackfan anaemia in the UK: clinical and genetic heterogeneity. Br J Haematol 2004; 125:243-52. [PMID: 15059149 DOI: 10.1111/j.1365-2141.2004.04890.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A detailed family study was undertaken of patients notified to the UK Diamond Blackfan Anaemia (DBA) Registry. RPS19 mutations were detected in 16 of 104 families, including two patients with deletions detected by intragenic loss of heterozygosity of tightly linked polymorphisms. In two further cases, polymorphisms were used to determine the parental allele of origin of RPS19 point mutations. A review of clinical details of patients with mutations and patients in the literature having identical or equivalent mutations revealed evidence for a genotype:phenotype correlation with respect to the prevalence of physical anomalies, and the occurrence of mild or variable haematological severity. Nine of 60 patients had a known family history of DBA. Haematological abnormalities, including raised red cell adenosine deaminase activity, were found in first-degree relatives of 16 of 51 (31%) of patients not previously considered to have familial DBA. Results of both parents and any siblings were normal in only 35 of 60 (58%) of cases, who were therefore assumed to have sporadic de novo DBA. The classical inheritance pattern for DBA is autosomal dominant; however, 12 of 60 families (20%) had more than one affected child despite normal results in both parents. These results have important implications for genetic counselling, and for the selection of potential sibling bone marrow donors.
Collapse
Affiliation(s)
- Karen A Orfali
- Department of Cellular and Molecular Medicine (Haematology), St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | | | |
Collapse
|
25
|
Kim TG, Kraus JC, Chen J, Lee Y. JUMONJI, a critical factor for cardiac development, functions as a transcriptional repressor. J Biol Chem 2003; 278:42247-55. [PMID: 12890668 DOI: 10.1074/jbc.m307386200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
JUMONJI (JMJ) is a nuclear factor that is critical for normal cardiovascular development, evidenced by the analysis of jmj homozygous mutant mice. However, the molecular function of JMJ remains to be elucidated. In the present study, we investigated whether JMJ is a transcriptional modulator. Reporter gene assays using the GAL4-DNA binding domain fused to JMJ and a reporter gene consisting of the GAL4 binding sites upstream of a luciferase reporter gene indicated that JMJ functions as a powerful transcriptional repressor. The DNA binding motif of JMJ was determined using CASTing experiments by incubating a random oligonucleotide library with the GST-JMJ fusion protein coupled to agarose beads. Among the selected binding oligonucleotides, the high affinity DNA binding sequences were identified by gel retardation assays. JMJ repressed expression of the reporter genes containing the high affinity JMJ binding sequences, indicating that JMJ is a DNA-binding transcriptional repressor. The domains for transcriptional repression, DNA binding, and nuclear localization signal were mapped by mutational analyses using reporter gene assays, gel retardation assays, and immunostaining experiments, respectively. The present data demonstrate for the first time that JMJ functions as a DNA-binding transcriptional repressor. Therefore, JMJ may play a critical role in transcription factor cascade to regulate expression of heart-specific genes and normal cardiac development.
Collapse
Affiliation(s)
- Tae-Gyun Kim
- Department of Anatomy and Cardiovascular Research Center, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
26
|
Small EM, Krieg PA. Molecular mechanisms of chamber-specific myocardial gene expression: transgenic analysis of the ANF promoter. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 67:71-9. [PMID: 12858526 DOI: 10.1101/sqb.2002.67.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- E M Small
- Department of Cell Biology and Anatomy, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | |
Collapse
|
27
|
Small EM, Krieg PA. Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF. Dev Biol 2003; 261:116-31. [PMID: 12941624 DOI: 10.1016/s0012-1606(03)00306-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The atrial natriuretic factor (ANF) gene is initially expressed throughout the myocardial layer of the heart, but during subsequent development, expression becomes limited to the atrial chambers. Mouse knockout and mammalian cell culture studies have shown that the ANF gene is regulated by combinatorial interactions between Nkx2-5, GATA-4, Tbx5, and SRF; however, the molecular mechanisms leading to chamber-specific expression are currently unknown. We have isolated the Xenopus ANF promoter in order to examine the temporal and spatial regulation of the ANF gene in vivo using transgenic embryos. The mammalian and Xenopus ANF promoters show remarkable sequence similarity, including an Nkx2-5 binding site (NKE), two GATA sites, a T-box binding site (TBE), and two SRF binding sites (SREs). Our transgenic studies show that mutation of either SRE, the TBE or the distal GATA element, strongly reduces expression from the ANF promoter. However, mutations of the NKE, the proximal GATA, or both elements together, result in relatively minor reductions in transgene expression within the myocardium. Surprisingly, mutation of these elements results in ectopic ANF promoter activity in the kidneys, facial muscles, and aortic arch artery-associated muscles, and causes persistent expression in the ventricle and outflow tract of the heart. We propose that the NKE and proximal GATA elements serve as crucial binding sites for assembly of a repressor complex that is required for atrial-specific expression of the ANF gene.
Collapse
Affiliation(s)
- Eric M Small
- Department of Cell Biology and Anatomy, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | |
Collapse
|
28
|
Kim DW, Kempf H, Chen RE, Lassar AB. Characterization of Nkx3.2 DNA binding specificity and its requirement for somitic chondrogenesis. J Biol Chem 2003; 278:27532-9. [PMID: 12746429 DOI: 10.1074/jbc.m301461200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that Nkx3.2, a member of the NK class of homeoproteins, functions as a transcriptional repressor to promote somitic chondrogenesis. However, it has not been addressed whether Nkx3.2 can bind to DNA in a sequence-specific manner and whether DNA binding by Nkx3.2 is required for its biological activity. In this work, we employed a DNA binding site selection assay, which identified TAAGTG as a high affinity Nkx3.2 binding sequence. Sequence-specific binding of Nkx3.2 to the TAAGTG motif in vitro was confirmed by electrophoretic mobility shift assays, and mutagenesis of this sequence revealed that HRAGTG (where H represents A, C, or T, and R represents A or G) comprises the consensus DNA binding site for Nkx3.2. Consistent with these findings, the expression of a reporter gene containing reiterated Nkx3.2 binding sites was repressed in vivo by Nkx3.2 co-expression. In addition, we have generated a DNA nonbinding point mutant of Nkx3.2 (Nkx3.2-N200Q), which contains an asparagine to glutamine missense mutation in the homeodomain. Interestingly, despite being defective in DNA binding, Nkx3.2-N200Q still retains its intrinsic transcriptional repressor function. Finally, we demonstrate that unlike wild-type Nkx3.2, Nkx3.2-N200Q is unable to activate the chondrocyte differentiation program in somitic mesoderm, indicating that DNA binding by Nkx3.2 is critical for this factor to induce somitic chondrogenesis.
Collapse
Affiliation(s)
- Dae-Won Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
29
|
Ganga M, Espinoza HM, Cox CJ, Morton L, Hjalt TA, Lee Y, Amendt BA. PITX2 isoform-specific regulation of atrial natriuretic factor expression: synergism and repression with Nkx2.5. J Biol Chem 2003; 278:22437-45. [PMID: 12692125 DOI: 10.1074/jbc.m210163200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PITX2 and Nkx2.5 are two of the earliest known transcriptional markers of vertebrate heart development. Pitx2-/- mice present with severe cardiac malformations and embryonic lethality, demonstrating a role for PITX2 in heart development. However, little is known about the downstream targets of PITX2 in cardiogenesis. We report here that the atrial natriuretic factor (ANF) promoter is a target of PITX2. PITX2A, PITX2B, and PITX2C isoforms differentially activate the ANF promoter. However, only PITX2C can synergistically activate the ANF promoter in the presence of Nkx2.5. We further demonstrate that the procollagen lysyl hydroxylase (PLOD1) promoter is regulated by Nkx2.5. Mechanistically, PITX2C and Nkx2.5 synergistically regulate ANF and PLOD1 expression through binding to their respective DNA elements. Surprisingly, PITX2A activation of the ANF and PLOD1 promoters is repressed by co-transfection of Nkx2.5 in the C3H10T1/2 embryonic fibroblast cell line. Pitx2a and Pitx2c are endogenously expressed in C3H10T1/2 cells, and these cells express factors that differentially regulate PITX2 isoform activities. We provide a new mechanism for the regulation of heart development by PITX2 isoforms through the regulation of ANF and PLOD1 gene expression and Nkx2.5 transcriptional activity.
Collapse
Affiliation(s)
- Mrudula Ganga
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma 74104-3189, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Shaw PA, Zhang X, Russo AF, Amendt BA, Henderson S, Williams V. Homeobox protein, Hmx3, in postnatally developing rat submandibular glands. J Histochem Cytochem 2003; 51:385-96. [PMID: 12588966 DOI: 10.1177/002215540305100313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Homeobox-containing (Hox) genes play important roles in development, particularly in the development of neurons and sensory organs, and in specification of body plan. The Hmx gene family is a new class of homeobox-containing genes defined by a conserved homeobox region and a characteristic pattern of expression in the central nervous system that is more rostral than that of the Hox genes. To date, three closely related members of the Hmx family, Hmx1, Hmx2, and Hmx3, have been described. All three Hmx genes are expressed in the craniofacial region of developing embryos. Here we show, for the first time, the expression of the transcription factor Hmx3 in postnatally developing salivary glands. Hmx3 protein is expressed in a cell type-specific manner in rat salivary glands. Hmx3 is present in both the nuclei and cytoplasm of specific groups of duct cells of the submandibular, parotid, and sublingual glands. Hmx3 expression increases during postnatal development of the submandibular gland. The duct cells show increasing concentrations of Hmx3 protein with progressive development of the submandibular gland. In contrast, the acinar cells of the three salivary glands do not exhibit detectable levels of Hmx3 protein.
Collapse
Affiliation(s)
- Phyllis A Shaw
- Center for Anatomy and Functional Morphology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Saadi I, Kuburas A, Engle JJ, Russo AF. Dominant negative dimerization of a mutant homeodomain protein in Axenfeld-Rieger syndrome. Mol Cell Biol 2003; 23:1968-82. [PMID: 12612071 PMCID: PMC149458 DOI: 10.1128/mcb.23.6.1968-1982.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Revised: 08/06/2002] [Accepted: 12/19/2002] [Indexed: 11/20/2022] Open
Abstract
Axenfeld-Rieger syndrome is an autosomal-dominant disorder caused by mutations in the PITX2 homeodomain protein. We have studied the mechanism underlying the dominant negative K88E mutation, which occurs at position 50 of the homeodomain. By using yeast two-hybrid and in vitro pulldown assays, we have documented that PITX2a can form homodimers in the absence of DNA. Moreover, the K88E mutant had even stronger dimerization ability, primarily due to interactions involving the C-terminal region. Dimerization allowed cooperative binding of wild-type (WT) PITX2a to DNA containing tandem bicoid sites in a head-to-tail orientation (Hill coefficient, 1.73). In contrast, the WT-K88E heterodimer bound the tandem sites with greatly reduced cooperativity and decreased transactivation activity. To further explore the role of position 50 in PITX2a dimerization, we introduced a charge-conservative mutation of lysine to arginine (K88R). The K88R protein had greatly reduced binding to a TAATCC element and did not specifically bind any other TAATNN motif. Like K88E, K88R formed relatively stronger dimers with WT. As predicted by our model, the K88R protein acted in a dominant negative manner to suppress WT PITX2a activity. These results suggest that the position 50 residue in the PITX2 homeodomain plays an important role in both DNA binding and dimerization activities.
Collapse
Affiliation(s)
- Irfan Saadi
- Genetics Progra, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
32
|
Abstract
DNA regulatory sequences control gene expression by forming DNA-protein complex with specific DNA binding protein. A major task of studies of gene regulation is to identify DNA regulatory sequences in genome-wide. Especially with the rapid pace of genome project, the function of DNA regulatory sequences becomes one of the focuses in functional genome era. Several approaches for screening and characterizing DNA regulatory sequences emerged one by one, from initial low-throughput methods to high-throughput strategies. Even though at present bioinformatics tools facilitate the process of screening regulatory fragments, the most reliable results will come from experimental test. This article highlights some experimental methods for the identification of regulatory sequences. A brief review of the history and procedures for selection methods are provided. Tendency as well as limitation and extension of these methods are also presented.
Collapse
Affiliation(s)
- Ling-Hui Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, 100005, Beijing, PR China
| | | | | |
Collapse
|
33
|
Zhang H, Fu S, Busch A, Chen F, Qin L, Bromberg JS. Identification of TNF-alpha-sensitive sites in HCMVie1 promoter. Exp Mol Pathol 2001; 71:106-14. [PMID: 11599916 DOI: 10.1006/exmp.2001.2391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral vectors using the human cytomegalovirus immediate-early promoter (HCMVie1 promoter) are potentially efficient tools for gene delivery in vivo to diverse cell types. We previously demonstrated that two cytokines, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (INF-gamma), inhibited transgene expression from this promoter in skeletal and cardiac myocytes. In this study, electrophoretic mobility shift assays (EMSAs) were performed to identify the TNF-alpha response elements from the HCMVie1 promoter. The results show that TNF-alpha enhances the interaction of nuclear proteins from the C2C12 myocyte line with a single restricted segment of the HCMVie1 promoter. In vitro DNase I footprinting defined precisely the sites of interaction to two elements: nucleotides -1 to 0 and +24 to +36 relative to a transcription initiation cap homologous in the HCMVie1 promoter. These sites contain homologous sequences for cap initiation site (82%) and NFkappaB (62%) sites, respectively. Specificity was further ascertained by competitive EMSAs with wild-type and mutant oligonucleotide probes. Southwestern blotting showed that three proteins (45, 30, and 20 kDa) bound to this TNF-alpha-sensitive element, separately. However, EMSAs failed to prove a role for Yin Yang-1 (YY-1), NFkappaB (p65), or NFkappaB (p50) in binding to these sites. Our results provide evidence for two novel sites in the HCMVie1 promoter that are targets for TNF-alpha enhanced binding of transcription factors.
Collapse
Affiliation(s)
- H Zhang
- The Institute for Gene Therapy and Molecular Medicine and the Recanati/Miller Transplant Institute, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
34
|
Schafer IA, Robin NH, Posch JJ, Clark BA, Izumo S, Schwartz S. Distal 5q deletion syndrome: phenotypic correlations. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 103:63-8. [PMID: 11562936 DOI: 10.1002/ajmg.1513] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We describe the phenotypes of two male sibs with partial monosomy of chromosome 5 [46,XY,der(5)inv ins(1;5)(p32;q35.4q34)]; maternally derived from a balanced insertion of 1 and 5 [inv ins (1;5)(p.32;q35.4q34)]. One sib had microcephaly, cleft lip and palate, facial anomalies, atrial (ASD) and ventricular (VSD) septal defects, camptodactyly 4th and 5th fingers, and developmental delay. The other sib showed microcephaly, facial anomalies, ASD, hypotonia, primary optic nerve hypoplasia, and developmental delay. Only seven other patients with 5q deletions distal to 5q33 have been reported and none showed the putative breakpoints identified in our two patients. All nine showed developmental delay or malformations of the CNS and facial anomalies; six of nine had defects of cardiac septation. Our two patients and one other were shown to have only one copy of the cardiac specific hCSX gene that defines in part the etiology of their ASD and VSD. The other components of their phenotypes cannot be related at present to genes identified in the deleted segments.
Collapse
Affiliation(s)
- I A Schafer
- Department of Pediatrics/Genetics, MetroHealth Medical Center, Cleveland, Ohio 44109, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Shiratori H, Sakuma R, Watanabe M, Hashiguchi H, Mochida K, Sakai Y, Nishino J, Saijoh Y, Whitman M, Hamada H. Two-step regulation of left-right asymmetric expression of Pitx2: initiation by nodal signaling and maintenance by Nkx2. Mol Cell 2001; 7:137-49. [PMID: 11172719 DOI: 10.1016/s1097-2765(01)00162-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pitx2 is left--right (L--R) asymmetrically expressed initially in the lateral plate and later in primordial visceral organs. The transcriptional regulatory mechanisms that underlie L--R asymmetric expression of Pitx2 were investigated. Mouse Pitx2 has a left side-specific enhancer (ASE) that mediates both the initiation and maintenance of L--R asymmetric expression. This element contains three binding sites for the transcription factor FAST. The FAST binding sites function as Nodal-responsive elements and are sufficient for the initiation but not for the maintenance of asymmetric expression. The maintenance requires an Nkx2-5 binding site also present within the ASE. These results suggest that the left-sided expression of Pitx2 is directly initiated by Nodal signaling and is subsequently maintained by Nkx2. Such two-step control may represent a general mechanism for gene regulation during development.
Collapse
Affiliation(s)
- H Shiratori
- Division of Molecular Biology, Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Green PD, Hjalt TA, Kirk DE, Sutherland LB, Thomas BL, Sharpe PT, Snead ML, Murray JC, Russo AF, Amendt BA. Antagonistic regulation of Dlx2 expression by PITX2 and Msx2: implications for tooth development. Gene Expr 2001; 9:265-81. [PMID: 11763998 PMCID: PMC5964948 DOI: 10.3727/000000001783992515] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2001] [Indexed: 11/24/2022]
Abstract
The transcriptional mechanisms underlying tooth development are only beginning to be understood. Pitx2, a bicoid-like homeodomain transcription factor, is the first transcriptional marker observed during tooth development. Because Pitx2, Msx2, and Dlx2 are expressed in the dental epithelium, we examined the transcriptional activity of PITX2 in concert with Msx2 and the Dlx2 promoter. PITX2 activated while Msx2 unexpectedly repressed transcription of a TK-Bicoid luciferase reporter in a tooth epithelial cell line (LS-8) and CHO cell line. Surprisingly, Msx2 binds to the bicoid element (5'-TAATCC-3') with a high specificity and competes with PITX2 for binding to this element. PITX2 binds to bicoid and bicoid-like elements in the Dlx2 promoter and activates this promoter 45-fold in CHO cells. However, it is only modestly activated in the LS-8 tooth epithelial cell line that endogenously expresses Msx2 and Pitx2. RT-PCR and Western blot assays reveal that two Pitx2 isoforms are expressed in the LS-8 cells. We further demonstrate that PITX2 dimerization can occur through the C-terminus of PITX2. Msx2 represses the Dlx2 promoter in CHO cells and coexpression of both PITX2 and Msx2 resulted in transcriptional antagonism of the Dlx2 promoter. Electrophoretic mobility shift assays demonstrate that factors in the LS-8 cell line specifically interact with PITX2. Thus, Dlx2 gene transcription is regulated by antagonistic effects between PITX2, Msx2, and factors expressed in the tooth epithelia.
Collapse
Affiliation(s)
- Patrick D. Green
- *Department of Biological Science, The University of Tulsa, Tulsa, OK 74104-3189
| | | | - Dianne E. Kirk
- *Department of Biological Science, The University of Tulsa, Tulsa, OK 74104-3189
| | | | - Bethan L. Thomas
- §Department of Craniofacial Development, GKT Dental Institute, King’s College, University of London
| | - Paul T. Sharpe
- §Department of Craniofacial Development, GKT Dental Institute, King’s College, University of London
| | - Malcolm L. Snead
- ¶The Center for Craniofacial Molecular Biology, The University of Southern California, School of Dentistry
| | | | - Andrew F. Russo
- ‡Department of Physiology and Biophysics, The University of Iowa
| | - Brad A. Amendt
- *Department of Biological Science, The University of Tulsa, Tulsa, OK 74104-3189
| |
Collapse
|
37
|
Rendtorff ND, Frödin M, Attié-Bitach T, Vekemans M, Tommerup N. Identification and characterization of an inner ear-expressed human melanoma inhibitory activity (MIA)-like gene (MIAL) with a frequent polymorphism that abolishes translation. Genomics 2001; 71:40-52. [PMID: 11161796 DOI: 10.1006/geno.2000.6409] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To discover new cochlea-specific genes as candidate genes for nonsyndromic hearing impairment, we searched in The Institute of Genome Research database for expressed sequence tags isolated from the cochlea only. This led to the cloning and characterization of a human gene named melanoma inhibitory activity-like (MIAL; HGMW-approved symbol OTOR alias MIAL) gene. In situ hybridization revealed MIAL expression in a cell layer beneath the sensory epithelium of cochlea and vestibule of human fetal inner ear. No other human tissue, except fetal brain, showed expression of MIAL when analyzed by in situ hybridization or reverse transcription-polymerase chain reaction. The cDNA of the mouse homologue was also cloned and mapped about 80 cM from the top of mouse chromosome 2. In mouse, Mial was also expressed in the cochlea and the vestibule of the inner ear, as well as in brain, eye, limb, and ovary. Expression in mammalian cell cultures showed that MIAL is translated as an approximately 15-kDa polypeptide that is assembled into a covalently linked homodimer, modified by sulfation, and secreted from the cells via the Golgi apparatus. In the human MIAL gene, a frequent polymorphism was discovered in the translation initiation codon (ACG instead of ATG). Of 505 individuals, 48 (9.5%) were ATG/ACG heterozygous and 1 (0.2%) was homozygous for ACG. No MIAL protein was synthesized in cells transfected with cDNA of the ACG allele. The inner ear-restricted expression pattern and the existence of an inactive allele suggest that MIAL may contribute to inner-ear dysfunction in humans.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Base Sequence
- Brain/embryology
- Brefeldin A/pharmacology
- COS Cells
- Chromosome Mapping
- Cloning, Molecular
- DNA, Complementary/metabolism
- Databases, Factual
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Electrophoresis, Polyacrylamide Gel
- Expressed Sequence Tags
- Extracellular Matrix Proteins
- Extremities/embryology
- Eye/embryology
- Female
- Humans
- Immunoblotting
- Immunohistochemistry
- In Situ Hybridization
- Mice
- Models, Genetic
- Molecular Sequence Data
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Ovary/embryology
- Polymorphism, Genetic
- Precipitin Tests
- Protein Biosynthesis
- Protein Processing, Post-Translational
- Protein Synthesis Inhibitors/pharmacology
- Proteins/genetics
- Proteins/physiology
- RNA, Messenger/metabolism
- Radiation Hybrid Mapping
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transfection
Collapse
Affiliation(s)
- N D Rendtorff
- Department of Medical Genetics, Institute of Medical Biochemistry and Genetics, University of Copenhagen, N, 2200, Denmark
| | | | | | | | | |
Collapse
|
38
|
Steadman DJ, Giuffrida D, Gelmann EP. DNA-binding sequence of the human prostate-specific homeodomain protein NKX3.1. Nucleic Acids Res 2000; 28:2389-95. [PMID: 10871372 PMCID: PMC102730 DOI: 10.1093/nar/28.12.2389] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NKX3.1 is a member of the NK class of homeodomain proteins and is most closely related to Drosophila NK-3. NKX3.1 has predominantly prostate-specific expression in the adult human. Previous studies suggested that NKX3.1 exerts a growth-suppressive effect on prostatic epithelial cells and controls differentiated glandular functions. Using a binding site selection assay with recombinant NKX3.1 protein we identified a TAAGTA consensus binding sequence that has not been reported for any other NK class homeoprotein. By electromobility shift assay we demonstrated that NKX3.1 preferentially binds the TAAGTA sequence rather than the binding site for Nkx2.1 (CAAGTG) or Msx1 (TAATTG). Using mutated binding sites in competitive gel shift assays, we analyzed the nucleotides in the TAAGTA consensus sequence that are important for NKX3.1 binding. The consensus binding site of a naturally occurring polymorphic NKX3.1 protein with arginine replaced by cysteine at position 52 was identical to the wild-type binding sequence. The binding affinities of wild-type and polymorphic NKX3.1 for the TAAGTA consensus site were very similar, with values of 20 and 22 nM, respectively. Wild-type and polymorphic NKX3.1 specifically repressed transcription of luciferase from a reporter vector with three copies of the NKX3.1-binding site upstream from a thymidine kinase promoter. The data show that among NK family proteins NKX3.1 binds a novel DNA sequence and can behave as an in vitro transcriptional repressor.
Collapse
Affiliation(s)
- D J Steadman
- Department of Oncology, Lombardi Cancer Center, Georgetown University School of Medicine, 3800 Reservoir Road NW, Washington, DC 20007-2197, USA
| | | | | |
Collapse
|