1
|
Ma S, Ye A, Singh H, Acevedo-Fani A. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Food Chem 2025; 463:141290. [PMID: 39305665 DOI: 10.1016/j.foodchem.2024.141290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 11/06/2024]
Abstract
The rising demand for sustainable proteins leads to increased interest in plant proteins like hemp protein (HP). However, commercial HP's poor functionality, including heat aggregation, limit its use. This study explored the heat-induced interactions of hemp protein particles (HPPs) with milk proteins, specifically whey proteins and caseins. Using various analysis techniques-static light scattering, TEM, SDS electrophoresis, surface hydrophobicity, and free sulfhydryl content-results showed that co-heating HPPs with whey protein isolate (WPI) or sodium caseinate (NaCN) at 95 °C for 20 min reduced HPPs aggregation. HPPs/WPI particles had a d4,3 of ∼3.8 μm, while HPPs/NaCN were ∼1.9 μm, compared to ∼27.5 μm for HPPs alone. SDS-PAGE indicated that whey proteins irreversibly bound to HPPs, through disulfide bonds, whereas casein bound reversibly, possibly involving the chaperone-like property of casein. This study proposes possible mechanisms by which HPPs interact with milk proteins and impact protein aggregation. This may provide opportunities for developing hybrid protein microparticles.
Collapse
Affiliation(s)
- Sihan Ma
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
2
|
Holt C, Carver JA. Invited review: Modeling milk stability. J Dairy Sci 2024; 107:5259-5279. [PMID: 38522835 DOI: 10.3168/jds.2024-24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Novel insights into the stability of milk and milk products during storage and processing result from describing caseins near neutral pH as hydrophilic, intrinsically disordered, proteins. Casein solubility is strongly influenced by pH and multivalent ion binding. Solubility is high at a neutral pH or above, but decreases as the casein net charge approaches zero, allowing a condensed casein phase or gel to form, then increases at lower pH. Of particular importance for casein micelle stability near neutral pH is the proportion of free caseins in the micelle (i.e., caseins not bound directly to nanoclusters of calcium phosphate). Free caseins are more soluble and better able to act as molecular chaperones (to prevent casein and whey protein aggregation) than bound caseins. Some free caseins are highly phosphorylated and can also act as mineral chaperones to inhibit the growth of calcium phosphate phases and prevent mineralized deposits from forming on membranes or heat exchangers. Thus, casein micelle stability is reduced when free caseins bind to amyloid fibrils, destabilized whey proteins or calcium phosphate. The multivalent-binding model of the casein micelle quantitatively describes these and other factors affecting the stability of milk and milk protein products during manufacture and storage.
Collapse
Affiliation(s)
- C Holt
- School of Biomolecular Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - J A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
3
|
Sun Y, Ding Y, Liu B, Guo J, Su Y, Yang X, Man C, Zhang Y, Jiang Y. Recent advances in the bovine β-casein gene mutants on functional characteristics and nutritional health of dairy products: Status, challenges, and prospects. Food Chem 2024; 443:138510. [PMID: 38281416 DOI: 10.1016/j.foodchem.2024.138510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
β-casein is the second most abundant form of casein in milk. Changes in amino acid sequence at specific positions in the primary structure of β-casein in milk will produce gene mutations that affect the physicochemical properties of dairy products and the hydrolysis site of digestive enzymes. The screening method of β-casein allele frequency detection in dairy products also has attracted the extensive attention of scientists and farmers. The A1 and A2 β-casein is the two usual mutation types, distinguished by histidine and proline at position 67 in the peptide chain. This paper summarizes the effects of A1 and A2 β-casein on the physicochemical properties of dairy products and evaluates the effects on human health, and the genotyping methods were also concluded. Impressively, this review presents possible future opportunities and challenges for the promising field of A2 β-casein, providing a valuable reference for the development of the functional dairy market.
Collapse
Affiliation(s)
- Yilin Sun
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yixin Ding
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Biqi Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinfeng Guo
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Su
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
4
|
Raynes JK, Mata J, Wilde KL, Carver JA, Kelly SM, Holt C. Structure of biomimetic casein micelles: Critical tests of the hydrophobic colloid and multivalent-binding models using recombinant deuterated and phosphorylated β-casein. J Struct Biol X 2024; 9:100096. [PMID: 38318529 PMCID: PMC10840362 DOI: 10.1016/j.yjsbx.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Milk contains high concentrations of amyloidogenic casein proteins and is supersaturated with respect to crystalline calcium phosphates such as apatite. Nevertheless, the mammary gland normally remains unmineralized and free of amyloid. Unlike κ-casein, β- and αS-caseins are highly effective mineral chaperones that prevent ectopic and pathological calcification of the mammary gland. Milk invariably contains a mixture of two to five different caseins that act on each other as molecular chaperones. Instead of forming amyloid fibrils, several thousand caseins and hundreds of nanoclusters of amorphous calcium phosphate combine to form fuzzy complexes called casein micelles. To understand the biological functions of the casein micelle its structure needs to be understood better than at present. The location in micelles of the highly amyloidogenic κ-casein is disputed. In traditional hydrophobic colloid models, it, alone, forms a stabilizing surface coat that also determines the average size of the micelles. In the recent multivalent-binding model, κ-casein is present throughout the micelle, in intimate contact with the other caseins. To discriminate between these models, a range of biomimetic micelles was prepared using a fixed concentration of the mineral chaperone β-casein and nanoclusters of calcium phosphate, with variable concentrations of κ-casein. A biomimetic micelle was also prepared using a highly deuterated and in vivo phosphorylated recombinant β-casein with calcium phosphate and unlabelled κ-casein. Neutron and X-ray scattering experiments revealed that κ-casein is distributed throughout the micelle, in quantitative agreement with the multivalent-binding model but contrary to the hydrophobic colloid models.
Collapse
Affiliation(s)
- Jared K. Raynes
- CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, VIC 3031, Australia
- All G Foods, Waterloo, NSW 2006, Australia
| | - Jitendra Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Karyn L. Wilde
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - John A. Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Sharon M. Kelly
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Carl Holt
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
5
|
Rani K, Pal A, Gurnani B, Agarwala P, Sasmal DK, Jain N. An Innate Host Defense Protein β 2-Microglobulin Keeps a Check on α-Synuclein amyloid Assembly: Implications in Parkinson's Disease. J Mol Biol 2023; 435:168285. [PMID: 37741548 DOI: 10.1016/j.jmb.2023.168285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Amyloid formation due to protein misfolding has gained significant attention due to its association with neurodegenerative diseases. α-Synuclein (α-syn) is one such protein that undergoes a profound conformational switch to form higher order cross-β-sheet structures, resulting in amyloid formation, which is linked to the pathophysiology of Parkinson's disease (PD). The present status of research on α-syn aggregation and PD reveals that the disease progression may be linked with many other diseases, such as kidney-related disorders. Unraveling the link between PD and non-neurological diseases may help in early detection and a better understanding of PD progression. Herein, we investigated the modulation of α-syn in the presence of β2-microglobulin (β2m), a structural protein associated with dialysis-related amyloidosis. We took a multi-disciplinary approach to establish that β2m mitigates amyloid formation by α-syn. Our fluorescence, microscopy and toxicity data demonstrated that sub-stoichiometric ratio of β2m drives α-syn into off-pathway non-toxic aggregates incompetent of transforming into amyloids. Using AlphaFold2 and all-atom MD simulation, we showed that the β-strand segments (β1 and β2) of α-synuclein, which frequently engage in interactions within amyloid fibrils, interact with the last β-strand at the C-terminal of β2m. The outcome of this study will unravel the yet unknown potential linkage of PD with kidney-related disorders. Insights from the cross-talk between two amyloidogenic proteins will lead to early diagnosis and new therapeutic approaches for treating Parkinson's disease. Finally, disruption of the nucleation process of α-syn amyloids by targeting the β1-β2 region will constitute a potential therapeutic approach for inhibiting amyloid formation.
Collapse
Affiliation(s)
- Khushboo Rani
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Rajasthan, India. https://twitter.com/khushboo251995
| | - Arumay Pal
- School of Bioengineering, Vellore Institute of Technology, Bhopal, India. https://twitter.com/Arumay_Pal
| | - Bharat Gurnani
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Rajasthan, India. https://twitter.com/bgurnani05
| | - Pratibha Agarwala
- Department of Chemistry, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Rajasthan, India
| | - Dibyendu K Sasmal
- Department of Chemistry, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Rajasthan, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Rajasthan, India; Centre for Emerging Technologies for Sustainable Development (CETSD), Indian Institute of Technology Jodhpur, Nagaur Road, Karwar 342030, Rajasthan, India.
| |
Collapse
|
6
|
Lee J, Martin F, Goussé E, Dolivet A, Boissel F, Paul A, Burgain J, Tanguy G, Jeantet R, Le Floch-Fouéré C. Unravelling the Influence of Composition and Heat Treatment on Key Characteristics of Dairy Protein Powders Using a Multifactorial Approach. Foods 2023; 12:3192. [PMID: 37685125 PMCID: PMC10486507 DOI: 10.3390/foods12173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The purpose of this study was to improve understanding of the structural and functional property changes that milk-protein concentrates undergo during production, particularly how the manufacturing route (heat treatment position and intensity), standardization (in osmosed water or ultrafiltrate permeate) and formulation (casein:whey protein (Cas:WP) ratio) influence the physico-chemical characteristics-hygroscopicity, particle size, sphericity, density and evolution of browning during storage. To obtain a comprehensive understanding of the parameters responsible for the distinctive characteristics of different powders, a multifactorial approach was adopted. Hygroscopicity depended mainly on the standardizing solution and to a lesser extent the Cas:WP ratio. The particle size of the heat-treated casein-dominant powders was up to 5 μm higher than for those that had had no heat treatment regardless of the standardizing solution, which also had no influence on the sphericity of the powder particles. The density of the powders increased up to 800 kg·m-3 with a reduced proportion of casein, and lactose and whey proteins participated in browning reactions during storage at 13 °C. In increasing order, the modality of heat treatment, the standardizing solution and the Cas:WP protein ratio influenced the key characteristics. This work is relevant for industrial applications to increase control over the functionalities of powdered products.
Collapse
Affiliation(s)
- Jeehyun Lee
- INRAE, Institut Agro, STLO, 35042 Rennes, France; (J.L.); (F.M.); (E.G.); (F.B.); (G.T.); (R.J.)
| | - François Martin
- INRAE, Institut Agro, STLO, 35042 Rennes, France; (J.L.); (F.M.); (E.G.); (F.B.); (G.T.); (R.J.)
- Centre National Interprofessionnel de l’Economie Laitière (CNIEL), 75314 Paris, France;
| | - Emeline Goussé
- INRAE, Institut Agro, STLO, 35042 Rennes, France; (J.L.); (F.M.); (E.G.); (F.B.); (G.T.); (R.J.)
| | - Anne Dolivet
- INRAE, Institut Agro, STLO, 35042 Rennes, France; (J.L.); (F.M.); (E.G.); (F.B.); (G.T.); (R.J.)
| | - Françoise Boissel
- INRAE, Institut Agro, STLO, 35042 Rennes, France; (J.L.); (F.M.); (E.G.); (F.B.); (G.T.); (R.J.)
| | - Arnaud Paul
- Centre National Interprofessionnel de l’Economie Laitière (CNIEL), 75314 Paris, France;
- Laboratoire LIBio, Université de Lorraine, 54000 Nancy, France;
| | | | - Gaëlle Tanguy
- INRAE, Institut Agro, STLO, 35042 Rennes, France; (J.L.); (F.M.); (E.G.); (F.B.); (G.T.); (R.J.)
| | - Romain Jeantet
- INRAE, Institut Agro, STLO, 35042 Rennes, France; (J.L.); (F.M.); (E.G.); (F.B.); (G.T.); (R.J.)
| | - Cécile Le Floch-Fouéré
- INRAE, Institut Agro, STLO, 35042 Rennes, France; (J.L.); (F.M.); (E.G.); (F.B.); (G.T.); (R.J.)
| |
Collapse
|
7
|
Antigenic mimicry – The key to autoimmunity in immune privileged organs. J Autoimmun 2022:102942. [DOI: 10.1016/j.jaut.2022.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
|
8
|
Bahraminejad E, Paliwal D, Sunde M, Holt C, Carver JA, Thorn DC. Amyloid fibril formation by α S1- and β-casein implies that fibril formation is a general property of casein proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140854. [PMID: 36087849 DOI: 10.1016/j.bbapap.2022.140854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Caseins are a diverse family of intrinsically disordered proteins present in the milks of all mammals. A property common to two cow paralogues, αS2- and κ-casein, is their propensity in vitro to form amyloid fibrils, the highly ordered protein aggregates associated with many age-related, including neurological, diseases. In this study, we explored whether amyloid fibril-forming propensity is a general feature of casein proteins by examining the other cow caseins (αS1 and β) as well as β-caseins from camel and goat. Small-angle X-ray scattering measurements indicated that cow αS1- and β-casein formed large spherical aggregates at neutral pH and 20°C. Upon incubation at 65°C, αS1- and β-casein underwent conversion to amyloid fibrils over the course of ten days, as shown by thioflavin T binding, transmission electron microscopy, and X-ray fibre diffraction. At the lower temperature of 37°C where fibril formation was more limited, camel β-casein exhibited a greater fibril-forming propensity than its cow or goat orthologues. Limited proteolysis of cow and camel β-casein fibrils and analysis by mass spectrometry indicated a common amyloidogenic sequence in the proline, glutamine-rich, C-terminal region of β-casein. These findings highlight the persistence of amyloidogenic sequences within caseins, which likely contribute to their functional, heterotypic self-assembly; in all mammalian milks, at least two caseins coalesce to form casein micelles, implying that caseins diversified partly to avoid dysfunctional amyloid fibril formation.
Collapse
Affiliation(s)
- Elmira Bahraminejad
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Devashi Paliwal
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Margaret Sunde
- School of Medical Sciences, Faculty of Medicine and Health, and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - David C Thorn
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
9
|
The Extracellular Molecular Chaperone Clusterin Inhibits Amyloid Fibril Formation and Suppresses Cytotoxicity Associated with Semen-Derived Enhancer of Virus Infection (SEVI). Cells 2022; 11:cells11203259. [PMID: 36291126 PMCID: PMC9600718 DOI: 10.3390/cells11203259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Clusterin is a glycoprotein present at high concentrations in many extracellular fluids, including semen. Its increased expression accompanies disorders associated with extracellular amyloid fibril accumulation such as Alzheimer’s disease. Clusterin is an extracellular molecular chaperone which prevents the misfolding and amorphous and amyloid fibrillar aggregation of a wide variety of unfolding proteins. In semen, amyloid fibrils formed from a 39-amino acid fragment of prostatic acid phosphatase, termed Semen-derived Enhancer of Virus Infection (SEVI), potentiate HIV infectivity. In this study, clusterin potently inhibited the in vitro formation of SEVI fibrils, along with dissociating them. Furthermore, clusterin reduced the toxicity of SEVI to pheochromocytoma-12 cells. In semen, clusterin may play an important role in preventing SEVI amyloid fibril formation, in dissociating SEVI fibrils and in mitigating their enhancement of HIV infection.
Collapse
|
10
|
Horvath A, Fuxreiter M, Vendruscolo M, Holt C, Carver JA. Are casein micelles extracellular condensates formed by liquid-liquid phase separation? FEBS Lett 2022; 596:2072-2085. [PMID: 35815989 DOI: 10.1002/1873-3468.14449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022]
Abstract
Casein micelles are extracellular polydisperse assemblies of unstructured casein proteins. Caseins are the major component of milk. Within casein micelles, casein molecules are stabilised by binding to calcium phosphate nanoclusters and, by acting as molecular chaperones, through multivalent interactions. In light of such interactions, we discuss whether casein micelles can be considered as extracellular condensates formed by liquid-liquid phase separation. We analyse the sequence, structure and interactions of caseins in comparison to proteins forming intracellular condensates. Furthermore, we review the similarities between caseins and small heat-shock proteins whose chaperone activity is linked to phase separation of proteins. By bringing these observations together, we describe a regulatory mechanism for protein condensates, as exemplified by casein micelles.
Collapse
Affiliation(s)
- Attila Horvath
- John Curtin School of Medical Research, The Australian National University, Acton, ACT, 2601, Australia
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B 35131, Padova, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
11
|
Rathod G, Boyle DL, Amamcharla J. Acid gelation properties of fibrillated model milk protein concentrate dispersions. J Dairy Sci 2022; 105:4925-4937. [DOI: 10.3168/jds.2021-20695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022]
|
12
|
Quantitative multivalent binding model of the structure, size distribution and composition of the casein micelles of cow milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Magnetic casein aggregates as an innovative support platform for laccase immobilization and bioremoval of crystal violet. Int J Biol Macromol 2022; 202:150-160. [PMID: 35031314 DOI: 10.1016/j.ijbiomac.2021.12.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
In this study, casein@CoFe2O4 was fabricated through a green synthesis methodology and applied to immobilize laccase. The constructed casein@CoFe2O4 exhibited porous structures with distinct cavities and suitable magnetic properties. The abundance of aromatic functional groups on the surface renneted casein and possible π-type interaction between laccase and para-κ-casein resulted in a successful immobilization. The biocatalyst retained 50% of its initial activity after 24 reusability cycles, indicating stable immobilization of laccase onto the casein microstructures. The stability of laccase after immobilization was improved by 300% in comparison with the free enzyme, especially in basic pH values. The constructed laccase@casein@CoFe2O4 was then incorporated to remove crystal violet (CV) as an environmentally harmful synthetic tri-phenylmethane dye. The prepared heterogeneous biocatalyst effectively diminished the antimicrobial activity of CV up to 81.3% in 40 min against some bacterial strains, resulting from the formation of more minor toxic metabolites identified by liquid chromatography coupled with mass spectroscopy after degradation procedure. The proposed green and feasible method for the preparation of magnetic casein aggregates has not been previously reported. The incorporation of casein, which acted as a molecular chaperon, resulted in a significant improvement in the enzymatic stability and exhibited appropriate reusability for the constructed biocatalytic system.
Collapse
|
14
|
Finkina EI, Melnikova DN, Bogdanov IV, Ignatova AA, Ovchinnikova TV. Do Lipids Influence Gastrointestinal Processing: A Case Study of Major Soybean Allergen Gly m 4. MEMBRANES 2021; 11:membranes11100754. [PMID: 34677520 PMCID: PMC8537068 DOI: 10.3390/membranes11100754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Previously, we have demonstrated that Gly m 4, one of the major soybean allergens, could pass through the Caco-2 epithelial barrier and have proposed a mechanism of sensitization. However, it is not known yet whether Gly m 4 can reach the intestine in its intact form after digestion in stomach. In the present work, we studied an influence of various factors including lipids (fatty acids and lysolipids) on digestibility of Gly m 4. Using fluorescent and CD spectroscopies, we showed that Gly m 4 interacted with oleic acid and LPPG (lyso-palmitoyl phosphatidylglycerol), but its binding affinity greatly decreased under acidic conditions, probably due to the protein denaturation. The mimicking of gastric digestion revealed that Gly m 4 digestibility could be significantly reduced with the change of pH value and pepsin-to-allergen ratio, as well as by the presence of LPPG. We suggested that the protective effect of LPPG was unlikely associated with the allergen binding, but rather connected to the pepsin inhibition due to the lipid interaction with its catalytic site. As a result, we assumed that, under certain conditions, the intact Gly m 4 might be able to reach the human intestine and thereby could be responsible for allergic sensitization.
Collapse
Affiliation(s)
- Ekaterina I. Finkina
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (D.N.M.); (I.V.B.); (A.A.I.); (T.V.O.)
- Correspondence: ; Tel.: +7-495-335-42-00
| | - Daria N. Melnikova
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (D.N.M.); (I.V.B.); (A.A.I.); (T.V.O.)
| | - Ivan V. Bogdanov
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (D.N.M.); (I.V.B.); (A.A.I.); (T.V.O.)
| | - Anastasia A. Ignatova
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (D.N.M.); (I.V.B.); (A.A.I.); (T.V.O.)
| | - Tatiana V. Ovchinnikova
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (D.N.M.); (I.V.B.); (A.A.I.); (T.V.O.)
- Department of Biotechnology, I. M. Sechenov First Moscow State Medical University, Trubetskaya str., 8–2, 119991 Moscow, Russia
| |
Collapse
|
15
|
Trimethylamine N-oxide alters structure-function integrity of β-casein: Structural disorder co-regulates the aggregation propensity and chaperone activity. Int J Biol Macromol 2021; 182:921-930. [PMID: 33872615 DOI: 10.1016/j.ijbiomac.2021.04.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022]
Abstract
Intrinsically disordered proteins (IDPs), involved in the regulation and function of various cellular processes like transcription, translation, cell cycle etc., exist as ensembles of rapidly interconverting structures with functional plasticity. Among numerous cellular regulatory mechanisms involved in structural and functional regulation of IDPs, osmolytes are emerging as promising regulatory agents due to their ability to affect the structure-function integrity of IDPs. The present study investigated the effect of methylamine osmolytes on β-casein, an IDP essential for maintaining the overall stability of casein complex in milk. It was observed that trimethylamine N-oxide induces a compact structural state in β-casein with slightly decreased chaperone activity and insignificant aggregation propensity. However, the other two osmolytes from this group, i.e., sarcosine and betaine, had no significant effect on the overall structure and chaperone activity of the IDP. The present study hints towards the possible evolutionary selection of higher structural disorder in β-casein, compared to α-casein, for stability of the casein complex and prevention of amyloidosis in the mammary gland.
Collapse
|
16
|
Farhadian M, Rafat SA, Panahi B, Mayack C. Weighted gene co-expression network analysis identifies modules and functionally enriched pathways in the lactation process. Sci Rep 2021; 11:2367. [PMID: 33504890 PMCID: PMC7840764 DOI: 10.1038/s41598-021-81888-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/13/2021] [Indexed: 01/02/2023] Open
Abstract
The exponential growth in knowledge has resulted in a better understanding of the lactation process in a wide variety of animals. However, the underlying genetic mechanisms are not yet clearly known. In order to identify the mechanisms involved in the lactation process, various mehods, including meta-analysis, weighted gene co-express network analysis (WGCNA), hub genes identification, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment at before peak (BP), peak (P), and after peak (AP) stages of the lactation processes have been employed. A total of 104, 85, and 26 differentially expressed genes were identified based on PB vs. P, BP vs. AP, and P vs. AP comparisons, respectively. GO and KEGG pathway enrichment analysis revealed that DEGs were significantly enriched in the "ubiquitin-dependent ERAD" and the "chaperone cofactor-dependent protein refolding" in BP vs. P and P vs. P, respectively. WGCNA identified five significant functional modules related to the lactation process. Moreover, GJA1, AP2A2, and NPAS3 were defined as hub genes in the identified modules, highlighting the importance of their regulatory impacts on the lactation process. The findings of this study provide new insights into the complex regulatory networks of the lactation process at three distinct stages, while suggesting several candidate genes that may be useful for future animal breeding programs. Furthermore, this study supports the notion that in combination with a meta-analysis, the WGCNA represents an opportunity to achieve a higher resolution analysis that can better predict the most important functional genes that might provide a more robust bio-signature for phenotypic traits, thus providing more suitable biomarker candidates for future studies.
Collapse
Affiliation(s)
- Mohammad Farhadian
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Christopher Mayack
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, 34956, Turkey
| |
Collapse
|
17
|
Soares R, Vargas G, Muniz M, Soares M, Cánovas A, Schenkel F, Squires E. Differential gene expression in dairy cows under negative energy balance and ketosis: A systematic review and meta-analysis. J Dairy Sci 2021; 104:602-615. [DOI: 10.3168/jds.2020-18883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/06/2020] [Indexed: 01/11/2023]
|
18
|
Wu C, Wang T, Ren C, Ma W, Wu D, Xu X, Wang LS, Du M. Advancement of food-derived mixed protein systems: Interactions, aggregations, and functional properties. Compr Rev Food Sci Food Saf 2020; 20:627-651. [PMID: 33325130 DOI: 10.1111/1541-4337.12682] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/31/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022]
Abstract
Recently, interests in binary protein systems have been developed considerably ascribed to the sustainability, environment-friendly, rich in nutrition, low cost, and tunable mechanical properties of these systems. However, the molecular coalition is challenged by the complex mechanisms of interaction, aggregation, gelation, and emulsifying of the mixed system in which another protein is introduced. To overcome these fundamental difficulties and better modulate the structural and functional properties of binary systems, efforts have been steered to gain basic information regarding the underlying dynamics, theories, and physicochemical characteristics of mixed systems. Therefore, the present review provides an overview of the current studies on the behaviors of proteins in such systems and highlights shortcomings and future challenges when applied in scientific fields.
Collapse
Affiliation(s)
- Chao Wu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Tao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chao Ren
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Wuchao Ma
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Di Wu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xianbing Xu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ming Du
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
19
|
Thorn DC, Bahraminejad E, Grosas AB, Koudelka T, Hoffmann P, Mata JP, Devlin GL, Sunde M, Ecroyd H, Holt C, Carver JA. Native disulphide-linked dimers facilitate amyloid fibril formation by bovine milk α S2-casein. Biophys Chem 2020; 270:106530. [PMID: 33545456 DOI: 10.1016/j.bpc.2020.106530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 12/22/2022]
Abstract
Bovine milk αS2-casein, an intrinsically disordered protein, readily forms amyloid fibrils in vitro and is implicated in the formation of amyloid fibril deposits in mammary tissue. Its two cysteine residues participate in the formation of either intra- or intermolecular disulphide bonds, generating monomer and dimer species. X-ray solution scattering measurements indicated that both forms of the protein adopt large, spherical oligomers at 20 °C. Upon incubation at 37 °C, the disulphide-linked dimer showed a significantly greater propensity to form amyloid fibrils than its monomeric counterpart. Thioflavin T fluorescence, circular dichroism and infrared spectra were consistent with one or both of the dimer isomers (in a parallel or antiparallel arrangement) being predisposed toward an ordered, amyloid-like structure. Limited proteolysis experiments indicated that the region from Ala81 to Lys113 is incorporated into the fibril core, implying that this region, which is predicted by several algorithms to be amyloidogenic, initiates fibril formation of αS2-casein. The partial conservation of the cysteine motif and the frequent occurrence of disulphide-linked dimers in mammalian milks despite the associated risk of mammary amyloidosis, suggest that the dimeric conformation of αS2-casein is a functional, yet amyloidogenic, structure.
Collapse
Affiliation(s)
- David C Thorn
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Elmira Bahraminejad
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Aidan B Grosas
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Tomas Koudelka
- Institute of Experimental Medicine, University of Kiel, Kiel 24105, Germany
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Glyn L Devlin
- Victorian Health and Human Services Building Authority, Melbourne, Victoria 3000, Australia
| | - Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW 2006, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Carl Holt
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
20
|
Marciniak A, Suwal S, Touhami S, Chamberland J, Pouliot Y, Doyen A. Production of highly purified fractions of α-lactalbumin and β-lactoglobulin from cheese whey using high hydrostatic pressure. J Dairy Sci 2020; 103:7939-7950. [DOI: 10.3168/jds.2019-17817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/26/2020] [Indexed: 11/19/2022]
|
21
|
Cubides YTP, Eklund PR, Foegeding EA. Casein as a Modifier of Whey Protein Isolate Gel: Sensory Texture and Rheological Properties. J Food Sci 2019; 84:3399-3410. [PMID: 31750948 DOI: 10.1111/1750-3841.14933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/15/2019] [Accepted: 10/10/2019] [Indexed: 01/22/2023]
Abstract
The objective of this study was to determine if casein could be used to adjust the structure of whey protein gels and alter targeted textural properties. Secondarily, we sought to determine if specific structural and mechanical properties were associated with sensory texture terms. Heat set gels were made from whey proteins alone or combined with casein in micellar or dispersed form at pH 6.0 and 5.5. Replacing the whey protein with casein produced a gel breakdown pattern that was more cohesive during mastication with increased moisture retention. Additionally, casein addition reduced gel strength but minimally altered recoverable energy (an indicator of elasticity). Structural breakdown patterns were shifted from brittle- to ductile-like fracture for gels containing dispersed casein at pH 5.5 or micellar casein at pH 6.0. Shifts in microstructure observed by confocal microscopy could not explain the changes in mechanical or sensory textures. The differentiating sensory attributes among treatments were adhesiveness, cohesiveness of mass, tackiness, firmness, fracturability, and deformability. Most notably, adding casein increased cohesiveness while maintaining water holding properties. Sensory texture properties could be explained by a combination of macroscopic structural changes (appearance), fracture properties, and postfracture breakdown pattern. Overall, it was demonstrated that casein can be used to alter whey protein gel structure such that sensory firmness and fracturability are decreased and cohesiveness is increased, while preventing a large increase in moisture release. PRACTICAL APPLICATION: There is a current desire to use alternative sources of protein in a variety of food applications, which requires the ability to design food structures with specific textural properties. Whey protein gels were used as a model soft solid structure with textural attributes of low cohesiveness and water release, and high firmness and fracturability. It was shown that adding casein modified the structure such that cohesiveness increased, firmness and fracturability decreased, and water holding ability was maintained. Using a second source of protein to modify a primary protein network appears to be a viable way to adjust textural properties.
Collapse
Affiliation(s)
| | | | - E Allen Foegeding
- Dept. of Food, Bioprocessing and Nutrition Sciences, North Carolina State Univ., Box 7624, Raleigh, NC, 27695-7624
| |
Collapse
|
22
|
Chuang CC, Wegrzyn TF, Anema SG, Loveday SM. Hemp globulin heat aggregation is inhibited by the chaperone-like action of caseins. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Nicolai T. Gelation of food protein-protein mixtures. Adv Colloid Interface Sci 2019; 270:147-164. [PMID: 31229885 DOI: 10.1016/j.cis.2019.06.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/09/2019] [Accepted: 06/09/2019] [Indexed: 01/04/2023]
Abstract
Gelation of proteins is one of the principal means to give desirable texture to food products. Gelation of individual proteins in aqueous solution has been investigated intensively in the past, but in most food products the system contains mixtures of different types of proteins. Therefore one needs to consider interaction between different proteins both before and during gelation. Most food proteins can be classified as globular proteins, but casein and gelatin are also important food proteins. In this review the focus is on gelation induced by heating or cooling, which is the most commonly used method. After briefly discussing general features of protein aggregation and gelation, the literature on gelation of mixtures of different types of globular proteins is reviewed as well as that of mixtures of globular proteins with gelatin or with casein. The effect on the gel stiffness and the microstructure of the gelled mixtures will be discussed in terms of different scenarios that can be envisaged: independent aggregation and gelation, co-aggregation and phase separation.
Collapse
Affiliation(s)
- Taco Nicolai
- IMMM UMR-CNRS 6283, Le Mans Université, 72085, Le Mans Cedex 9, France.
| |
Collapse
|
24
|
Carver JA, Holt C. Functional and dysfunctional folding, association and aggregation of caseins. PROTEIN MISFOLDING 2019; 118:163-216. [DOI: 10.1016/bs.apcsb.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Takahashi M, Suzuki M, Kato T, Ogino K, Ohtake E, Yuno-Ohta N. Formation of Mixed Protein Films Using Proteins with Different Heat Stabilities. J JPN SOC FOOD SCI 2018. [DOI: 10.3136/nskkk.65.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Miho Takahashi
- Advanced Course of Food and Nutrition, Nihon University Junior College
- Graduate School of Integrated Science and Technology, Shizuoka University
| | - Mayu Suzuki
- Advanced Course of Food and Nutrition, Nihon University Junior College
| | - Tsubasa Kato
- Advanced Course of Food and Nutrition, Nihon University Junior College
| | - Kenji Ogino
- Advanced Course of Food and Nutrition, Nihon University Junior College
| | - Emi Ohtake
- Advanced Course of Food and Nutrition, Nihon University Junior College
| | - Naoko Yuno-Ohta
- Advanced Course of Food and Nutrition, Nihon University Junior College
| |
Collapse
|
26
|
Studying a chaperone-like effect of beta-casein on pressure-induced aggregation of beta-lactoglobulin in the presence of alpha-lactalbumin. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
A quantitative model of the bovine casein micelle: ion equilibria and calcium phosphate sequestration by individual caseins in bovine milk. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:45-59. [PMID: 30128695 DOI: 10.1007/s00249-018-1330-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
The white appearance of skim milk is due to strong light scattering by colloidal particles called casein micelles. Bovine casein micelles comprise expressed proteins from four casein genes together with significant fractions of the total calcium, inorganic phosphate, magnesium and citrate ions in the milk. Thus, the milk salts are partitioned between the casein micelles, where they are mostly in the form of nanoclusters of an amorphous calcium phosphate sequestered by caseins through their phosphorylated residues, with the remainder in the continuous phase. Previously, a salt partition calculation was made assuming that the nanoclusters are sequestered only by short, highly phosphorylated casein sequences, sometimes called phosphate centres. Three of the four caseins have a proportion of their phosphorylated residues in either one or two phosphate centres and these were proposed to react with the nanoclusters equally and independently. An improved model of the partition of caseins and salts in milk is described in which all the phosphorylated residues in competent caseins act together to bind to and sequester the nanoclusters. The new model has been applied to results from a recent study of variation in salt and casein composition in the milk of individual cows. Compared to the previous model, it provides better agreement with experiment of the partition of caseins between free and bound states and equally good results for the partition of milk salts. In addition, new calculations are presented for the charge on individual caseins in their bound and free states.
Collapse
|
28
|
Cakebread J, Hodgkinson A, Wallace O, Callaghan M, Hurford D, Wieliczko R, Harris P, Haigh B. Bovine milk derived skimmed milk powder and whey protein concentrate modulates Citrobacter rodentium shedding in the mouse intestinal tract. PeerJ 2018; 6:e5359. [PMID: 30065896 PMCID: PMC6065463 DOI: 10.7717/peerj.5359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/12/2018] [Indexed: 11/20/2022] Open
Abstract
Skimmed milk powder (SMP) and whey protein concentrate (WPC) were manufactured from fresh milk collected from cows producing high or low Immunoglobulin (Ig) A levels in their milk. In addition commercial products were purchased for use as diluent or control treatments. A murine enteric disease model (Citrobacter rodentium) was used to assess whether delivery of selected bioactive molecules (IgA, IgG, Lactoferrin (Lf)) or formulation delivery matrix (SMP, WPC) affected faecal shedding of bacteria in C. rodentium infected mice. In trial one, faecal pellets collected from mice fed SMP containing IgA (0.007-0.35 mg/mL), IgG (0.28-0.58 mg/mL) and Lf (0.03-0.1 mg/mL) contained fewer C. rodentium (cfu) compared to control mice fed water (day 8, p < 0.04, analysis of variance (ANOVA) followed by Fisher's unprotected least significant difference (ULSD)). In trial two, WPC containing IgA (0.35-1.66 mg/mL), IgG (0.58-2.36 mg/mL) and Lf (0.02-0.45 mg/mL) did not affect C. rodentium shedding, but SMP again reduced faecal C. rodentium levels (day 12, p < 0.04, ANOVA followed by Fisher's ULSD). No C. rodentium was detected in sham phosphate-buffered saline inoculated mice. Mice fed a commercial WPC shed significantly greater numbers of C. rodentium over 4 consecutive days (Fishers ULSD test), compared to control mice fed water. These data indicate that SMP, but not WPC, modulates faecal shedding in C. rodentium-infected mice and may impact progression of C. rodentium infection independently of selected bioactive concentration. This suggests that food matrix can impact biological effects of foods.
Collapse
Affiliation(s)
- Julie Cakebread
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Alison Hodgkinson
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Olivia Wallace
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Megan Callaghan
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Daralyn Hurford
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Robert Wieliczko
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Paul Harris
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Brendan Haigh
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand.,Miraka Limited, Taupo, New Zealand
| |
Collapse
|
29
|
Liyanaarachchi W, Vasiljevic T. Caseins and their interactions that modify heat aggregation of whey proteins in commercial dairy mixtures. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Carver JA, Ecroyd H, Truscott RJW, Thorn DC, Holt C. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins. Acc Chem Res 2018; 51:745-752. [PMID: 29442498 DOI: 10.1021/acs.accounts.7b00250] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Molecular chaperone proteins perform a diversity of roles inside and outside the cell. One of the most important is the stabilization of misfolding proteins to prevent their aggregation, a process that is potentially detrimental to cell viability. Diseases such as Alzheimer's, Parkinson's, and cataract are characterized by the accumulation of protein aggregates. In vivo, many proteins are metastable and therefore under mild destabilizing conditions have an inherent tendency to misfold, aggregate, and hence lose functionality. As a result, protein levels are tightly regulated inside and outside the cell. Protein homeostasis, or proteostasis, describes the network of biological pathways that ensures the proteome remains folded and functional. Proteostasis is a major factor in maintaining cell, tissue, and organismal viability. We have extensively investigated the structure and function of intra- and extracellular molecular chaperones that operate in an ATP-independent manner to stabilize proteins and prevent their misfolding and subsequent aggregation into amorphous particles or highly ordered amyloid fibrils. These types of chaperones are therefore crucial in maintaining proteostasis under normal and stress (e.g., elevated temperature) conditions. Despite their lack of sequence similarity, they exhibit many common features, i.e., extensive structural disorder, dynamism, malleability, heterogeneity, oligomerization, and similar mechanisms of chaperone action. In this Account, we concentrate on the chaperone roles of α-crystallins and caseins, the predominant proteins in the eye lens and milk, respectively. Intracellularly, the principal ATP-independent chaperones are the small heat-shock proteins (sHsps). In vivo, sHsps are the first line of defense in preventing intracellular protein aggregation. The lens proteins αA- and αB-crystallin are sHsps. They play a crucial role in maintaining solubility of the crystallins (including themselves) with age and hence in lens proteostasis and, ultimately, lens transparency. As there is little metabolic activity and no protein turnover in the lens, crystallins are very long lived proteins. Lens proteostasis is therefore very different to that in normal, metabolically active cells. Crystallins undergo extensive post-translational modification (PTM), including deamidation, racemization, phosphorylation, and truncation, which can alter their stability. Despite this, the lens remains transparent for tens of years, implying that lens proteostasis is intimately integrated with crystallin PTMs. Many PTMs do not significantly alter crystallin stability, solubility, and functionality, which thereby facilitates lens transparency. In the long term, however, extensive accumulation of crystallin PTMs leads to large-scale crystallin aggregation, lens opacification, and cataract formation. Extracellularly, various ATP-independent molecular chaperones exist that exhibit sHsp-like structural and functional features. For example, caseins, the major milk proteins, exhibit chaperone ability by inhibiting the amorphous and amyloid fibrillar aggregation of a diversity of destabilized proteins. Caseins maintain proteostasis within milk by preventing deleterious casein amyloid fibril formation via incorporation of thousands of individual caseins into an amorphous structure known as the casein micelle. Hundreds of nanoclusters of calcium phosphate are sequestered within each casein micelle through interactions with short, highly phosphorylated casein sequences. This results in a stable biofluid that contains a high concentration of potentially amyloidogenic caseins and concentrations of calcium and phosphate that can be far in excess of the solubility of calcium phosphate. Casein micelle formation therefore performs vital roles in neonatal nutrition and calcium homeostasis in the mammary gland.
Collapse
Affiliation(s)
- John A. Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Roger J. W. Truscott
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - David C. Thorn
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
31
|
Akbari A, Bamdad F, Wu J. Chaperone-like food components: from basic concepts to food applications. Food Funct 2018; 9:3597-3609. [DOI: 10.1039/c7fo01902e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The significance of chaperones in preventing protein aggregation including amyloid fibril formation has been extensively documented in the biological field, but there is limited research on the potential effect of chaperone-like molecules on food protein functionality and food quality.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Agricultural
- Food and Nutritional Science
- University of Alberta
- Edmonton
- Canada T6G2P5
| | - Fatemeh Bamdad
- Faculty of Pharmacy and Pharmaceutical Sciences
- University of Alberta
- Edmonton
- Canada T6G 2E1
| | - Jianping Wu
- Department of Agricultural
- Food and Nutritional Science
- University of Alberta
- Edmonton
- Canada T6G2P5
| |
Collapse
|
32
|
Dehvari M, Ghahghaei A. The effect of green synthesis silver nanoparticles (AgNPs) from Pulicaria undulata on the amyloid formation in α-lactalbumin and the chaperon action of α-casein. Int J Biol Macromol 2017; 108:1128-1139. [PMID: 29225181 DOI: 10.1016/j.ijbiomac.2017.12.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 11/01/2017] [Accepted: 12/06/2017] [Indexed: 11/28/2022]
Abstract
The formation and deposition of protein fibrillar aggregates in the tissues is associated with several neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Molecular chaperones are a family of proteins that are believed to have the ability to inhibit protein aggregation. The present study examines the effect of different concentrations of green synthesis silver nanoparticles (AgNPs) from Pulicaria undulata L. on the aggregation of α-lactalbumin (α-LA) and the chaperone action of αs-casein. The effects of the AgNPs were determined by measuring light scattering absorption, fluorescence (ThT assay, intrinsic fluorescence assay and ANS binding assay), TEM, CD spectroscopy and SDS-PAGE. The results showed that AgNPs have the ability to prevent the aggregation of α-LA in a concentration-dependent manner. In fact, by increasing the concentration of AgNPs within a specified range, the adsorption and interaction between AgNPs and protein have increased and protein conformational changes and self-association decreased, thus amyloid aggregation is prevented. Our results also showed that α-casein effectively prevented the aggregation of the α-lactalbumin which increased in the presence of the AgNPs. Standard experimental results, however, proved that nanoparticles had no effect on the structure and hence the chaperone ability of α-casein. Our findings showed that AgNPs can prevent protein aggregation and have no effect on the chaperone ability of αs-casein. In the main, results of this study show that biosynthesized AgNPs mediated by Pulicaria undulata L. has the capability in inhibiting amyloid fibril formation and thus could be consider as a therapeutic agent in the treatment of amyloidosis disorders.
Collapse
Affiliation(s)
- Mansoor Dehvari
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Arezou Ghahghaei
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| |
Collapse
|
33
|
Detergent-induced aggregation of an amyloidogenic intrinsically disordered protein. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Lam E, Holt C, Edwards P, McKinnon I, Otter D, Li N, Hemar Y. The effect of transglutaminase treatment on the physico-chemical properties of skim milk with added ethylenediaminetetraacetic acid. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Bose D, Chakrabarti A. Substrate specificity in the context of molecular chaperones. IUBMB Life 2017; 69:647-659. [PMID: 28748601 DOI: 10.1002/iub.1656] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022]
Abstract
Molecular chaperones are one of the key players in protein biology and as such their structure and mechanism of action have been extensively studied. However the substrate specificity of molecular chaperones has not been well investigated. This review aims to summarize what is known about the substrate specificity and substrate recognition motifs of chaperones so as to better understand what substrate specificity means in the context of molecular chaperones. Available literature shows that the majority of chaperones have broad substrate range and recognize non-native conformations of proteins depending on recognition of hydrophobic and/or charged patches. Based on these recognition motifs chaperones can select for early, mid or late folding intermediates. Another major contributor to chaperone specificity are the co-chaperones they interact with as well as the sub-cellular location they are expressed in and the inducability of their expression. Some chaperones which have only one or a few known substrates are reported. In their case the mode of recognition seems to be specific structural complementarity between chaperone and substrate. It can be concluded that the vast majority of chaperones do not show a high degree of specificity but recognize elements that signal non-native protein conformation and their substrate range is modulated by the context they function in. However a few chaperones are known that display exquisite specificity of their substrate e.g. mammalian heat shock protein 47 collagen interaction. © 2017 IUBMB Life, 69(9):647-659, 2017.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| |
Collapse
|
36
|
Bhat MY, Singh LR, Dar TA. Trimethylamine N-oxide abolishes the chaperone activity of α-casein: an intrinsically disordered protein. Sci Rep 2017; 7:6572. [PMID: 28747709 PMCID: PMC5529454 DOI: 10.1038/s41598-017-06836-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
Osmolytes (small molecules that help in circumventing stresses) are known to promote protein folding and prevent aggregation in the case of globular proteins. However, the effect of such osmolytes on the structure and function of intrinsically disordered proteins (IDPs) has not been clearly understood. Here we have investigated the effect of methylamine osmolytes on α-casein (an IDP present in mammalian milk) and discovered that TMAO (Trimethylamine-N-oxide) but not other methylamines renders α-casein functionless. We observed that the loss of chaperone activity of α-casein in presence of TMAO was due to the induction of an unstable aggregation-prone intermediate. The results indicate that different osmolytes may have different structural and functional consequences on IDPs, and therefore might have clinical implications for a large number of human diseases (e.g., amyloidosis, cancer, diabetes, and neurodegeneration) where IDPs are involved.
Collapse
Affiliation(s)
- Mohd Younus Bhat
- Clinical Biochemistry, University of Kashmir, Srinagar, J&K, 190006, India
| | | | - Tanveer Ali Dar
- Clinical Biochemistry, University of Kashmir, Srinagar, J&K, 190006, India.
| |
Collapse
|
37
|
Hojati S, Ghahghaei A, Lagzian M. The potential inhibitory effect of β-casein on the aggregation and deposition of Aβ1-42 fibrils in Alzheimer’s disease: insight from in-vitro and in-silico studies. J Biomol Struct Dyn 2017. [DOI: 10.1080/07391102.2017.1345326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sedighehsadat Hojati
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Arezou Ghahghaei
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Milad Lagzian
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
38
|
Nguyen BT, Nicolai T, Chassenieux C, Schmitt C, Bovetto L. Heat-induced gelation of mixtures of whey protein isolate and sodium caseinate between pH 5.8 and pH 6.6. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Nguyen BT, Balakrishnan G, Jacquette B, Nicolai T, Chassenieux C, Schmitt C, Bovetto L. Inhibition and Promotion of Heat-Induced Gelation of Whey Proteins in the Presence of Calcium by Addition of Sodium Caseinate. Biomacromolecules 2016; 17:3800-3807. [DOI: 10.1021/acs.biomac.6b01322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bach T. Nguyen
- IMMM, Université du Maine, IMMM UMR-CNRS, 72085 Le Mans Cedex
9, France
| | | | - Boris Jacquette
- IMMM, Université du Maine, IMMM UMR-CNRS, 72085 Le Mans Cedex
9, France
| | - Taco Nicolai
- IMMM, Université du Maine, IMMM UMR-CNRS, 72085 Le Mans Cedex
9, France
| | | | - Christophe Schmitt
- Food Science and Technology
Department, Nestec Ltd, Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | - Lionel Bovetto
- Food Science and Technology
Department, Nestec Ltd, Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| |
Collapse
|
40
|
Ingham B, Smialowska A, Erlangga GD, Matia-Merino L, Kirby NM, Wang C, Haverkamp RG, Carr AJ. Revisiting the interpretation of casein micelle SAXS data. SOFT MATTER 2016; 12:6937-53. [PMID: 27491477 DOI: 10.1039/c6sm01091a] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
An in-depth, critical review of model-dependent fitting of small-angle X-ray scattering (SAXS) data of bovine skim milk has led us to develop a new mathematical model for interpreting these data. Calcium-edge resonant soft X-ray scattering data provides unequivocal evidence as to the shape and location of the scattering due to colloidal calcium phosphate, which is manifested as a correlation peak centred at q = 0.035 Å(-1). In SAXS data this feature is seldom seen, although most literature studies attribute another feature centred at q = 0.08-0.1 Å(-1) to CCP. This work shows that the major SAXS features are due to protein arrangements: the casein micelle itself; internal regions approximately 20 nm in size, separated by water channels; and protein structures which are inhomogeneous on a 1-3 nm length scale. The assignment of these features is consistent with their behaviour under various conditions, including hydration time after reconstitution, addition of EDTA (a Ca-chelating agent), addition of urea, and reduction of pH.
Collapse
Affiliation(s)
- B Ingham
- Callaghan Innovation, P.O. Box 31310, Lower Hutt 5040, New Zealand.
| | - A Smialowska
- School of Food and Nutrition, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - G D Erlangga
- School of Food and Nutrition, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - L Matia-Merino
- School of Food and Nutrition, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - N M Kirby
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - C Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - R G Haverkamp
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - A J Carr
- School of Food and Nutrition, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
41
|
Wang T, Nuurai P, McDougall C, York PS, Bose U, Degnan BM, Cummins SF. Identification of a female spawn-associated Kazal-type inhibitor from the tropical abalone Haliotis asinina. J Pept Sci 2016; 22:461-70. [PMID: 27352998 DOI: 10.1002/psc.2887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/26/2016] [Accepted: 03/26/2016] [Indexed: 11/05/2022]
Abstract
Abalone (Haliotis) undergoes a period of reproductive maturation, followed by the synchronous release of gametes, called broadcast spawning. Field and laboratory studies have shown that the tropical species Haliotis asinina undergoes a two-week spawning cycle, thus providing an excellent opportunity to investigate the presence of endogenous spawning-associated peptides. In female H. asinina, we have isolated a peptide (5145 Da) whose relative abundance in hemolymph increases substantially just prior to spawning and is still detected using reverse-phase high-performance liquid chromatography chromatograms up to 1-day post-spawn. We have isolated this peptide from female hemolymph as well as samples prepared from the gravid female gonad, and demonstrated through comparative sequence analysis that it contains features characteristic of Kazal-type proteinase inhibitors (KPIs). Has-KPI is expressed specifically within the gonad of adult females. A recombinant Has-KPI was generated using a yeast expression system. The recombinant Has-KPI does not induce premature spawning of female H. asinina when administered intramuscularly. However it displays homomeric aggregations and interaction with at least one mollusc-type neuropeptide (LRDFVamide), suggesting a role for it in regulating neuropeptide endocrine communication. This research provides new understanding of a peptide that can regulate reproductive processes in female abalone, which has the potential to lead to the development of greater control over abalone spawning. The findings also highlight the need to further explore abalone reproduction to clearly define a role for novel spawning-associated peptide in sexual maturation and spawning. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tianfang Wang
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Parinyaporn Nuurai
- Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Carmel McDougall
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Patrick S York
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Utpal Bose
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Scott F Cummins
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| |
Collapse
|
42
|
Dave AC, Loveday SM, Anema SG, Singh H. β-Casein will chaperone β-lactoglobulin during nanofibril assembly, but prefers familiar company at high concentrations. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.02.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Liu L, Chen JY, Yang B, Wang FH, Wang YH, Yun CH. Active-State Structures of a Small Heat-Shock Protein Revealed a Molecular Switch for Chaperone Function. Structure 2015; 23:2066-75. [PMID: 26439766 DOI: 10.1016/j.str.2015.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 01/09/2023]
Abstract
Small heat-shock proteins (sHsps) maintain cellular homeostasis by binding to denatured client proteins to prevent aggregation. Numerous studies indicate that the N-terminal domain (NTD) of sHsps is responsible for binding to client proteins, but the binding mechanism and chaperone activity regulation remain elusive. Here, we report the crystal structures of the wild-type and mutants of an sHsp from Sulfolobus solfataricus representing the inactive and active state of this protein, respectively. All three structures reveal well-defined NTD, but their conformations are remarkably different. The mutant NTDs show disrupted helices presenting a reformed hydrophobic surface compatible with recognizing client proteins. Our functional data show that mutating key hydrophobic residues in this region drastically altered the chaperone activity of this sHsp. These data suggest a new model in which a molecular switch located in NTD facilitates conformational changes for client protein binding.
Collapse
Affiliation(s)
- Liang Liu
- Institute of Systems Biomedicine, Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology and Center for Molecular and Translational Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P.R. China; Co-first author
| | - Ji-Yun Chen
- Institute of Systems Biomedicine, Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology and Center for Molecular and Translational Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China; Co-first author
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Fang-Hua Wang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, P.R. China
| | - Yong-Hua Wang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, P.R. China.
| | - Cai-Hong Yun
- Institute of Systems Biomedicine, Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology and Center for Molecular and Translational Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| |
Collapse
|
44
|
|
45
|
Controlling heat induced aggregation of whey proteins by casein inclusion in concentrated protein dispersions. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2014.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Raynes JK, Day L, Augustin MA, Carver JA. Structural differences between bovine A(1) and A(2) β-casein alter micelle self-assembly and influence molecular chaperone activity. J Dairy Sci 2015; 98:2172-82. [PMID: 25648798 DOI: 10.3168/jds.2014-8800] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/22/2014] [Indexed: 11/19/2022]
Abstract
Within each milk protein there are many individual protein variants and marked alterations to milk functionality can occur depending on the genetic variants of each protein present. Bovine A(1) and A(2) β-casein (β-CN) are 2 variants that contribute to differences in the gelation performance of milk. The A(1) and A(2) β-CN variants differ by a single AA, the substitution of histidine for proline at position 67. β-Casein not only participates in formation of the casein micelle but also forms an oligomeric micelle itself and functions as a molecular chaperone to prevent the aggregation of a wide range of proteins, including the other caseins. Micelle assembly of A(1) and A(2) β-CN was investigated using dynamic light scattering and small-angle X-ray scattering, whereas protein functionality was assessed using fluorescence techniques and molecular chaperone assays. The A(2) β-CN variant formed smaller micelles than A(1) β-CN, with the monomer-micelle equilibrium of A(2) β-CN being shifted toward the monomer. This shift most likely arose from structural differences between the 2 β-CN variants associated with the adoption of greater polyproline-II helix in A(2) β-CN and most likely led to enhanced chaperone activity of A(2) β-CN compared with A(1) β-CN. The difference in micelle assembly, and hence chaperone activity, may provide explain differences in the functionality of homozygous A(1) and A(2) milk. The results of this study highlight that substitution of even a single AA can significantly alter the properties of an intrinsically unstructured protein such as β-CN and, in this case, may have an effect on the functionality of milk.
Collapse
Affiliation(s)
- J K Raynes
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Food and Nutrition, Werribee, Victoria 3030, Australia.
| | - L Day
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Food and Nutrition, Werribee, Victoria 3030, Australia
| | - M A Augustin
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Food and Nutrition, Werribee, Victoria 3030, Australia
| | - J A Carver
- Research School of Chemistry, College of Physical and Mathematical Sciences, The Australian National University, Canberra 0200, Australia
| |
Collapse
|
47
|
Rodrigues M, Soares M, Zacaro A, Silva M, Garcia O, Magalhães A. Differences in the defective alleles E and F for the locus CSN1S1 in goats affects the profile of milk caseins. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2014.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Librizzi F, Carrotta R, Spigolon D, Bulone D, San Biagio PL. α-Casein Inhibits Insulin Amyloid Formation by Preventing the Onset of Secondary Nucleation Processes. J Phys Chem Lett 2014; 5:3043-3048. [PMID: 26278257 DOI: 10.1021/jz501570m] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
α-Casein is known to inhibit the aggregation of several proteins, including the amyloid β-peptide, by mechanisms that are not yet completely clear. We studied its effects on insulin, a system extensively used to investigate the properties of amyloids, many of which are common to all proteins and peptides. In particular, as for other proteins, insulin aggregation is affected by secondary nucleation pathways. We found that α-casein strongly delays insulin amyloid formation, even at extremely low doses, when the aggregation process is characterized by secondary nucleation. At difference, it has a vanishing inhibitory effect on the initial oligomer formation, which is observed at high concentration and does not involve any secondary nucleation pathway. These results indicate that an efficient inhibition of amyloid formation can be achieved by chaperone-like systems, by sequestering the early aggregates, before they can trigger the exponential proliferation brought about by secondary nucleation mechanisms.
Collapse
Affiliation(s)
- Fabio Librizzi
- Institute of Biophysics, UOS Palermo, National Research Council, Via Ugo La Malfa 153, Palermo 90146, Italy
| | - Rita Carrotta
- Institute of Biophysics, UOS Palermo, National Research Council, Via Ugo La Malfa 153, Palermo 90146, Italy
| | - Dario Spigolon
- Institute of Biophysics, UOS Palermo, National Research Council, Via Ugo La Malfa 153, Palermo 90146, Italy
| | - Donatella Bulone
- Institute of Biophysics, UOS Palermo, National Research Council, Via Ugo La Malfa 153, Palermo 90146, Italy
| | - Pier Luigi San Biagio
- Institute of Biophysics, UOS Palermo, National Research Council, Via Ugo La Malfa 153, Palermo 90146, Italy
| |
Collapse
|
49
|
The characteristics of heat-induced aggregates formed by mixtures of β-lactoglobulin and β-casein. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
50
|
Nielsen SV, Poulsen EG, Rebula CA, Hartmann-Petersen R. Protein quality control in the nucleus. Biomolecules 2014; 4:646-61. [PMID: 25010148 PMCID: PMC4192666 DOI: 10.3390/biom4030646] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 01/18/2023] Open
Abstract
In their natural environment, cells are regularly exposed to various stress conditions that may lead to protein misfolding, but also in the absence of stress, misfolded proteins occur as the result of mutations or failures during protein synthesis. Since such partially denatured proteins are prone to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system. The degradation of misfolded proteins is clearly compartmentalized, so unique degradation pathways exist for misfolded proteins depending on whether their subcellular localization is ER/secretory, mitochondrial, cytosolic or nuclear. Recent studies, mainly in yeast, have shown that the nucleus appears to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation.
Collapse
Affiliation(s)
- Sofie V Nielsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Esben G Poulsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Caio A Rebula
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Rasmus Hartmann-Petersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|