1
|
Tuli F, Kane PM. The cytosolic N-terminal domain of V-ATPase a-subunits is a regulatory hub targeted by multiple signals. Front Mol Biosci 2023; 10:1168680. [PMID: 37398550 PMCID: PMC10313074 DOI: 10.3389/fmolb.2023.1168680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Vacuolar H+-ATPases (V-ATPases) acidify several organelles in all eukaryotic cells and export protons across the plasma membrane in a subset of cell types. V-ATPases are multisubunit enzymes consisting of a peripheral subcomplex, V1, that is exposed to the cytosol and an integral membrane subcomplex, Vo, that contains the proton pore. The Vo a-subunit is the largest membrane subunit and consists of two domains. The N-terminal domain of the a-subunit (aNT) interacts with several V1 and Vo subunits and serves to bridge the V1 and Vo subcomplexes, while the C-terminal domain contains eight transmembrane helices, two of which are directly involved in proton transport. Although there can be multiple isoforms of several V-ATPase subunits, the a-subunit is encoded by the largest number of isoforms in most organisms. For example, the human genome encodes four a-subunit isoforms that exhibit a tissue- and organelle-specific distribution. In the yeast S. cerevisiae, the two a-subunit isoforms, Golgi-enriched Stv1 and vacuolar Vph1, are the only V-ATPase subunit isoforms. Current structural information indicates that a-subunit isoforms adopt a similar backbone structure but sequence variations allow for specific interactions during trafficking and in response to cellular signals. V-ATPases are subject to several types of environmental regulation that serve to tune their activity to their cellular location and environmental demands. The position of the aNT domain in the complex makes it an ideal target for modulating V1-Vo interactions and regulating enzyme activity. The yeast a-subunit isoforms have served as a paradigm for dissecting interactions of regulatory inputs with subunit isoforms. Importantly, structures of yeast V-ATPases containing each a-subunit isoform are available. Chimeric a-subunits combining elements of Stv1NT and Vph1NT have provided insights into how regulatory inputs can be integrated to allow V-ATPases to support cell growth under different stress conditions. Although the function and distribution of the four mammalian a-subunit isoforms present additional complexity, it is clear that the aNT domains of these isoforms are also subject to multiple regulatory interactions. Regulatory mechanisms that target mammalian a-subunit isoforms, and specifically the aNT domains, will be described. Altered V-ATPase function is associated with multiple diseases in humans. The possibility of regulating V-ATPase subpopulations via their isoform-specific regulatory interactions are discussed.
Collapse
Affiliation(s)
| | - Patricia M. Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
2
|
Jaskolka MC, Kane PM. Interaction between the yeast RAVE complex and Vph1-containing V o sectors is a central glucose-sensitive interaction required for V-ATPase reassembly. J Biol Chem 2020; 295:2259-2269. [PMID: 31941791 DOI: 10.1074/jbc.ra119.011522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
The yeast vacuolar H+-ATPase (V-ATPase) of budding yeast (Saccharomyces cerevisiae) is regulated by reversible disassembly. Disassembly inhibits V-ATPase activity under low-glucose conditions by releasing peripheral V1 subcomplexes from membrane-bound Vo subcomplexes. V-ATPase reassembly and reactivation requires intervention of the conserved regulator of H+-ATPase of vacuoles and endosomes (RAVE) complex, which binds to cytosolic V1 subcomplexes and assists reassembly with integral membrane Vo complexes. Consistent with its role, the RAVE complex itself is reversibly recruited to the vacuolar membrane by glucose, but the requirements for its recruitment are not understood. We demonstrate here that RAVE recruitment to the membrane does not require an interaction with V1 Glucose-dependent RAVE localization to the vacuolar membrane required only intact Vo complexes containing the Vph1 subunit, suggesting that the RAVE-Vo interaction is glucose-dependent. We identified a short conserved sequence in the center of the RAVE subunit Rav1 that is essential for the interaction with Vph1 in vivo and in vitro Mutations in this region resulted in the temperature- and pH-dependent growth phenotype characteristic of ravΔ mutants. However, this region did not account for glucose sensitivity of the Rav1-Vph1 interaction. We quantitated glucose-dependent localization of a GFP-tagged RAVE subunit to the vacuolar membrane in several mutants previously implicated in altering V-ATPase assembly state or glucose-induced assembly. RAVE localization did not correlate with V-ATPase assembly levels reported previously in these mutants, highlighting both the catalytic nature of RAVE's role in V-ATPase assembly and the likelihood of glucose signaling to RAVE independently of V1.
Collapse
Affiliation(s)
- Michael C Jaskolka
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
3
|
Thudium CS, Moscatelli I, Löfvall H, Kertész Z, Montano C, Bjurström CF, Karsdal MA, Schulz A, Richter J, Henriksen K. Regulation and Function of Lentiviral Vector-Mediated TCIRG1 Expression in Osteoclasts from Patients with Infantile Malignant Osteopetrosis: Implications for Gene Therapy. Calcif Tissue Int 2016; 99:638-648. [PMID: 27541021 DOI: 10.1007/s00223-016-0187-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Infantile malignant osteopetrosis (IMO) is a rare, recessive disorder characterized by increased bone mass caused by dysfunctional osteoclasts. The disease is most often caused by mutations in the TCIRG1 gene encoding a subunit of the V-ATPase involved in the osteoclasts capacity to resorb bone. We previously showed that osteoclast function can be restored by lentiviral vector-mediated expression of TCIRG1, but the exact threshold for restoration of resorption as well as the cellular response to vector-mediated TCIRG1 expression is unknown. Here we show that expression of TCIRG1 protein from a bicistronic TCIRG1/GFP lentiviral vector was only observed in mature osteoclasts, and not in their precursors or macrophages, in contrast to GFP expression, which was observed under all conditions. Thus, vector-mediated TCIRG1 expression appears to be post-transcriptionally regulated, preventing overexpression and/or ectopic expression and ensuring protein expression similar to that of wild-type osteoclasts. Codon optimization of TCIRG1 led to increased expression of mRNA but lower levels of protein and functional rescue. When assessing the functional rescue threshold in vitro, addition of 30 % CB CD34+ cells to IMO CD34+ patient cells was sufficient to completely normalize resorptive function after osteoclast differentiation. From both an efficacy and a safety perspective, these findings will clearly be of benefit during further development of gene therapy for osteopetrosis.
Collapse
Affiliation(s)
| | - Ilana Moscatelli
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, BMC A12, 221 84, Lund, Sweden
| | - Henrik Löfvall
- Nordic Bioscience, Herlev, Denmark
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, BMC A12, 221 84, Lund, Sweden
| | - Zsuzsanna Kertész
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, BMC A12, 221 84, Lund, Sweden
| | - Carmen Montano
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, BMC A12, 221 84, Lund, Sweden
| | - Carmen Flores Bjurström
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, BMC A12, 221 84, Lund, Sweden
| | | | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Johan Richter
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, BMC A12, 221 84, Lund, Sweden.
| | | |
Collapse
|
4
|
Shi Q, Araie H, Bakku RK, Fukao Y, Rakwal R, Suzuki I, Shiraiwa Y. Proteomic analysis of lipid body from the alkenone-producing marine haptophyte alga Tisochrysis lutea. Proteomics 2015; 15:4145-58. [PMID: 25914246 PMCID: PMC5034830 DOI: 10.1002/pmic.201500010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/02/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
Lipid body (LB) is recognized as the cellular carbon and energy storage organelle in many organisms. LBs have been observed in the marine haptophyte alga Tisochrysis lutea that produces special lipids such as long‐chain (C37‐C40) ketones (alkenones) with 2–4 trans‐type double bonds. In this study, we succeeded in developing a modified method to isolate LB from T. lutea. Purity of isolated LBs was confirmed by the absence of chlorophyll auto‐fluorescence and no contamination of the most abundant cellular protein ribulose‐1,5‐bisphosphate carboxylase/oxygenase. As alkenones predominated in the LB by GC‐MS analysis, the LB can be more appropriately named as “alkenone body (AB).” Extracted AB‐containing proteins were analyzed by the combination of 1DE (SDS‐PAGE) and MS/MS for confident protein identification and annotated using BLAST tools at National Center for Biotechnology Information. Totally 514 proteins were identified at the maximum. The homology search identified three major proteins, V‐ATPase, a hypothetical protein EMIHUDRAFT_465517 found in other alkenone‐producing haptophytes, and a lipid raft‐associated SPFH domain‐containing protein. Our data suggest that AB of T. lutera is surrounded by a lipid membrane originating from either the ER or the ER‐derived four layer‐envelopes chloroplast and function as the storage site of alkenones and alkenes.
Collapse
Affiliation(s)
- Qing Shi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Hiroya Araie
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan.,CREST, JST, Tennodai, Tsukuba, Ibaraki, Japan
| | - Ranjith Kumar Bakku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Yoichiro Fukao
- Plant Global Educational Project, Nara Institute of Science and Technology, Ikoma, Japan
| | - Randeep Rakwal
- Organization for Educational Initiatives, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan.,CREST, JST, Tennodai, Tsukuba, Ibaraki, Japan
| | - Yoshihiro Shiraiwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan.,CREST, JST, Tennodai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
D'hooge P, Coun C, Van Eyck V, Faes L, Ghillebert R, Mariën L, Winderickx J, Callewaert G. Ca(2+) homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca(2+) storage. Cell Calcium 2015; 58:226-35. [PMID: 26055636 DOI: 10.1016/j.ceca.2015.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/11/2015] [Accepted: 05/26/2015] [Indexed: 01/09/2023]
Abstract
Yeast has proven to be a powerful tool to elucidate the molecular aspects of several biological processes in higher eukaryotes. As in mammalian cells, yeast intracellular Ca(2+) signalling is crucial for a myriad of biological processes. Yeast cells also bear homologs of the major components of the Ca(2+) signalling toolkit in mammalian cells, including channels, co-transporters and pumps. Using yeast single- and multiple-gene deletion strains of various plasma membrane and organellar Ca(2+) transporters, combined with manipulations to estimate intracellular Ca(2+) storage, we evaluated the contribution of individual transport systems to intracellular Ca(2+) homeostasis. Yeast strains lacking Pmr1 and/or Cod1, two ion pumps implicated in ER/Golgi Ca(2+) homeostasis, displayed a fragmented vacuolar phenotype and showed increased vacuolar Ca(2+) uptake and Ca(2+) influx across the plasma membrane. In the pmr1Δ strain, these effects were insensitive to calcineurin activity, independent of Cch1/Mid1 Ca(2+) channels and Pmc1 but required Vcx1. By contrast, in the cod1Δ strain increased vacuolar Ca(2+) uptake was not affected by Vcx1 deletion but was largely dependent on Pmc1 activity. Our analysis further corroborates the distinct roles of Vcx1 and Pmc1 in vacuolar Ca(2+) uptake and point to the existence of not-yet identified Ca(2+) influx pathways.
Collapse
Affiliation(s)
- Petra D'hooge
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Catherina Coun
- Functional Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Vincent Van Eyck
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Liesbeth Faes
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Ruben Ghillebert
- Functional Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Lore Mariën
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Joris Winderickx
- Functional Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium.
| | - Geert Callewaert
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| |
Collapse
|
6
|
Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals. EUKARYOTIC CELL 2014; 13:706-14. [PMID: 24706019 DOI: 10.1128/ec.00050-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/protein kinase A (PKA) pathway, and phosphoinositides, but the mechanisms involved are elusive. The atomic- and pseudo-atomic-resolution structures of the V-ATPases are shedding light on the molecular dynamics that regulate V-ATPase assembly. Although all eukaryotic V-ATPases may be built with an inherent capacity to reversibly disassemble, not all do so. V-ATPase subunit isoforms and their interactions with membrane lipids and a V-ATPase-exclusive chaperone influence V-ATPase assembly. This minireview reports on the mechanisms governing reversible disassembly in the yeast Saccharomyces cerevisiae, keeping in perspective our present understanding of the V-ATPase architecture and its alignment with the cellular processes and signals involved.
Collapse
|
7
|
Xu Y, Parmar A, Roux E, Balbis A, Dumas V, Chevalier S, Posner BI. Epidermal growth factor-induced vacuolar (H+)-atpase assembly: a role in signaling via mTORC1 activation. J Biol Chem 2012; 287:26409-22. [PMID: 22689575 DOI: 10.1074/jbc.m112.352229] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Using proteomics and immunofluorescence, we demonstrated epidermal growth factor (EGF) induced recruitment of extrinsic V(1) subunits of the vacuolar (H(+))-ATPase (V-ATPase) to rat liver endosomes. This was accompanied by reduced vacuolar pH. Bafilomycin, an inhibitor of V-ATPase, inhibited EGF-stimulated DNA synthesis and mammalian target of rapamycin complex 1 (mTORC1) activation as indicated by a decrease in eukaryotic initiation factor 4E-binding 1 (4E-BP1) phosphorylation and p70 ribosomal S6 protein kinase (p70S6K) phosphorylation and kinase activity. There was no corresponding inhibition of EGF-induced Akt and extracellular signal-regulated kinase (Erk) activation. Chloroquine, a neutralizer of vacuolar pH, mimicked bafilomycin effects. Bafilomycin did not inhibit the association of mTORC1 with Raptor nor did it affect AMP-activated protein kinase activity. Rather, the intracellular concentrations of essential but not non-essential amino acids were decreased by bafilomycin in EGF-treated primary rat hepatocytes. Cycloheximide, a translation elongation inhibitor known to augment intracellular amino acid levels, prevented the effect of bafilomycin on amino acids levels and completely reversed its inhibition of EGF-induced mTORC1 activation. In vivo administration of EGF stimulated the recruitment of Ras homologue enriched in brain (Rheb) but not mammalian target of rapamycin (mTOR) to endosomes and lysosomes. This was inhibited by chloroquine treatment. Our results suggest a role for vacuolar acidification in EGF signaling to mTORC1.
Collapse
Affiliation(s)
- Yanqing Xu
- Polypeptide Hormone Laboratory, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Li L, Carrie C, Nelson C, Whelan J, Millar AH. Accumulation of newly synthesized F1 in vivo in arabidopsis mitochondria provides evidence for modular assembly of the plant F1Fo ATP synthase. J Biol Chem 2012; 287:25749-57. [PMID: 22674576 DOI: 10.1074/jbc.m112.373506] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
F(1) subcomplex in mitochondrial samples is often considered to be a breakage product of the F(1)F(O) ATP synthase during sample handling and electrophoresis. We have used a progressive (15)N incorporation strategy to investigate the plant F(1)F(O) ATP synthase assembly model and the apparently free F(1) in plant mitochondria which is found in both the inner membrane and matrix. We show that subunits within F(1) in the inner membrane and matrix had a relatively higher (15)N incorporation rate than corresponding subunits in intact membrane F(1)F(O). This demonstrates that free F(1) was a newer pool with a faster turnover rate consistent with it being an assembly intermediate in vivo. Import of [(35)S]Met-labeled F(1) subunit precursors into Arabidopsis mitochondria showed the rapid accumulation of F(1) assembly intermediates. The different (15)N incorporation rate in matrix F(1), inner membrane F(1) and intact F(1)F(O) demonstrates these three represent different protein populations and are likely step by step intermediates during the assembly process of plant mitochondrial ATP synthase. The potential biological implications of in vivo accumulation of enzymatically active F(1) in mitochondria are discussed.
Collapse
Affiliation(s)
- Lei Li
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley WA 6009, Western Australia, Australia
| | | | | | | | | |
Collapse
|
9
|
Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol 2012; 44:1422-35. [PMID: 22652318 DOI: 10.1016/j.biocel.2012.05.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 01/06/2023]
Abstract
The vacuolar-type H(+)-ATPase (V-ATPase) proton pump is a macromolecular complex composed of at least 14 subunits organized into two functional domains, V(1) and V(0). The complex is located on the ruffled border plasma membrane of bone-resorbing osteoclasts, mediating extracellular acidification for bone demineralization during bone resorption. Genetic studies from mice to man implicate a critical role for V-ATPase subunits in osteoclast-related diseases including osteopetrosis and osteoporosis. Thus, the V-ATPase complex is a potential molecular target for the development of novel anti-resorptive agents useful for the treatment of osteolytic diseases. Here, we review the current structure and function of V-ATPase subunits, emphasizing their exquisite roles in osteoclastic function. In addition, we compare several distinct classes of V-ATPase inhibitors with specific inhibitory effects on osteoclasts. Understanding the structure-function relationship of the osteoclast V-ATPase may lead to the development of osteoclast-specific V-ATPase inhibitors that may serve as alternative therapies for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- A Qin
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Crawley, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Ediger B, Melman SD, Pappas DL, Finch M, Applen J, Parra KJ. The tether connecting cytosolic (N terminus) and membrane (C terminus) domains of yeast V-ATPase subunit a (Vph1) is required for assembly of V0 subunit d. J Biol Chem 2009; 284:19522-32. [PMID: 19473972 DOI: 10.1074/jbc.m109.013375] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-ATPases are molecular motors that reversibly disassemble in vivo. Anchored in the membrane is subunit a. Subunit a has a movable N terminus that switches positions during disassembly and reassembly. Deletions were made at residues securing the N terminus of subunit a (yeast isoform Vph1) to its membrane-bound C-terminal domain in order to understand the role of this conserved region for V-ATPase function. Shrinking of the tether made cells pH-sensitive (vma phenotype) because assembly of V(0) subunit d was harmed. Subunit d did not co-immunoprecipitate with subunit a and the c-ring. Cells contained pools of V(1) and V(0)(-d) that failed to form V(1)V(0), and very low levels of V-ATPase subunits were found at the membrane. Although subunit d expression was stable and at wild-type levels, growth defects were rescued by exogenous VMA6 (subunit d). Stable V(1)V(0) assembled after yeast cells were co-transformed with VMA6 and mutant VPH1. Tether-less V(1)V(0) was delivered to the vacuole and active. It retained 63-71% of the wild-type activity and was responsive to glucose. Tether-less V(1)V(0) disassembled and reassembled after brief glucose depletion and readdition. The N terminus retained binding to V(1) subunits and the C terminus to phosphofructokinase. Thus, no major structural change was generated at the N and C termini of subunit a. We concluded that early steps of V(0) assembly and trafficking were likely impaired by shorter tethers and rescued by VMA6.
Collapse
Affiliation(s)
- Benjamin Ediger
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | |
Collapse
|
11
|
Ryan M, Graham LA, Stevens TH. Voa1p functions in V-ATPase assembly in the yeast endoplasmic reticulum. Mol Biol Cell 2008; 19:5131-42. [PMID: 18799613 DOI: 10.1091/mbc.e08-06-0629] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast Saccharomyces cerevisiae vacuolar ATPase (V-ATPase) is a multisubunit complex divided into two sectors: the V(1) sector catalyzes ATP hydrolysis and the V(0) sector translocates protons, resulting in acidification of its resident organelle. Four protein factors participate in V(0) assembly. We have discovered a fifth V(0) assembly factor, Voa1p (YGR106C); an endoplasmic reticulum (ER)-localized integral membrane glycoprotein. The role of Voa1p in V(0) assembly was revealed in cells expressing an ER retrieval-deficient form of the V-ATPase assembly factor Vma21p (Vma21pQQ). Loss of Voa1p in vma21QQ yeast cells resulted in loss of V-ATPase function; cells were unable to acidify their vacuoles and exhibited growth defects typical of cells lacking V-ATPase. V(0) assembly was severely compromised in voa1 vma21QQ double mutants. Isolation of V(0)-Vma21p complexes indicated that Voa1p associates most strongly with Vma21p and the core proteolipid ring of V(0) subunits c, c', and c''. On assembly of the remaining three V(0) subunits (a, d, and e) into the V(0) complex, Voa1p dissociates from the now fully assembled V(0)-Vma21p complex. Our results suggest Voa1p functions with Vma21p early in V(0) assembly in the ER, but then it dissociates before exit of the V(0)-Vma21p complex from the ER for transport to the Golgi compartment.
Collapse
Affiliation(s)
- Margret Ryan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|
12
|
Seidel T, Schnitzer D, Golldack D, Sauer M, Dietz KJ. Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis. BMC Cell Biol 2008; 9:28. [PMID: 18507826 PMCID: PMC2424043 DOI: 10.1186/1471-2121-9-28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 05/28/2008] [Indexed: 11/10/2022] Open
Abstract
Background The V-ATPase (VHA) is a protein complex of 13 different VHA-subunits. It functions as an ATP driven rotary-motor that electrogenically translocates H+ into endomembrane compartments. In Arabidopsis thaliana V-ATPase is encoded by 23 genes posing the question of specific versus redundant function of multigene encoded isoforms. Results The transmembrane topology and stoichiometry of the proteolipid VHA-c" as well as the stoichiometry of the membrane integral subunit VHA-e within the V-ATPase complex were investigated by in vivo fluorescence resonance energy transfer (FRET). VHA-c", VHA-e1 and VHA-e2, VHA-a, VHA-c3, truncated variants of VHA-c3 and a chimeric VHA-c/VHA-c" hybrid were fused to cyan (CFP) and yellow fluorescent protein (YFP), respectively. The constructs were employed for transfection experiments with Arabidopsis thaliana mesophyll protoplasts. Subcellular localization and FRET analysis by confocal laser scanning microscopy (CLSM) demonstrated that (i.) the N- and C-termini of VHA-c" are localised in the vacuolar lumen, (ii.) one copy of VHA-c" is present within the VHA-complex, and (iii.) VHA-c" is localised at the ER and associated Golgi bodies. (iv.) A similar localisation was observed for VHA-e2, whereas (v.) the subcellular localisation of VHA-e1 indicated the trans Golgi network (TGN)-specifity of this subunit. Conclusion The plant proteolipid ring is a highly flexible protein subcomplex, tolerating the incorporation of truncated and hybrid proteolipid subunits, respectively. Whereas the membrane integral subunit VHA-e is present in two copies within the complex, the proteolipid subunit VHA-c" takes part in complex formation with only one copy. However, neither VHA-c" isoform 1 nor any of the two VHA-e isoforms were identified at the tonoplast. This suggest a function in endomembrane specific VHA-assembly or targeting rather than proton transport.
Collapse
Affiliation(s)
- Thorsten Seidel
- Department of Biochemistry and Physiology of Plants, W5, University of Bielefeld, 33501 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
13
|
Smardon AM, Kane PM. RAVE is essential for the efficient assembly of the C subunit with the vacuolar H(+)-ATPase. J Biol Chem 2007; 282:26185-94. [PMID: 17623654 DOI: 10.1074/jbc.m703627200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RAVE complex is required for stable assembly of the yeast vacuolar proton-translocating ATPase (V-ATPase) during both biosynthesis of the enzyme and regulated reassembly of disassembled V(1) and V(0) sectors. It is not yet known how RAVE effects V-ATPase assembly. Previous work has shown that V(1) peripheral or stator stalk subunits E and G are critical for binding of RAVE to cytosolic V(1) complexes, suggesting that RAVE may play a role in docking of the V(1) peripheral stalk to the V(0) complex at the membrane. Here we provide evidence for an interaction between the RAVE complex and V(1) subunit C, another subunit that has been assigned to the peripheral stalk. The C subunit is unique in that it is released from both V(1) and V(0) sectors during disassembly, suggesting that subunit C may control the regulated assembly of the V-ATPase. Mutants lacking subunit C have assembly phenotypes resembling that of RAVE mutants. Both are able to assemble V(1)/V(0) complexes in vivo, but these complexes are highly unstable in vitro, and V-ATPase activity is extremely low. We show that in the absence of the RAVE complex, subunit C is not able to stably assemble with the vacuolar ATPase. Our data support a model where RAVE, through its interaction with subunit C, is facilitating V(1) peripheral stalk subunit interactions with V(0) during V-ATPase assembly.
Collapse
Affiliation(s)
- Anne M Smardon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
14
|
Imamura H, Funamoto S, Yoshida M, Yokoyama K. Reconstitution in vitro of V1 complex of Thermus thermophilus V-ATPase revealed that ATP binding to the A subunit is crucial for V1 formation. J Biol Chem 2006; 281:38582-91. [PMID: 17050529 DOI: 10.1074/jbc.m608253200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar-type H(+)-ATPase (V-ATPase or V-type ATPase) is a multisubunit complex comprised of a water-soluble V(1) complex, responsible for ATP hydrolysis, and a membrane-embedded V(o) complex, responsible for proton translocation. The V(1) complex of Thermus thermophilus V-ATPase has the subunit composition of A(3)B(3)DF, in which the A and B subunits form a hexameric ring structure. A central stalk composed of the D and F subunits penetrates the ring. In this study, we investigated the pathway for assembly of the V(1) complex by reconstituting the V(1) complex from the monomeric A and B subunits and DF subcomplex in vitro. Assembly of these components into the V(1) complex required binding of ATP to the A subunit, although hydrolysis of ATP is not necessary. In the absence of the DF subcomplex, the A and B monomers assembled into A(1)B(1) and A(3)B(3) subcomplexes in an ATP binding-dependent manner, suggesting that ATP binding-dependent interaction between the A and B subunits is a crucial step of assembly into V(1) complex. Kinetic analysis of assembly of the A and B monomers into the A(1)B(1) heterodimer using fluorescence resonance energy transfer indicated that the A subunit binds ATP prior to binding the B subunit. Kinetics of binding of a fluorescent ADP analog, N-methylanthraniloyl ADP (mant-ADP), to the monomeric A subunit also supported the rapid nucleotide binding to the A subunit.
Collapse
Affiliation(s)
- Hiromi Imamura
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan
| | | | | | | |
Collapse
|
15
|
Owegi MA, Pappas DL, Finch MW, Bilbo SA, Resendiz CA, Jacquemin LJ, Warrier A, Trombley JD, McCulloch KM, Margalef KLM, Mertz MJ, Storms JM, Damin CA, Parra KJ. Identification of a Domain in the Vo Subunit d That Is Critical for Coupling of the Yeast Vacuolar Proton-translocating ATPase. J Biol Chem 2006; 281:30001-14. [PMID: 16891312 DOI: 10.1074/jbc.m605006200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar proton-translocating ATPase pumps consist of two domains, V(1) and V(o). Subunit d is a component of V(o) located in a central stalk that rotates during catalysis. By generating mutations, we showed that subunit d couples ATP hydrolysis and proton transport. The mutation F94A strongly uncoupled the enzyme, preventing proton transport but not ATPase activity. C-terminal mutations changed coupling as well; ATPase activity was decreased by 59-72%, whereas proton transport was not measurable (E328A) or was moderately reduced (E317A and C329A). Except for W325A, which had low levels of V(1)V(o), mutations allowed wild-type assembly regardless of the fact that subunits E and d were reduced at the membrane. N- and C-terminal deletions of various lengths were inhibitory and gradually destabilized subunit d, limiting V(1)V(o) formation. Both N and C terminus were required for V(o) assembly. The N-terminal truncation 2-19Delta prevented V(1)V(o) formation, although subunit d was available. The C terminus was required for retention of subunits E and d at the membrane. In addition, the C terminus of its bacterial homolog (subunit C from T. thermophilus) stabilized the yeast subunit d mutant 310-345Delta and allowed assembly of the rotor structure with subunits A and B. Structural features conserved between bacterial and eukaryotic subunit d and the significance of domain 3 for vacuolar proton-translocating ATPase function are discussed.
Collapse
Affiliation(s)
- Margaret A Owegi
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ochotny N, Van Vliet A, Chan N, Yao Y, Morel M, Kartner N, von Schroeder HP, Heersche JNM, Manolson MF. Effects of human a3 and a4 mutations that result in osteopetrosis and distal renal tubular acidosis on yeast V-ATPase expression and activity. J Biol Chem 2006; 281:26102-11. [PMID: 16840787 DOI: 10.1074/jbc.m601118200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-ATPases are multimeric proton pumps. The 100-kDa "a" subunit is encoded by four isoforms (a1-a4) in mammals and two (Vph1p and Stv1p) in yeast. a3 is enriched in osteoclasts and is essential for bone resorption, whereas a4 is expressed in the distal nephron and acidifies urine. Mutations in human a3 and a4 result in osteopetrosis and distal renal tubular acidosis, respectively. Human a3 (G405R and R444L) and a4 (P524L and G820R) mutations were recreated in the yeast ortholog Vph1p, a3 (G424R and R462L), and a4 (W520L and G812R). Mutations in a3 resulted in wild type vacuolar acidification and growth on media containing 4 mM ZnCl2, 200 mM CaCl2, or buffered to pH 7.5 with V-ATPase hydrolytic and pumping activity decreased by 30-35%. Immunoblots confirmed wild type levels for V-ATPase a, A, and B subunits on vacuolar membranes. a4 G812R resulted in defective growth on selective media with V-ATPase hydrolytic and pumping activity decreased by 83-85% yet with wild type levels of a, A, and B subunits on vacuolar membranes. The a4 W520L mutation had defective growth on selective media with no detectable V-ATPase activity and reduced expression of a, A, and B subunits. The a4 W520L mutation phenotypes were dominant negative, as overexpression of wild type yeast a isoforms, Vph1p, or Stv1p, did not restore growth. However, deletion of endoplasmic reticulum assembly factors (Vma12p, Vma21p, and Vma22p) partially restored a and B expression. That a4 W520L affects both Vo and V1 subunits is a unique phenotype for any V-ATPase subunit mutation and supports the concerted pathway for V-ATPase assembly in vivo.
Collapse
Affiliation(s)
- Noelle Ochotny
- Department of Pharmacology, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
All eukaryotic cells contain multiple acidic organelles, and V-ATPases are central players in organelle acidification. Not only is the structure of V-ATPases highly conserved among eukaryotes, but there are also many regulatory mechanisms that are similar between fungi and higher eukaryotes. These mechanisms allow cells both to regulate the pHs of different compartments and to respond to changing extracellular conditions. The Saccharomyces cerevisiae V-ATPase has emerged as an important model for V-ATPase structure and function in all eukaryotic cells. This review discusses current knowledge of the structure, function, and regulation of the V-ATPase in S. cerevisiae and also examines the relationship between biosynthesis and transport of V-ATPase and compartment-specific regulation of acidification.
Collapse
Affiliation(s)
- Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
18
|
Poëa-Guyon S, Amar M, Fossier P, Morel N. Alternative splicing controls neuronal expression of v-ATPase subunit a1 and sorting to nerve terminals. J Biol Chem 2006; 281:17164-17172. [PMID: 16621796 DOI: 10.1074/jbc.m600927200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar proton ATPase accumulates protons inside various intracellular organelles such as synaptic vesicles; its membrane domain V0 could also be involved in membrane fusion. These different functions could require vacuolar proton ATPases possessing different V0 subunit a isoforms. In vertebrates, four genes encode isoforms a1-a4, and a1 variants are also generated by alternative splicing. We identified a novel a1 splice variant a1-IV and showed that the two a1 variants containing exon C are specifically expressed in neurons. Single neurons coexpress a2, a1-I, and a1-IV, and these subunit a isoforms are targeted to different membrane compartments. Recombinant a2 was accumulated in the trans-Golgi network, and a1-I was concentrated in axonal varicosities, whereas a1-IV was sorted to both distal dendrites and axons. Our results indicate that alternative splicing of exon N controls differential sorting of a1 variants to nerve terminals or distal dendrites, whereas exon C regulates their neuronal expression.
Collapse
Affiliation(s)
- Sandrine Poëa-Guyon
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR9040, 91198 Gif sur Yvette, France
| | - Muriel Amar
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR9040, 91198 Gif sur Yvette, France
| | - Philippe Fossier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR9040, 91198 Gif sur Yvette, France
| | - Nicolas Morel
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR9040, 91198 Gif sur Yvette, France.
| |
Collapse
|
19
|
Miller JP, Lo RS, Ben-Hur A, Desmarais C, Stagljar I, Noble WS, Fields S. Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci U S A 2005; 102:12123-8. [PMID: 16093310 PMCID: PMC1189342 DOI: 10.1073/pnas.0505482102] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We carried out a large-scale screen to identify interactions between integral membrane proteins of Saccharomyces cerevisiae by using a modified split-ubiquitin technique. Among 705 proteins annotated as integral membrane, we identified 1,985 putative interactions involving 536 proteins. To ascribe confidence levels to the interactions, we used a support vector machine algorithm to classify interactions based on the assay results and protein data derived from the literature. Previously identified and computationally supported interactions were used to train the support vector machine, which identified 131 interactions of highest confidence, 209 of the next highest confidence, 468 of the next highest, and the remaining 1,085 of low confidence. This study provides numerous putative interactions among a class of proteins that have been difficult to analyze on a high-throughput basis by other approaches. The results identify potential previously undescribed components of established biological processes and roles for integral membrane proteins of ascribed functions.
Collapse
Affiliation(s)
- John P Miller
- Department of Genome Sciences, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Owegi MA, Carenbauer AL, Wick NM, Brown JF, Terhune KL, Bilbo SA, Weaver RS, Shircliff R, Newcomb N, Parra-Belky KJ. Mutational analysis of the stator subunit E of the yeast V-ATPase. J Biol Chem 2005; 280:18393-402. [PMID: 15718227 DOI: 10.1074/jbc.m412567200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit E is a component of the peripheral stalk(s) that couples membrane and peripheral subunits of the V-ATPase complex. In order to elucidate the function of subunit E, site-directed mutations were performed at the amino terminus and carboxyl terminus. Except for S78A and D233A/T202A, which exhibited V(1)V(o) assembly defects, the function of subunit E was resistant to mutations. Most mutations complemented the growth phenotype of vma4Delta mutants, including T6A and D233A, which only had 25% of the wild-type ATPase activity. Residues Ser-78 and Thr-202 were essential for V(1)V(o) assembly and function. The mutation S78A destabilized subunit E and prevented assembly of V(1) subunits at the membranes. Mutant T202A membranes exhibited 2-fold increased V(max) and about 2-fold less of V(1)V(o) assembly; the mutation increased the specific activity of V(1)V(o) by enhancing the k(cat) of the enzyme 4-fold. Reduced levels of V(1)V(o) and V(o) complexes at T202A membranes suggest that the balance between V(1)V(o) and V(o) was not perturbed; instead, cells adjusted the amount of assembled V-ATPase complexes in order to compensate for the enhanced activity. These results indicated communication between subunit E and the catalytic sites at the A(3)B(3) hexamer and suggest potential regulatory roles for the carboxyl end of subunit E. At the carboxyl end, alanine substitution of Asp-233 significantly reduced ATP hydrolysis, although the truncation 229-233Delta and the point mutation K230A did not affect assembly and activity. The implication of these results for the topology and functions of subunit E within the V-ATPase complex are discussed.
Collapse
Affiliation(s)
- Margaret A Owegi
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Malkus P, Graham LA, Stevens TH, Schekman R. Role of Vma21p in assembly and transport of the yeast vacuolar ATPase. Mol Biol Cell 2004; 15:5075-91. [PMID: 15356264 PMCID: PMC524777 DOI: 10.1091/mbc.e04-06-0514] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Saccharomyces cerevisiae vacuolar H+-ATPase (V-ATPase) is a multisubunit complex composed of a peripheral membrane sector (V1) responsible for ATP hydrolysis and an integral membrane sector (V0) required for proton translocation. Biogenesis of V0 requires an endoplasmic reticulum (ER)-localized accessory factor, Vma21p. We found that in vma21Delta cells, the major proteolipid subunit of V0 failed to interact with the 100-kDa V0 subunit, Vph1p, indicating that Vma21p is necessary for V0 assembly. Immunoprecipitation of Vma21p from wild-type membranes resulted in coimmunoprecipitation of all five V0 subunits. Analysis of vmaDelta strains showed that binding of V0 subunits to Vma21p was mediated by the proteolipid subunit Vma11p. Although Vma21p/proteolipid interactions were independent of Vph1p, Vma21p/Vph1p association was dependent on all other V0 subunits, indicating that assembly of V0 occurs in a defined sequence, with Vph1p recruitment into a Vma21p/proteolipid/Vma6p complex representing the final step. An in vitro assay for ER export was used to demonstrate preferential packaging of the fully assembled Vma21p/proteolipid/Vma6p/Vph1p complex into COPII-coated transport vesicles. Pulse-chase experiments showed that the interaction between Vma21p and V0 was transient and that Vma21p/V0 dissociation was concomitant with V0/V1 assembly. Blocking ER export in vivo stabilized the interaction between Vma21p and V0 and abrogated assembly of V0/V1. Although a Vma21p mutant lacking an ER-retrieval signal remained associated with V0 in the vacuole, this interaction did not affect the assembly of vacuolar V0/V1 complexes. We conclude that Vma21p is not involved in regulating the interaction between V0 and V1 sectors, but that it has a crucial role in coordinating the assembly of V0 subunits and in escorting the assembled V0 complex into ER-derived transport vesicles.
Collapse
Affiliation(s)
- Per Malkus
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
22
|
Kellermayer R, Szigeti R, Kellermayer M, Miseta A. The intracellular dissipation of cytosolic calcium following glucose re-addition to carbohydrate depleted Saccharomyces cerevisiae. FEBS Lett 2004; 571:55-60. [PMID: 15280017 DOI: 10.1016/j.febslet.2004.06.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 06/17/2004] [Accepted: 06/21/2004] [Indexed: 10/26/2022]
Abstract
Glucose re-addition to carbohydrate starved yeast cells leads to a transient elevation of eytosolic calcium (TECC). Concomitantly, a cytosolic proton extrusion occurs through the activation of the vacuolar H(+)-ATPase and the plasma membrane H(+)-ATPases. This study addressed the dissipation of the TECC through intracellular compartmentalization and the possible affects of the H(+)-ATPases on this process. Both the vacuole and the Golgi-ER apparatus were found to play important roles in distributing calcium to internal stores. Additionally, the inhibition of cytosolic proton extrusion augmented cytosolic calcium responses. A model where pH dependent cytosolic calcium buffering plays an important role in the dissipation of the TECC in Saccharomyces cerevisiae is proposed.
Collapse
Affiliation(s)
- Richard Kellermayer
- Department of Medical Genetics and Child Development Medicine, University of Pécs, Szigeti ut 12, 7623 Pécs, Hungary.
| | | | | | | |
Collapse
|
23
|
Abstract
The yeast vacuolar proton-translocating ATPase (V-ATPase) is an excellent model for V-ATPases in all eukaryotic cells. Activity of the yeast V-ATPase is reversibly down-regulated by disassembly of the peripheral (V1) sector, which contains the ATP-binding sites, from the membrane (V0) sector, which contains the proton pore. A similar regulatory mechanism has been found in Manduca sexta and is believed to operate in other eukaryotes. We are interested in the mechanism of reversible disassembly and its implications for V-ATPase structure. In this review, we focus on (1) characterization of the yeast V-ATPase stalk subunits, which form the interface between V1 and V0, (2) potential mechanisms of silencing ATP hydrolytic activity in disassembled V1 sectors, and (3) the structure and function of RAVE, a recently discovered complex that regulates V-ATPase assembly.
Collapse
Affiliation(s)
- Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA.
| | | |
Collapse
|
24
|
Iwaki T, Goa T, Tanaka N, Takegawa K. Characterization of Schizosaccharomyces pombe mutants defective in vacuolar acidification and protein sorting. Mol Genet Genomics 2004; 271:197-207. [PMID: 14735354 DOI: 10.1007/s00438-003-0971-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 12/12/2003] [Indexed: 10/26/2022]
Abstract
The vacuolar H+-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for acidification of intracellular compartments in eukaryotic cells. To investigate the functional roles of the V-ATPase in Schizosaccharomyces pombe, the gene vma1 encoding subunit A or vma3 encoding subunit c was disrupted. Both deletion mutants lost the capacity for vacuolar acidification in vivo, and showed sensitivity to neutral pH or high concentrations of divalent cations including Ca2+. The delivery of FM4-64 to the vacuolar membrane and accumulation of Lucifer Yellow CH were strongly inhibited in the vma1 and vma3 mutants. Moreover, deletion of the S. pombe vma1+ or vma3+ gene resulted in pleiotropic phenotypes consistent with lack of vacuolar acidification, including the missorting of vacuolar carboxypeptidase Y, abnormal vacuole morphology, and mating defects. These findings suggest that V-ATPase is essential for endocytosis, ion and pH homeostasis, and for intracellular targeting of vacuolar proteins and vacuolar biogenesis in S. pombe.
Collapse
Affiliation(s)
- T Iwaki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 761-0795 Miki-cho, Kagawa, Japan
| | | | | | | |
Collapse
|
25
|
Sun-Wada GH, Murata Y, Namba M, Yamamoto A, Wada Y, Futai M. Mouse proton pump ATPase C subunit isoforms (C2-a and C2-b) specifically expressed in kidney and lung. J Biol Chem 2003; 278:44843-51. [PMID: 12947086 DOI: 10.1074/jbc.m307197200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar-type H+-ATPases (V-ATPases) are multimeric proton pumps involved in a wide variety of physiological processes. We have identified two alternative splicing variants of C2 subunit isoforms: C2-a, a lung-specific isoform containing a 46-amino acid insertion, and C2-b, a kidney-specific isoform without the insert. Immunohistochemistry with isoform-specific antibodies revealed that V-ATPase with C2-a is localized specifically in lamellar bodies of type II alveolar cells, whereas the C2-b isoform is found in the plasma membranes of renal alpha and beta intercalated cells. Immunoprecipitation combined with immunohistological analysis revealed that C2-b together with other kidney-specific isoforms was selectively assembled to form a unique proton pump in intercalated cells. Furthermore, a chimeric yeast V-ATPase with mouse the C2-a or C2-b isoform showed a lower Km(ATP) and lower proton transport activity than that with C1 or Vma5p (yeast C subunit). These results suggest that V-ATPases with the C2-a and C2-b isoform are involved in luminal acidification of lamellar bodies and regulation of the renal acid-base balance, respectively.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Chung JH, Lester RL, Dickson RC. Sphingolipid requirement for generation of a functional v1 component of the vacuolar ATPase. J Biol Chem 2003; 278:28872-81. [PMID: 12746460 DOI: 10.1074/jbc.m300943200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There has been no previous indication that vacuolar ATPases (V-ATPases) require sphingolipids for function. Here we show, by using Saccharomyces cerevisiae sur4Delta and fen1Delta cells, that sphingolipids with a C26 acyl group are required for generating V1 domains with ATPase activity. Sphingolipids in sur4Delta cells contain C22 and C24 acyl groups instead of C26 acyl groups whereas about 30% of the sphingolipids in fen1Delta cells have C26 acyl groups and the rest have C22 and C24 acyl groups. sur4Delta cells have several phenotypes (vacuolar membrane ATPase, Vma-) that indicate a defect in the V-ATPase, and vacuoles purified from sur4Delta cells have little to no ATPase activity. These phenotypes are less pronounced in fen1Delta cells, consistent with the idea that the C26 acyl group in sphingolipids is necessary for V-ATPase activity. Other results show that the two V-ATPase domains, V1 and V0, are assembled and delivered to the vacuolar membrane in sur4Delta cells similar to wild-type cells. In vitro assembly studies show that V1 from sur4Delta cells associates with wild-type V0 but the complex lacks V-ATPase activity, indicating that V1 is defective. Reciprocal experiments with V0 from sur4Delta cells show that it is normal. We conclude that sphingolipids with a C26 acyl group are required for generating fully functional V1 domains.
Collapse
Affiliation(s)
- Ji-Hyun Chung
- Department of Molecular and Cellular Biochemistry and the Lucille P. Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
27
|
Rizzo VF, Coskun U, Radermacher M, Ruiz T, Armbruster A, Gruber G. Resolution of the V1 ATPase from Manduca sexta into subcomplexes and visualization of an ATPase-active A3B3EG complex by electron microscopy. J Biol Chem 2003; 278:270-5. [PMID: 12414800 DOI: 10.1074/jbc.m208623200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The effect of the ATPase activity of Manduca sexta V(1) ATPase by the amphipathic detergent lauryldimethylamine oxide (LDAO) and the relationship of these activities to the subunit composition of V(1) were studied. The V(1) was highly activated in the presence of 0.04-0.06% LDAO combined with release of the subunits H, C, and F from the enzyme. Increase of LDAO concentration to 0.1-0.2% caused the characterized subcomplexes A(3)B(3)HEGF and A(3)B(3)EG with a remaining ATPase activity of 52 and 65%, respectively. The hydrolytic-active A(3)B(3)EG subcomplex has been visualized by electron microscopy showing six major masses of density in a pseudo-hexagonal arrangement surrounding a seventh mass. The compositions of the various subcomplexes and fragments of V(1) provide an organization of the subunits in the enzyme in the framework of the known three-dimensional reconstruction of the V(1) ATPase from M. sexta (Radermacher, M., Ruiz, T., Wieczorek, H., and Grüber, G. (2001) J. Struct. Biol. 135, 26-37).
Collapse
Affiliation(s)
- Vincenzo F Rizzo
- Universität des Saarlandes, Fachrichtung 2.5-Biophysik, D-66421 Homburg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Plowright AT, Schaus SE, Myers AG. Transcriptional response pathways in a yeast strain sensitive to saframycin a and a more potent analog: evidence for a common basis of activity. CHEMISTRY & BIOLOGY 2002; 9:607-18. [PMID: 12031667 DOI: 10.1016/s1074-5521(02)00137-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Saframycin A (SafA) is a natural product that inhibits human cancer cell proliferation. Its synthetic analog, QAD, is a more potent inhibitor of these cells. SafA does not affect wild-type yeast, but it does inhibit growth of the strain CCY333 (DeltaPDR1/PDR3/ERG6) (IC50 = 0.9 microM). QAD is also a more effective inhibitor of CCY333 growth (IC50 = 0.4 microM). Transcription profiling of SafA- and QAD-treated CCY333 cultures showed that both drugs generated nearly identical profiles, with altered expression levels (> or =2-fold) of more than 240 genes. Both agents induced the overexpression of genes involved in glycolysis, oxidative stress, and protein degradation and repressed genes encoding histones, biosynthetic enzymes, and the cellular import machinery. Significantly, neither drug affected the expression of known DNA-damage repair genes, as might have been expected if their primary mechanism of action involved the covalent modification of DNA.
Collapse
Affiliation(s)
- Alleyn T Plowright
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
29
|
Smardon AM, Tarsio M, Kane PM. The RAVE complex is essential for stable assembly of the yeast V-ATPase. J Biol Chem 2002; 277:13831-9. [PMID: 11844802 DOI: 10.1074/jbc.m200682200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar proton-translocating ATPases are composed of a peripheral complex, V(1), attached to an integral membrane complex, V(o). Association of the two complexes is essential for ATP-driven proton transport and is regulated post-translationally in response to glucose concentration. A new complex, RAVE, was recently isolated and implicated in glucose-dependent reassembly of V-ATPase complexes that had disassembled in response to glucose deprivation (Seol, J. H., Shevchenko, A., and Deshaies, R. J. (2001) Nat. Cell Biol. 3, 384-391). Here, we provide evidence supporting a role for RAVE in reassembly of the V-ATPase but also demonstrate an essential role in V-ATPase assembly under other conditions. The RAVE complex associates reversibly with V(1) complexes released from the membrane by glucose deprivation but binds constitutively to cytosolic V(1) sectors in a mutant lacking V(o) sectors. V-ATPase complexes from cells lacking RAVE subunits show serious structural and functional defects even in glucose-grown cells or in combination with a mutation that blocks disassembly of the V-ATPase. RAVE small middle dotV(1) interactions are specifically disrupted in cells lacking V(1) subunits E or G, suggesting a direct involvement for these subunits in interaction of the two complexes. Skp1p, a RAVE subunit involved in many different signal transduction pathways, binds stably to other RAVE subunits under conditions that alter RAVE small middle dotV(1) binding; thus, Skp1p recruitment to the RAVE complex does not appear to provide a signal for V-ATPase assembly.
Collapse
Affiliation(s)
- Anne M Smardon
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
30
|
Curtis KK, Francis SA, Oluwatosin Y, Kane PM. Mutational analysis of the subunit C (Vma5p) of the yeast vacuolar H+-ATPase. J Biol Chem 2002; 277:8979-88. [PMID: 11777935 DOI: 10.1074/jbc.m111708200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit C is a V(1) sector subunit found in all vacuolar H(+)-ATPases (V-ATPases) that may be part of the peripheral stalk connecting the peripheral V(1) sector with the membrane-bound V(0) sector of the enzyme (Wilkens, S., Vasilyeva, E., and Forgac, M. (1999) J. Biol. Chem. 274, 31804--31810). To elucidate subunit C function, we performed random and site-directed mutagenesis of the yeast VMA5 gene. Site-directed mutations in the most highly conserved region of Vma5p, residues 305--325, decreased catalytic activity of the V-ATPase by up to 48% without affecting assembly. A truncation mutant (K360stop) identified by random mutagenesis suggested a small region near the C terminus of the protein (amino acids 382--388) might be important for subunit stability. Site-directed mutagenesis revealed that three aromatic amino acids in this region (Tyr-382, Phe-385, and Tyr-388) in addition to four other conserved aromatic amino acids (Phe-260, Tyr-262, Phe-296, Phe-300) are essential for stable assembly of V(1) with V(0), although alanine substitutions at these positions support some activity in vivo. Surprisingly, three mutations (F260A, Y262A, and F385A) greatly decrease the stability of the V-ATPase in vitro but increase its k(cat) for ATP hydrolysis and proton transport by at least 3-fold. The peripheral stalk of V-ATPases must balance the stability essential for productive catalysis with the dynamic instability involved in regulation; these three mutations may perturb that balance.
Collapse
Affiliation(s)
- Kelly Keenan Curtis
- Department of Biochemistry, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
31
|
Abstract
The pH of intracellular compartments in eukaryotic cells is a carefully controlled parameter that affects many cellular processes, including intracellular membrane transport, prohormone processing and transport of neurotransmitters, as well as the entry of many viruses into cells. The transporters responsible for controlling this crucial parameter in many intracellular compartments are the vacuolar (H+)-ATPases (V-ATPases). Recent advances in our understanding of the structure and regulation of the V-ATPases, together with the mapping of human genetic defects to genes that encode V-ATPase subunits, have led to tremendous excitement in this field.
Collapse
Affiliation(s)
- Tsuyoshi Nishi
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
32
|
Keenan Curtis K, Kane PM. Novel vacuolar H+-ATPase complexes resulting from overproduction of Vma5p and Vma13p. J Biol Chem 2002; 277:2716-24. [PMID: 11717306 DOI: 10.1074/jbc.m107777200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) is a multisubunit complex composed of two sectors: V(1), a peripheral membrane sector responsible for ATP hydrolysis, and V(0), an integral membrane sector that forms a proton pore. Vma5p and Vma13p are V(1) sector subunits that have been implicated in the structural and functional coupling of the V-ATPase. Cells overexpressing Vma5p and Vma13p demonstrate a classic Vma(-) growth phenotype. Closer biochemical examination of Vma13p-overproducing strains revealed a functionally uncoupled V-ATPase in vacuolar vesicles. The ATP hydrolysis rate was 72% of the wild-type rate; but there was no proton translocation, and two V(1) subunits (Vma4p and Vma8p) were present at lower levels. Vma5p overproduction moderately affected both V-ATPase activity and proton translocation without affecting enzyme assembly. High level overexpression of Vma5p and Vma13p was lethal even in wild-type cells. In the absence of an intact V(0) sector, overproduction of Vma5p and Vma13p had a more detrimental effect on growth than their deletion. Overproduced Vma5p associated with cytosolic V(1) complexes; this association may cause the lethality.
Collapse
Affiliation(s)
- Kelly Keenan Curtis
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
33
|
Briggs MW, Adam JL, McCance DJ. The human papillomavirus type 16 E5 protein alters vacuolar H(+)-ATPase function and stability in Saccharomyces cerevisiae. Virology 2001; 280:169-75. [PMID: 11162831 DOI: 10.1006/viro.2000.0783] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human papillomavirus 16 (HPV-16) E5 oncoprotein is a small integral membrane protein that binds to the 16-kDa subunit of the vacuolar H(+)-ATPase (v-ATPase). Conservation within the family of v-ATPases prompted us to look to Saccharomyces cerevisiae as a potential model organism for E5 study. The E5 open reading frame, driven by a galactose-inducible promoter, was integrated into the yeast genome, and the resulting strain demonstrated a nearly complete growth arrest at neutral pH, consistent with defects associated with yeast v-ATPase mutants. Furthermore, this strain demonstrated a severe reduction in pH-dependent and v-ATPase-dependent vacuolar localization of fluorescent markers. Overexpression of the yeast 16-kDa subunit homolog partially suppressed E5-associated growth defects. E5 expression was correlated with a disassociation of the integral (V(o)) and peripheral (V(i)) v-ATPase sub-complexes, as well as a dramatic reduction of the steady-state levels of one mature V(o) subunit and the concomitant accumulation of its major proteolytic fragment, with unchanged levels of two V(i) subunits. Similar analyses of selected E5 mutants in yeast demonstrated a correlation between E5 biology and v-ATPase disruption. Our observations suggest that wild-type HPV-16 E5 acts during the assembly of the v-ATPase to inhibit, either directly or indirectly, V(o) stability and complex formation.
Collapse
Affiliation(s)
- M W Briggs
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|