1
|
Li Z, Hu R, Li T, Zhu J, You H, Li Y, Liu BF, Li C, Li Y, Yang Y. A TeZla micromixer for interrogating the early and broad folding landscape of G-quadruplex via multistage velocity descending. Proc Natl Acad Sci U S A 2024; 121:e2315401121. [PMID: 38232280 PMCID: PMC10823215 DOI: 10.1073/pnas.2315401121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Biomacromolecular folding kinetics involves fast folding events and broad timescales. Current techniques face limitations in either the required time resolution or the observation window. In this study, we developed the TeZla micromixer, integrating Tesla and Zigzag microstructures with a multistage velocity descending strategy. TeZla achieves a significant short mixing dead time (40 µs) and a wide time window covering four orders of magnitude (up to 300 ms). Using this unique micromixer, we explored the folding landscape of c-Myc G4 and its noncanonical-G4 derivatives with different loop lengths or G-vacancy sites. Our findings revealed that c-Myc can bypass folding intermediates and directly adopt a G4 structure in the cation-deficient buffer. Moreover, we found that the loop length and specific G-vacancy site could affect the folding pathway and significantly slow down the folding rates. These results were also cross-validated with real-time NMR and circular dichroism. In conclusion, TeZla represents a versatile tool for studying biomolecular folding kinetics, and our findings may ultimately contribute to the design of drugs targeting G4 structures.
Collapse
Affiliation(s)
- Zheyu Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
- Optics Valley Laboratory, Hubei430074, China
| |
Collapse
|
2
|
DNA Base Excision Repair Intermediates Influence Duplex-Quadruplex Equilibrium. Molecules 2023; 28:molecules28030970. [PMID: 36770637 PMCID: PMC9920732 DOI: 10.3390/molecules28030970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude. Although the repair of endogenous DNA damage by the base excision repair (BER) pathway has been extensively studied in duplex DNA, substantially less is known about repair in non-duplex DNA structures. Therefore, we wanted to better understand the effect of DNA damage and repair on quadruplex structure. We first examined the effect of placing pyrimidine damage products uracil, 5-hydroxymethyluracil, the chemotherapy agent 5-fluorouracil, and an abasic site into the loop region of a 22-base telomeric repeat sequence known to form a G-quadruplex. Quadruplex formation was unaffected by these analogs. However, the activity of the BER enzymes were negatively impacted. Uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1) were inhibited, and apurinic/apyrimidinic endonuclease 1 (APE1) activity was completely blocked. Interestingly, when we performed studies placing DNA repair intermediates into the strand opposite the quadruplex, we found that they destabilized the duplex and promoted quadruplex formation. We propose that while duplex is the preferred configuration, there is kinetic conversion between duplex and quadruplex. This is supported by our studies using a quadruplex stabilizing molecule, pyridostatin, that is able to promote quadruplex formation starting from duplex DNA. Our results suggest how DNA damage and repair intermediates can alter duplex-quadruplex equilibrium.
Collapse
|
3
|
Development of the DNA-based biosensors for high performance in detection of molecular biomarkers: More rapid, sensitive, and universal. Biosens Bioelectron 2022; 197:113739. [PMID: 34781175 PMCID: PMC8553638 DOI: 10.1016/j.bios.2021.113739] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
The molecular biomarkers are molecules that are closely related to specific physiological states. Numerous molecular biomarkers have been identified as targets for disease diagnosis and biological research. To date, developing highly efficient probes for the precise detection of biomarkers has become an attractive research field which is very important for biological and biochemical studies. During the past decades, not only the small chemical probe molecules but also the biomacromolecules such as enzymes, antibodies, and nucleic acids have been introduced to construct of biosensor platform to achieve the detection of biomarkers in a highly specific and highly efficient way. Nevertheless, improving the performance of the biosensors, especially in clinical applications, is still in urgent demand in this field. A noteworthy example is the Corona Virus Disease 2019 (COVID-19) that breaks out globally in a short time in 2020. The COVID-19 was caused by the virus called SARS-CoV-2. Early diagnosis is very important to block the infection of the virus. Therefore, during these months scientists have developed dozens of methods to achieve rapid and sensitive detection of the virus. Nowadays some of these new methods have been applied for producing the commercial detection kit and help people against the disease worldwide. DNA-based biosensors are useful tools that have been widely applied in the detection of molecular biomarkers. The good stability, high specificity, and excellent biocompatibility make the DNA-based biosensors versatile in application both in vitro and in vivo. In this paper, we will review the major methods that emerged in recent years on the design of DNA-based biosensors and their applications. Moreover, we will also briefly discuss the possible future direction of DNA-based biosensors design. We believe this is helpful for people interested in not only the biosensor field but also in the field of analytical chemistry, DNA nanotechnology, biology, and disease diagnosis.
Collapse
|
4
|
Ishiguro A, Katayama A, Ishihama A. Different recognition modes of G-quadruplex RNA between two ALS/FTLD-linked proteins TDP-43 and FUS. FEBS Lett 2020; 595:310-323. [PMID: 33269497 DOI: 10.1002/1873-3468.14013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis/frontotemporal lobar degeneration-linked proteins, TDP-43 and fused in sarcoma (FUS), bind to G-quadruplex-containing mRNAs and transport them to distal neurites for local translation. The specificity and mechanism of G4-RNA binding, however, remain largely unsolved. Using purified full-length TDP-43 and FUS and a set of seven G4-DNA/RNA, we compared their recognition properties of G4-RNAs. Both TDP-43 and FUS recognized and bound to G4-DNA/RNAs, but the target selectivity differed between two proteins. TDP-43 recognized only parallel-stranded G4-DNA/RNAs, leading to stabilize the G4 conformation. In contrast, FUS bound to all three types, parallel, hybrid, and antiparallel, of G4-DNA/RNAs, resulting in deformation of the G4 structure. We then concluded that the target selectivity and the influence on G4 RNA structure differed between TDP-43 and FUS.
Collapse
Affiliation(s)
- Akira Ishiguro
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Akira Katayama
- Department of Molecular Analysis Laboratory, Nippon Medical School, Bunkyo-ku, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| |
Collapse
|
5
|
Ethyl-substitutive Thioflavin T as a highly-specific fluorescence probe for detecting G-quadruplex structure. Sci Rep 2018; 8:2666. [PMID: 29422637 PMCID: PMC5805748 DOI: 10.1038/s41598-018-20960-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/26/2018] [Indexed: 12/31/2022] Open
Abstract
G-quadruplex has attracted considerable attention due to their prevalent distribution in functional genomic regions and transcripts, which can importantly influence biological processes such as regulation of telomere maintenance, gene transcription and gene translation. Artificial receptor study has been developed for accurate identification of G-quadruplex from DNA species, since it is important for the G-quadruplex related basic research, clinical diagnosis, and therapy. Herein, fluorescent dye ThT-E, a derivative of the known fluorescence probe Thioflavin T (ThT), was designed and synthesized to effectively differentiate various G-quadruplex structures from other nucleic acid forms. Compared with methyl groups in ThT, three ethyl groups were introduced to ThT-E, which leads to strengthened affinity, selectivity and little inducing effect on the G-quadruplex formation. More importantly, ThT-E could be served as a visual tool to directly differentiate G-quadruplex solution even with naked eyes under illumination of ultraviolet light. Thus, this probe reported herein may hold great promise for high-throughput assay to screen G-quadruplex, which may widely apply to G-quadruplex-based potential diagnosis and therapy.
Collapse
|
6
|
Kazemier HG, Paeschke K, Lansdorp PM. Guanine quadruplex monoclonal antibody 1H6 cross-reacts with restrained thymidine-rich single stranded DNA. Nucleic Acids Res 2017; 45:5913-5919. [PMID: 28449085 PMCID: PMC5449594 DOI: 10.1093/nar/gkx245] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023] Open
Abstract
Previously we reported the production and characterization of monoclonal antibody 1H6 raised against (T4G4)2 intermolecular guanine quadruplex (G4) DNA structures (Henderson A. et al. (2014) Nucleic Acids Res., 42, 860–869; Hoffmann R.F. et al. (2016) Nucleic Acids Res., 44, 152–163). It was shown that 1H6 strongly stains nuclei and has exquisite specificity for heterochromatin by immuno-electron microscopy. Here we extend our studies of 1H6 reactivity using enzyme-linked immunosorbent assay (ELISA) and microscale thermophoresis (MST). As previously reported, 1H6 was found to strongly bind intermolecular G4 structures with a (T4G4)2 sequence motif. However, using both methods we did not detect significant binding to G4 structures without thymidines in their sequence motif or to G4 structures made with (T2G4)2 oligonucleotides. In addition, we observed strong, sequence-specific binding of 1H6 by ELISA to immobilized single stranded poly(T) DNA but not to immobilized poly(C) or poly(A) homo-polymers. Cross-reactivity of 1H6 to poly(T) was not measured in solution using MST. 1H6 was furthermore found to bind to selected areas on DNA fibers but only after DNA denaturation. Based on these observations we propose that 1H6 binds with high affinity to adjacent T's that are restricted in their movement in selected G4 structures and denatured DNA. Cross-reactivity of 1H6 to immobilized single stranded T-rich DNA next to its previously reported specificity for bona fide G4 structures needs to be taken into account in the interpretation of 1H6 binding to (sub-) cellular structures.
Collapse
Affiliation(s)
- Hinke G Kazemier
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Katrin Paeschke
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands.,Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
7
|
Liu HY, Chen AC, Yin QK, Li Z, Huang SM, Du G, He JH, Zan LP, Wang SK, Xu YH, Tan JH, Ou TM, Li D, Gu LQ, Huang ZS. New Disubstituted Quindoline Derivatives Inhibiting Burkitt's Lymphoma Cell Proliferation by Impeding c-MYC Transcription. J Med Chem 2017; 60:5438-5454. [PMID: 28603988 DOI: 10.1021/acs.jmedchem.7b00099] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The c-MYC oncogene is overactivated during Burkitt's lymphoma pathogenesis. Targeting c-MYC to inhibit its transcriptional activity has emerged as an effective anticancer strategy. We synthesized four series of disubstituted quindoline derivatives by introducing the second cationic amino side chain and 5-N-methyl group based on a previous study of SYUIQ-5 (1) as c-MYC promoter G-quadruplex ligands. The in vitro evaluations showed that all new compounds exhibited higher stabilities and binding affinities, and most of them had better selectivity (over duplex DNA) for the c-MYC G-quadruplex compared to 1. Moreover, the new ligands prevented NM23-H2, a transcription factor, from effectively binding to the c-MYC G-quadruplex. Further studies showed that the selected ligand, 7a4, down-regulated c-MYC transcription by targeting promoter G-quadruplex and disrupting the NM23-H2/c-MYC interaction in RAJI cells. 7a4 could inhibit Burkitt's lymphoma cell proliferation through cell cycle arrest and apoptosis and suppress tumor growth in a human Burkitt's lymphoma xenograft.
Collapse
Affiliation(s)
- Hui-Yun Liu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Ai-Chun Chen
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Qi-Kun Yin
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Zeng Li
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Su-Mei Huang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Gang Du
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Jin-Hui He
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Li-Peng Zan
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Shi-Ke Wang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Yao-Hao Xu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Jia-Heng Tan
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Tian-Miao Ou
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Ding Li
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Lian-Quan Gu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Zhi-Shu Huang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| |
Collapse
|
8
|
Yang L, Wang Y, Li B, Jin Y. High-throughput identification of telomere-binding ligands based on the fluorescence regulation of DNA-copper nanoparticles. Biosens Bioelectron 2016; 87:915-920. [PMID: 27664411 DOI: 10.1016/j.bios.2016.09.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/06/2016] [Accepted: 09/16/2016] [Indexed: 01/08/2023]
Abstract
Formation of the G-quadruplex in the human telomeric DNA is an effective way to inhibit telomerase activity. Therefore, screening ligands of G-quadruplex has potential applications in the treatment of cancer by inhibit telomerase activity. Although several techniques have been explored for screening of telomeric G-quadruplexes ligands, high-throughput screening method for fast screening telomere-binding ligands from the large compound library is still urgently needed. Herein, a label-free fluorescence strategy has been proposed for high-throughput screening telomere-binding ligands by using DNA-copper nanoparticles (DNA-CuNPs) as a signal probe. In the absence of ligands, human telomeric DNA (GDNA) hybridized with its complementary DNA (cDNA) to form double stranded DNA (dsDNA) which can act as an efficient template for the formation of DNA-CuNPs, leading to the high fluorescence of DNA-CuNPs. In the presence of ligands, GDNA folded into G-quadruplex. Single-strdanded cDNA does not support the formation of DNA-CuNP, resulting in low fluorescence of DNA-CuNPs. Therefore, telomere-binding ligands can be high-throughput screened by monitoring the change in the fluorescence of DNA-CuNPs. Thirteen traditional chinese medicines were screened. Circular dichroism (CD) measurements demonstrated that the selected ligands could induce single-stranded telomeric DNA to form G-quadruplex. The telomere repeat amplification protocol (TRAP) assay demonstrated that the selected ligands can effectively inhibit telomerase activity. Therefore, it offers a cost-effective, label-free and reliable high-throughput way to identify G-quadruplex ligands, which holds great potential in discovering telomerase-targeted anticancer drugs.
Collapse
Affiliation(s)
- Luzhu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yanjun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
9
|
Ray A, Panigrahi S, Bhattacharyya D. A comparison of four different conformations adopted by human telomeric G-quadruplex using computer simulations. Biopolymers 2015; 105:83-99. [PMID: 26448055 DOI: 10.1002/bip.22751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 01/06/2023]
Abstract
The telomeric G-quadruplexes for their unique structural features are considered as potential anticancer drug targets. These, however, exhibit structural polymorphism as different topology types for the intra-molecular G-quadruplexes from human telomeric G-rich sequences have been reported based on NMR spectroscopy and X-ray crystallography. These techniques provide detailed atomic-level information about the molecule but relative conformational stability of the different topologies remains unsolved. Therefore, to understand the conformational preference, we have carried out quantum chemical calculations on G-quartets; used all-atom molecular dynamics (MD) simulations and steered molecular dynamics (SMD) simulations to characterize the four human telomeric G-quadruplex topologies based on its G-tetrad core-types, viz., parallel, anti-parallel, mixed-(3 + 1)-form1 and mixed-(3 + 1)-form2. We have also studied a non-telomeric sequence along with these telomeric forms giving a comparison between the two G-rich forms. The structural properties such as base pairing, stacking geometry and backbone conformations have been analyzed. The quantum calculations indicate that presence of a sodium ion inside the G-tetrad plane or two potassium ions on both sides of the plane give it an overall planarity which is much needed for good stacking to form a helix. MD simulations indicate that capping of the G-tetrad core by the TTA loops keep the terminal guanine bases away from water. The SMD simulations along with equilibrium MD studies indicate that the parallel and non-telomeric forms are comparatively less stable. We could come to the conclusion that the anti-parallel form and also the mixed-(3 + 1)-form1 topology are most likely to represent the major conformation., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 83-99, 2016.
Collapse
Affiliation(s)
- Angana Ray
- Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | - Swati Panigrahi
- Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | | |
Collapse
|
10
|
Armstrong RE, Riskowski RA, Strouse GF. Nanometal Surface Energy Transfer Optical Ruler for Measuring a Human Telomere Structure. Photochem Photobiol 2015; 91:732-8. [DOI: 10.1111/php.12423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/01/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Rachel E. Armstrong
- Department of Chemistry and Biochemistry; Florida State University; Tallahassee FL
| | - Ryan A. Riskowski
- Department of Chemistry and Biochemistry; Florida State University; Tallahassee FL
| | - Geoffrey F. Strouse
- Department of Chemistry and Biochemistry; Florida State University; Tallahassee FL
| |
Collapse
|
11
|
Effect of Cholesterol Anchoring Group on the Properties of G-Quadruplex-Based FRET Probes for Potassium Ion. CHEMOSENSORS 2014. [DOI: 10.3390/chemosensors2040267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Murphy CT, Gupta A, Armitage BA, Opresko PL. Hybridization of G-quadruplex-forming peptide nucleic acids to guanine-rich DNA templates inhibits DNA polymerase η extension. Biochemistry 2014; 53:5315-22. [PMID: 25068499 DOI: 10.1021/bi5006859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The guanine quadruplex (G-quadruplex) is a highly stable secondary structure that forms in G-rich repeats of DNA, which can interfere with DNA processes, including DNA replication and transcription. We showed previously that short guanine-rich peptide nucleic acids (PNAs) can form highly stable hybrid quadruplexes with DNA. We hypothesized that such structures would provide a stronger block to polymerase extension on G-rich templates than a native DNA homoquadruplex because of the greater thermodynamic stability of the PNA-DNA hybrid structures. To test this, we analyzed the DNA primer extension activity of polymerase η, a translesion polymerase implicated in synthesis past G-quadruplex blocks, on DNA templates containing guanine repeats. We observed a PNA concentration-dependent decrease in the level of polymerase η extension to the end of the template and an increase in the level of polymerase η inhibition at the sequence prior to the G-rich repeats. In contrast, the addition of a complementary C-rich PNA that hybridizes to the G-rich repeats by Watson-Crick base pairing led to a decrease in the level of polymerase inhibition and an increase in the level of full-length extension products. The G-quadruplex-forming PNA exhibited inhibition (IC50=16.2±3.3 nM) of polymerase η DNA synthesis on the G-rich templates stronger than that of the established G-quadruplex-stabilizing ligand BRACO-19 (IC50=42.5±4.8 nM). Our results indicate that homologous PNA targeting of G-rich sequences creates stable PNA-DNA heteroquadruplexes that inhibit polymerase η extension more effectively than a DNA homoquadruplex. The implications of these results for the potential development of homologous PNAs as therapeutics for halting proliferating cancer cells are discussed.
Collapse
Affiliation(s)
- Connor T Murphy
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health , Pittsburgh, Pennsylvania 15219, United States
| | | | | | | |
Collapse
|
13
|
Benabou S, Aviñó A, Eritja R, González C, Gargallo R. Fundamental aspects of the nucleic acid i-motif structures. RSC Adv 2014. [DOI: 10.1039/c4ra02129k] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The latest research on fundamental aspects of i-motif structures is reviewed with special attention to their hypothetical rolein vivo.
Collapse
Affiliation(s)
- S. Benabou
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| | - A. Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - R. Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - C. González
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- E-28006 Madrid, Spain
| | - R. Gargallo
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| |
Collapse
|
14
|
Shim J, Gu LQ. Single-molecule investigation of G-quadruplex using a nanopore sensor. Methods 2012; 57:40-6. [PMID: 22487183 DOI: 10.1016/j.ymeth.2012.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 01/01/2023] Open
Abstract
This review article introduces the nanopore single-molecule method for the study of G-quadruplex nucleic acid structures. Single G-quadruplexes can be trapped into a 2 nm protein pore embedded in the lipid bilayer membrane. The trapped G-quadruplex specifically blocks the current through the nanopore, creating a signature event for quantitative analysis of G-quadruplex properties, from cation-determined folding and unfolding kinetics to the interactions with the protein ligand. The nanopore single-molecule method is simple, accurate, and requires no labels. It can be used to evaluate G-quadruplex mechanisms and it may have applications in G-quadruplex-based biosensors, nanomachines, and nanostructure assembly.
Collapse
Affiliation(s)
- Jiwook Shim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
15
|
Renčiuk D, Zhou J, Beaurepaire L, Guédin A, Bourdoncle A, Mergny JL. A FRET-based screening assay for nucleic acid ligands. Methods 2012; 57:122-8. [PMID: 22465278 DOI: 10.1016/j.ymeth.2012.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/12/2012] [Accepted: 03/17/2012] [Indexed: 11/28/2022] Open
Abstract
Some of the most serious diseases are characterized by the presence of a specific secondary structure within DNA or RNA, often in the promoter or the coding region of the responsible gene, that enhances or disrupts expression of the protein. Structural elements that impact cellular function may also be formed in other genomic regions such as telomeres. Compounds that interact with such structural elements may be useful in diagnosis or treatment of patients. In this report, we present a FRET melting assay that allows testing of libraries of compounds against four different nucleic acid structures. Compounds are tested to determine whether they stabilize preformed secondary structures (i.e., whether they cause an increase in melting temperature (T(m))). This property is described by the ΔT(m) parameter, which is the difference between the T(m) of the compound-stabilized structure and the T(m) of the unbound structure. Model oligonucleotides are labeled with FAM as a fluorescent donor and TAMRA as an acceptor. The intensity of FAM fluorescence is recorded as a function of temperature. Melting temperatures are determined by the FRET method in 96-well plates; this assay could easily be converted into 384-well format.
Collapse
Affiliation(s)
- Daniel Renčiuk
- INSERM, U869, ARNA Laboratory, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, F-33600 Pessac, France.
| | | | | | | | | | | |
Collapse
|
16
|
Schlachter C, Lisdat F, Frohme M, Erdmann VA, Konthur Z, Lehrach H, Glökler J. Pushing the detection limits: the evanescent field in surface plasmon resonance and analyte-induced folding observation of long human telomeric repeats. Biosens Bioelectron 2011; 31:571-4. [PMID: 22152989 DOI: 10.1016/j.bios.2011.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 12/17/2022]
Abstract
Conventional analysis of molecular interactions by surface plasmon resonance is achieved by the observation of optical density changes due to analyte binding to the ligand on the surface. Low molecular weight interaction partners are normally not detected. However, if a macromolecule such as DNA can extend beyond the evanescent field and analyte interaction results in a large-scale contraction, then the refractive index changes due to the increasing amount of macromolecules close to the surface. In our proof-of-principle experiment we could observe the direct folding of long, human telomeric repeats induced by the small analyte potassium using surface plasmon resonance spectroscopy. This work demonstrates the feasibility of new evanescent field-based biosensors that can specifically observe small molecule interactions.
Collapse
Affiliation(s)
- Constanze Schlachter
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Juskowiak B. Nucleic acid-based fluorescent probes and their analytical potential. Anal Bioanal Chem 2011; 399:3157-76. [PMID: 21046088 PMCID: PMC3044240 DOI: 10.1007/s00216-010-4304-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/21/2022]
Abstract
It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays.
Collapse
Affiliation(s)
- Bernard Juskowiak
- Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland.
| |
Collapse
|
18
|
Kendrick S, Hurley LH. The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements. ACTA ACUST UNITED AC 2010; 82:1609-1621. [PMID: 21796223 DOI: 10.1351/pac-con-09-09-29] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nature of DNA has captivated scientists for more than fifty years. The discovery of the double-helix model of DNA by Watson and Crick in 1953 not only established the primary structure of DNA, but also provided the mechanism behind DNA function. Since then, researchers have continued to further the understanding of DNA structure and its pivotal role in transcription. The demonstration of DNA secondary structure formation has allowed for the proposal that the dynamics of DNA itself can function to modulate transcription. This review presents evidence that DNA can exist in a dynamic equilibrium between duplex and secondary conformations. In addition, data demonstrating that intracellular proteins as well as small molecules can shift this equilibrium in either direction to alter gene transcription will be discussed, with a focus on the modulation of proto-oncogene expression.
Collapse
|
19
|
Sannohe Y, Sugiyama H. Overview of formation of G-quadruplex structures. ACTA ACUST UNITED AC 2010; Chapter 17:Unit 17.2.1-17. [PMID: 20201027 DOI: 10.1002/0471142700.nc1702s40] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There are many structures that can be adopted by nucleic acids other than the Watson-Crick duplex. In particular, a noncanonical four-stranded topology, called a G-quadruplex, is of great interest because of its roles in key biological processes such as the maintenance of telomeres and regulation of gene transcription. This review describes the condition for forming the G-quadruplex structure, G-quadruplex-forming sequences, and methods for studying the structures.
Collapse
|
20
|
Abstract
A simple thermal melting experiment may be used to demonstrate the stabilization of a given structure by a ligand (usually a small molecule, sometimes a peptide). Preparation of the sample is straightforward, and the experiment itself requires an inexpensive apparatus. Furthermore, reasonably low amounts of sample are required. A qualitative analysis of the data is simple: An increase in the melting temperature (T(m)) indicates preferential binding to the folded form as compared to the unfolded form. However, it is perilous to derive an affinity constant from an increase in T(m) as other factors play a role.
Collapse
Affiliation(s)
- Aurore Guédin
- Equipe Santé, Laboratoire Régulation et Dynamique des Génomes, Muséum National d'Histoire Naturelle USM 503, INSERM UR 565, CNRS UMR 5153, Paris, France
| | | | | |
Collapse
|
21
|
Zheng KW, Chen Z, Hao YH, Tan Z. Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA. Nucleic Acids Res 2009; 38:327-38. [PMID: 19858105 PMCID: PMC2800236 DOI: 10.1093/nar/gkp898] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Large numbers of guanine-rich sequences with potential to form G-quadruplexes have been identified in genomes of various organisms. Such sequences are constrained at both ends by long DNA duplex with a complementary strand in close proximity to compete for duplex formation. G-quadruplex/duplex competition in long double-stranded DNA has rarely been studied. In this work, we used DMS footprinting and gel electrophoresis to study G-quadruplex formation in long double-stranded DNA derived from human genome under both dilute and molecular crowding condition created by PEG. G-quadruplex formation was observed in the process of RNA transcription and after heat denaturation/renaturation under molecular crowding condition. Our results showed that the heat denaturation/renaturation treatment followed by gel electrophoresis could provide a simple method to quantitatively access the ability of G-quadruplex formation in long double-stranded DNA. The effect of K+ and PEG concentration was investigated and we found that stable G-quadruplexes could only form under the crowding condition with PEG at concentrations near the physiological concentration of biomass in living cells. This observation reveals a physical basis for the formation of stable G-quadruplexes in genome and supports its presence under the in vivo molecular crowding condition.
Collapse
Affiliation(s)
- Ke-wei Zheng
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan, PR China
| | | | | | | |
Collapse
|
22
|
Zhou J, Wei C, Jia G, Wang X, Feng Z, Li C. Human telomeric G-quadruplex formed from duplex under near physiological conditions: Spectroscopic evidence and kinetics. Biochimie 2009; 91:1104-11. [DOI: 10.1016/j.biochi.2009.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
|
23
|
Sun H, Zhou Q, Xiang J, Tang Y. Polyethylenimine effectively induces, stabilizes, and regulates intramolecular G-quadruplexes. Bioorg Med Chem Lett 2009; 19:4669-72. [DOI: 10.1016/j.bmcl.2009.06.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/01/2009] [Accepted: 06/22/2009] [Indexed: 11/25/2022]
|
24
|
Genotyping of IRGM tetranucleotide promoter oligorepeats by fluorescence resonance energy transfer. Biotechniques 2009; 46:58-60. [PMID: 19301623 DOI: 10.2144/000113045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) genotyping has been well established for the rapid assessment of single nucleotide polymorphisms (SNPs) and deletions. A design is presented that allows the typing of short tandem oligo repeat sequences using the LightTyper/LightCycler system. The protocol was evaluated and applied to the typing of a tetranucleotide promoter repeat of the human gene encoding the immunity-related GTPase family, M (IRGM) molecule in >2000 individuals from Ghana, West Africa.
Collapse
|
25
|
Shim JW, Tan Q, Gu LQ. Single-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity. Nucleic Acids Res 2009; 37:972-82. [PMID: 19112078 PMCID: PMC2647319 DOI: 10.1093/nar/gkn968] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/12/2008] [Accepted: 11/16/2008] [Indexed: 11/12/2022] Open
Abstract
Guanine-rich nucleic acids can form G-quadruplexes that are important in gene regulation, biosensor design and nano-structure construction. In this article, we report on the development of a nanopore encapsulating single-molecule method for exploring how cations regulate the folding and unfolding of the G-quadruplex formed by the thrombin-binding aptamer (TBA, GGTTGGTGTGGTTGG). The signature blocks in the nanopore revealed that the G-quadruplex formation is cation-selective. The selectivity sequence is K(+) > NH(4)(+) approximately Ba(2+) > Cs(+) approximately Na(+) > Li(+), and G-quadruplex was not detected in Mg(2+) and Ca(2+). Ba(2+) can form a long-lived G-quadruplex with TBA. However, the capability is affected by the cation-DNA interaction. The cation-selective formation of the G-quadruplex is correlated with the G-quadruplex volume, which varies with cation species. The high formation capability of the K(+)-induced G-quadruplex is contributed largely by the slow unfolding reaction. Although the Na(+)- and Li(+)-quadruplexes feature similar equilibrium properties, they undergo radically different pathways. The Na(+)-quadruplex folds and unfolds most rapidly, while the Li(+)-quadruplex performs both reactions at the slowest rates. Understanding these ion-regulated properties of oligonucleotides is beneficial for constructing fine-tuned biosensors and nano-structures. The methodology in this work can be used for studying other quadruplexes and protein-aptamer interactions.
Collapse
Affiliation(s)
| | | | - Li-Qun Gu
- Department of Biological Engineering, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
26
|
Chu B, Yuan G, Zhou J, Ou Y, Zhu P. A new telomerase inhibitor and apoptosis-inducing agent in leukemia: perylene derivative G-quadruplex ligand Tel03. Drug Dev Res 2008. [DOI: 10.1002/ddr.20248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Ou TM, Lu YJ, Tan JH, Huang ZS, Wong KY, Gu LQ. G-quadruplexes: targets in anticancer drug design. ChemMedChem 2008; 3:690-713. [PMID: 18236491 DOI: 10.1002/cmdc.200700300] [Citation(s) in RCA: 408] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G-quadruplexes are special secondary structures adopted in some guanine-rich DNA sequences. As guanine-rich sequences are present in important regions of the eukaryotic genome, such as telomeres and the regulatory regions of many genes, such structures may play important roles in the regulation of biological events in the body. G-quadruplexes have become valid targets for new anticancer drugs in the past few decades. Many leading compounds that target these structures have been reported, and a few of them have entered preclinical or clinical trials. Nonetheless, the selectivity of this kind of antitumor compound has yet to be improved in order to suppress the side effects caused by nonselective binding. As drug design targets, the topology and structural characteristics of quadruplexes, their possible biological roles, and the modes and sites of small-ligand binding to these structures should be understood clearly. Herein we provide a summary of published research that has set out to address the above problem to provide useful information on the design of small ligands that target G-quadruplexes. This review also covers research methodologies that have been developed to study the binding of ligands to G-quadruplexes.
Collapse
Affiliation(s)
- Tian-miao Ou
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Hong Y, Häußler M, Lam J, Li Z, Sin K, Dong Y, Tong H, Liu J, Qin A, Renneberg R, Tang B. Label-Free Fluorescent Probing of G-Quadruplex Formation and Real-Time Monitoring of DNA Folding by a Quaternized Tetraphenylethene Salt with Aggregation-Induced Emission Characteristics. Chemistry 2008; 14:6428-37. [DOI: 10.1002/chem.200701723] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Shirude PS, Balasubramanian S. Single molecule conformational analysis of DNA G-quadruplexes. Biochimie 2008; 90:1197-206. [PMID: 18295608 PMCID: PMC2746965 DOI: 10.1016/j.biochi.2008.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 01/25/2008] [Indexed: 11/18/2022]
Abstract
Single molecule fluorescence resonance energy transfer (FRET) can be employed to study conformational heterogeneity and real-time dynamics of biological macromolecules. Here we present single molecule studies on human genomic DNA G-quadruplex sequences that occur in the telomeres and in the promoter of a proto-oncogene. The findings are discussed with respect to the proposed biological function(s) of such motifs in living cells.
Collapse
|
30
|
Abstract
Melting curves are commonly used to determine the stability of folded nucleic acid structures and their interaction with ligands. This paper describes how the technique can be applied to study the properties of four-stranded nucleic acid structures that are formed by G-rich oligonucleotides. Changes in the absorbance (at 295nm), circular dichroism (at 260 or 295nm) or fluorescence of appropriately labelled oligonucleotides, can be used to measure the stability and kinetics of folding. This paper focuses on a fluorescence melting technique, and explains how this can be used to determine the T(m) (T((1/2))) of intramolecular quadruplexes and the effects of quadruplex-binding ligands. Quantitative analysis of these melting curves can be used to determine the thermodynamic (DeltaH, DeltaG, and DeltaS) and kinetic (k(1), k(-1)) parameters. The method can also be adapted to investigate the equilibrium between quadruplex and duplex DNA and to explore the selectivity of ligands for one or other structure.
Collapse
|
31
|
|
32
|
Huppert JL. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev 2008; 37:1375-84. [DOI: 10.1039/b702491f] [Citation(s) in RCA: 391] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Markovitsi D, Gustavsson T, Sharonov A. Cooperative Effects in the Photophysical Properties of Self-associated Triguanosine Diphosphates¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb01271.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Kolaric B, Sliwa M, Brucale M, Vallée RAL, Zuccheri G, Samori B, Hofkens J, De Schryver FC. Single molecule fluorescence spectroscopy of pH sensitive oligonucleotide switches. Photochem Photobiol Sci 2007; 6:614-8. [PMID: 17549262 DOI: 10.1039/b618689k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several authors demonstrated that an oligonucleotide based pH-sensitive construct can act as a switch between an open and a closed state by changing the pH. To validate this process, specially designed fluorescence dye-quencher substituted oligonucleotide constructs were developed to probe the switching between these two states. This paper reports on bulk and single molecule fluorescence investigations of a duplex-triplex pH sensitive oligonucleotide switch. On the bulk level, only a partial quenching of the fluorescence is observed, similarly to what is observed for other published switches and is supposed to be due to intermolecular interactions between oligonucleotide strands. On the single molecule level, each DNA-based nanometric construct shows a complete switching. These observations suggest the tendency of the DNA construct to associate at high concentration.
Collapse
Affiliation(s)
- Branko Kolaric
- Katholieke Universiteit Leuven, Department Chemistry and Institute for Nanoscale Physics and Chemistry (INPAC), Celestijnenlaan 200F, Heverlee, B-3001, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 2006; 34:5402-15. [PMID: 17012276 PMCID: PMC1636468 DOI: 10.1093/nar/gkl655] [Citation(s) in RCA: 1825] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
G-quadruplexes are higher-order DNA and RNA structures formed from G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential quadruplex sequences have been identified in G-rich eukaryotic telomeres, and more recently in non-telomeric genomic DNA, e.g. in nuclease-hypersensitive promoter regions. The natural role and biological validation of these structures is starting to be explored, and there is particular interest in them as targets for therapeutic intervention. This survey focuses on the folding and structural features on quadruplexes formed from telomeric and non-telomeric DNA sequences, and examines fundamental aspects of topology and the emerging relationships with sequence. Emphasis is placed on information from the high-resolution methods of X-ray crystallography and NMR, and their scope and current limitations are discussed. Such information, together with biological insights, will be important for the discovery of drugs targeting quadruplexes from particular genes.
Collapse
Affiliation(s)
| | | | | | | | - Stephen Neidle
- To whom correspondence should be addressed. Tel: +44 207 753 5969; Fax: +44 207 753 5970;
| |
Collapse
|
36
|
Juskowiak B, Galezowska E, Zawadzka A, Gluszynska A, Takenaka S. Fluorescence anisotropy and FRET studies of G-quadruplex formation in presence of different cations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2006; 64:835-43. [PMID: 16490387 DOI: 10.1016/j.saa.2005.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/08/2005] [Accepted: 08/16/2005] [Indexed: 05/06/2023]
Abstract
Results of the steady-state fluorescence, anisotropy and FRET measurements of G-quadruplex formation in the presence of selected cations (Li(+), Na(+), K(+), NEt(4)(+) and Mg(2+)) are reported. Three different fluorescent oligonucleotides with human telomeric sequence labeled with fluorescein (FAM) and tetramethylrhodamine (TAMRA) were investigated: a dual-labeled 21-mer denoted as PSO (Potassium Sensing Oligonucleotide) and two 5'- and 3'- single-labeled probes, FAM-21 and 21-TAMRA, respectively. The fluorescence signal of FAM-21 increased significantly for all systems and the fluorescence enhancement was comparable in magnitude for monovalent cations but it was more pronounced for Mg(2+) cation. This phenomenon was attributed to the protolytic equilibria of FAM affected by the variation in ionic strength. On the other hand, fluorescence of TAMRA was enhanced selectively by Na(I) cation that was explained by the dequenching of TAMRA emission originated from the peculiarity of the basket-type structure of Na(I)-quadruplex. Anisotropy of FAM-21 (but not 21-TAMRA) appeared to be sensitive to the G-quadruplex formation, showing significant increase with an increase in cation concentration and indicating some restrictions in rotational depolarization of FAM. FRET experiments revealed that all tested cations caused quenching of FAM fluorescence in PSO, but only Na(+) and K(+) ions produced sensitized emission of TAMRA acceptor. Higher FRET efficiency observed in the presence of sodium ion was attributed to the specific spectral factor and steric interactions in the basket-type Na(I)-quadruplex.
Collapse
Affiliation(s)
- Bernard Juskowiak
- Department of Analytical Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldska 6, 60-780 Poznan, Poland.
| | | | | | | | | |
Collapse
|
37
|
Juskowiak B. Analytical potential of the quadruplex DNA-based FRET probes. Anal Chim Acta 2006; 568:171-80. [PMID: 17761258 DOI: 10.1016/j.aca.2005.12.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 12/12/2005] [Accepted: 12/29/2005] [Indexed: 11/17/2022]
Abstract
DNA exhibits structural flexibility and may adopt also tetraplex structures known as guanine-quadruplexes or G-quadruplexes. These G-quadruplexes have recently received great attention because G-rich sequences are often found in genome and because of their potential links to mechanisms that relate to cancer, HIV, and other diseases. The unique structure of quadruplexes has also stimulated development of new analytical and bioanalytical assays based on fluorescence resonance energy transfer (FRET). Intramolecular folding of a flexible single-stranded DNA molecule into a compact G-quadruplex is a structural transition leading to closer proximity of its 5'- and 3'-ends. Thus, labeling both ends of a DNA strand with donor and acceptor fluorophores enables monitoring the quadruplex formation process by means of the FRET signal. This review shows how FRET technique contributes to G-quadruplex research and focuses mainly on analytical applications of FRET-labeled quadruplexes. Applications include studies of structural transitions of quadruplexes, FRET-based selection of ligands that bind to quadruplexes, design of molecular probes for protein recognition and development of sensors for detection of potassium ions in aqueous solution.
Collapse
Affiliation(s)
- Bernard Juskowiak
- Department of Analytical Chemistry, Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznan, Poland.
| |
Collapse
|
38
|
Molecular Crowding Induces Telomere G-Quadruplex Formation under Salt-Deficient Conditions and Enhances its Competition with Duplex Formation. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502960] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Kan ZY, Yao Y, Wang P, Li XH, Hao YH, Tan Z. Molecular Crowding Induces Telomere G-Quadruplex Formation under Salt-Deficient Conditions and Enhances its Competition with Duplex Formation. Angew Chem Int Ed Engl 2006; 45:1629-32. [PMID: 16470760 DOI: 10.1002/anie.200502960] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhong-Yuan Kan
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | | | | | | | | | | |
Collapse
|
40
|
Jaumot J, Eritja R, Tauler R, Gargallo R. Resolution of a structural competition involving dimeric G-quadruplex and its C-rich complementary strand. Nucleic Acids Res 2006; 34:206-16. [PMID: 16397299 PMCID: PMC1325204 DOI: 10.1093/nar/gkj421] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The resolution of the dimeric intermolecular G-quadruplex/duplex competition of the telomeric DNA sequence 5′-TAG GGT TAG GGT-3′ and of its complementary 5′ ACC CTA ACC CTA-3′ is reported. To achieve this goal, melting experiments of both sequences and of the mixtures of these sequences were monitored by molecular absorption, molecular fluorescence and circular dichroism spectroscopies. Molecular fluorescence measurements were carried out using molecular beacons technology, in which the 5′-TAG GGT TAG GGT-3′ sequence was labelled with a fluorophore and a quencher at the ends of the strand. Mathematical analysis of experimental spectroscopic data was performed by means of multivariate curve resolution, allowing the calculation of concentration profiles and pure spectra of all resolved structures (dimeric antiparallel and parallel G-quadruplexes, Watson–Crick duplex and single strands) present in solution. Our results show that parallel G-quadruplex is more stable than antiparallel G-quadruplex. When the complementary C-rich strand is present, a mixture of both G-quadruplex structures and Watson–Crick duplex is observed, the duplex being the major species. In addition to melting temperatures, equilibrium constants for the parallel/antiparallel G-quadruplex equilibrium and for the G-quadruplex/duplex equilibrium were determined from the concentration profiles.
Collapse
Affiliation(s)
| | - Ramon Eritja
- Department of Structural Biology, IBMB-CSICJordi Girona 18-26, Barcelona, E-08034 Spain
| | - Romà Tauler
- Department of Environmental Chemistry, IIQAB-CSICJordi Girona 18-26, Barcelona, E-08034 Spain
| | - Raimundo Gargallo
- To whom correspondence should be addressed. Tel: +34 934034445; Fax: +34 934021233;
| |
Collapse
|
41
|
Kumar N, Maiti S. The effect of osmolytes and small molecule on Quadruplex-WC duplex equilibrium: a fluorescence resonance energy transfer study. Nucleic Acids Res 2005; 33:6723-32. [PMID: 16321964 PMCID: PMC1301592 DOI: 10.1093/nar/gki961] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structural competition between the G-quadruplex and Watson-Crick duplex has been implicated for the repetitive DNA sequences, but the factors influencing this competitive equilibrium in the natural and pharmacological context need to be elucidated. Using a 21mer 5'-Fluorescein-d[(G3TTA)3G3]-TAMRA-3' as a model system, extensive fluorescence resonance energy transfer analysis was carried out to investigate sensitivity of this equilibrium to osmotic stress and quadruplex selective small molecule. The binding affinities and kinetics involved in the hybridization of quadruplex to its complementary strand in the absence and presence of different concentrations of osmolytes (ethylene glycol and glycerol) and a quadruplex selective ligand (cationic porphyrin-TMPyP4) were determined. The presence of osmolytes and cationic porphyrin decreased the binding affinity of quadruplex to its complementary strand and slowed the kinetics of the reaction by delaying the hybridization process. Our binding data analysis indicates that the presence of either osmolytes or porphyrin increase the amount of quadruplex in the equilibrium. In 100 mM KCl solution, when 30 nM of each of the components, i.e. quadruplex and the complementary strand, were mixed together, the amount of quadruplex present in the system under equilibrium were 17.6, 23.4, 23.1 and 19.6 nM in the absence and presence of 10% ethylene glycol, 10% glycerol and 150 nM TMPyP4, respectively. Fluorescence melting profile of quadruplex in the absence and presence of these perturbants confirm the findings that osmolytes and cationic porphyrin stabilize quadruplex, and thus, shift the equilibrium to quadruplex formation.
Collapse
Affiliation(s)
| | - Souvik Maiti
- To whom correspondence should be addressed. Tel: +91 11 2766 6156; Fax: +91 11 2766 7471;
| |
Collapse
|
42
|
Datta B, Bier ME, Roy S, Armitage BA. Quadruplex formation by a guanine-rich PNA oligomer. J Am Chem Soc 2005; 127:4199-207. [PMID: 15783201 DOI: 10.1021/ja0446202] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A guanine-rich PNA dodecamer having the sequence H-G4T4G4-Lys-NH2 (G-PNA) hybridizes with a DNA dodecamer of homologous sequence to form a four-stranded quadruplex (Datta, B.; Schmitt, C.; Armitage, B. A. J. Am. Chem. Soc. 2003, 125, 4111-4118). This report describes quadruplex formation by the PNA alone. UV melting curves and fluorescence resonance energy transfer experiments reveal formation of a multistranded structure stabilized by guanine tetrads. The ion dependency of these structures is analogous to that reported for DNA quadruplexes. Electrospray ionization mass spectrometry indicates that both dimeric and tetrameric quadruplexes are formed by G4-PNA, with the dimeric form being preferred. These results have implications for the use of G-rich PNA for homologous hybridization to G-rich targets in chromosomal DNA and suggest additional applications in assembling quadruplex structures within lipid bilayer environments.
Collapse
Affiliation(s)
- Bhaskar Datta
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, USA
| | | | | | | |
Collapse
|
43
|
Cogoi S, Ballico M, Bonora GM, Xodo LE. Antiproliferative activity of a triplex-forming oligonucleotide recognizing a Ki-ras polypurine/polypyrimidine motif correlates with protein binding. Cancer Gene Ther 2005; 11:465-76. [PMID: 15118760 DOI: 10.1038/sj.cgt.7700722] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Ki-ras gene is frequently mutated and/or overexpressed in human cancer. Since it is suspected to play a key role in the pathogenesis of many tumors, there is interest to search for strategies aiming at the specific inhibition of this oncogene. In this paper, we investigated the capacity of a 20 mer G-rich oligonucleotide (ODN20) conjugated to high molecular weight monomethoxy polyethylene glycol (MPEG) to inhibit the expression of the Ki-ras gene and the proliferation of pancreatic cancer cells. The conjugate, MPEG ODN20, was designed to form a triplex with a critical pur/pyr sequence located in the promoter of the Ki-ras gene. To make the conjugate resistant to endogenous and exogenous nucleases, five phosphorothioate linkages were introduced in its backbone. Confocal microscopy and FACS experiments showed that MPEG ODN20 had a higher capacity to penetrate the cell membranes and accumulate in the nucleus of Panc-1 cells than ODN20. Incubation of Panc-1 cells with MPEG ODN20 reduced specifically the levels of Ki-ras mRNA and RAS protein p21RAS. A single-dose administration of MPEG ODN20 was sufficient to inhibit cell proliferation by about 50% compared with control. By contrast, the antiproliferative activity of the unconjugated ODN20 analog was found to be not significant. Band-shift and footprinting experiments showed that MPEG ODN20 formed a weak triplex (Kd approximately 1.5 microM at 37 degrees C, 50 mM Tris-acetate, pH 7.4, 10 mM NaCl, 10 mM MgCl2, 5 mM spermidine) with the Ki-ras pyr/pur motif, suggesting that its bioactivity can hardly be mediated by a triplex-based mechanism. Here, we provide evidence that, in vitro, ODN20 and MPEG ODN20 competitively inhibit the binding to the Ki-ras pur/pyr motif of a nuclear protein, suggesting that the activity of MPEG ODN20 occurs with an aptameric mechanism. The biological implications of this study are discussed.
Collapse
Affiliation(s)
- Susanna Cogoi
- Dipartimento di Scienze e Tecnologie Biomediche, Piazzale Kolbe 4, Università di Udine, 33100 Udine, Italy
| | | | | | | |
Collapse
|
44
|
Markovitsi D, Gustavsson T, Sharonov A. Cooperative effects in the photophysical properties of self-associated triguanosine diphosphates. Photochem Photobiol 2004; 79:526-30. [PMID: 15291304 DOI: 10.1562/2003-12-12-ra.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study deals with the photophysical properties of triguanosine diphosphate in aqueous solutions, which are compared with those of the 2'-deoxyguanosine monophosphate. They are studied by steady-state absorption and fluorescence spectroscopy as well as by time-resolved fluorescence spectroscopy with femtosecond resolution. The temperature, salt and concentration dependence of the absorption and fluorescence spectra reveal that association of the trimers takes place. The resulting aggregates could correspond to a tetraplex structure. The aggregate fluorescence quantum yield is higher and the fluorescence lifetime much longer than those of the monomer. These results show the interaction between guanosine residues that may manifest itself via self-solvation, hydrogen bonding and/or delocalization of the excitation.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- Laboratoire Francis Perrin, CEA/DSM/DRECAM/SPAM-CNRS URA 2453, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
45
|
Kumar N, Maiti S. Quadruplex to Watson-Crick duplex transition of the thrombin binding aptamer: a fluorescence resonance energy transfer study. Biochem Biophys Res Commun 2004; 319:759-67. [PMID: 15184048 DOI: 10.1016/j.bbrc.2004.05.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 11/17/2022]
Abstract
Thermodynamic parameters of closing up of guanine-rich thrombin binding element, upon binding to K(+) and Na(+) ions to form quadruplexes and opening up of these quadruplexes upon binding to its complementary strand, were investigated. For this purpose, 15mer deoxynucleotide, d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), labeled with 5'-fluorescein and 3'-tetramethylrhodamine was taken and fluorescence resonance energy transfer was monitored as a function of either metal ions or complementary strand concentrations. Equilibrium association constant obtained from FRET studies demonstrates that K(+) ions bind with higher affinity than the Na(+) ions. The enthalpy changes, DeltaH, obtained from temperature dependence of equilibrium association constant studies revealed that formation of quadruplex upon binding of metal ions is primarily enthalpy driven. Binding studies of complementary strand to the quadruplex suggest that opening of a quadruplex in NaCl buffer in presence of the complementary strand is enthalpic as well as entropic driven and can occur easily, whereas opening of the same quadruplex in KCl buffer suffers from enthalpic barrier. Comparison of overall thermodynamic parameters along with kinetics studies indicates that, although quadruplexes cannot efficiently compete with duplex formation at physiological pH, they delay the association of two strands.
Collapse
Affiliation(s)
- Niti Kumar
- Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | |
Collapse
|
46
|
Nelson SM, Ferguson LR, Denny WA. DNA and the chromosome - varied targets for chemotherapy. CELL & CHROMOSOME 2004; 3:2. [PMID: 15157277 PMCID: PMC421739 DOI: 10.1186/1475-9268-3-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 05/24/2004] [Indexed: 12/29/2022]
Abstract
The nucleus of the cell serves to maintain, regulate, and replicate the critical genetic information encoded by the genome. Genomic DNA is highly associated with proteins that enable simple nuclear structures such as nucleosomes to form higher-order organisation such as chromatin fibres. The temporal association of regulatory proteins with DNA creates a dynamic environment capable of quickly responding to cellular requirements and distress. The response is often mediated through alterations in the chromatin structure, resulting in changed accessibility of specific DNA sequences that are then recognized by specific proteins. Anti-cancer drugs that target cellular DNA have been used clinically for over four decades, but it is only recently that nuclease specific drugs have been developed to not only target the DNA but also other components of the nuclear structure and its regulation. In this review, we discuss some of the new drugs aimed at primary DNA sequences, DNA secondary structures, and associated proteins, keeping in mind that these agents are not only important from a clinical perspective but also as tools for understanding the nuclear environment in normal and cancer cells.
Collapse
Affiliation(s)
- Stephanie M Nelson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand
| | - Lynnette R Ferguson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand
| |
Collapse
|
47
|
Risitano A, Fox KR. Influence of loop size on the stability of intramolecular DNA quadruplexes. Nucleic Acids Res 2004; 32:2598-606. [PMID: 15141030 PMCID: PMC419475 DOI: 10.1093/nar/gkh598] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have determined the stability of intramolecular DNA quadruplexes in which the four G(3)-tracts are connected by non-nucleosidic linkers containing propanediol, octanediol or hexaethylene glycol, replacing the TTA loops in the human telomeric repeat sequence. We find that these sequences all fold to form intramolecular complexes, which are stabilized by lithium < sodium < potassium. Quadruplex stability increases in the order propanediol < hexaethylene glycol < octanediol. The shallower shape of the melting profile with propanediol linkers and its lower dependency on potassium concentration suggests that this complex contains fewer stacks of G-quartets. The sequence with octanediol linkers displays a biphasic melting profile, suggesting that it can adopt more than one stable structure. All these complexes display melting temperatures above 310 K in the presence of 10 mM lithium, without added potassium, in contrast to the telomeric repeat sequence. These complexes also fold much faster than the telomeric repeat and there is little or no hysteresis between their melting and annealing profiles. In contrast, the human telomeric repeat sequence and a complex containing two hexaethylene glycol groups in each loop, are less stable and fold more slowly. The melting and annealing profiles for the latter sequence show significant differences, even when heated at 0.2 degrees C min(-1). CD spectra for the oligonucleotides containing non-nucleosidic linkers show positive maxima at 264 nm, with negative minima approximately 244 nm, which are characteristic of parallel quadruplex structures. These results show that the structure and stability of intramolecular quadruplexes is profoundly influenced by the length and composition of the loops.
Collapse
Affiliation(s)
- Antonina Risitano
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | |
Collapse
|
48
|
Ying L, Green JJ, Li H, Klenerman D, Balasubramanian S. Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 2003; 100:14629-34. [PMID: 14645716 PMCID: PMC299749 DOI: 10.1073/pnas.2433350100] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated the structure and unfolding kinetics of the human telomeric intramolecular G quadruplex by using single-molecule fluorescence resonance energy transfer. An exploration of conformational heterogeneity revealed two stable folded conformations, in both sodium- and potassium-containing buffers, with small differences between their enthalpies and entropies. Both folded conformations can be opened by the addition of a 21-base complementary DNA oligonucleotide. The unfolding of both substates occurs at the same rate, which showed dependence on the monovalent metal cation present. Temperature-dependence studies in 100 mM KCl gave an apparent activation enthalpy and entropy of 6.4 +/- 0.4 kcal.mol-1 and -52.3 +/- 1.4 cal.mol-1.K-1, respectively, indicating that the unfolding is entropically driven and can occur easily. In contrast, in 100 mM NaCl the respective values are 14.9 +/- 0.2 kcal.mol-1 and -23.0 +/- 0.8 cal.mol-1.K-1, suggesting a more significant enthalpic barrier. Molecular modeling suggests that the two species are likely to be the parallel and antiparallel quadruplex structures. The unfolding free energy barrier is estimated to be between 3 and 15 kBT based on Kramers' theory. We conclude that under near-physiological conditions these structures coexist and can interconvert on a minute time scale.
Collapse
Affiliation(s)
- Liming Ying
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Green JJ, Ying L, Klenerman D, Balasubramanian S. Kinetics of unfolding the human telomeric DNA quadruplex using a PNA trap. J Am Chem Soc 2003; 125:3763-7. [PMID: 12656607 DOI: 10.1021/ja029149w] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of opening of the DNA quadruplex formed by the human telomeric repeat have been investigated using real-time fluorescence resonance energy transfer (FRET) measurements with a peptide nucleic acid (PNA) trap. It has been found that this opening is zero-order with respect to PNA, indicating that the initial step is a rate-limiting internal rearrangement of the quadruplex. A study of the temperature dependence of the rate of quadruplex opening was performed and the activation energy of the process estimated to be 98 +/- 8 kJ mol(-1).
Collapse
Affiliation(s)
- Jeremy J Green
- Department of Chemistry, University of Cambridge, Lensfield Road, UK
| | | | | | | |
Collapse
|
50
|
Abstract
The purpose of the study was to elucidate how DNA tetraplex (also referred to as G-quadruplex)-forming oligonucleotides mediate suppression of the human c-myc gene at the level of transcription initiation. A 22-base-long oligonucleotide, which is rich in guanines and folds into an intrastrand DNA tetraplex under physiological conditions, was administered to a Burkitt's lymphoma cell line overexpressing a (8:14) translocated c-myc allele. Administration of the oligonucleotide at nanomolar concentrations to the surrounding medium resulted in efficient cellular uptake, and was accompanied by a substantial concentration- and conformation-dependent decrease in growth rate. We discuss how c-myc transcription is initiated at the molecular level and speculate that the oligonucleotide exerts a dual effect on c-myc expression in vivo.
Collapse
Affiliation(s)
- Tomas Simonsson
- Department of Molecular Biotechnology, Lunfberg Laboratory, Chalmers University of Technology, P.O. Box 462, SE 405 30 Göteborg, Sweden.
| | | |
Collapse
|