1
|
Riedl S, Bilgen E, Agam G, Hirvonen V, Jussupow A, Tippl F, Riedl M, Maier A, Becker CFW, Kaila VRI, Lamb DC, Buchner J. Evolution of the conformational dynamics of the molecular chaperone Hsp90. Nat Commun 2024; 15:8627. [PMID: 39366960 PMCID: PMC11452706 DOI: 10.1038/s41467-024-52995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Hsp90 is a molecular chaperone of central importance for protein homeostasis in the cytosol of eukaryotic cells, with key functional and structural traits conserved from yeast to man. During evolution, Hsp90 has gained additional functional importance, leading to an increased number of interacting co-chaperones and client proteins. Here, we show that the overall conformational transitions coupled to the ATPase cycle of Hsp90 are conserved from yeast to humans, but cycle timing as well as the dynamics are significantly altered. In contrast to yeast Hsp90, the human Hsp90 is characterized by broad ensembles of conformational states, irrespective of the absence or presence of ATP. The differences in the ATPase rate and conformational transitions between yeast and human Hsp90 are based on two residues in otherwise conserved structural elements that are involved in triggering structural changes in response to ATP binding. The exchange of these two mutations allows swapping of the ATPase rate and of the conformational transitions between human and yeast Hsp90. Our combined results show that Hsp90 evolved to a protein with increased conformational dynamics that populates ensembles of different states with strong preferences for the N-terminally open, client-accepting states.
Collapse
Affiliation(s)
- Stefan Riedl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Ecenaz Bilgen
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Ganesh Agam
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Viivi Hirvonen
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Alexander Jussupow
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Franziska Tippl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Maximilian Riedl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Andreas Maier
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Don C Lamb
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany.
| |
Collapse
|
2
|
Kohlmann P, Krylov SN, Marchand P, Jose J. FRET Assays for the Identification of C. albicans HSP90-Sba1 and Human HSP90α-p23 Binding Inhibitors. Pharmaceuticals (Basel) 2024; 17:516. [PMID: 38675476 PMCID: PMC11053944 DOI: 10.3390/ph17040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock protein 90 (HSP90) is a critical target for anticancer and anti-fungal-infection therapies due to its central role as a molecular chaperone involved in protein folding and activation. In this study, we developed in vitro Förster Resonance Energy Transfer (FRET) assays to characterize the binding of C. albicans HSP90 to its co-chaperone Sba1, as well as that of the homologous human HSP90α to p23. The assay for human HSP90α binding to p23 enables selectivity assessment for compounds aimed to inhibit the binding of C. albicans HSP90 to Sba1 without affecting the physiological activity of human HSP90α. The combination of the two assays is important for antifungal drug development, while the assay for human HSP90α can potentially be used on its own for anticancer drug discovery. Since ATP binding of HSP90 is a prerequisite for HSP90-Sba1/p23 binding, ATP-competitive inhibitors can be identified with the assays. The specificity of binding of fusion protein constructs-HSP90-mNeonGreen (donor) and Sba1-mScarlet-I (acceptor)-to each other in our assay was confirmed via competitive inhibition by both non-labeled Sba1 and known ATP-competitive inhibitors. We utilized the developed assays to characterize the stability of both HSP90-Sba1 and HSP90α-p23 affinity complexes quantitatively. Kd values were determined and assessed for their precision and accuracy using the 95.5% confidence level. For HSP90-Sba1, the precision confidence interval (PCI) was found to be 70-120 (100 ± 20) nM while the accuracy confidence interval (ACI) was 100-130 nM. For HSP90α-p23, PCI was 180-260 (220 ± 40) nM and ACI was 200-270 nM. The developed assays were used to screen a nucleoside-mimetics library of 320 compounds for inhibitory activity against both C. albicans HSP90-Sba1 and human HSP90α-p23 binding. No novel active compounds were identified. Overall, the developed assays exhibited low data variability and robust signal separation, achieving Z factors > 0.5.
Collapse
Affiliation(s)
- Philip Kohlmann
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, 48149 Münster, Germany;
| | - Sergey N. Krylov
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada;
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France;
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, 48149 Münster, Germany;
| |
Collapse
|
3
|
Premji TP, Dash BS, Das S, Chen JP. Functionalized Nanomaterials for Inhibiting ATP-Dependent Heat Shock Proteins in Cancer Photothermal/Photodynamic Therapy and Combination Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:112. [PMID: 38202567 PMCID: PMC10780407 DOI: 10.3390/nano14010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Phototherapies induced by photoactive nanomaterials have inspired and accentuated the importance of nanomedicine in cancer therapy in recent years. During these light-activated cancer therapies, a nanoagent can produce heat and cytotoxic reactive oxygen species by absorption of light energy for photothermal therapy (PTT) and photodynamic therapy (PDT). However, PTT is limited by the self-protective nature of cells, with upregulated production of heat shock proteins (HSP) under mild hyperthermia, which also influences PDT. To reduce HSP production in cancer cells and to enhance PTT/PDT, small HSP inhibitors that can competitively bind at the ATP-binding site of an HSP could be employed. Alternatively, reducing intracellular glucose concentration can also decrease ATP production from the metabolic pathways and downregulate HSP production from glucose deprivation. Other than reversing the thermal resistance of cancer cells for mild-temperature PTT, an HSP inhibitor can also be integrated into functionalized nanomaterials to alleviate tumor hypoxia and enhance the efficacy of PDT. Furthermore, the co-delivery of a small-molecule drug for direct HSP inhibition and a chemotherapeutic drug can integrate enhanced PTT/PDT with chemotherapy (CT). On the other hand, delivering a glucose-deprivation agent like glucose oxidase (GOx) can indirectly inhibit HSP and boost the efficacy of PTT/PDT while combining these therapies with cancer starvation therapy (ST). In this review, we intend to discuss different nanomaterial-based approaches that can inhibit HSP production via ATP regulation and their uses in PTT/PDT and cancer combination therapy such as CT and ST.
Collapse
Affiliation(s)
- Thejas P. Premji
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
4
|
Mangla N, Singh R, Agarwal N. HtpG Is a Metal-Dependent Chaperone Which Assists the DnaK/DnaJ/GrpE Chaperone System of Mycobacterium tuberculosis via Direct Association with DnaJ2. Microbiol Spectr 2023; 11:e0031223. [PMID: 37022172 PMCID: PMC10269695 DOI: 10.1128/spectrum.00312-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Protein folding is a crucial process in maintaining protein homeostasis, also known as proteostasis, in the cell. The requirement for the assistance of molecular chaperones in the appropriate folding of several proteins has already called into question the previously held view of spontaneous protein folding. These chaperones are highly ubiquitous cellular proteins, which not only help in mediating the proper folding of other nascent polypeptides but are also involved in refolding of the misfolded or the aggregated proteins. Hsp90 family proteins such as high-temperature protein G (HtpG) are abundant and ubiquitously expressed in both eukaryotic and prokaryotic cells. Although HtpG is known as an ATP-dependent chaperone protein in most organisms, function of this protein remains obscured in mycobacterial pathogens. Here, we aim to investigate significance of HtpG as a chaperone in the physiology of Mycobacterium tuberculosis. We report that M. tuberculosis HtpG (mHtpG) is a metal-dependent ATPase which exhibits chaperonin activity towards denatured proteins in coordination with the DnaK/DnaJ/GrpE chaperone system via direct association with DnaJ2. Increased expression of DnaJ1, DnaJ2, ClpX, and ClpC1 in a ΔhtpG mutant strain further suggests cooperativity of mHtpG with various chaperones and proteostasis machinery in M. tuberculosis. IMPORTANCE M. tuberculosis is exposed to variety of extracellular stressful conditions and has evolved mechanisms to endure and adapt to the adverse conditions for survival. mHtpG, despite being dispensable for M. tuberculosis growth under in vitro conditions, exhibits a strong and direct association with DnaJ2 cochaperone and assists the mycobacterial DnaK/DnaJ/GrpE (KJE) chaperone system. These findings suggest the potential role of mHtpG in stress management of the pathogen. Mycobacterial chaperones are responsible for folding of nascent protein as well as reactivation of protein aggregates. M. tuberculosis shows differential adaptive response subject to the availability of mHtpG. While its presence facilitates improved protein refolding via stimulation of the KJE chaperone activity, in the absence of mHtpG, M. tuberculosis enhances expression of DnaJ1/J2 cochaperones as well as Clp protease machinery for maintenance of proteostasis. Overall, this study provides a framework for future investigation to better decipher the mycobacterial proteostasis network in the light of stress adaptability and/or survival.
Collapse
Affiliation(s)
- Nikita Mangla
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
5
|
Reidy M, Garzillo K, Masison DC. Nucleotide exchange is sufficient for Hsp90 functions in vivo. Nat Commun 2023; 14:2489. [PMID: 37120429 PMCID: PMC10148809 DOI: 10.1038/s41467-023-38230-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Hsp90 is an essential eukaryotic chaperone that regulates the activity of many client proteins. Current models of Hsp90 function, which include many conformational rearrangements, specify a requirement of ATP hydrolysis. Here we confirm earlier findings that the Hsp82-E33A mutant, which binds ATP but does not hydrolyze it, supports viability of S. cerevisiae, although it displays conditional phenotypes. We find binding of ATP to Hsp82-E33A induces the conformational dynamics needed for Hsp90 function. Hsp90 orthologs with the analogous EA mutation from several eukaryotic species, including humans and disease organisms, support viability of both S. cerevisiae and Sz. pombe. We identify second-site suppressors of EA that rescue its conditional defects and allow EA versions of all Hsp90 orthologs tested to support nearly normal growth of both organisms, without restoring ATP hydrolysis. Thus, the requirement of ATP for Hsp90 to maintain viability of evolutionarily distant eukaryotic organisms does not appear to depend on energy from ATP hydrolysis. Our findings support earlier suggestions that exchange of ATP for ADP is critical for Hsp90 function. ATP hydrolysis is not necessary for this exchange but provides an important control point in the cycle responsive to regulation by co-chaperones.
Collapse
Affiliation(s)
- Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0830, USA.
| | - Kevin Garzillo
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0830, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| | - Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0830, USA
| |
Collapse
|
6
|
Chowdhury SR, Koley T, Singh M, Samath EA, Kaur P. Association of Hsp90 with p53 and Fizzy related homolog (Fzr) synchronizing Anaphase Promoting Complex (APC/C): An unexplored ally towards oncogenic pathway. Biochim Biophys Acta Rev Cancer 2023; 1878:188883. [PMID: 36972769 DOI: 10.1016/j.bbcan.2023.188883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.
Collapse
Affiliation(s)
- Sanghati Roy Chowdhury
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tirthankar Koley
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
7
|
Sager RA, Backe SJ, Neckers L, Woodford MR, Mollapour M. Detecting Posttranslational Modifications of Hsp90 Isoforms. Methods Mol Biol 2023; 2693:125-139. [PMID: 37540432 PMCID: PMC10518168 DOI: 10.1007/978-1-0716-3342-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is essential in eukaryotes. Hsp90 chaperones proteins that are important determinants of multistep carcinogenesis. There are multiple Hsp90 isoforms including the cytosolic Hsp90α and Hsp90β as well as GRP94 located in the endoplasmic reticulum and TRAP1 in the mitochondria. The chaperone function of Hsp90 is linked to its ability to bind and hydrolyze ATP. Co-chaperones and posttranslational modifications (such as phosphorylation, SUMOylation, and ubiquitination) are important for Hsp90 stability and regulation of its ATPase activity. Both mammalian and yeast cells can be used to express and purify Hsp90 and TRAP1 and also detect post-translational modifications by immunoblotting.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
8
|
Donahue K, Xie H, Li M, Gao A, Ma M, Wang Y, Tipton R, Semanik N, Primeau T, Li S, Li L, Tang W, Xu W. Diptoindonesin G is a middle domain HSP90 modulator for cancer treatment. J Biol Chem 2022; 298:102700. [PMID: 36395883 PMCID: PMC9771721 DOI: 10.1016/j.jbc.2022.102700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
HSP90 inhibitors can target many oncoproteins simultaneously, but none have made it through clinical trials due to dose-limiting toxicity and induction of heat shock response, leading to clinical resistance. We identified diptoindonesin G (dip G) as an HSP90 modulator that can promote degradation of HSP90 clients by binding to the middle domain of HSP90 (Kd = 0.13 ± 0.02 μM) without inducing heat shock response. This is likely because dip G does not interfere with the HSP90-HSF1 interaction like N-terminal inhibitors, maintaining HSF1 in a transcriptionally silent state. We found that binding of dip G to HSP90 promotes degradation of HSP90 client protein estrogen receptor α (ER), a major oncogenic driver protein in most breast cancers. Mutations in the ER ligand-binding domain (LBD) are an established mechanism of endocrine resistance and decrease the binding affinity of mainstay endocrine therapies targeting ER, reducing their ability to promote ER degradation or transcriptionally silence ER. Because dip G binds to HSP90 and does not bind to the LBD of ER, unlike endocrine therapies, it is insensitive to ER LBD mutations that drive endocrine resistance. Additionally, we determined that dip G promoted degradation of WT and mutant ER with similar efficacy, downregulated ER- and mutant ER-regulated gene expression, and inhibited WT and mutant cell proliferation. Our data suggest that dip G is not only a molecular probe to study HSP90 biology and the HSP90 conformation cycle, but also a new therapeutic avenue for various cancers, particularly endocrine-resistant breast cancer harboring ER LBD mutations.
Collapse
Affiliation(s)
- Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Haibo Xie
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Miyang Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ang Gao
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rose Tipton
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Nicole Semanik
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Tina Primeau
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Shunqiang Li
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA,For correspondence: Wei Xu; Weiping Tang
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA,For correspondence: Wei Xu; Weiping Tang
| |
Collapse
|
9
|
Abstract
Sir2 protein of Plasmodium falciparum has been implicated to play crucial roles in the silencing of subtelomeric var genes and rRNA. It is also involved in telomere length maintenance. Epigenetic regulation of PfSIR2 transcription occurs through a direct participation of the molecular chaperon PfHsp90, wherein PfHsp90 acts as a transcriptional repressor. However, whether the chaperonic activity of PfHsp90 is essential for the maturation and stability of PfSir2A protein has not yet been explored. Here, we show that PfSir2A protein is a direct client of PfHsp90. We demonstrate that PfHsp90 physically interacts with PfSir2A, and the inhibition of PfHsp90 activity via chemical inhibitors, such as 17-AAG or Radicicol, results in the depletion of PfSir2A protein, and consequently its histone deacetylase activity. Thus, derepression of var genes and ribosomal silencing were observed under PfHsp90 inactivation. This finding that PfHsp90 provides stability to PfSir2A protein, in addition to the previous finding that PfHsp90 downregulates PfSIR2A transcription and subsequently cellular abundance, uncovers the multifaceted roles of PfHsp90 in regulating PfSir2 abundance and activity. Given the importance of PfSir2 protein in Plasmodium biology, it is reasonable to propose that the PfHsp90-PfSir2 axis can be exploited as a novel druggable target. IMPORTANCE Malaria continues to severely impact the global public health not only due to the mortality and morbidity associated with it, but also because of the huge burden on the world economy it imparts. Despite the intensive vaccine-research and drug-development programs, there is not a single effective vaccine suitable for all age groups, and there is no drug on the market against which resistance is not developed. Thus, there is an urgent need to develop novel intervention strategies by identifying the crucial targets from Plasmodium biology. Here, we uncover that the molecular chaperone PfHsp90 regulates the abundance and activity of the histone-deacetylase PfSir2, a prominent regulator of Plasmodium epigenome. Given that PfSir2 controls both virulence and multiplicity of the parasite, and that PfHsp90 is an essential chaperone involved in diverse cellular processes, our findings argue that the PfHsp90-PfSir2 axis could be targeted to curb malaria.
Collapse
|
10
|
Peng S, Woodruff J, Pathak PK, Matts RL, Deng J. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target. Acta Crystallogr D Struct Biol 2022; 78:571-585. [PMID: 35503206 PMCID: PMC9063849 DOI: 10.1107/s2059798322002261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/26/2022] [Indexed: 12/01/2022] Open
Abstract
The 90 kDa heat-shock protein (Hsp90) is an abundant molecular chaperone that is essential to activate, stabilize and regulate the function of a plethora of client proteins. As drug targets for the treatment of cancer and neurodegenerative diseases, Hsp90 inhibitors that bind to the N-terminal ATP-binding site of Hsp90 have shown disappointing efficacy in clinical trials. Thus, allosteric regulation of the function of Hsp90 by compounds that interact with its middle and C-terminal (MC) domains is now being pursued as a mechanism to inhibit the ATPase activity and client protein-binding activity of Hsp90 without concomitant induction of the heat-shock response. Here, the crystal structure of the Hsp90αMC protein covalently linked to a coumarin derivative, MDCC {7-diethylamino-3-[N-(2-maleimidoethyl)carbamoyl]coumarin}, which is located in a hydrophobic pocket that is formed at the Hsp90αMC hexamer interface, is reported. MDCC binding leads to the hexamerization of Hsp90, and the stabilization and conformational changes of three loops that are critical for its function. A fluorescence competition assay demonstrated that other characterized coumarin and isoflavone-containing Hsp90 inhibitors compete with MDCC binding, suggesting that they could bind at a common site or that they might allosterically alter the structure of the MDCC binding site. This study provides insights into the mechanism by which the coumarin class of allosteric inhibitors potentially disrupt the function of Hsp90 by regulating its oligomerization and the burial of interaction sites involved in the ATP-dependent folding of Hsp90 clients. The hydrophobic binding pocket characterized here will provide new structural information for future drug design.
Collapse
Affiliation(s)
- Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Jeff Woodruff
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Prabhat Kumar Pathak
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Robert L. Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| |
Collapse
|
11
|
Birbo B, Madu EE, Madu CO, Jain A, Lu Y. Role of HSP90 in Cancer. Int J Mol Sci 2021; 22:ijms221910317. [PMID: 34638658 PMCID: PMC8508648 DOI: 10.3390/ijms221910317] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
HSP90 is a vital chaperone protein conserved across all organisms. As a chaperone protein, it correctly folds client proteins. Structurally, this protein is a dimer with monomer subunits that consist of three main conserved domains known as the N-terminal domain, middle domain, and the C-terminal domain. Multiple isoforms of HSP90 exist, and these isoforms share high homology. These isoforms are present both within the cell and outside the cell. Isoforms HSP90α and HSP90β are present in the cytoplasm; TRAP1 is present in the mitochondria; and GRP94 is present in the endoplasmic reticulum and is likely secreted due to post-translational modifications (PTM). HSP90 is also secreted into an extracellular environment via an exosome pathway that differs from the classic secretion pathway. Various co-chaperones are necessary for HSP90 to function. Elevated levels of HSP90 have been observed in patients with cancer. Despite this observation, the possible role of HSP90 in cancer was overlooked because the chaperone was also present in extreme amounts in normal cells and was vital to normal cell function, as observed when the drastic adverse effects resulting from gene knockout inhibited the production of this protein. Differences between normal HSP90 and HSP90 of the tumor phenotype have been better understood and have aided in making the chaperone protein a target for cancer drugs. One difference is in the conformation: HSP90 of the tumor phenotype is more susceptible to inhibitors. Since overexpression of HSP90 is a factor in tumorigenesis, HSP90 inhibitors have been studied to combat the adverse effects of HSP90 overexpression. Monotherapies using HSP90 inhibitors have shown some success; however, combination therapies have shown better results and are thus being studied for a more effective cancer treatment.
Collapse
Affiliation(s)
- Bereket Birbo
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Elechi E. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Chikezie O. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Aayush Jain
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Yi Lu
- Health Science Center, Department of Pathology and Laboratory Medicine, University of Tennessee, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-(901)-448-5436; Fax: +1-(901)-448-5496
| |
Collapse
|
12
|
Tabassum W, Singh P, Suthram N, Bhattacharyya S, Bhattacharyya MK. Synergistic Action between PfHsp90 Inhibitor and PfRad51 Inhibitor Induces Elevated DNA Damage Sensitivity in the Malaria Parasite. Antimicrob Agents Chemother 2021; 65:e0045721. [PMID: 34097485 PMCID: PMC8370194 DOI: 10.1128/aac.00457-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
The DNA recombinase Rad51 from the human malaria parasite Plasmodium falciparum has emerged as a potential drug target due to its central role in the homologous recombination (HR)-mediated double-strand break (DSB) repair pathway. Inhibition of the ATPase and strand exchange activity of P. falciparum Rad51 (PfRad51) by a small-molecule inhibitor, B02 [3-(phenylmethyl)-2-[(1E)-2-(3-pyridinyl)ethenyl]-4(3H)-quinazolinone], renders the parasite more sensitive to genotoxic agents. Here, we investigated whether the inhibition of the molecular chaperone PfHsp90 potentiates the antimalarial action of B02. We found that the PfHsp90 inhibitor 17-AAG [17-(allylamino)-17-demethoxygeldanamycin] exhibits strong synergism with B02 in both drug-sensitive (strain 3D7) and multidrug-resistant (strain Dd2) P. falciparum parasites. 17-AAG causes a greater than 200-fold decrease in the half-maximal inhibitory concentration (IC50) of B02 in 3D7 parasites. Our results provide mechanistic insights into such profound synergism between 17-AAG and B02. We report that PfHsp90 physically interacts with PfRad51 and promotes the UV irradiation-induced DNA repair activity of PfRad51 by controlling its stability. We find that 17-AAG reduces PfRad51 protein levels by accelerating proteasomal degradation. Consequently, PfHsp90 inhibition renders the parasites more susceptible to the potent DNA-damaging agent methyl methanesulfonate (MMS) in a dose-dependent manner. Thus, our study provides a rationale for targeting PfHsp90 along with the recombinase PfRad51 for controlling malaria propagation.
Collapse
Affiliation(s)
- Wahida Tabassum
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Priyanka Singh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Niranjan Suthram
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sunanda Bhattacharyya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
13
|
Heat Shock Proteins as the Druggable Targets in Leishmaniasis: Promises and Perils. Infect Immun 2021; 89:IAI.00559-20. [PMID: 33139381 DOI: 10.1128/iai.00559-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmania, the causative agent of leishmaniasis, is an intracellular pathogen that thrives in the insect gut and mammalian macrophages to complete its life cycle. Apart from temperature difference (26 to 37°C), it encounters several harsh conditions, including oxidative stress, inflammatory reactions, and low pH. Heat shock proteins (HSPs) play essential roles in cell survival by strategically reprogramming cellular processes and signaling pathways. HSPs assist cells in multiple functions, including differentiation, adaptation, virulence, and persistence in the host cell. Due to cyclical epidemiological patterns, limited chemotherapeutic options, drug resistance, and the absence of a vaccine, control of leishmaniasis remains a far-fetched dream. The essential roles of HSPs in parasitic differentiation and virulence and increased expression in drug-resistant strains highlight their importance in combating the disease. In this review, we highlighted the diverse physiological importance of HSPs present in Leishmania, emphasizing their significance in disease pathogenesis. Subsequently, we assessed the potential of HSPs as a chemotherapeutic target and underlined the challenges associated with it. Furthermore, we have summarized a few ongoing drug discovery initiatives that need to be explored further to develop clinically successful chemotherapeutic agents in the future.
Collapse
|
14
|
Raghunathan V, Edwards SG, Leonard BC, Kim S, Evashenk AT, Song Y, Rewinski E, Marangakis Price A, Hoehn A, Chang C, Reilly CM, Muppala S, Murphy CJ, Thomasy SM. Differential effects of Hsp90 inhibition on corneal cells in vitro and in vivo. Exp Eye Res 2020; 202:108362. [PMID: 33220237 DOI: 10.1016/j.exer.2020.108362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 10/23/2022]
Abstract
The transformation of quiescent keratocytes to activated fibroblasts and myofibroblasts (KFM transformation) largely depends on transforming growth factor beta (TGFβ) signaling. Initiation of the TGFβ signaling cascade results from binding of TGFβ to the labile type I TGFβ receptor (TGFβRI), which is stabilized by the 90 kDa heat shock protein (Hsp90). Since myofibroblast persistence within the corneal stroma can result in stromal haze and corneal fibrosis in patients undergoing keratorefractive therapy, modulation of TGFβ signaling through Hsp90 inhibition would represent a novel approach to prevent myofibroblast persistence. In vitro, rabbit corneal fibroblasts (RCFs) or stratified immortalized human corneal epithelial cells (hTCEpi) were treated with a Hsp90 inhibitor (17AAG) in the presence/absence of TGFβ1. RCFs were cultured either on tissue culture plastic, anisotropically patterned substrates, and hydrogels of varying stiffness. Cellular responses to both cytoactive and variable substrates were assessed by morphologic changes to the cells, and alterations in expression patterns of key keratocyte and myofibroblast proteins using PCR, Western blotting and immunocytochemistry. Transepithelial electrical resistance (TEER) measurements were performed to establish epithelial barrier integrity. In vivo, the corneas of New Zealand White rabbits were wounded by phototherapeutic keratectomy (PTK) and treated with 17AAG (3× or 6× daily) either immediately or 7 days after wounding for 28 days. Rabbits underwent clinical ophthalmic examinations, SPOTS scoring and advanced imaging on days 0, 1, 3, 7, 10, 14, 21 and 28. On day 28, rabbits were euthanized and histopathology/immunohistochemistry was performed. In vitro data demonstrated that 17AAG inhibited KFM transformation with the de-differentiation of spindle shaped myofibroblasts to dendritic keratocyte-like cells accompanied by significant upregulation of corneal crystallins and suppression of myofibroblast markers regardless of TGFβ1 treatment. RCFs cultured on soft hydrogels or patterned substrates exhibited elevated expression of α-smooth muscle actin (αSMA) in the presence of 17AAG. Treatment of hTCEpi cells disrupted zonula occludens 1 (ZO-1) adherens junction formation. In vivo, there were no differences detected in nearly all clinical parameters assessed between treatment groups. However, rabbits treated with 17AAG developed greater stromal haze formation compared with controls, irrespective of frequency of administration. Lastly, there was increased αSMA positive myofibroblasts in the stroma of 17AAG treated animals when compared with controls. Hsp90 inhibition promoted reversion of the myofibroblast to keratocyte phenotype, although this only occurred on rigid substrates. By contrast, in vivo Hsp90 inhibition was detrimental to corneal wound healing likely due to impairment in corneal epithelial closure and barrier function restoration. Collectively, our data demonstrated a strong interplay in vitro between biophysical cues and soluble signaling molecules in determining corneal stromal cell phenotype.
Collapse
Affiliation(s)
- VijayKrishna Raghunathan
- Department of Basic Sciences, United States; The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, United States.
| | - Sydney Garrison Edwards
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Alexander T Evashenk
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Yeonju Song
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Eva Rewinski
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Ariana Marangakis Price
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Alyssa Hoehn
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Connor Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Christopher M Reilly
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Santoshi Muppala
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States; Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States; Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States.
| |
Collapse
|
15
|
Fei Y, Han M, Chu X, Feng Z, Yu L, Luo Y, Lu L, Xu D. Transcriptomic and proteomic analyses reveal new insights into the regulation of immune pathways during cyprinid herpesvirus 2 infection in vitro. FISH & SHELLFISH IMMUNOLOGY 2020; 106:167-180. [PMID: 32717324 DOI: 10.1016/j.fsi.2020.07.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/17/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Carassius auratus gibelio is susceptible to the herpesviral hematopoietic necrosis (HVHN) disease caused by cyprinid herpesvirus 2 (CyHV-2) infection during the breeding process. Nevertheless, the report on biological response of CyHV-2 with C. auratus gibelio was limited, especially in vitro. In this study, host gene expression profiling was mostly analyzed in caudal fin cells of Carassius auratus gibelio (GiCF) underlying CyHV-2 infection. Transcriptomics and proteomics were employed to study the differential expression gene and revealed the host genes involved in pathway during the CyHV-2 infection. Transcriptome analysis revealed that compared with the control group, there were 11 335 and 19 421 differentially expressed unigenes at 48 h and at 96 h, respectively. Furthermore, proteome analysis showed that there were a total of 9008 proteins, among which 169 proteins were differential expression in the 48 h group and 502 proteins in the 96 h group. Notably, 10 and 158 differentially co-expressed genes at mRNA and protein levels (cDEGs) were reliably quantified at 48 h and 96 h, respectively. Interestingly, significantly different expressed genes both in the transcriptome and the proteome were identified, including GNG7, Hsp90a, THBS1 and RRM2. The result suggested that PI3k-AKT pathway was activated, but the p53 signaling pathway was suppressed. The above result will lay the foundation for understanding the mechanisms of host defense virus invasion during CyHV-2 infection.
Collapse
Affiliation(s)
- Yueyue Fei
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Minzhen Han
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Xin Chu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Zizhao Feng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Lu Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Yang Luo
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, PR China.
| |
Collapse
|
16
|
Sato A, Hiramoto A, Kim HS, Wataya Y. Anticancer Strategy Targeting Cell Death Regulators: Switching the Mechanism of Anticancer Floxuridine-Induced Cell Death from Necrosis to Apoptosis. Int J Mol Sci 2020; 21:ijms21165876. [PMID: 32824286 PMCID: PMC7461588 DOI: 10.3390/ijms21165876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 01/14/2023] Open
Abstract
Cell death can be broadly characterized as either necrosis or apoptosis, depending on the morphological and biochemical features of the cell itself. We have previously reported that the treatment of mouse mammary carcinoma FM3A cells with the anticancer drug floxuridine (FUdR) induces necrosis in the original clone F28-7 but apoptosis in the variant F28-7-A. We have identified regulators, including heat shock protein 90, lamin-B1, cytokeratin-19, and activating transcription factor 3, of cell death mechanisms by using comprehensive gene and protein expression analyses and a phenotype-screening approach. We also observed that the individual inhibition or knockdown of the identified regulators in F28-7 results in a shift from necrotic to apoptotic morphology. Furthermore, we investigated microRNA (miRNA, miR) expression profiles in sister cell strains F28-7 and F28-7-A using miRNA microarray analyses. We found that several unique miRNAs, miR-351-5p and miR-743a-3p, were expressed at higher levels in F28-7-A than in F28-7. Higher expression of these miRNAs in F28-7 induced by transfecting miR mimics resulted in a switch in the mode of cell death from necrosis to apoptosis. Our findings suggest that the identified cell death regulators may play key roles in the decision of cell death mechanism: necrosis or apoptosis.
Collapse
Affiliation(s)
- Akira Sato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Correspondence: ; Tel.: +81-4-7121-3620
| | - Akiko Hiramoto
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; (A.H.); (H.-S.K.); (Y.W.)
| | - Hye-Sook Kim
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; (A.H.); (H.-S.K.); (Y.W.)
| | - Yusuke Wataya
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; (A.H.); (H.-S.K.); (Y.W.)
| |
Collapse
|
17
|
Glucocorticoid receptor complexes form cooperatively with the Hsp90 co-chaperones Pp5 and FKBPs. Sci Rep 2020; 10:10733. [PMID: 32612187 PMCID: PMC7329908 DOI: 10.1038/s41598-020-67645-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/29/2020] [Indexed: 01/24/2023] Open
Abstract
The function of steroid receptors in the cell depends on the chaperone machinery of Hsp90, as Hsp90 primes steroid receptors for hormone binding and transcriptional activation. Several conserved proteins are known to additionally participate in receptor chaperone assemblies, but the regulation of the process is not understood in detail. Also, it is unknown to what extent the contribution of these cofactors is conserved in other eukaryotes. We here examine the reconstituted C. elegans and human chaperone assemblies. We find that the nematode phosphatase PPH-5 and the prolyl isomerase FKB-6 facilitate the formation of glucocorticoid receptor (GR) complexes with Hsp90. Within these complexes, Hsp90 can perform its closing reaction more efficiently. By combining chemical crosslinking and mass spectrometry, we define contact sites within these assemblies. Compared to the nematode Hsp90 system, the human system shows less cooperative client interaction and a stricter requirement for the co-chaperone p23 to complete the closing reaction of GR·Hsp90·Pp5/Fkbp51/Fkbp52 complexes. In both systems, hormone binding to GR is accelerated by Hsp90 alone and in the presence of its cofactors. Our results show that cooperative complex formation and hormone binding patterns are, in many aspects, conserved between the nematode and human systems.
Collapse
|
18
|
Mycoplasma bovis Membrane Protein MilA Is a Multifunctional Lipase with Novel Lipid and Glycosaminoglycan Binding Activity. Infect Immun 2020; 88:IAI.00945-19. [PMID: 32253247 DOI: 10.1128/iai.00945-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The survival, replication, and virulence of mycoplasmas depend on their ability to capture and import host-derived nutrients using poorly characterized membrane proteins. Previous studies on the important bovine pathogen Mycoplasma bovis demonstrated that the amino-terminal end of an immunogenic 226-kDa (P226) protein, encoded by milA (the full-length product of which has a predicted molecular weight of 303 kDa), had lipase activity. The predicted sequence of MilA contains glycosaminoglycan binding motifs, as well as multiple copies of a domain of unknown function (DUF445) that is also found in apolipoproteins. We mutagenized the gene to facilitate expression of a series of regions spanning the gene in Escherichia coli Using monospecific antibodies against these recombinant proteins, we showed that MilA was proteolytically processed into 226-kDa and 50-kDa fragments that were both partitioned into the detergent phase by Triton X-114 phase fractionation. Trypsin treatment of intact cells showed that P226 was surface exposed. In vitro, the recombinant regions of MilA bound to 1-anilinonaphthalene-8-sulfonic acid and to a variety of lipids. The MilA fragments were also shown to bind heparin. Antibody against the carboxyl-terminal fragment inhibited the growth of M. bovis in vitro This carboxyl end also bound and hydrolyzed ATP, suggestive of a potential role as an autotransporter. Our studies have demonstrated that DUF445 has lipid binding activity and that MilA is a multifunctional protein that may play multiple roles in the pathogenesis of infection with M. bovis.
Collapse
|
19
|
Mader SL, Lopez A, Lawatscheck J, Luo Q, Rutz DA, Gamiz-Hernandez AP, Sattler M, Buchner J, Kaila VRI. Conformational dynamics modulate the catalytic activity of the molecular chaperone Hsp90. Nat Commun 2020; 11:1410. [PMID: 32179743 PMCID: PMC7075974 DOI: 10.1038/s41467-020-15050-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/16/2020] [Indexed: 12/31/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is a molecular chaperone that employs the free energy of ATP hydrolysis to control the folding and activation of several client proteins in the eukaryotic cell. To elucidate how the local ATPase reaction in the active site couples to the global conformational dynamics of Hsp90, we integrate here large-scale molecular simulations with biophysical experiments. We show that the conformational switching of conserved ion pairs between the N-terminal domain, harbouring the active site, and the middle domain strongly modulates the catalytic barrier of the ATP-hydrolysis reaction by electrostatic forces. Our combined findings provide a mechanistic model for the coupling between catalysis and protein dynamics in Hsp90, and show how long-range coupling effects can modulate enzymatic activity. The chaperone Hsp90 uses the free energy from ATP hydrolysis to control the folding of client proteins in eukaryotic cells. Here the authors provide mechanistic insights into how its catalytic activity is coupled to conformational changes by combining large-scale molecular simulations with NMR, FRET and SAXS experiments.
Collapse
Affiliation(s)
- Sophie L Mader
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany
| | - Abraham Lopez
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Jannis Lawatscheck
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany
| | - Qi Luo
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany.,Soft Matter Research Center and Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Daniel A Rutz
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany
| | - Ana P Gamiz-Hernandez
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany.,Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Michael Sattler
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany
| | - Ville R I Kaila
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany. .,Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| |
Collapse
|
20
|
Joshi A, Dai L, Liu Y, Lee J, Ghahhari NM, Segala G, Beebe K, Jenkins LM, Lyons GC, Bernasconi L, Tsai FTF, Agard DA, Neckers L, Picard D. The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis. BMC Biol 2020; 18:10. [PMID: 31987035 PMCID: PMC6986101 DOI: 10.1186/s12915-020-0740-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023] Open
Abstract
Background The molecular chaperone TRAP1, the mitochondrial isoform of cytosolic HSP90, remains poorly understood with respect to its pivotal role in the regulation of mitochondrial metabolism. Most studies have found it to be an inhibitor of mitochondrial oxidative phosphorylation (OXPHOS) and an inducer of the Warburg phenotype of cancer cells. However, others have reported the opposite, and there is no consensus on the relevant TRAP1 interactors. This calls for a more comprehensive analysis of the TRAP1 interactome and of how TRAP1 and mitochondrial metabolism mutually affect each other. Results We show that the disruption of the gene for TRAP1 in a panel of cell lines dysregulates OXPHOS by a metabolic rewiring that induces the anaplerotic utilization of glutamine metabolism to replenish TCA cycle intermediates. Restoration of wild-type levels of OXPHOS requires full-length TRAP1. Whereas the TRAP1 ATPase activity is dispensable for this function, it modulates the interactions of TRAP1 with various mitochondrial proteins. Quantitatively by far, the major interactors of TRAP1 are the mitochondrial chaperones mtHSP70 and HSP60. However, we find that the most stable stoichiometric TRAP1 complex is a TRAP1 tetramer, whose levels change in response to both a decline and an increase in OXPHOS. Conclusions Our work provides a roadmap for further investigations of how TRAP1 and its interactors such as the ATP synthase regulate cellular energy metabolism. Our results highlight that TRAP1 function in metabolism and cancer cannot be understood without a focus on TRAP1 tetramers as potentially the most relevant functional entity.
Collapse
Affiliation(s)
- Abhinav Joshi
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.,Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Li Dai
- Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Yanxin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - Jungsoon Lee
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Present address: Department of Pediatrics, Tropical Medicine, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nastaran Mohammadi Ghahhari
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Gregory Segala
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Gaelyn C Lyons
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Lilia Bernasconi
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Francis T F Tsai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
21
|
Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1. Nat Commun 2019; 10:2574. [PMID: 31189925 PMCID: PMC6561935 DOI: 10.1038/s41467-019-10463-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/09/2019] [Indexed: 11/09/2022] Open
Abstract
Complex conformational dynamics are essential for function of the dimeric molecular chaperone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimerization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90.
Collapse
|
22
|
Baker JD, Ozsan I, Rodriguez Ospina S, Gulick D, Blair LJ. Hsp90 Heterocomplexes Regulate Steroid Hormone Receptors: From Stress Response to Psychiatric Disease. Int J Mol Sci 2018; 20:ijms20010079. [PMID: 30585227 PMCID: PMC6337637 DOI: 10.3390/ijms20010079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/30/2023] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis directly controls the stress response. Dysregulation of this neuroendocrine system is a common feature among psychiatric disorders. Steroid hormone receptors, like glucocorticoid receptor (GR), function as transcription factors of a diverse set of genes upon activation. This activity is regulated by molecular chaperone heterocomplexes. Much is known about the structure and function of these GR/heterocomplexes. There is strong evidence suggesting altered regulation of steroid receptor hormones by chaperones, particularly the 51 kDa FK506-binding protein (FKBP51), may work with environmental factors to increase susceptibility to various psychiatric illnesses including post-traumatic stress disorder (PTSD), major depressive disorder (MDD), and anxiety. This review highlights the regulation of steroid receptor dynamics by the 90kDa heat shock protein (Hsp90)/cochaperone heterocomplexes with an in depth look at how the structural regulation and imbalances in cochaperones can cause functional effects on GR activity. Links between the stress response and circadian systems and the development of novel chaperone-targeting therapeutics are also discussed.
Collapse
Affiliation(s)
- Jeremy D Baker
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| | - Ilayda Ozsan
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| | - Santiago Rodriguez Ospina
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| | - Danielle Gulick
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| | - Laura J Blair
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| |
Collapse
|
23
|
Centenera MM, Selth LA, Ebrahimie E, Butler LM, Tilley WD. New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030478. [PMID: 29530945 PMCID: PMC6280715 DOI: 10.1101/cshperspect.a030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent genomic analyses of metastatic prostate cancer have provided important insight into adaptive changes in androgen receptor (AR) signaling that underpin resistance to androgen deprivation therapies. Novel strategies are required to circumvent these AR-mediated resistance mechanisms and thereby improve prostate cancer survival. In this review, we present a summary of AR structure and function and discuss mechanisms of AR-mediated therapy resistance that represent important areas of focus for the development of new therapies.
Collapse
Affiliation(s)
- Margaret M Centenera
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Luke A Selth
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Wayne D Tilley
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
24
|
Xi MD, Li P, Du H, Qiao XM, Liu ZG, Wei WQ. Geranylgeranylacetone induction of HSP90α exerts cryoprotective effect on Acipenser sinensis sperm. Anim Reprod Sci 2018; 193:19-25. [PMID: 29724523 DOI: 10.1016/j.anireprosci.2018.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Heat Shock Protein 90 (HSP90) is a fertility-associated protein, the expression of which positively correlates with sperm quality in many species. Geranylgeranylacetone (GGA) is reported to induce expression of HSP90. The present study aimed to investigate whether GGA induced expression of HSP90 in Acipenser sinensis sperm to exert a cryoprotective effect. Sperm from five male A. sinensis was combined with extender containing 20 mmol/L tris pH = 8.1, 10% v/v methanol, 2-5 mmol/L KCl, 15 mmol/L lactose, and 15 mmol/L trehalose, with GGA at 0, 14, 67, 135, 673, 1346, or 6731 μmol/L. After cryopreservation and thawing, the percentage of motile spermatozoa, spermatozoon curvilinear velocity (VCL), straight-line velocity (VSL), average path velocity (VAP), acrosome integrity, and membrane integrity, as well as fertility were evaluated. Sperm quality increased with the increase of GGA to 673 μmol/L, but decreased at higher concentrations. Expression levels of HSP90α were detected by Western blot in sperm frozen with GGA at 673 μmol/L (highest obtained sperm quality), 6731 μmol/L (highest GGA concentration), and a control without GGA. The expression of HSP90α increased with the increase in GGA, with lowest expression observed in the control. GGA was found to induce increase of HSP90α, and this increase was associated with higher quality cryopreserved sperm at concentrations ≤673 μmol/L. This research suggests a viable technique to increase the quality of cryopreserved A. sinensis sperm by adding GGA to induce expression of HSP90α.
Collapse
Affiliation(s)
- Meng Dan Xi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Science, Beijing 100049, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ping Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xin Mei Qiao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhi Gang Liu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wei Qi Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
25
|
Davenport J, Galam L, Matts RL. A High-Throughput Screen for Inhibitors of the Hsp90-Chaperone Machine. Methods Mol Biol 2018; 1709:87-96. [PMID: 29177653 DOI: 10.1007/978-1-4939-7477-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hsp90 has emerged as a key chemotherapeutic target for the development of drugs for the treatment of cancer and neurodegenerative diseases. The shortcomings of many of the Hsp90 inhibitors that have made it to clinical trials have bolstered the need to identify new lead compounds with superior properties. Here, we describe a high-throughput screen for the identification of Hsp90 inhibitors based on the refolding of thermally denatured firefly luciferase.
Collapse
Affiliation(s)
- Jason Davenport
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
- SensiQ Technologies, Inc., Oklahoma City, OK, 73104, USA
| | - Lakshmi Galam
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
- University of South Florida School of Medicine, Tampa, FL, 33612, USA
| | - Robert L Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
26
|
Abstract
The molecular chaperone Heat Shock Protein 90 (Hsp90) is essential in eukaryotes. Hsp90 chaperones proteins that are important determinants of multistep carcinogenesis. The chaperone function of Hsp90 is linked to its ability to bind and hydrolyze ATP. Co-chaperones as well as posttranslational modifications (phosphorylation, SUMOylation, and ubiquitination) are important for its stability and regulation of the ATPase activity. Both mammalian and yeast cells can be used to express and purify Hsp90 and also detect its posttranslational modifications by immunoblotting.
Collapse
|
27
|
Li T, Chen X, Dai XY, Wei B, Weng QJ, Chen X, Ouyang DF, Yan R, Huang ZJ, Jiang HL, Zhu H, Lu JJ. Novel Hsp90 inhibitor platycodin D disrupts Hsp90/Cdc37 complex and enhances the anticancer effect of mTOR inhibitor. Toxicol Appl Pharmacol 2017; 330:65-73. [DOI: 10.1016/j.taap.2017.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 02/02/2023]
|
28
|
Zuehlke AD, Reidy M, Lin C, LaPointe P, Alsomairy S, Lee DJ, Rivera-Marquez GM, Beebe K, Prince T, Lee S, Trepel JB, Xu W, Johnson J, Masison D, Neckers L. An Hsp90 co-chaperone protein in yeast is functionally replaced by site-specific posttranslational modification in humans. Nat Commun 2017; 8:15328. [PMID: 28537252 PMCID: PMC5458067 DOI: 10.1038/ncomms15328] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/21/2017] [Indexed: 01/03/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is an essential eukaryotic molecular chaperone. To properly chaperone its clientele, Hsp90 proceeds through an ATP-dependent conformational cycle influenced by posttranslational modifications (PTMs) and assisted by a number of co-chaperone proteins. Although Hsp90 conformational changes in solution have been well-studied, regulation of these complex dynamics in cells remains unclear. Phosphorylation of human Hsp90α at the highly conserved tyrosine 627 has previously been reported to reduce client interaction and Aha1 binding. Here we report that these effects are due to a long-range conformational impact inhibiting Hsp90α N-domain dimerization and involving a region of the middle domain/carboxy-terminal domain interface previously suggested to be a substrate binding site. Although Y627 is not phosphorylated in yeast, we demonstrate that the non-conserved yeast co-chaperone, Hch1, similarly affects yeast Hsp90 (Hsp82) conformation and function, raising the possibility that appearance of this PTM in higher eukaryotes represents an evolutionary substitution for HCH1.
Collapse
Affiliation(s)
- Abbey D Zuehlke
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Coney Lin
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Sarah Alsomairy
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - D Joshua Lee
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Genesis M Rivera-Marquez
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Kristin Beebe
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Thomas Prince
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Wanping Xu
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Jill Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, Idaho 83844, USA
| | - Daniel Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Len Neckers
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| |
Collapse
|
29
|
Mouradian M, Ma IV, Vicente ED, Kikawa KD, Pardini RS. Docosahexaenoic Acid-mediated Inhibition of Heat Shock Protein 90-p23 Chaperone Complex and Downstream Client Proteins in Lung and Breast Cancer. Nutr Cancer 2016; 69:92-104. [PMID: 27880046 DOI: 10.1080/01635581.2017.1247886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The molecular chaperone, heat shock protein 90 (Hsp90), is a critical regulator for the proper folding and stabilization of several client proteins, and is a major contributor to carcinogenesis. Specific Hsp90 inhibitors have been designed to target the ATP-binding site in order to prevent Hsp90 chaperone maturation. The current study investigated the effects of docosahexaenoic acid (DHA; C22:6 n-3) on Hsp90 function and downstream client protein expression. In vitro analyses of BT-474 human breast carcinoma and A549 human lung adenocarcinoma cell lines revealed dose-dependent decreases in intracellular ATP levels by DHA treatment, resulting in a significant reduction of Hsp90 and p23 association in both cell lines. Attenuation of the Hsp90-p23 complex led to the inhibition of Hsp90 client proteins, epidermal growth factor receptor 2 (ErbB2), and hypoxia-inducible factor 1α (HIF-1α). Similar results were observed when employing 2-deoxyglucose (2-DG), confirming that DHA and 2-DG, both independently and combined, can disturb Hsp90 molecular chaperone function. In vivo A549 xenograft analysis also demonstrated decreased expression levels of Hsp90-p23 association and diminished protein levels of ErbB2 and HIF-1α in mice supplemented with dietary DHA. These data support a role for dietary intervention to improve cancer therapy in tumors overexpressing Hsp90 and its client proteins.
Collapse
Affiliation(s)
- Michael Mouradian
- a Department of Biochemistry and Molecular Biology , University of Nevada , Reno , NV , USA
| | - Irvin V Ma
- a Department of Biochemistry and Molecular Biology , University of Nevada , Reno , NV , USA
| | - Erika D Vicente
- a Department of Biochemistry and Molecular Biology , University of Nevada , Reno , NV , USA
| | - Keith D Kikawa
- a Department of Biochemistry and Molecular Biology , University of Nevada , Reno , NV , USA
| | - Ronald S Pardini
- a Department of Biochemistry and Molecular Biology , University of Nevada , Reno , NV , USA
| |
Collapse
|
30
|
Nigro A, Mauro L, Giordano F, Panza S, Iannacone R, Liuzzi GM, Aquila S, De Amicis F, Cellini F, Indiveri C, Panno ML. Recombinant Arabidopsis HSP70 Sustains Cell Survival and Metastatic Potential of Breast Cancer Cells. Mol Cancer Ther 2016; 15:1063-73. [PMID: 26939699 DOI: 10.1158/1535-7163.mct-15-0830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/08/2016] [Indexed: 11/16/2022]
Abstract
The chaperone HSP70 protein is widely present in many different tumors and its expression correlates with an increased cell survival, low differentiation, and poor therapeutic outcome in human breast cancer. The intracellular protein has prevalently a cytoprotective function, while the extracellular HSP70 mediates immunologic responses. Evolutionarily, HSPs are well conserved from prokaryotes to eukaryotes, and human HSP70 shows a strong similarity to that of plant origin. In the current article, we have tested the potential effect of recombinant HSP70, from Arabidopsis thaliana, on cell survival and metastatic properties of breast cancer cells. Our data show that HSP70 sustains cell viability in MCF-7 and MDA-MB-231 breast tumoral cells and increases Cyclin D1 and Survivin expression. The extracellular HSP70 triggers cell migration and the activation of MMPs particularly in MDA-MB-231 cells. Furthermore, under UV-induced stress condition, the low levels of phospho-AKT were increased by exogenous HSP70, together with the upregulation of Cyclin D1, particularly in the tumoral cell phenotype. On the other hand, UV increased TP53 expression, and the coincubation of HSP70 lowers the TP53 levels similar to the control. These findings correlate with the cytoprotective and antiapoptotic role of HSPs, as reported in different cellular contexts. This is the first study on mammary cells that highlights how the heterologous HSP70 from Arabidopsis thaliana sustains cell survival prevalently in breast cancer cell types, thus maintaining their metastatic potential. Therefore, targeting HSP70 would be of clinical importance since HSP70 blocking selectively targets tumor cells, in which it supports cell growth and survival. Mol Cancer Ther; 15(5); 1063-73. ©2016 AACR.
Collapse
Affiliation(s)
- Alessandra Nigro
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Loredana Mauro
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Francesca Giordano
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Salvatore Panza
- Health Center, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Rina Iannacone
- ALSIA-Research Center Metapontum Agrobios, Metaponto, Matera, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Aldo Moro University, Bari, Italy
| | - Saveria Aquila
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende (CS), Italy. Health Center, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Francesca De Amicis
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende (CS), Italy. Health Center, University of Calabria, Arcavacata di Rende (CS), Italy
| | | | - Cesare Indiveri
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Maria Luisa Panno
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende (CS), Italy.
| |
Collapse
|
31
|
Hsp90 Co-chaperones as Drug Targets in Cancer: Current Perspectives. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2015_99] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
First Structural View of a Peptide Interacting with the Nucleotide Binding Domain of Heat Shock Protein 90. Sci Rep 2015; 5:17015. [PMID: 26599366 PMCID: PMC4657054 DOI: 10.1038/srep17015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022] Open
Abstract
The involvement of Hsp90 in progression of diseases like cancer, neurological
disorders and several pathogen related conditions is well established. Hsp90,
therefore, has emerged as an attractive drug target for many of these diseases.
Several small molecule inhibitors of Hsp90, such as geldanamycin derivatives, that
display antitumor activity, have been developed and are under clinical trials.
However, none of these tested inhibitors or drugs are peptide-based compounds. Here
we report the first crystal structure of a peptide bound at the ATP binding site of
the N-terminal domain of Hsp90. The peptide makes several specific interactions with
the binding site residues, which are comparable to those made by the nucleotide and
geldanamycin. A modified peptide was designed based on these interactions.
Inhibition of ATPase activity of Hsp90 was observed in the presence of the modified
peptide. This study provides an alternative approach and a lead peptide molecule for
the rational design of effective inhibitors of Hsp90 function.
Collapse
|
33
|
Genest O, Hoskins JR, Kravats AN, Doyle SM, Wickner S. Hsp70 and Hsp90 of E. coli Directly Interact for Collaboration in Protein Remodeling. J Mol Biol 2015; 427:3877-89. [PMID: 26482100 DOI: 10.1016/j.jmb.2015.10.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
Hsp90 is a highly conserved molecular chaperone that remodels hundreds of client proteins, many involved in the progression of cancer and other diseases. It functions with the Hsp70 chaperone and numerous cochaperones. The bacterial Hsp90 functions with an Hsp70 chaperone, DnaK, but is independent of Hsp90 cochaperones. We explored the collaboration between Escherichia coli Hsp90 and DnaK and found that the two chaperones form a complex that is stabilized by client protein binding. A J-domain protein, CbpA, facilitates assembly of the Hsp90Ec-DnaK-client complex. We identified E. coli Hsp90 mutants defective in DnaK interaction in vivo and show that the purified mutant proteins are defective in physical and functional interaction with DnaK. Understanding how Hsp90 and Hsp70 collaborate in protein remodeling will provide the groundwork for the development of new therapeutic strategies targeting multiple chaperones and cochaperones.
Collapse
Affiliation(s)
- Olivier Genest
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea N Kravats
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shannon M Doyle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Webber PJ, Park C, Qui M, Ramalingam SS, Khuri FR, Fu H, Du Y. Combination of heat shock protein 90 and focal adhesion kinase inhibitors synergistically inhibits the growth of non-small cell lung cancer cells. Oncoscience 2015; 2:765-776. [PMID: 26501082 PMCID: PMC4606010 DOI: 10.18632/oncoscience.245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/12/2015] [Indexed: 02/07/2023] Open
Abstract
Discovery of effective drug combinations is a promising strategy to improve patient survival. This study explores the impact of heat shock protein 90 (Hsp90) inhibition in combination with focal adhesion kinase (FAK) inhibitor on the growth of non-small cell lung cancer cells (NSCLC cells). Our data show that 17-N-Allylamino-17-demethoxygeldanamycin (17-AAG), a well-studied Hsp90 inhibitor, synergized with FAK inhibitor, PF-573228, on the growth inhibition of NSCLC cells. This combination effect was confirmed using additional chemically distinct Hsp90 inhibitor, STA-9090, which is currently undergoing phase 3 clinical evaluation. Co-treatment of NSCLC cells with Hsp90 and FAK inhibitors significantly enhanced the inhibition on long-term colony formation compared to that with single agent. Inhibition of FAK exacerbated the G2 cell cycle arrest and annexin-V apoptotic staining induced by 17-AAG. Further mechanistic studies revealed that the combination of Hsp90 and FAK inhibitors reduced the activity of canonical proliferative and survival Akt-mTOR signaling, and increased pro-apoptotic caspase activation. Interestingly, FAK inhibition alone induced feedback activation of pro-survival Erk signaling, which was abrogated by co-treatment with Hsp90 inhibitors. Both Hsp90 and FAK inhibitors are undergoing clinical evaluation. Our studies suggest the tandem of Hsp90 and FAK inhibitors may provide an effective treatment option for NSCLC patients.
Collapse
Affiliation(s)
- Philip J Webber
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Chanhee Park
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Min Qui
- Department of Pharmacology, Emory University, Atlanta, GA, USA.,Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology, Emory University, Atlanta, GA, USA.,Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA.,Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology, Emory University, Atlanta, GA, USA.,Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
35
|
Hombach A, Ommen G, Sattler V, Clos J. Leishmania donovani P23 protects parasites against HSP90 inhibitor-mediated growth arrest. Cell Stress Chaperones 2015; 20:673-85. [PMID: 25948161 PMCID: PMC4463916 DOI: 10.1007/s12192-015-0595-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
In Leishmania donovani, the HSP90 chaperone complex plays an essential role in the control of the parasite's life cycle, general viability and infectivity. Several of the associated co-chaperones were also shown to be essential for viability and/or infectivity to mammalian cells. Here, we identify and describe the co-chaperone P23 and distinguish its function from that of the structurally related small heat shock protein HSP23. P23 is expressed constitutively and associates itself with members of the HSP90 complex, i.e. HSP90 and Sti1. Viable P23 gene replacement mutants could be raised and confirmed as null mutants without deleterious effects on viability under a variety of physiological growth conditions. The null mutant also displays near-wild-type infectivity, arguing against a decisive role played by P23 in laboratory settings. However, the P23 null mutant displays a marked hypersensitivity against HSP90 inhibitors geldanamycin and radicicol. P23 also appears to affect the radicicol resistance of a HSP90 Leu33-Ile mutant described previously. Therefore, the annotation of L. donovani P23 as HSP90-interacting co-chaperone is confirmed.
Collapse
Affiliation(s)
- Antje Hombach
- />Bernhard Nocht Institute for Tropical Medicine, P.O. Box 30 41 20, 20324 Hamburg, Germany
| | - Gabi Ommen
- />Bernhard Nocht Institute for Tropical Medicine, P.O. Box 30 41 20, 20324 Hamburg, Germany
- />Euroimmun AG, Seekamp 31, 23560 Lübeck, Germany
| | - Victoria Sattler
- />Bernhard Nocht Institute for Tropical Medicine, P.O. Box 30 41 20, 20324 Hamburg, Germany
| | - Joachim Clos
- />Bernhard Nocht Institute for Tropical Medicine, P.O. Box 30 41 20, 20324 Hamburg, Germany
| |
Collapse
|
36
|
Elastin peptides regulate HT-1080 fibrosarcoma cell migration and invasion through an Hsp90-dependent mechanism. Br J Cancer 2014; 111:139-48. [PMID: 24874477 PMCID: PMC4090727 DOI: 10.1038/bjc.2014.239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The elastin-derived peptides (EDPs) exert protumoural activities by potentiating the secretion of matrix metalloproteinases (MMP) and the plasminogen-plasmin activating system. In the present paper, we studied heat-shock protein 90 (Hsp90) involvement in this mechanism. METHODS HT-1080 fibrosarcoma cell migration and invasion were studied in artificial wound assay and modified Boyden chamber assay, respectively. Heat-shock protein 90 was studied by western blot and immunofluorescence. Matrix metalloproteinase-2 and urokinase plasminogen activator (uPA) were studied by gelatin ± plasminogen zymography and immunofluorescence. Heat-shock protein 90 partners were studied by immunoprecipitation. Messenger RNA expression was studied using real-time PCR. Small interfering RNAs were used to confirm the essential role of Hsp90. RESULTS We showed that kappa-elastin and VGVAPG elastin hexapeptide stimulated Hsp90, pro-MMP-2 and uPA secretion within 6 h, whereas AGVPGLGVG and GRKRK peptides had no effect. No increase of mRNA level was observed. Heat-shock protein 90-specific inhibitors inhibit EDP-stimulated HT-1080 cell-invasive capacity and restrained EDP-stimulated pro-MMP-2 and uPA secretions. The inhibitory effect was reproduced by using Hsp90-blocking antibody or Hsp90 knockdown by siRNA. Heat-shock protein 90 interacted with and stabilised uPA and pro-MMP-2 in conditioned culture media of HT-1080 fibrosarcoma cells. CONCLUSIONS Taken together, our results demonstrate that EDPs exert protumoural activities through an Hsp90-dependent mechanism involving pro-MMP-2 and uPA.
Collapse
|
37
|
Choi YJ, Kim NH, Lim MS, Lee HJ, Kim SS, Chun W. Geldanamycin attenuates 3‑nitropropionic acid‑induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells. Int J Mol Med 2014; 34:24-34. [PMID: 24756698 PMCID: PMC4072345 DOI: 10.3892/ijmm.2014.1747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/14/2014] [Indexed: 11/05/2022] Open
Abstract
Although selective striatal cell death is a characteristic hallmark in the pathogenesis of Huntington's disease (HD), the underlying mechanism of striatal susceptibility remains to be clarified. Heat shock proteins (HSPs) have been reported to suppress the aggregate formation of mutant huntingtin and concurrent striatal cell death. In a previous study, we observed that heat shock transcription factor 1 (HSF1), a major transcription factor of HSPs, significantly attenuated 3‑nitropropionic acid (3NP)‑induced reactive oxygen species (ROS) production and apoptosis through the expression of HSP 70 in striatal cells. To investigate the differential roles of HSPs in 3NP‑induced striatal cell death, the effect of geldanamycin (GA), an HSP 90 inhibitor, was examined in 3NP‑stimulated striatal cells. GA significantly attenuated 3NP‑induced striatal apoptosis and ROS production with an increased expression of HSP 70. Triptolide (TL), an HSP 70 inhibitor, abolished GA‑mediated protective effects in 3NP‑stimulated striatal cells. To understand the underlying mechanism by which GA‑mediated HSP 70 protects striatal cells against 3NP stimulation, the involvement of various signaling pathways was examined. GA significantly attenuated 3NP‑induced c‑Jun N‑terminal kinase (JNK) phosphorylation and subsequent c‑Jun phosphorylation in striatal cells. Taken together, the present study demonstrated that GA exhibits protective properties against 3NP‑induced apoptosis and JNK activation via the induction of HSP 70 in striatal cells, suggesting that expression of HSP 70 may be a valuable therapeutic target in the treatment of HD.
Collapse
Affiliation(s)
- Yong-Joon Choi
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Nam Ho Kim
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Man Sup Lim
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Sung Soo Kim
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| |
Collapse
|
38
|
Mishra P, Bolon DNA. Designed Hsp90 heterodimers reveal an asymmetric ATPase-driven mechanism in vivo. Mol Cell 2014; 53:344-50. [PMID: 24462207 DOI: 10.1016/j.molcel.2013.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/19/2013] [Accepted: 12/24/2013] [Indexed: 02/02/2023]
Abstract
Hsp90 is a homodimeric ATPase that is essential in eukaryotes for the maturation of client proteins frequently involved in signal transduction, including many kinases and nuclear steroid hormone receptors. Competitive inhibitors of ATP binding to Hsp90 prevent client maturation and show promise as anticancer agents in clinical trials. However, the role of ATP binding and hydrolysis in each subunit of the Hsp90 dimer has been difficult to investigate because of an inability to assemble and study dimers of defined composition. We used protein engineering to generate functional Hsp90 subunits that preferentially assemble as heterodimers. We analyzed dimers wherein one subunit harbors a disruptive mutation and observed that ATP binding by both subunits is essential for function in yeast, whereas ATP hydrolysis is only required in one subunit. These findings demonstrate important functional contributions from both symmetric and asymmetric Hsp90 dimers and provide valuable reagents for future investigations of Hsp90 mechanism.
Collapse
Affiliation(s)
- Parul Mishra
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
39
|
Ernst JT, Neubert T, Liu M, Sperry S, Zuccola H, Turnbull A, Fleck B, Kargo W, Woody L, Chiang P, Tran D, Chen W, Snyder P, Alcacio T, Nezami A, Reynolds J, Alvi K, Goulet L, Stamos D. Identification of novel HSP90α/β isoform selective inhibitors using structure-based drug design. demonstration of potential utility in treating CNS disorders such as Huntington's disease. J Med Chem 2014; 57:3382-400. [PMID: 24673104 DOI: 10.1021/jm500042s] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A structure-based drug design strategy was used to optimize a novel benzolactam series of HSP90α/β inhibitors to achieve >1000-fold selectivity versus the HSP90 endoplasmic reticulum and mitochondrial isoforms (GRP94 and TRAP1, respectively). Selective HSP90α/β inhibitors were found to be equipotent to pan-HSP90 inhibitors in promoting the clearance of mutant huntingtin protein (mHtt) in vitro, however with less cellular toxicity. Improved tolerability profiles may enable the use of HSP90α/β selective inhibitors in treating chronic neurodegenerative indications such as Huntington's disease (HD). A potent, selective, orally available HSP90α/β inhibitor was identified (compound 31) that crosses the blood-brain barrier. Compound 31 demonstrated proof of concept by successfully reducing brain Htt levels following oral dosing in rats.
Collapse
Affiliation(s)
- Justin T Ernst
- Vertex Pharmaceuticals , 11010 Torreyana Road, San Diego, California 92121, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Su CH, Lan KH, Li CP, Chao Y, Lin HC, Lee SD, Lee WP. Phosphorylation accelerates geldanamycin-induced Akt degradation. Arch Biochem Biophys 2013; 536:6-11. [DOI: 10.1016/j.abb.2013.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/19/2022]
|
41
|
Terracciano S, Chini MG, Piaz FD, Vassallo A, Riccio R, Bruno I, Bifulco G. Dimeric and trimeric triazole based molecules as a new class of Hsp90 molecular chaperone inhibitors. Eur J Med Chem 2013; 65:464-76. [DOI: 10.1016/j.ejmech.2013.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 01/05/2023]
|
42
|
Berta G, Harci A, Tarjányi O, Vecsernyés M, Balogh A, Pap M, Szeberényi J, Sétáló G. Partial rescue of geldanamycin-induced TrkA depletion by a proteasome inhibitor in PC12 cells. Brain Res 2013; 1520:70-9. [PMID: 23701727 DOI: 10.1016/j.brainres.2013.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/25/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
In this work we tried to identify mechanisms that could explain how chemical inhibition of heat-shock protein 90 reduces nerve growth factor signaling in rat pheochromocytoma PC12 cells. Geldanamycin is an antibiotic originally discovered based on its ability to bind heat-shock protein 90. This interaction can lead to the disruption of heat-shock protein 90-containing multimolecular complexes. It can also induce the inhibition or even degradation of partner proteins dissociated from the 90 kDa chaperone and, eventually, can cause apoptosis, for instance, in PC12 cells. Before the onset of initial apoptotic events, however, a marked decrease in the activity of extracellular signal-regulated kinases ERK 1/2 and protein kinase B/Akt can be observed together with reduced expression of the high affinity nerve growth factor receptor, tropomyosine-related kinase, TrkA, in this cell type. The proteasome inhibitor MG-132 can effectively counteract the geldanamycin-induced reduction of TrkA expression and it can render TrkA and ERK1/2 phosphorylation but not that of protein kinase B/Akt by nerve growth factor again inducible. We have found altered intracellular distribution of TrkA in geldanamycin-treated and proteasome-inhibited PC12 cells that may, at least from the viewpoint of protein localization explain why nerve growth factor remains without effect on protein kinase B/Akt. The lack of protein kinase B/Akt stimulation by nerve growth factor in turn reveals why nerve growth factor treatment cannot save PC12 cells from geldanamycin-induced programmed cell death. Our observations can help to better understand the mechanism of action of geldanamycin, a compound with strong human therapeutical potential.
Collapse
Affiliation(s)
- Gergely Berta
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary H-7643, Pécs, Szigeti út 12., Hungary
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Protein kinase D2 and heat shock protein 90 beta are required for BCL6-associated zinc finger protein mRNA stabilization induced by vascular endothelial growth factor-A. Angiogenesis 2013; 16:675-88. [DOI: 10.1007/s10456-013-9345-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
44
|
Krtková J, Zimmermann A, Schwarzerová K, Nick P. Hsp90 binds microtubules and is involved in the reorganization of the microtubular network in angiosperms. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1329-39. [PMID: 22840326 DOI: 10.1016/j.jplph.2012.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 05/13/2023]
Abstract
Microtubules (MTs) are essential for many processes in plant cells. MT-associated proteins (MAPs) influence MT polymerization dynamics and enable them to perform their functions. The molecular chaperone Hsp90 has been shown to associate with MTs in animal and plant cells. However, the role of Hsp90-MT binding in plants has not yet been investigated. Here, we show that Hsp90 associates with cortical MTs in tobacco cells and decorates MTs in the phragmoplast. Further, we show that tobacco Hsp90_MT binds directly to polymerized MTs in vitro. The inhibition of Hsp90 by geldanamycin (GDA) severely impairs MT re-assembly after cold-induced de-polymerization. Our results indicate that the plant Hsp90 interaction with MTs plays a key role in cellular events, where MT re-organization is needed.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Experimental Plant Biology, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
45
|
Huang KH, Barta TE, Rice JW, Smith ED, Ommen AJ, Ma W, Veal JM, Fadden RP, Barabasz AF, Foley BE, Hughes PF, Hanson GJ, Markworth CJ, Silinski M, Partridge JM, Steed PM, Hall SE. Discovery of novel aminoquinazolin-7-yl 6,7-dihydro-indol-4-ones as potent, selective inhibitors of heat shock protein 90. Bioorg Med Chem Lett 2012; 22:2550-4. [DOI: 10.1016/j.bmcl.2012.01.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/29/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
|
46
|
da Silva VCH, Ramos CHI. The network interaction of the human cytosolic 90 kDa heat shock protein Hsp90: A target for cancer therapeutics. J Proteomics 2012; 75:2790-802. [PMID: 22236519 DOI: 10.1016/j.jprot.2011.12.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
In the cell, proteins interact within a network in which a small number of proteins are highly connected nodes or hubs. A disturbance in the hub proteins usually has a higher impact on the cell physiology than a disturbance in poorly connected nodes. In eukaryotes, the cytosolic Hsp90 is considered to be a hub protein as it interacts with molecular chaperones and co-chaperones, and has key regulatory proteins as clients, such as transcriptional factors, protein kinases and hormone receptors. The large number of Hsp90 partners suggests that Hsp90 is involved in very important functions, such as signaling, proteostasis and epigenetics. Some of these functions are dysregulated in cancer, making Hsp90 a potential target for therapeutics. The number of Hsp90 interactors appears to be so large that a precise answer to the question of how many proteins interact with this chaperone has no definitive answer yet, not even if the question refers to specific Hsp90s as one of the human cytosolic forms. Here we review the major chaperones and co-chaperones that interact with cytosolic Hsp90s, highlighting the latest findings regarding client proteins and the role that posttranslational modifications have on the function and interactions of these molecular chaperones. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- Viviane C H da Silva
- Institute of Chemistry, University of Campinas-UNICAMP. P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | | |
Collapse
|
47
|
Heterogeneity and dynamics in the assembly of the heat shock protein 90 chaperone complexes. Proc Natl Acad Sci U S A 2011; 108:17939-44. [PMID: 22011577 DOI: 10.1073/pnas.1106261108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Hsp90 cycle depends on the coordinated activity of a range of cochaperones, including Hop, Hsp70 and peptidyl-prolyl isomerases such as FKBP52. Using mass spectrometry, we investigate the order of addition of these cochaperones and their effects on the stoichiometry and composition of the resulting Hsp90-containing complexes. Our results show that monomeric Hop binds specifically to the Hsp90 dimer whereas FKBP52 binds to both monomeric and dimeric forms of Hsp90. By preforming Hsp90 complexes with either Hop, followed by addition of FKBP52, or with FKBP52 and subsequent addition of Hop, we monitor the formation of a predominant asymmetric ternary complex containing both cochaperones. This asymmetric complex is subsequently able to interact with the chaperone Hsp70 to form quaternary complexes containing all four proteins. Monitoring the population of these complexes during their formation and at equilibrium allows us to model the complex formation and to extract 14 different K(D) values. This simultaneous calculation of the K(D)s from a complex system with the same method, from eight deferent datasets under the same buffer conditions delivers a self-consistent set of values. In this case, the K(D) values afford insights into the assembly of ten Hsp90-containing complexes and provide a rationale for the cellular heterogeneity and prevalence of intermediates in the Hsp90 chaperone cycle.
Collapse
|
48
|
Vandevyver S, Dejager L, Libert C. On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic 2011; 13:364-74. [PMID: 21951602 DOI: 10.1111/j.1600-0854.2011.01288.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/20/2011] [Accepted: 09/20/2011] [Indexed: 01/20/2023]
Abstract
The glucocorticoid receptor (GR) belongs to the superfamily of steroid receptors and is an important regulator of physiological and metabolic processes. In its inactive state, GR is unbound by ligand and resides in the cytoplasm in a chaperone complex. When it binds glucocorticoids, it is activated and translocates to the nucleus, where it functions as a transcription factor. However, the subcellular localization of GR is determined by the balance between its rates of nuclear import and export. The mechanism of GR nuclear transport has been extensively studied. Originally, it was believed that nuclear import of GR is initiated by dissociation of the chaperone complex in the cytoplasm. However, several studies show that the chaperone machinery is required for nuclear transport of GR. In this review, we summarize the contribution of various chaperone components involved in the nuclear transport of GR and propose an updated model of its nuclear import and export. Moreover, we review the importance of ligand-independent nuclear transport and compare the nuclear transport of GR with that of other steroid receptors.
Collapse
Affiliation(s)
- Sofie Vandevyver
- Department of Molecular Biomedical Research, VIB, Ghent University, FSVM Building, Technologiepark 927, B9052, Ghent, Belgium
| | | | | |
Collapse
|
49
|
Li J, Soroka J, Buchner J. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:624-35. [PMID: 21951723 DOI: 10.1016/j.bbamcr.2011.09.003] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022]
Abstract
Hsp90 is a dimeric molecular chaperone required for the activation and stabilization of numerous client proteins many of which are involved in essential cellular processes like signal transduction pathways. This activation process is regulated by ATP-induced large conformational changes, co-chaperones and posttranslational modifications. For some co-chaperones, a detailed picture on their structures and functions exists, for others their contributions to the Hsp90 system is still unclear. Recent progress on the conformational dynamics of Hsp90 and how co-chaperones affect the Hsp90 chaperone cycle significantly increased our understanding of the gearings of this complex molecular machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (Hsp90).
Collapse
Affiliation(s)
- Jing Li
- Technische Universitat, Munchen, Germany
| | | | | |
Collapse
|
50
|
Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Proc Natl Acad Sci U S A 2011; 108:8206-11. [PMID: 21525416 DOI: 10.1073/pnas.1104703108] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Molecular chaperones are proteins that assist the folding, unfolding, and remodeling of other proteins. In eukaryotes, heat shock protein 90 (Hsp90) proteins are essential ATP-dependent molecular chaperones that remodel and activate hundreds of client proteins with the assistance of cochaperones. In Escherichia coli, the activity of the Hsp90 homolog, HtpG, has remained elusive. To explore the mechanism of action of E. coli Hsp90, we used in vitro protein reactivation assays. We found that E. coli Hsp90 promotes reactivation of heat-inactivated luciferase in a reaction that requires the prokaryotic Hsp70 chaperone system, known as the DnaK system. An Hsp90 ATPase inhibitor, geldanamycin, inhibits luciferase reactivation demonstrating the importance of the ATP-dependent chaperone activity of E. coli Hsp90 during client protein remodeling. Reactivation also depends upon the ATP-dependent chaperone activity of the DnaK system. Our results suggest that the DnaK system acts first on the client protein, and then E. coli Hsp90 and the DnaK system collaborate synergistically to complete remodeling of the client protein. Results indicate that E. coli Hsp90 and DnaK interact in vivo and in vitro, providing additional evidence to suggest that E. coli Hsp90 and the DnaK system function together.
Collapse
|