1
|
El Rawas R, Amaral IM, Hofer A. Is p38 MAPK Associated to Drugs of Abuse-Induced Abnormal Behaviors? Int J Mol Sci 2020; 21:E4833. [PMID: 32650599 PMCID: PMC7402127 DOI: 10.3390/ijms21144833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The family members of the mitogen-activated protein kinases (MAPK) mediate a wide variety of cellular behaviors in response to extracellular stimuli. p38 MAPKs are key signaling molecules in cellular responses to external stresses and regulation of pro-inflammatory cytokines. Some studies have suggested that p38 MAPK in the region of the nucleus accumbens is involved in abnormal behavioral responses induced by drugs of abuse. In this review, we discuss the role of the p38 MAPK in the rewarding effects of drugs of abuse. We also summarize the implication of p38 MAPK in stress, anxiety, and depression. We opine that p38 MAPK activation is more closely associated to stress-induced aversive responses rather than drug effects per se, in particular cocaine. p38 MAPK is only involved in cocaine reward, predominantly when promoted by stress. Downstream substrates of p38 that may contribute to the p38 MAPK associated-behavioral responses are proposed. Finally, we suggest p38 MAPK inhibitors as possible therapeutic interventions against stress-related disorders by potentially increasing resilience against stress and addiction relapse induced by adverse experiences.
Collapse
Affiliation(s)
- Rana El Rawas
- Experimental Addiction Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (A.H.)
| | | | | |
Collapse
|
2
|
Yang SC, Liu JJ, Wang CK, Lin YT, Tsai SY, Chen WJ, Huang WK, Tu PWA, Lin YC, Chang CF, Cheng CL, Lin H, Lai CY, Lin CY, Lee YH, Chiu YC, Hsu CC, Hsu SC, Hsiao M, Schuyler SC, Lu FL, Lu J. Down-regulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2. FASEB J 2019; 33:10577-10592. [PMID: 31242772 DOI: 10.1096/fj.201800220rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We reveal by high-throughput screening that activating transcription factor 1 (ATF1) is a novel pluripotent regulator in human embryonic stem cells (hESCs). The knockdown of ATF1 expression significantly up-regulated neuroectoderm (NE) genes but not mesoderm, endoderm, and trophectoderm genes. Of note, down-regulation or knockout of ATF1 with short hairpin RNA (shRNA), small interfering RNA (siRNA), or clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) was sufficient to up-regulate sex-determining region Y-box (SOX)2 and paired box 6 (PAX6) expression under the undifferentiated or differentiated conditions, whereas overexpression of ATF1 suppressed NE differentiation. Endogenous ATF1 was spontaneously down-regulated after d 1-3 of neural induction. By double-knockdown experiments, up-regulation of SOX2 was critical for the increase of PAX6 and SOX1 expression in shRNA targeting Atf1 hESCs. Using the luciferase reporter assay, we identified ATF1 as a negative transcriptional regulator of Sox2 gene expression. A novel function of ATF1 was discovered, and these findings contribute to a broader understanding of the very first steps in regulating NE differentiation in hESCs.-Yang, S.-C., Liu, J.-J., Wang, C.-K., Lin, Y.-T., Tsai, S.-Y., Chen, W.-J., Huang, W.-K., Tu, P.-W. A., Lin, Y.-C., Chang, C.-F., Cheng, C.-L., Lin, H., Lai, C.-Y., Lin, C.-Y., Lee, Y.-H., Chiu, Y.-C., Hsu, C.-C., Hsu, S.-C., Hsiao, M., Schuyler, S. C., Lu, F. L., Lu, J. Down-regulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2.
Collapse
Affiliation(s)
- Shang-Chih Yang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jan-Jan Liu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Kai Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Tsen Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Yi Tsai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wei-Ju Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Kai Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Wen A Tu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | | | - Chih-Lun Cheng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Ying Lai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Yu Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yen-Chun Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, Zhunan, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Scott C Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Division of Head and Neck Surgery, Department of Otolaryngology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Frank Leigh Lu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jean Lu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan.,RNAi Core, National Core Facility, Academia Sinica, Taipei, Taiwan.,Department of Life Science, Tzu Chi University, Hualien, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Anticancer Activity of Fascaplysin against Lung Cancer Cell and Small Cell Lung Cancer Circulating Tumor Cell Lines. Mar Drugs 2018; 16:md16100383. [PMID: 30322180 PMCID: PMC6213142 DOI: 10.3390/md16100383] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a leading cause of tumor-associated mortality. Fascaplysin, a bis-indole of a marine sponge, exhibit broad anticancer activity as specific CDK4 inhibitor among several other mechanisms, and is investigated as a drug to overcome chemoresistance after the failure of targeted agents or immunotherapy. The cytotoxic activity of fascaplysin was studied using lung cancer cell lines, primary Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC) cells, as well as SCLC circulating tumor cell lines (CTCs). This compound exhibited high activity against SCLC cell lines (mean IC50 0.89 µM), as well as SCLC CTCs as single cells and in the form of tumorospheres (mean IC50 0.57 µM). NSCLC lines showed a mean IC50 of 1.15 µM for fascaplysin. Analysis of signal transduction mediators point to an ATM-triggered signaling cascade provoked by drug-induced DNA damage. Fascaplysin reveals at least an additive cytotoxic effect with cisplatin, which is the mainstay of lung cancer chemotherapy. In conclusion, fascaplysin shows high activity against lung cancer cell lines and spheroids of SCLC CTCs which are linked to the dismal prognosis of this tumor type. Derivatives of fascaplysin may constitute valuable new agents for the treatment of lung cancer.
Collapse
|
4
|
Song J, Ye B, Liu H, Bi R, Zhang N, Hu J, Luo E. Fak-Mapk, Hippo and Wnt signalling pathway expression and regulation in distraction osteogenesis. Cell Prolif 2018; 51:e12453. [PMID: 29504176 PMCID: PMC6528869 DOI: 10.1111/cpr.12453] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/27/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To investigate the mechanism of mechanical stimulation in bone formation and regeneration during distraction osteogenesis. MATERIALS AND METHODS In this study, microarray technology was used to investigate the time course of bone-related molecular changes in distraction osteogenesis in rats. Real-time PCR and Western-blot analyses were used to confirm the expression of genes identified in microarrays. Meanwhile, we used a lentivirus vector to inhibit Fak expression, in order to identify the osteogenic effect of Fak and Fak-Mapk pathway during distraction osteogenesis. RESULTS Several components of the Wnt and Hippo pathways were found to be up- or down-regulated during distraction osteogenesis by microarray. Meanwhile, it was found that Fak, Src, Raf-1, Erk1, Jnk and p38-Mapk were up-regulated during gradual distraction, compared with consolidation. To further determine whether Fak-Mapk pathway played an important role in distraction osteogenesis, Fak was disrupted with a lentivirus vector. The expressions levels of p-Fak, p-Erk1/2, p-JNK and p-p38Mapk were decreased. Meanwhile, a poor early and late osteogenesis effect was found in the shRNA-Fak group. CONCLUSION It was inferred that the mechanical stimulus induces increased expression of Fak and activates Fak-Mapk pathway, by activation of Erk, Jnk and p38-Mapk pathway, and that Fak at least, in part, plays an important role in maintaining osteogenic effect by activating Fak-Mapk pathway during distraction osteogenesis.
Collapse
Affiliation(s)
- Jian Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Bin Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Nian Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jing Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
5
|
Activation of the ATF2/CREB-PGC-1α pathway by metformin leads to dopaminergic neuroprotection. Oncotarget 2018; 8:48603-48618. [PMID: 28611284 PMCID: PMC5564711 DOI: 10.18632/oncotarget.18122] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/24/2017] [Indexed: 11/25/2022] Open
Abstract
Progressive dopaminergic neurodegeneration is responsible for the canonical motor deficits in Parkinson's disease (PD). The widely prescribed anti-diabetic medicine metformin is effective in preventing neurodegeneration in animal models; however, despite the significant potential of metformin for treating PD, the therapeutic effects and molecular mechanisms underlying dopaminergic neuroprotection by metformin are largely unknown.In this study, we found that metformin induced substantial proteomic changes, especially in metabolic and mitochondrial pathways in the substantia nigra (SN). Consistent with this data, metformin increased mitochondrial marker proteins in SH-SY5Y neuroblastoma cells. Mitochondrial protein expression by metformin was found to be brain region specific, with metformin increasing mitochondrial proteins in the SN and the striatum, but not the cortex. As a potential upstream regulator of mitochondria gene transcription by metformin, PGC-1α promoter activity was stimulated by metformin via CREB and ATF2 pathways. PGC-1α and phosphorylation of ATF2 and CREB by metformin were selectively increased in the SN and the striatum, but not the cortex. Finally, we showed that metformin protected dopaminergic neurons and improved dopamine-sensitive motor performance in an MPTP-induced PD animal model. Together these results suggest that the metformin-ATF2/CREB-PGC-1α pathway might be promising therapeutic target for PD.
Collapse
|
6
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
7
|
Abstract
Adequate responses to environmental stresses are essential for cell survival. The regulation of cellular energetics that involves mitochondrial energy production and oxidative stress is central in the process of stress adaptation and response. The p38α signalling pathway plays a key role in the response to stress stimuli by orchestrating multiple cellular processes. However, prolonged activation of the p38α pathway results in impaired cell proliferation and can lead to cell death. Here we use a system to specifically activate p38α signalling and show that sustained activation of this pathway suffices to induce important metabolic changes, including high dependence on glucose for cell survival, increased consumption of glutamine, enhanced respiration rate and elevated production of mitochondrial reactive oxygen species (ROS). Moreover, we provide evidence that increased production of mitochondrial superoxide as a consequence of elevated mitochondria activity, contributes to the p38α reduced cell survival triggered by sustained p38α activation. We also show that the p38α-activated kinase MAPKAPK2 (MK2) plays an important role orchestrating the observed metabolic changes. Our results illustrate a new function of p38α signalling in the regulation of cellular metabolism, which may lead to cell death upon persistent activation of the pathway.
Collapse
|
8
|
Vert A, Castro J, Ribó M, Benito A, Vilanova M. Activating transcription factor 3 is crucial for antitumor activity and to strengthen the antiviral properties of Onconase. Oncotarget 2017; 8:11692-11707. [PMID: 28035074 PMCID: PMC5355296 DOI: 10.18632/oncotarget.14302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
Onconase is a ribonuclease that presents both antitumor and antiviral properties linked to its ribonucleolytic activity and represents a new class of RNA-damaging drugs. It has reached clinical trials for the treatment of several cancers and human papilloma virus warts. Onconase targets different RNAs in the cell cytosol but Onconase-treated cells present features that are different from a simple arrest of protein synthesis. We have used microarray-derived transcriptional profiling to identify Onconase-regulated genes in two ovarian cancer cell lines (NCI/ADR-RES and OVCAR-8). RT-qPCR analyses have confirmed the microarray findings. We have identified a network of up-regulated genes implicated in different signaling pathways that may explain the cytotoxic effects exerted by Onconase. Among these genes, activating transcription factor 3 (ATF3) plays a central role in the key events triggered by Onconase in treated cancer cells that finally lead to apoptosis. This mechanism, mediated by ATF3, is cell-type independent. Up-regulation of ATF3 may also explain the antiviral properties of this ribonuclease because this factor is involved in halting viral genome replication, keeping virus latency or preventing viral oncogenesis. Finally, Onconase-regulated genes are different from those affected by nuclear-directed ribonucleases.
Collapse
Affiliation(s)
- Anna Vert
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Jessica Castro
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Antoni Benito
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Maria Vilanova
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| |
Collapse
|
9
|
Roy A, Srivastava M, Saqib U, Liu D, Faisal SM, Sugathan S, Bishnoi S, Baig MS. Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways. Int Immunopharmacol 2016; 40:79-89. [PMID: 27584057 DOI: 10.1016/j.intimp.2016.08.026] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
Abstract
Inflammation is set off when innate immune cells detect infection or tissue injury. Tight control of the severity, duration, and location of inflammation is an absolute requirement for an appropriate balance between clearance of injured tissue and pathogens versus damage to host cells. Impeding the risk associated with the imbalance in the inflammatory response requires precise identification of potential therapeutic targets involved in provoking the inflammation. Toll-like receptors (TLRs) primarily known for the pathogen recognition and subsequent immune responses are being investigated for their pathogenic role in various chronic diseases. A mammalian homologue of Drosophila Toll receptor 4 (TLR4) was shown to induce the expression of genes involved in inflammatory responses. Signaling pathways via TLR4 activate various transcription factors like Nuclear factor kappa-light-chain-enhancer (NF-κB), activator protein 1 (AP1), Signal Transducers and Activators of Transcription family of transcription factors (STAT1) and Interferon regulatory factors (IRF's), which are the key players regulating the inflammatory response. Inhibition of these targets and their upstream signaling molecules provides a potential therapeutic approach to treat inflammatory diseases. Here we review the therapeutic targets involved in TLR-4 signaling pathways that are critical for suppressing chronic inflammatory disorders.
Collapse
Affiliation(s)
- Anjali Roy
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Mansi Srivastava
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Uzma Saqib
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore (IITI), Indore, MP, India
| | - Dongfang Liu
- Center for Inflammation & Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Syed M Faisal
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Subi Sugathan
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Suman Bishnoi
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Mirza S Baig
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India.
| |
Collapse
|
10
|
Stress-dependent phosphorylation of myocardin-related transcription factor A (MRTF-A) by the p38(MAPK)/MK2 axis. Sci Rep 2016; 6:31219. [PMID: 27492266 PMCID: PMC4974569 DOI: 10.1038/srep31219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022] Open
Abstract
Myocardin-related transcription factor A (MRTF-A) is a known actin-regulated transcriptional coactivator of serum response factor (SRF). Stimulation of actin polymerization activates MRTF-A by releasing it from G-actin and thus allowing it to bind to and activate SRF. Here, we compared protein phosphorylation in MK2/3-deficient cells rescued or not by ectopic expression of MK2 in two independent phosphoproteomic approaches using anisomycin-treated MEF cells and LPS-stimulated mouse macrophages, respectively. Two MRTF-A sites, Ser351 (corresponding to Ser312 in human) and Ser371 (Ser333 in human), showed significantly stronger phosphorylation (12-fold and 6-fold increase) in the cells expressing MK2. MRTF-A is phosphorylated at these sites in a stress-, but not in a mitogen-induced manner, and p38MAPK/MK2 catalytic activities are indispensable for this phosphorylation. MK2-mediated phosphorylation of MRTF-A at Ser312 and Ser333 was further confirmed in an in vitro kinase assay and using the phospho-protein kinase-D (PKD)-consensus motif antibody (anti-LXRXXpS/pT), the p38MAPK inhibitor BIRB-796, MK2/3-deficient cells and MRTF-A phospho-site mutants. Unexpectedly, dimerization, subcellular localization and translocation, interaction with actin, SRF or SMAD3 and transactivating potential of MRTF-A seem to be unaffected by manipulating the p38MAPK/MK2-dependent phosphorylations. Hence, MRTF-A is stress-dependently phosphorylated by MK2 at Ser312 and Ser333 with so far undetected functional and physiological consequences.
Collapse
|
11
|
Li Y, Zhang W, Gao J, Liu J, Wang H, Li J, Yang X, He T, Guan H, Zheng Z, Han S, Dong M, Han J, Shi J, Hu D. Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway. Stem Cell Res Ther 2016; 7:102. [PMID: 27484727 PMCID: PMC4970202 DOI: 10.1186/s13287-016-0356-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/06/2016] [Accepted: 06/29/2016] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Hypertrophic scars (HS) generally occur after injury to the deep layers of the dermis, resulting in functional deficiency for patients. Growing evidence has been identified that the supernatant of adipose tissue-derived stem cells (ADSCs) significantly ameliorates fibrosis of different tissues, but limited attention has been paid to its efficacy on attenuating skin fibrosis. In this study, we explored the effect and possible mechanism of ADSC-conditioned medium (ADSC-CM) on HS. METHOD Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting were used to detect the expression of collagen I (Col1), collagen III (Col3), and α-smooth muscle actin (α-SMA) after fibroblasts and cultured HS tissues were stimulated with ADSC-CM and p38 inhibitor/activator. Immunofluorescence staining was performed to test the expression of α-SMA. Masson's trichrome staining, hematoxylin and eosin (H&E) staining, and immunohistochemistry staining were carried out to assess the histological and pathological change of collagen in the BALB/c mouse excisional model. All data were analyzed by using SPSS17.0 software. Statistical analysis was performed by Student's t tests. RESULTS The in vitro and ex vivo study revealed ADSC-CM decreased the expression of Col1, Col3, and α-SMA. Together, thinner and orderly arranged collagen was manifested in HS tissues cultured with ADSC-CM. Dramatically, the assessed morphology showed an accelerated healing rate, less collagen deposition, and col1- and col3-positive cells in the ADSC-CM treated group. Importantly, the protein level of p-p38 was downregulated in a concentration-dependent manner in HS-derived fibroblasts with ADSC-CM treatment, which further decreased the expression of p-p38 after the application of its inhibitor, SB203580. SB203580 led to an obvious decline in the expression of Col1, Col3, and α-SMA in fibroblasts and cultured HS tissues and presented more ordered arrangement and thinner collagen fibers in BALB/c mice. Lastly, anisomycin, an agonist of p38, upregulated the expression of fibrotic proteins and revealed more disordered structure and denser collagen fibers. CONCLUSION This study demonstrated that ADSC-CM could decrease collagen deposition and scar formation in in vitro, ex vivo and in vivo experiments. The regulation of the p38/MAPK signaling pathway played an important role in the process. The application of ADSC-CM may provide a novel therapeutic strategy for HS treatment, and the anti-scarring effect can be achieved by inhibition of the p38/MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jianxin Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jun Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Maolong Dong
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China.
| |
Collapse
|
12
|
Yang H, Yan L, Qian P, Duan H, Wu J, Li B, Wang S. Icariin inhibits foam cell formation by down-regulating the expression of CD36 and up-regulating the expression of SR-BI. J Cell Biochem 2016; 116:580-8. [PMID: 25389062 DOI: 10.1002/jcb.25009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/06/2014] [Indexed: 12/21/2022]
Abstract
Icariin is an important pharmacologically active flavonol diglycoside that can inhibit inflammation in lipopolysaccharide (LPS)-stimulated macrophages. However, little is known about the molecular mechanisms underlying the inhibitory effect of Icariin in the formation of foam cells. In this study, macrophages were cultured with LPS and oxidized low-density lipoprotein (oxLDL) in the presence or absence of Icariin. RT-PCR and western blot were used to detect the levels of mRNA and protein expression of CD36, scavenger receptor class B type I (SR-BI) and the phosphorylation of p38MAPK. It was demonstrated that 4 µM or 20 µM Icariin treatment significantly inhibited the cholesterol ester (CE)/total cholesterol (TC) and oxLDL-mediated foam cell formation (P < 0.05). The binding of oxLDL to LPS-activated macrophages was also significantly hindered by Icariin (P < 0.05). Furthermore, Icariin down-regulated the expression of CD36 in LPS-activated macrophages in a dose-dependent manner and CD36 over-expression restored the inhibitory effect of Icariin on foam cell formation. The phosphorylation of p38MAPK was reduced by Icariin, indicating that Icariin reduced the expression of CD36 through the p38MAPK pathway. In addition, Icariin up-regulated SR-BI protein expression in a dose-dependent manner, and SR-BI gene silencing restored the inhibitory effect of Icariin on foam cell formation. These data demonstrate that Icariin inhibited foam cell formation by down-regulating the expression of CD36 and up-regulating the expression of SR-BI. Therefore, our findings provide a new explanation as to why Icariin could inhibit atherosclerosis.
Collapse
Affiliation(s)
- Haitao Yang
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Yokota T, Wang Y. p38 MAP kinases in the heart. Gene 2015; 575:369-376. [PMID: 26390817 DOI: 10.1016/j.gene.2015.09.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/31/2015] [Accepted: 09/15/2015] [Indexed: 12/28/2022]
Abstract
p38 kinases are members of the mitogen-activated protein kinases (MAPK) with established contribution to a wide range of signaling pathways and different biological processes. The prototypic p38 MAPK, p38α was originally identified as an essential signaling kinase for inflammatory cytokine production Extensive studies have now revealed that p38s have critical roles in many different tissues far beyond immune regulation and inflammatory responses. In this review, we will focus on the structure and molecular biology of p38s, and their specific roles in heart, especially regarding myocyte proliferation, apoptosis, and hypertrophic responses.
Collapse
Affiliation(s)
- Tomohiro Yokota
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Physiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Physiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Distinct signalling pathways of murine histamine H1- and H4-receptors expressed at comparable levels in HEK293 cells. PLoS One 2014; 9:e107481. [PMID: 25243776 PMCID: PMC4171377 DOI: 10.1371/journal.pone.0107481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/11/2014] [Indexed: 11/21/2022] Open
Abstract
Histamine (HA) is recognized by its target cells via four G-protein-coupled receptors, referred to as histamine H1-receptor (H1R), H2R, H3R, and H4R. Both H1R and H4R exert pro-inflammatory functions. However, their signal transduction pathways have never been analyzed in a directly comparable manner side by side. Moreover, the analysis of pharmacological properties of the murine orthologs, representing the main targets of pre-clinical research, is very important. Therefore, we engineered recombinant HEK293 cells expressing either mouse (m)H1R or mH4R at similar levels and analyzed HA-induced signalling in these cells. HA induced intracellular calcium mobilization via both mH1R and mH4R, with the mH1R being much more effective. Whereas cAMP accumulation was potentiated via the mH1R, it was reduced via the mH4R. The regulation of both second messengers via the H4R, but not the H1R, was sensitive to pertussis toxin (PTX). The mitogen-activated protein kinases (MAPKs) ERK 1/2 were massively activated downstream of both receptors and demonstrated a functional involvement in HA-induced EGR-1 gene expression. The p38 MAPK was moderately activated via both receptors as well, but was functionally involved in HA-induced EGR-1 gene expression only in H4R-expressing cells. Surprisingly, in this system p38 MAPK activity reduced the HA-induced gene expression. In summary, using this system which allows a direct comparison of mH1R- and mH4R-induced signalling, qualitative and quantitative differences on the levels of second messenger generation and also in terms of p38 MAPK function became evident.
Collapse
|
15
|
Cyr NE, Toorie AM, Steger JS, Sochat MM, Hyner S, Perello M, Stuart R, Nillni EA. Mechanisms by which the orexigen NPY regulates anorexigenic α-MSH and TRH. Am J Physiol Endocrinol Metab 2013; 304:E640-50. [PMID: 23321476 PMCID: PMC3602689 DOI: 10.1152/ajpendo.00448.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/12/2013] [Indexed: 01/24/2023]
Abstract
Protein posttranslational processing is a cellular mechanism fundamental to the generation of bioactive peptides, including the anorectic α-melanocyte-stimulating hormone (α-MSH) and thyrotropin-releasing hormone (TRH) peptides produced in the hypothalamic arcuate (ARC) and paraventricular (PVN) nuclei, respectively. Neuropeptide Y (NPY) promotes positive energy balance in part by suppressing α-MSH and TRH. The mechanism by which NPY regulates α-MSH output, however, is not well understood. Our results reveal that NPY inhibited the posttranslational processing of α-MSH's inactive precursor proopiomelanocortin (POMC) by decreasing the prohormone convertase-2 (PC2). We also found that early growth response protein-1 (Egr-1) and NPY-Y1 receptors mediated the NPY-induced decrease in PC2. NPY given intra-PVN also decreased PC2 in PVN samples, suggesting a reduction in PC2-mediated pro-TRH processing. In addition, NPY attenuated the α-MSH-induced increase in TRH production by two mechanisms. First, NPY decreased α-MSH-induced CREB phosphorylation, which normally enhances TRH transcription. Second, NPY decreased the amount of α-MSH in the PVN. Collectively, these results underscore the significance of the interaction between NPY and α-MSH in the central regulation of energy balance and indicate that posttranslational processing is a mechanism that plays a specific role in this interaction.
Collapse
Affiliation(s)
- Nicole E Cyr
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Impact of host membrane pore formation by the Yersinia pseudotuberculosis type III secretion system on the macrophage innate immune response. Infect Immun 2013; 81:905-14. [PMID: 23297383 DOI: 10.1128/iai.01014-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type III secretion systems (T3SSs) are used by Gram-negative pathogens to form pores in host membranes and deliver virulence-associated effector proteins inside host cells. In pathogenic Yersinia, the T3SS pore-forming proteins are YopB and YopD. Mammalian cells recognize the Yersinia T3SS, leading to a host response that includes secretion of the inflammatory cytokine interleukin-1β (IL-1β), Toll-like receptor (TLR)-independent expression of the stress-associated transcription factor Egr1 and the inflammatory cytokine tumor necrosis factor alpha (TNF-α), and host cell death. The known Yersinia T3SS effector proteins are dispensable for eliciting these responses, but YopB is essential. Three models describe how the Yersinia T3SS might trigger inflammation: (i) mammalian cells sense YopBD-mediated pore formation, (ii) innate immune stimuli gain access to the host cytoplasm through the YopBD pore, and/or (iii) the YopB-YopD translocon itself or its membrane insertion is proinflammatory. To test these models, we constructed a Yersinia pseudotuberculosis mutant expressing YopD devoid of its predicted transmembrane domain (YopD(ΔTM)) and lacking the T3SS cargo proteins YopHEMOJTN. This mutant formed pores in macrophages, but it could not mediate translocation of effector proteins inside host cells. Importantly, this mutant did not elicit rapid host cell death, IL-1β secretion, or TLR-independent Egr1 and TNF-α expression. These data suggest that YopBD-mediated translocation of unknown T3SS cargo leads to activation of host pathways influencing inflammation, cell death, and response to stress. As the YopD(ΔTM) Y. pseudotuberculosis mutant formed somewhat smaller pores with delayed kinetics, an alternative model is that the wild-type YopB-YopD translocon is specifically sensed by host cells.
Collapse
|
17
|
Wong CH, Mak GWY, Li MS, Tsui SKW. The LIM-only protein FHL2 regulates interleukin-6 expression through p38 MAPK mediated NF-κB pathway in muscle cells. Cytokine 2012; 59:286-93. [PMID: 22633286 DOI: 10.1016/j.cyto.2012.04.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 03/23/2012] [Accepted: 04/22/2012] [Indexed: 01/09/2023]
Abstract
Interleukin 6 (IL-6) is pleiotropic cytokine playing an important role in inflammatory response. Other than classical immune tissues, IL-6 is also produced in muscle cells under specific conditions. Four-and-a-half LIM-only protein 2 (FHL2) is preferentially expressed in skeletal and cardiac muscle cells compared to other tissues indicating it has an important role in skeletal muscle and cardiovascular system. In this report, the regulation of IL-6 by FHL2 in muscle cells was investigated. We demonstrated that FHL2 overexpression increased IL-6 mRNA level and its protein secretion in skeletal myoblasts. In contrast, the IL-6 secretion was significantly decreased after FHL2-knockdown by siRNA in response to TNFα stimulation. We further showed that FHL2-mediated induction of IL-6 was regulated by the activation of IL-6 promoter through stimulating NF-κB and p38 MAPK signaling pathway. Our results further illustrated the molecular mechanisms of IL-6 production, which provides new insights in the roles of FHL2 in post-injury inflammation or cytoprotection of muscle cells.
Collapse
Affiliation(s)
- Chi-Hang Wong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region, China
| | | | | | | |
Collapse
|
18
|
Hossain S, de la Cruz-Morcillo MA, Sanchez-Prieto R, Almazan G. Mitogen-activated protein kinase p38 regulates krox-20 to direct schwann cell differentiation and peripheral myelination. Glia 2012; 60:1130-44. [DOI: 10.1002/glia.22340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 03/16/2012] [Indexed: 12/24/2022]
|
19
|
Lecureur V, Arzel M, Ameziane S, Houlbert N, Le Vee M, Jouneau S, Fardel O. MAPK- and PKC/CREB-dependent induction of interleukin-11 by the environmental contaminant formaldehyde in human bronchial epithelial cells. Toxicology 2012; 292:13-22. [DOI: 10.1016/j.tox.2011.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/10/2011] [Accepted: 11/17/2011] [Indexed: 01/05/2023]
|
20
|
Vivacqua A, Romeo E, De Marco P, De Francesco EM, Abonante S, Maggiolini M. GPER mediates the Egr-1 expression induced by 17β-estradiol and 4-hydroxitamoxifen in breast and endometrial cancer cells. Breast Cancer Res Treat 2011; 133:1025-35. [PMID: 22147081 DOI: 10.1007/s10549-011-1901-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/24/2011] [Indexed: 02/06/2023]
Abstract
Early growth response-1 (Egr-1) is an immediate early gene involved in relevant biological events including the proliferation of diverse types of cell tumors. In a microarray analysis performed in breast cancer cells, 17β-estradiol (E2) and the estrogen receptor antagonist 4-hydroxitamoxifen (OHT) up-regulated Egr-1 through the G protein-coupled receptor named GPR30/GPER. Hence, in this study, we aimed to provide evidence regarding the ability of E2, OHT and the selective GPER ligand G-1 to regulate Egr-1 expression and function through the GPER/EGFR/ERK transduction pathway in both Ishikawa (endometrial) and SkBr3 (breast) cancer cells. Interestingly, we demonstrate that Egr-1 is involved in the transcription of genes regulating cell proliferation like CTGF and cyclin D1 and required for the proliferative effects induced by E2, OHT, and G-1 in both Ishikawa and SkBr3 cells. In addition, we show that GPER mediates the expression of Egr-1 also in carcinoma-associated fibroblasts (CAFs). Our data suggest that Egr-1 may represent an important mediator of the biological effects induced by E2 and OHT through GPER/EGFR/ERK signaling in breast and endometrial cancer cells. The results obtained in CAFs provide further evidence regarding the potential role exerted by the GPER-dependent Egr-1 up-regulation in tumor development and progression. Therefore, Egr-1 may be included among the bio-markers of estrogen and antiestrogen actions and may be considered as a further therapeutic target in both breast and endometrial tumors.
Collapse
Affiliation(s)
- Adele Vivacqua
- Department of Pharmaco-Biology, University of Calabria, 87030 Rende, CS, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Shen N, Shao Y, Lai SS, Qiao L, Yang RL, Xue B, Pan FY, Chen HQ, Li CJ. GGPPS, a new EGR-1 target gene, reactivates ERK 1/2 signaling through increasing Ras prenylation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2740-50. [PMID: 21983072 DOI: 10.1016/j.ajpath.2011.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/31/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
Cigarette smoke activates the extracellular signal-regulated kinase (ERK) 1/2 mitogen activated-protein kinase pathway, which, in turn, is responsible for early growth response gene-1 (EGR-1) activation. Here we provide evidence that EGR-1 activation can also reactivate ERK 1/2 mitogen activated-protein kinase through a positive feedback loop through its target gene (geranylgeranyl diphosphate synthase) GGPPS. For the first time, the GGPPS gene is identified as a target of EGR-1, as EGR-1 can directly bind to the predicted consensus-binding site in the GGPPS promoter and regulate its transcription. Long-term observations show that there are two ERK 1/2 phosphorylation peaks after cigarette smoke extract stimulation in human lung epithelial Beas-2B cells. The first peak (at 10 minutes) is responsible for EGR-1 accumulation, and the second (at 4 hours) is diminished after the disruption of EGR-1 transcriptional activity. EGR-1 overexpression enhances Ras prenylation and membrane association in a GGPPS-dependent manner, and it augments ERK 1/2 activation. Likewise, a great reduction of the second peak of ERK 1/2 phosphorylation is observed during long-term cigarette smoke extract stimulation in cells where GGPPS is disrupted. Thus, we have uncovered an intricate positive feedback loop in which ERK 1/2-activated EGR-1 promotes ERK 1/2 reactivation through promoting GGPPS transcription, which might affect cigarette smoke-related lung pathological processes.
Collapse
Affiliation(s)
- Ning Shen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Armstrong J, Harbron C, Lea S, Booth G, Cadden P, Wreggett KA, Singh D. Synergistic effects of p38 mitogen-activated protein kinase inhibition with a corticosteroid in alveolar macrophages from patients with chronic obstructive pulmonary disease. J Pharmacol Exp Ther 2011; 338:732-40. [PMID: 21610141 DOI: 10.1124/jpet.111.180737] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Corticosteroids partially suppress cytokine production by chronic obstructive pulmonary disease (COPD) alveolar macrophages. p38 mitogen-activated protein kinase (MAPK) inhibitors are a novel class of anti-inflammatory drug. We have studied the effects of combined treatment with a corticosteroid and a p38 MAPK inhibitor on cytokine production by COPD alveolar macrophages, with the aim of investigating dose-sparing and efficacy-enhancing effects. Alveolar macrophages from 10 patients with COPD, six smokers, and six nonsmokers were stimulated with lipopolysaccharide (LPS) after preincubation with five concentrations of dexamethasone alone, five concentrations of the p38 MAPK inhibitor 1-(5-tert-butyl-2-p-tolyl-2H-pyrazol-3-yl)-3(4-(2-morpholin-4-yl-ethoxy)naphthalen-1-yl)urea (BIRB-796) alone, and all combinations of these concentrations. After 24 h, the supernatants were analyzed for interleukin (IL)-8, IL-6, tumor necrosis factor α (TNFα), granulocyte macrophage-colony-stimulating factor (GM-CSF), IL-1α, IL-1β, IL-1ra, IL-10, monocyte chemoattractant protein 3, macrophage-derived chemokine (MDC), and regulated on activation normal T cell expressed and secreted (RANTES). The effect of dexamethasone on p38 MAPK activation was analyzed by Western blotting. Dexamethasone and BIRB-796 both reduced LPS-induced cytokine production in a dose-dependent manner in all subject groups, with no differences between groups. Increasing the concentration of BIRB-796 in combination with dexamethasone produced progressively greater inhibition of cytokine production than dexamethasone alone. There were significant efficacy-enhancing benefits and synergistic dose-sparing effects (p < 0.05) for the combination treatment for IL-8, IL-6, TNFα, GM-CSF, IL-1ra, IL-10, MDC, and RANTES in one or more subject groups. Dexamethasone had no effect on LPS-induced p38 MAPK activation. We conclude that p38 MAPK activation in alveolar macrophages is corticosteroid-insensitive. Combining a p38 MAPK inhibitor with a corticosteroid synergistically enhances the anti-inflammatory effects on LPS-mediated cytokine production by alveolar macrophages from patients with COPD and controls.
Collapse
Affiliation(s)
- J Armstrong
- Medicines Evaluation Unit, National Institute for Health Research Translational Research Facility, University Hospital of South Manchester Foundation Trust, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Serti E, Doumba PP, Thyphronitis G, Tsitoura P, Katsarou K, Foka P, Konstandoulakis MM, Koskinas J, Mavromara P, Georgopoulou U. Modulation of IL-2 expression after uptake of hepatitis C virus non-enveloped capsid-like particles: the role of p38 kinase. Cell Mol Life Sci 2011; 68:505-22. [PMID: 20680391 PMCID: PMC11114540 DOI: 10.1007/s00018-010-0466-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/28/2010] [Accepted: 07/09/2010] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) has been shown to actively replicate in cells of the immune system, altering both their function and cytokine expression. Naked nucleocapsids have been reported in the serum of infected patients. We investigated interference of recombinant non-enveloped capsid-like particles with signaling pathways in T cells. HCV non-enveloped particles (HCVne) internalization was verified in Jurkat and Hut 78 T cells, as well as primary human peripheral blood and intrahepatic mononuclear cells. HCVne uptake leads to activation of the MAPKs-p38 signaling pathway. Using specific phosphoantibodies, signaling pathways inhibitors, and chemical agents, it was demonstrated that p38 activation in T cells correlated with IL-2 transcriptional activation and was accompanied by a parallel increase of IL-2 cytokine secretion. c-fos and egr-1, two transcription factors, essential for IL-2 promoter activity, were also found to be elevated. We propose that HCVne uptake by T lymphocytes results in increased MAPKs-p38 activity and IL-2 expression, thus altering the host immune response.
Collapse
Affiliation(s)
- Elisavet Serti
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Polyxeni P. Doumba
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Medical School of Athens, Hippokration Hospital, Athens, Greece
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - George Thyphronitis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Panagiota Tsitoura
- Present Address: Insect Molecular Genetics and Biotechnology Group, Institute of Biology, NCSR Demokritos, Athens, Greece
| | | | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Manousos M. Konstandoulakis
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - John Koskinas
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
24
|
Gupte AA, Bomhoff GL, Touchberry CD, Geiger PC. Acute heat treatment improves insulin-stimulated glucose uptake in aged skeletal muscle. J Appl Physiol (1985) 2011; 110:451-7. [PMID: 21148343 PMCID: PMC3043783 DOI: 10.1152/japplphysiol.00849.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 12/02/2010] [Indexed: 12/18/2022] Open
Abstract
Aging is associated with insulin resistance and decreased insulin-stimulated glucose uptake into skeletal muscle. Although the mechanisms underlying age-related insulin resistance are not clearly defined, impaired defense against inflammation and tissue oxidative stress are likely causes. Heat shock proteins (HSPs) have been shown to protect tissue from oxidative stress and inhibit the activation of stress kinases such as JNK, known to interfere with the insulin signaling pathway. While the induction of HSPs via chronic heat treatment has been shown to protect skeletal muscle from obesity-related insulin resistance, the ability of heat treatment to improve insulin action in aged skeletal muscle is not known. In the present study, one bout of in vivo heat treatment applied to 24-mo-old Fischer 344 rats improved insulin-stimulated glucose uptake after 24 h in slow-twitch soleus muscles. In vitro heat treatment applied to young (3-mo-old) and aged (24-mo-old) soleus muscles increased expression of HSP72 and inhibited anisomycin-induced activation of JNK. In contrast, heat treatment had no effect on p38 MAPK, a MAPK strongly activated with anisomycin. Prior inhibition of HSP72 transcription with the pharmacological inhibitor KNK437 eliminated the ability of heat treatment to blunt JNK activation. This suggests that the ability of heat treatment to inhibit JNK activation in skeletal muscle is dependent on increased HSP72 expression. In conclusion, an acute bout of heat treatment can increase insulin-stimulated glucose uptake in aged skeletal muscle, with the underlying mechanism likely to be HSP72-mediated JNK inhibition.
Collapse
Affiliation(s)
- Anisha A Gupte
- Dept. of Molecular and Integrative Physiology, Univ. of Kansas Medical Center, MS 3043, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
25
|
Shen N, Gong T, Wang JD, Meng FL, Qiao L, Yang RL, Xue B, Pan FY, Zhou XJ, Chen HQ, Ning W, Li CJ. Cigarette smoke-induced pulmonary inflammatory responses are mediated by EGR-1/GGPPS/MAPK signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:110-8. [PMID: 21224049 PMCID: PMC3069843 DOI: 10.1016/j.ajpath.2010.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 08/28/2010] [Accepted: 09/23/2010] [Indexed: 11/24/2022]
Abstract
Early growth response 1 (EGR-1) contributes to the development of chronic obstructive pulmonary disease in the lungs of smokers by mediating pulmonary inflammatory responses, but the direct downstream genes of EGR-1 that regulate this process remain unknown. We show that a new EGR-1 target gene, geranylgeranyl diphosphate synthase (GGPPS), which controls protein prenylation, can regulate the proinflammatory function of EGR-1 by activating MAPK signaling. When C57BL/6 mice were exposed to cigarette smoke, EGR-1 and GGPPS levels increased in their lungs, and the inflammatory responses were augmented, whereas these effects could be reversed by the down-regulation of EGR-1 transcription activity. The accumulation of EGR-1 and GGPPS was induced by MAPK/ERK pathway activation when Beas-2B human bronchial epithelial cells were exposed to cigarette smoke extract (CSE). Further examination showed that EGR-1 in turn regulated Erk1/2 activity because inhibition of EGR-1 transcription activity decreased CSE-induced Erk1/2 phosphorylation. Furthermore, EGR-1-promoted Erk1/2 activation was dependent on GGPPS transcription. Knockdown of GGPPS expression with small-interfering RNA abolished the EGR-1-activated Erk1/2 activity. Both EGR-1 transcription inhibition and GGPPS expression knockdown decreased the inflammatory response induced by CSE in Beas-2B cells. Our results reveal a new EGR-1/GGPPS/MAPK signaling pathway that controls cigarette smoke-induced pulmonary inflammation, and this may shed light on our understanding of the mechanism of cigarette smoke-related pulmonary diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Ning Shen
- Model Animal Research Center and the School of Medicine, MOE Key Laboratory of Model Animal for Disease Studies, Nanjing University of Nanjing, Nanjing, China
| | - Tao Gong
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jian-Dong Wang
- Affiliated Jinling Hospital of Medical School of Nanjing University, Nanjing, China
| | - Fan-Li Meng
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Long Qiao
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Run-Lin Yang
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Xue
- Model Animal Research Center and the School of Medicine, MOE Key Laboratory of Model Animal for Disease Studies, Nanjing University of Nanjing, Nanjing, China
| | - Fei-Yan Pan
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiao-Jun Zhou
- Affiliated Jinling Hospital of Medical School of Nanjing University, Nanjing, China
| | - Hua-Qun Chen
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wen Ning
- Model Animal Research Center and the School of Medicine, MOE Key Laboratory of Model Animal for Disease Studies, Nanjing University of Nanjing, Nanjing, China
| | - Chao-Jun Li
- Model Animal Research Center and the School of Medicine, MOE Key Laboratory of Model Animal for Disease Studies, Nanjing University of Nanjing, Nanjing, China
- The Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
26
|
Gaestel M. Biological monitoring of non-thermal effects of mobile phone radiation: recent approaches and challenges. Biol Rev Camb Philos Soc 2010; 85:489-500. [PMID: 20015314 DOI: 10.1111/j.1469-185x.2009.00112.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review describes recent developments in analysing the influence of radio-frequency electromagnetic fields (RF-EMFs ) on biological systems by monitoring the cellular stress response as well as overall gene expression. Recent data on the initiation and modulation of the classical cellular stress response by RF-EMFs, comprising expression of heat shock proteins and stimulation of stress-activated protein kinases, are summarised and evaluated. Since isothermic RF-EMF exposure is assumed rather than proven there are clear limitations in using the stress response to describe non-thermal effects of RF-EMFs. In particular, further experiments are needed to characterise better the threshold of the thermal heat shock response and the homogeneity of the cellular response in the whole sample for each biological system used. Before then, it is proposed that the absence of the classical stress response can define isothermal experimental conditions and qualifies other biological effects of RF-EMFs detected under these conditions to be of non-thermal origin. To minimise the probability that by making this assumption valuable insights into the nature of biological effects of RF-EMFs could be lost, proteotoxic non-thermal RF-EMF effects should also be monitored by measuring activities of labile intracellular enzymes and/or levels of their metabolites before the threshold for the heat shock response is reached. In addition, non-thermal induction of the stress response via promoter elements distinct from the heat shock element (HSE) should be analysed using HSE-mutated heat shock promoter reporter constructs. Screening for non-thermal RF-EMF effects in the absence of a classical stress response should be performed by transcriptomics and proteomics. Recent approaches demonstrate that due to their high-throughput characteristics, these methods inherently generate false positive results and require statistical evaluation based on quantitative expression analysis from a sufficient number of independent experiments with identical parameters. In future approaches, positive results must be confirmed by independent quantitative methods and should also be evaluated in vivo to prove possible non-thermal effects of RF-EMFs on living beings. If successful, this strategy should contribute to identification of new underlying molecular mechanisms of interaction between RF-EMFs and living beings distinct from absorption of thermal energy.
Collapse
Affiliation(s)
- Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
27
|
Ronkina N, Menon MB, Schwermann J, Arthur JSC, Legault H, Telliez JB, Kayyali US, Nebreda AR, Kotlyarov A, Gaestel M. Stress induced gene expression: a direct role for MAPKAP kinases in transcriptional activation of immediate early genes. Nucleic Acids Res 2010; 39:2503-18. [PMID: 21109534 PMCID: PMC3074129 DOI: 10.1093/nar/gkq1178] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immediate early gene (IEG) expression is coordinated by multiple MAP kinase signaling pathways in a signal specific manner. Stress-activated p38α MAP kinase is implicated in transcriptional regulation of IEGs via MSK-mediated CREB phosphorylation. The protein kinases downstream to p38, MAPKAP kinase (MK) 2 and MK3 have been identified to regulate gene expression at the posttranscriptional levels of mRNA stability and translation. Here, we analyzed stress-induced IEG expression in MK2/3-deficient cells. Ablation of MKs causes a decrease of p38α level and p38-dependent IEG expression. Unexpectedly, restoration of p38α does not rescue the full-range IEG response. Instead, the catalytic activity of MKs is necessary for the major transcriptional activation of IEGs. By transcriptomics, we identified MK2-regulated genes and recognized the serum response element (SRE) as a common promoter element. We show that stress-induced phosphorylation of serum response factor (SRF) at serine residue 103 is significantly reduced and that induction of SRE-dependent reporter activity is impaired and can only be rescued by catalytically active MK2 in MK2/3-deficient cells. Hence, a new function of MKs in transcriptional activation of IEGs via the p38α-MK2/3-SRF-axis is proposed which probably cooperates with MKs’ role in posttranscriptional gene expression in inflammation and stress response.
Collapse
Affiliation(s)
- N Ronkina
- Institute of Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hailemariam K, Iwasaki K, Huang BW, Sakamoto K, Tsuji Y. Transcriptional regulation of ferritin and antioxidant genes by HIPK2 under genotoxic stress. J Cell Sci 2010; 123:3863-71. [PMID: 20980392 DOI: 10.1242/jcs.073627] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ATF1 (activating transcription factor 1), a stimulus-induced CREB family transcription factor, plays important roles in cell survival and proliferation. Phosphorylation of ATF1 at Ser63 by PKA (cAMP-dependent protein kinase) and related kinases was the only known post-translational regulatory mechanism of ATF1. Here, we found that HIPK2 (homeodomain-interacting protein kinase 2), a DNA-damage-responsive nuclear kinase, is a new ATF1 kinase that phosphorylates Ser198 but not Ser63. ATF1 phosphorylation by HIPK2 activated ATF1 transcription function in the GAL4-reporter system. ATF1 is a transcriptional repressor of ferritin H, the major intracellular iron storage gene, through an ARE (antioxidant-responsive element). HIPK2 overrode the ATF1-mediated ARE repression in a kinase-activity-dependent manner in HepG2 cells. Furthermore, DNA-damage-inducing agents doxorubicin, etoposide and sodium arsenite induced ferritin H mRNA expression in HIPK2(+/+) MEF cells, whereas it was significantly impaired in HIPK2(-/-) MEF cells. Induction of other ARE-regulated detoxification genes such as NQO1 (NADPH quinone oxidoreductase 1), GST (glutathione S-transferase) and HO1 (heme oxygenase 1) by genotoxic stress was also decreased in HIPK2-deficient cells. Taken together, these results suggest that HIPK2 is a new ATF1 kinase involved in the regulation of ferritin H and other antioxidant detoxification genes in genotoxic stress conditions.
Collapse
Affiliation(s)
- Kiros Hailemariam
- Department of Environmental and Molecular Toxicology, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
29
|
Zhou X, Moon C, Zheng F, Luo Y, Soellner D, Nuñez JL, Wang H. N-methyl-D-aspartate-stimulated ERK1/2 signaling and the transcriptional up-regulation of plasticity-related genes are developmentally regulated following in vitro neuronal maturation. J Neurosci Res 2010; 87:2632-44. [PMID: 19396876 DOI: 10.1002/jnr.22103] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The general features of neuroplasticity are developmentally regulated. Although it has been hypothesized that the loss of plasticity in mature neurons may be due to synaptic saturation and functional reduction of N-methyl-D-aspartate receptors (NMDAR), the molecular mechanisms remain largely unknown. We examined the effects of NMDAR activation and KCl-mediated membrane depolarization on ERK1/2 signaling following in vitro maturation of cultured cortical neurons. Although NMDA stimulated a robust increase in intracellular calcium at both DIV (day in vitro) 3 and 14, the activation of ERK1/2 and cAMP responsive element-binding protein (CREB) was impaired at DIV 14. Specifically, the phosphorylation of ERK1/2 was stimulated by both NMDA and KCl at DIV 3. However, at DIV 14, NMDA- but not KCl-stimulated ERK1/2 and CREB phosphorylation was significantly diminished. Consistently, the NMDA-induced transcription of ERK/CREB-regulated genes Bdnf exon 4, Arc, and zif268 was significantly attenuated at DIV 14. Moreover, in comparison with 3 DIV neurons, the phosphorylated-ERK1/2 in 14 DIV neurons displayed a tremendous increase following maturation and was more susceptible to dephosphorylation. Blocking calcium channels by nifedipine or NMDAR by APV caused a more dramatic ERK dephosphorylation in 14 DIV neurons. We further demonstrate that the loss of plasticity-related signaling is unrelated to NMDA-induced cell death of the 14 DIV neurons. Taken together, these results suggest that the attenuation of certain aspects of neuroplasticity following maturation may be due to the reduction of NMDAR-mediated gene transcription and a saturation of ERK1/2 activity.
Collapse
Affiliation(s)
- Xianju Zhou
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Gitenay D, Baron VT. Is EGR1 a potential target for prostate cancer therapy? Future Oncol 2009; 5:993-1003. [PMID: 19792968 DOI: 10.2217/fon.09.67] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer is a major cause of cancer-related death in American men, for which finding new therapeutic strategies remains a challenge. Early growth response-1 (EGR1) is a transcription factor involved in cell proliferation and in the regulation of apoptosis. Although it has long been considered a tumor suppressor, a wealth of new evidence shows that EGR1 promotes the progression of prostate cancer. This review addresses the paradoxes of EGR1 function. While EGR1 mediates apoptosis in response to stress and DNA damage by regulating a tumor suppressor network, it also promotes the proliferation of prostate cancer cells by a mechanism that is not fully understood. Thus, EGR1 might be targeted for prostate cancer therapy either by ectopic expression in combination with radiotherapy or chemotherapy, or by direct inhibition for systemic treatment. Possible strategies to antagonize EGR1 function in a therapeutic setting are discussed.
Collapse
Affiliation(s)
- Delphine Gitenay
- The Vaccine Research Institute of San Diego, San Diego, CA 92121, USA. 19429708
| | | |
Collapse
|
31
|
Mayer SI, Rössler OG, Endo T, Charnay P, Thiel G. Epidermal-growth-factor-induced proliferation of astrocytes requires Egr transcription factors. J Cell Sci 2009; 122:3340-50. [DOI: 10.1242/jcs.048272] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Stimulation of astrocytes with epidermal growth factor (EGF) induced proliferation and triggered the biosynthesis of the transcription factor Egr-1, involving the activation of the extracellular signal-regulated protein kinase (ERK) signaling pathway. No differences in the proliferation rate of astrocytes prepared from wild-type or Egr-1-deficient mice were detected. However, expression of a dominant-negative mutant of Egr-1 that interfered with DNA-binding of all Egr proteins prevented EGF-induced proliferation of astrocytes. Site-directed mutagenesis of two crucial cysteine residues within the zinc finger DNA-binding domain revealed that DNA-binding of the Egr-1 mutant was essential to inhibit proliferation of EGF-stimulated astrocytes. Expression of NAB2 (a negative co-regulator of Egr-1, Egr-2 and Egr-3) or a dominant-negative mutant of Elk-1 (a key regulator of Egr-1 biosynthesis) abolished EGF-induced proliferation of astrocytes. Chromatin immunoprecipitation experiments showed that Egr-1, Egr-2 and Egr-3 bound to the gene expressing basic fibroblast growth factor (bFGF) in EGF-stimulated astrocytes. Egr-2 and Egr-3 also interacted with the bFGF gene in EGF-stimulated astrocytes prepared from Egr-1-deficient mice, indicating that loss of Egr-1 is compensated by other Egr proteins. Together, these data show that Egr transcription factors are essential for conversion of the mitogenic signal of EGF into a proliferative response.
Collapse
Affiliation(s)
- Sabine I. Mayer
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | - Oliver G. Rössler
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | - Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Chiba 263-8522, Japan
| | - Patrick Charnay
- INSERM, U784, Ecole Normale Supérieure, 75230 Paris, France
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| |
Collapse
|
32
|
Wang Y, Li S, Piao F, Hong Y, Liu P, Zhao Y. Arsenic down-regulates the expression of Camk4, an important gene related to cerebellar LTD in mice. Neurotoxicol Teratol 2009; 31:318-22. [DOI: 10.1016/j.ntt.2009.04.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 04/23/2009] [Accepted: 04/24/2009] [Indexed: 11/30/2022]
|
33
|
Seok J, Xiao W, Moldawer LL, Davis RW, Covert MW. A dynamic network of transcription in LPS-treated human subjects. BMC SYSTEMS BIOLOGY 2009; 3:78. [PMID: 19638230 PMCID: PMC2729748 DOI: 10.1186/1752-0509-3-78] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 07/28/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND Understanding the transcriptional regulatory networks that map out the coordinated dynamic responses of signaling proteins, transcription factors and target genes over time would represent a significant advance in the application of genome wide expression analysis. The primary challenge is monitoring transcription factor activities over time, which is not yet available at the large scale. Instead, there have been several developments to estimate activities computationally. For example, Network Component Analysis (NCA) is an approach that can predict transcription factor activities over time as well as the relative regulatory influence of factors on each target gene. RESULTS In this study, we analyzed a gene expression data set in blood leukocytes from human subjects administered with lipopolysaccharide (LPS), a prototypical inflammatory challenge, in the context of a reconstructed regulatory network including 10 transcription factors, 99 target genes and 149 regulatory interactions. We found that the computationally estimated activities were well correlated to their coordinated action. Furthermore, we found that clustering the genes in the context of regulatory influences greatly facilitated interpretation of the expression data, as clusters of gene expression corresponded to the activity of specific factors or more interestingly, factor combinations which suggest coordinated regulation of gene expression. The resulting clusters were therefore more biologically meaningful, and also led to identification of additional genes under the same regulation. CONCLUSION Using NCA, we were able to build a network that accounted for between 8-11% genes in the known transcriptional response to LPS in humans. The dynamic network illustrated changes of transcription factor activities and gene expressions as well as interactions of signaling proteins, transcription factors and target genes.
Collapse
Affiliation(s)
- Junhee Seok
- Department of Bioengineering, Stanford University, Stanford, California, USA.
| | | | | | | | | |
Collapse
|
34
|
Vermeulen L, Vanden Berghe W, Beck IME, De Bosscher K, Haegeman G. The versatile role of MSKs in transcriptional regulation. Trends Biochem Sci 2009; 34:311-8. [PMID: 19464896 DOI: 10.1016/j.tibs.2009.02.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 10/20/2022]
Abstract
Among the mitogen-activated protein kinase (MAPK) targets, MSKs (mitogen- and stress-activated protein kinases) comprise a particularly interesting protein family. Because MSKs can be activated by both extracellular-signal-regulated kinase and p38 MAPKs, they are activated by many physiological and pathological stimuli. About ten years after their original discovery, they have been recognized as versatile kinases regulating gene transcription at multiple levels. MSKs directly target transcription factors, such as cAMP-response-element-binding protein and nuclear factor-kappaB, thereby enhancing their transcriptional activity. They also induce histone phosphorylation, which is accompanied by chromatin relaxation and facilitated binding of additional regulatory proteins. Here, we review the current knowledge on MSK activation and its molecular targets, focusing on recent insights into the role of MSKs at multiple levels of transcriptional regulation.
Collapse
Affiliation(s)
- Linda Vermeulen
- Laboratory of Eukaryotic Gene Expression & Signal Transduction (LEGEST), Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
35
|
Mayer SI, Willars GB, Nishida E, Thiel G. Elk-1, CREB, and MKP-1 regulate Egr-1 expression in gonadotropin-releasing hormone stimulated gonadotrophs. J Cell Biochem 2009; 105:1267-78. [PMID: 18814180 DOI: 10.1002/jcb.21927] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stimulation of gonadotropin-releasing hormone (GnRH) receptors with the GnRH analogue buserelin enhances expression of the zinc finger transcription factor Egr-1 in a pituitary gonadotroph cell line. The signaling cascade is blocked by overexpression of MAP kinase phosphatase-1 that dephosphorylates extracellular signal-regulated protein kinase in the nucleus. Chromatin immunoprecipitation experiments revealed that the phosphorylated form of Elk-1, a key regulator of gene transcription driven by serum response element (SRE), binds to the 5'-upstream region of the Egr-1 gene in buserelin-stimulated gonadotrophs. Expression of a dominant-negative mutant of Elk-1 completely blocked Egr-1 expression, indicating that Elk-1 connects the intracellular signaling cascade elicited by activation of GnRH receptors with transcription of the Egr-1 gene. GnRH receptor activation additionally induced the phosphorylation of CREB, which in its phosphorylated form bound to the Egr-1 gene. Expression of a dominant-negative mutant of CREB reduced GnRH receptor-induced upregulation of Egr-1 expression, indicating that CREB plays a role in the signaling pathway that regulates Egr-1 expression in gonadotrophs. We further identified the genes encoding basic fibroblast growth factor, tumor necrosis factor alpha, and transforming growth factor beta as bona fide target genes of Egr-1 in gonadotrophs. The analysis of gonadotroph cells that express--in addition to GnRH receptors--muscarinic M(3) acetylcholine receptors revealed that the nuclear events connecting GnRH receptors and muscarinic M(3) acetylcholine receptors with the Egr-1 gene are indistinguishable.
Collapse
Affiliation(s)
- Sabine I Mayer
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | | | | | | |
Collapse
|
36
|
Zhao HY, Ooyama A, Yamamoto M, Ikeda R, Haraguchi M, Tabata S, Furukawa T, Che XF, Zhang S, Oka T, Fukushima M, Nakagawa M, Ono M, Kuwano M, Akiyama SI. Molecular basis for the induction of an angiogenesis inhibitor, thrombospondin-1, by 5-fluorouracil. Cancer Res 2008; 68:7035-41. [PMID: 18757417 DOI: 10.1158/0008-5472.can-07-6496] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most commonly used anticancer drugs in chemotherapy against various solid tumors. 5-FU dose-dependently increased the expression levels of intrinsic antiangiogenic factor thrombospondin-1 (TSP-1) in human colon carcinoma KM12C cells and human breast cancer MCF7 cells. We investigated the molecular basis for the induction of TSP-1 by 5-FU in KM12C cells. Promoter assays showed that the region with the Egr-1 binding site is critical for the induction of TSP-1 promoter activity by 5-FU. The binding of Egr-1 to the TSP-1 promoter was increased in KM12C cells treated with 5-FU. Immunofluorescence staining revealed that 5-FU significantly increased the level of Egr-1 in the nuclei of KM12C cells. The suppression of Egr-1 expression by small interfering RNA decreased the expression level of TSP-1. Furthermore, 5-FU induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27). Blockade of the p38 MAPK pathway by SB203580 remarkably inhibited the phosphorylation of HSP27 induced by 5-FU and decreased the induction of Egr-1 and TSP-1 by 5-FU in KM12C cells. These findings suggest that the p38 MAPK pathway plays a crucial role in the induction of Egr-1 by 5-FU and that induced Egr-1 augments TSP-1 promoter activity, with the subsequent production of TSP-1 mRNA and protein.
Collapse
Affiliation(s)
- Hong-Ye Zhao
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Targeting of p38 mitogen-activated protein kinases to early growth response gene 1 (EGR-1) in the human paclitaxel-resistance ovarian carcinoma cells. ACTA ACUST UNITED AC 2008; 28:451-5. [PMID: 18704310 DOI: 10.1007/s11596-008-0417-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Indexed: 01/15/2023]
Abstract
To investigate the relationship between the expression of early growth response gene 1 (EGR-1) and p38MAPK pathway in the paclitaxel resistance of ovarian carcinoma cells, the effect of p38MAPK inhibitor SB203580 on cell apoptosis was examined by using Hoechst 33258 staining. The intracellular Rh123 (Rhodamine 123) accumulation was detected by the flow cytometry (FCM). The 50% inhibition concentration (IC50) of paclitaxel for A2780/Taxol cells was determined by MTT method. Electrophoretic motility shift assay (EMSA) was employed to examine the EGR-1DNA binding activity. MDR1 and EGR-1 mRNA were assessed by RT-PCR. The expressed of p-gp, phosphorylated p53 and p38 were detected by Western blotting. SB203580 could remarkably promote the apoptosis of A2780/Taxol cells, and the cell apoptosis was in a time-dependent manner. Cellular Rh123 accumulation was increased, and the IC50 of paclitaxel for A2780/Taxol cells was decreased significantly. A2780/Taxol cell line after SB203580 treatment was shown to have a significantly higher level of EGR-1 DNA binding activity. SB203580 down-regulated the activity of p38MAPK pathway, but up-regulated EGR-1 expression. SB203580 significantly increased the level of cellular phosphorylated p53 protein, but decreased the p-gp protein level and MDR1 mRNA level in A2780/Taxol cells. There existed a close relationship between p38MAPK pathway and the paclitaxel resistance of ovarian carcinoma cells. The expression of EGR-1 mediated by p38MAPK pathway plays a critical role in paclitaxel resistance of ovarian carcinoma cells.
Collapse
|
38
|
Håversen L, Danielsson KN, Fogelstrand L, Wiklund O. Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis 2008; 202:382-93. [PMID: 18599066 DOI: 10.1016/j.atherosclerosis.2008.05.033] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 05/08/2008] [Accepted: 05/09/2008] [Indexed: 10/22/2022]
Abstract
Increased circulating free fatty acids in subjects with type 2 diabetes may contribute to activation of macrophages, and thus the development of atherosclerosis. In this study, we investigated the effect of the saturated fatty acids (SFA) palmitate, stearate, myristate and laurate, and the unsaturated fatty acid linoleate, on the production of proinflammatory cytokines in phorbol ester-differentiated THP-1 cells, a model of human macrophages. Palmitate induced secretion and mRNA expression of TNF-alpha, IL-8 and IL-1 beta, and enhanced lipopolysaccharide (LPS)-induced IL-1 beta secretion. Proinflammatory cytokine secretion was also induced by stearate, but not by the shorter chain SFA, myristate and laurate, or linoleate. Triacsin C abolished the palmitate-induced cytokine secretion, suggesting that palmitate activation to palmitoyl-CoA is required for its effect. Palmitate-induced cytokine secretion was decreased by knockdown of serine palmitoyltransferase and mimicked by C(2)-ceramide, indicating that ceramide is involved in palmitate-induced cytokine secretion. Palmitate phosphorylated p38 and JNK kinases, and blocking of these kinases with specific inhibitors diminished the palmitate-induced cytokine secretion. Palmitate also activated the AP-1 (c-Jun) transcription factor. Knockdown of MyD88 reduced the palmitate-induced IL-8, but not TNF-alpha or IL-1 beta secretion. In conclusion, our data suggest that the long-chain SFA induce proinflammatory cytokines in human macrophages via pathways involving de novo ceramide synthesis. This might contribute to the activation of macrophages in atherosclerotic plaques, especially in type 2 diabetes.
Collapse
Affiliation(s)
- Liliana Håversen
- Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska Academy, Göteborg University, Bruna Stråket 16, 41345 Göteborg, Sweden.
| | | | | | | |
Collapse
|
39
|
Stress-induced p38 mitogen-activated protein kinase activation mediates kappa-opioid-dependent dysphoria. J Neurosci 2007; 27:11614-23. [PMID: 17959804 DOI: 10.1523/jneurosci.3769-07.2007] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The molecular mechanisms mediating stress-induced dysphoria in humans and conditioned place aversion in rodents are unknown. Here, we show that repeated swim stress caused activation of both kappa-opioid receptor (KOR) and p38 mitogen-activated protein kinase (MAPK) coexpressed in GABAergic neurons in the nucleus accumbens, cortex, and hippocampus. Sites of activation were visualized using phosphoselective antibodies against activated kappa receptors (KOR-P) and against phospho-p38 MAPK. Surprisingly, the increase in P-p38-IR caused by swim-stress exposure was completely KOR dependent; P-p38-IR did not increase in KOR(-/-) knock-out mice subjected to the same swim-paradigm or in wild-type mice pretreated with the KOR antagonist norbinaltorphimine. To understand the relationship between p38 activation and the behavioral effects after KOR activation, we administered the p38 inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)-1H-imidazole (i.c.v.)] and found that it selectively blocked the conditioned place aversion caused by the kappa agonist trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide (U50488) and the KOR-dependent swim stress-induced immobility while not affecting kappa-opioid analgesia or nonselectively affecting associative learning. We found that the mechanism linking KOR and p38 activation in vivo was consistent with our previous in vitro data suggesting that beta-arrestin recruitment is required; mice lacking G-protein-coupled receptor kinase 3 also failed to increase p-p38-IR after KOR activation in vivo, failed to show swim stress-induced immobility, or develop conditioned place aversion to U50488. Our results indicate that activation of p38 MAPK signaling by the endogenous dynorphin-kappa-opioid system likely constitutes a key component of the molecular mechanisms mediating the aversive properties of stress.
Collapse
|
40
|
Iwasaki K, Hailemariam K, Tsuji Y. PIAS3 interacts with ATF1 and regulates the human ferritin H gene through an antioxidant-responsive element. J Biol Chem 2007; 282:22335-43. [PMID: 17565989 PMCID: PMC2409283 DOI: 10.1074/jbc.m701477200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gene transcription is coordinately regulated by the balance between activation and repression mechanisms in response to various external stimuli. Ferritin, composed of H and L subunits, is the major intracellular iron storage protein involved in iron homeostasis. We previously identified an enhancer, termed antioxidant-responsive element (ARE), in the human ferritin H gene and its respective transcriptional activators including Nrf2 and JunD. Here we found that ATF1 (activating transcription factor 1) is a transcriptional repressor of the ferritin H ARE. Subsequent yeast two-hybrid screening identified PIAS3 (protein inhibitor of activated STAT3) as an ATF1-binding protein. Further investigation of the human ferritin H ARE regulation showed that 1) PIAS3 reversed ATF1-mediated repression of the ferritin H ARE; 2) ATF1 was sumoylated, but PIAS3, a SUMO E3 ligase, did not appear to play a major role in SUMO1-mediated ATF1 sumoylation or ATF1 transcription activating function; 3) PIAS3 decreased ATF1 binding to the ARE; and 4) ATF1 knockdown with siRNA increased ferritin H expression, whereas PIAS3 knockdown decreased basal expression and oxidative stress-mediated induction of ferritin H. These results suggest that PIAS3 antagonizes the repressor function of ATF1, at least in part by blocking its DNA binding, and ultimately activates the ARE. Collectively our results suggest that PIAS3 is a new regulator of ATF1 that regulates the ARE-mediated transcription of the ferritin H gene.
Collapse
Affiliation(s)
- Kenta Iwasaki
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
41
|
Cui H, Cai F, Belsham DD. Leptin signaling in neurotensin neurons involves STAT, MAP kinases ERK1/2, and p38 through c‐Fos and ATF1. FASEB J 2006; 20:2654-6. [PMID: 17077290 DOI: 10.1096/fj.06-5989fje] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The adipokine leptin signals energy status to the hypothalamus, which triggers a network of neuropeptide responses. Each hypothalamic cell type expresses a unique complement of neuropeptides, receptors, and second messengers; thus each likely responds specifically to peripheral hormones. We describe here the analysis of leptin signaling in a clonal population of mouse neurotensin (NT) -expressing hypothalamic neurons, N-39. Leptin induced phosphorylation of STAT3 and MAPK ERK1/2, but not the downstream effector of PI3K, Akt, and also induced c-Fos protein. We found activation of p38 MAPK by leptin, accompanied by phosphorylation of its downstream effector ATF-1. Phosphorylation of ATF-1 is blocked by the p38 MAPK inhibitor SB 203580. We linked this signaling directly to NT transcription. Protein binding analysis indicates that both ATF-1 and c-Fos are capable of binding to the mouse NT/N gene predominantly at physiological or high concentrations of leptin. The evidence indicates activation of distinct leptin signal transduction pathways that directly result in changes in NT gene expression and links these specific neurons to the control of energy homeostasis.
Collapse
Affiliation(s)
- Hong Cui
- Department of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | |
Collapse
|
42
|
Collins QF, Xiong Y, Lupo EG, Liu HY, Cao W. p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. J Biol Chem 2006; 281:24336-44. [PMID: 16803882 DOI: 10.1074/jbc.m602177200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Free fatty acids (FFA) are considered as a causative link between obesity and diabetes. In various animal models and in humans FFA can stimulate hepatic gluconeogenesis. Although the in vivo role of FFA in hepatic gluconeogenesis has been clearly established, the intracellular role of FFA and related signaling pathway remain unclear in the regulation of hepatic gluconeogenic gene transcription. In this study, we have identified p38 mitogen-activated protein kinase (p38) as a critical signaling component in FFA-induced transcription of key gluconeogenic genes. We show in primary hepatocytes that both mid- and long-chain fatty acids (saturated or unsaturated) could activate p38 and increase levels of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase, and peroxisome proliferator-activated receptor gamma coactivator alpha (PGC-1alpha) gene transcripts. The FFA-induced expression of PEPCK and PGC-1alpha genes and gluconeogenesis in isolated hepatocytes could be blocked by the inhibition of p38. Furthermore, PGC-1alpha phosphorylation by p38 was necessary for FFA-induced activation of the PEPCK promoter. Additionally, FFA stimulated phosphorylation of cAMP-response element-binding protein (CREB) through p38. The overexpression of the dominant-negative CREB prevented FFA-induced activation of the PEPCK promoter. Finally, we show that FFA activation of p38 requires protein kinase Cdelta. Together, our results indicate that p38 plays a critical role in FFA-induced transcription of gluconeogenic genes, and the known gluconeogenic regulators, PGC-1alpha and CREB, are also integral parts of FFA-stimulated transcription of gluconeogenic genes.
Collapse
Affiliation(s)
- Qu Fan Collins
- Division of Biological Sciences, Endocrine Biology Program, CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
43
|
Guo MX, Wang D, Shao HJ, Qiu HL, Xue L, Zhao ZZ, Zhu CG, Shi YB, Li WX. Transcription of human zinc finger ZNF268 gene requires an intragenic promoter element. J Biol Chem 2006; 281:24623-36. [PMID: 16787922 DOI: 10.1074/jbc.m602753200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human ZNF268 gene is a typical Krüppel-associated box/C2H2 zinc finger gene whose homolog has been found only in higher mammals and not in lower mammals such as mouse. Its expression profiles have suggested that it plays a role in the differentiation of blood cells during early human embryonic development and the pathogenesis of leukemia. To gain additional insight into the molecular mechanisms controlling the expression of the ZNF268 gene and to provide the necessary tools for further genetic studies of leukemia, we have mapped the 5'-end of the human ZNF268 mRNA by reverse transcription-PCR and primer extension assays. We then cloned the 5'-flanking genomic DNA containing the putative ZNF268 gene promoter and analyzed its function in several different human and mouse tissue culture cell lines. Interestingly, our studies show that the ZNF268 gene lacks a typical eukaryotic promoter that is present upstream of the transcription start site and directs a basal level of transcription. Instead, the functional promoter requires an essential element that is located within the first exon of the gene. Deletion and mutational analysis reveals the requirement for a cAMP response-element-binding protein (CREB)-binding site within this element for promoter function. Gel mobility shift and chromatin immunoprecipitation assays confirm that CREB-2 binds to the site in vitro and in vivo. Furthermore, overexpression of CREB-2 enhances the promoter activity. These results demonstrate that the human ZNF268 gene promoter is atypical and requires an intragenic element located within the first exon that mediates the effect of CREB for its activity.
Collapse
Affiliation(s)
- Ming-Xiong Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Adamec RE, Blundell J, Burton P. Relationship of the predatory attack experience to neural plasticity, pCREB expression and neuroendocrine response. Neurosci Biobehav Rev 2006; 30:356-75. [PMID: 16115684 DOI: 10.1016/j.neubiorev.2005.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Revised: 04/08/2005] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
Aggression takes at least two, an attacker and a target. This paper will address the lasting consequences of being a target of aggression. We review the lasting impact of predatory attack on brain and behavior in rodents. A single brief unprotected exposure of a rat to a cat lastingly alters affective responses of rats in a variety of contexts. Alterations of these behaviors resembles both generalized anxiety comorbid with post traumatic stress disorder (PTSD), and the hyper arousal expressed in enhanced startle in PTSD. Examination of neural transmission and neural plasticity in limbic circuits implicates changes in transmission in two connecting pathways in many but not all of the behavioral changes. Quantification of the predator encounter reveals that both the behavior of the predator and the reaction of the rat to attack are highly predictive of the effects of predatory attack on molecular biological (pCREB expression) and electrophysiological measures of limbic neuroplastic change. Moreover, a case will be made that the pattern of change of corticosteroid level over three hours after the predator encounter, in interaction with the predatory experience, plays an important part in initiation of lasting changes in brain and behavior.
Collapse
Affiliation(s)
- Robert E Adamec
- Department of Psychology, Memorial University, 232 Elizabeth Ave., St. John's, Nl, Canada, A1B 3X9.
| | | | | |
Collapse
|
45
|
Cao W, Collins QF, Becker TC, Robidoux J, Lupo EG, Xiong Y, Daniel KW, Floering L, Collins S. p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J Biol Chem 2005; 280:42731-7. [PMID: 16272151 DOI: 10.1074/jbc.m506223200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hepatic gluconeogenesis is essential for maintaining blood glucose levels during fasting and is the major contributor to postprandial and fasting hyperglycemia in diabetes. Gluconeogenesis is a classic cAMP/protein kinase A-dependent process initiated by glucagon, which is elevated in the blood during fasting and in diabetes. In this study, we have shown that p38 mitogen-activated protein kinase (p38) was activated in liver by fasting and in primary hepatocytes by glucagon or forskolin. Fasting plasma glucose levels were reduced upon blockade of p38 with either a chemical inhibitor or small interference RNA in mice. In examining the mechanism, inhibition of p38 suppressed gluconeogenesis in liver, along with expression of key gluconeogenic genes, including phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Peroxisome proliferator-activated receptor gamma coactivator 1alpha and cAMP-response element-binding protein have been shown to be important mediators of hepatic gluconeogenesis. We have shown that inhibition of p38 prevented transcription of the PPARgamma coactivator 1alpha gene as well as phosphorylation of cAMP-response element-binding protein. Together, our results from in vitro and in vivo studies define a model in which cAMP-dependent activation of genes involved in gluconeogenesis is dependent upon the p38 pathway, thus adding a new player to our evolving understanding of this physiology.
Collapse
Affiliation(s)
- Wenhong Cao
- Endocrine Biology Program, CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xie J, Qian J, Yang J, Wang S, Freeman ME, Yi Q. Critical roles of Raf/MEK/ERK and PI3K/AKT signaling and inactivation of p38 MAP kinase in the differentiation and survival of monocyte-derived immature dendritic cells. Exp Hematol 2005; 33:564-72. [PMID: 15850834 DOI: 10.1016/j.exphem.2005.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/28/2005] [Accepted: 03/01/2005] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this study is to investigate the signaling pathways and their roles in the differentiation of immature monocyte-derived dendritic cells (MoDCs). METHODS MoDCs were generated from peripheral blood monocytes (PBMCs) using the standard protocols. Various kinase inhibitors, including SB203580, PD98059, and LY294002 and Wortmannin, or p38 activator were added at the beginning of the cultures. After 7 days of culture, immature MoDCs were harvested and analyzed for their surface expression of relevant molecules and the fraction of apoptotic cells by flow cytometry. Western blots were used to analyze mitogen-activated protein kinase (MAPK), NF-kappaB, Raf, mitogen-induced extracellular kinase (MEK), and AKT expression by cultured cells. NF-kappaB was also analyzed by electrophoretic mobility shift assay. Allogeneic MLR was used to examine the capacity of MoDCs to activate allogeneic T cells. RESULTS The present study shows that the differentiation of immature MoDCs was accompanied by phosphorylation of AKT, Raf, MEK, extracellular signal-related kinase (ERK), and NF-kappaB activity. Inhibiting PI3K or MEK retarded the differentiation of immature MoDCs and induced apoptosis in 10 to 30% of the cultured cells, while inhibiting both PI3K and MEK resulted in apoptosis in 70% of the cells. Surprisingly, inhibiting p38 enhanced the phosphorylation of ERK and NF-kappaB activity and led to an enhanced upregulation, compared with control cells, of expression of dendritic cell (DC)-related adhesion and costimulatory molecules and antigen presentation capacity. CONCLUSIONS Our results indicate that the Raf/MEK/ERK and PI3K/AKT signaling pathways play critical roles in the differentiation and survival of immature MoDCs. Moreover, this study also demonstrates that activated p38 is detrimental to the differentiation of immature MoDCs.
Collapse
Affiliation(s)
- Jin Xie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Ark., USA
| | | | | | | | | | | |
Collapse
|
47
|
Bauer I, Hohl M, Al-Sarraj A, Vinson C, Thiel G. Transcriptional activation of the Egr-1 gene mediated by tetradecanoylphorbol acetate and extracellular signal-regulated protein kinase. Arch Biochem Biophys 2005; 438:36-52. [PMID: 15910736 DOI: 10.1016/j.abb.2005.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 03/21/2005] [Accepted: 03/22/2005] [Indexed: 01/25/2023]
Abstract
Activation of extracellular signal-regulated protein kinase (ERK) triggers the biosynthesis of Egr-1, a zinc finger transcription factor. Likewise, the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) strongly upregulates Egr-1 biosynthesis. Here, we have analyzed the genetic elements involved in the regulation of Egr-1 gene transcription by ERK and TPA in human hepatoma cells. Expression experiments using mitogen-activated protein kinase phosphatase-1 or a dominant-negative mutant of the ternary complex factor Elk-1 revealed that the distal cluster of serum response elements is essential in the TPA-induced enhancement of Egr-1 promoter activity, encompassing two independent TPA-responsive elements. The CRE in the proximal Egr-1 promoter plays, if anything, only a marginal role in TPA-induced stimulus-transcription coupling of the Egr-1 gene. The fact that Egr-1 promoter/reporter gene transcription is upregulated by a constitutively active CREB mutant indicates that the CRE couples other signaling cascades via CREB to the Egr-1 gene.
Collapse
Affiliation(s)
- Inge Bauer
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Geiger PC, Wright DC, Han DH, Holloszy JO. Activation of p38 MAP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 2005; 288:E782-8. [PMID: 15585585 DOI: 10.1152/ajpendo.00477.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Muscle contractile activity is followed by an increase in the sensitivity of glucose transport to insulin. There is evidence suggesting that activation of p38 MAP kinase (p38) is involved in the stimulation of glucose transport by insulin and contractions. Exercise results in an increase in p38 phosphorylation that lasts for hours. In this context, we tested the hypothesis that activation of p38 results in an increase in insulin sensitivity. Muscles were exposed to anisomycin for 30 min to activate p38. Anisomycin increased p38 phosphorylation approximately 2.5-fold and glucose transport activity 2- to 3-fold. Three hours after anisomycin treatment, by which time the acute effect on glucose transport had partially worn off, sensitivity of muscle glucose transport to 60 microU/ml insulin was markedly increased. Both the activation of p38 and the increase in insulin sensitivity induced by anisomycin were completely prevented by pretreatment of muscles with the p38 inhibitor SB-202190. However, in contrast to the finding with anisomycin, inhibition of p38 activation did not prevent the contraction-induced increase in insulin sensitivity. Thus our results show that activation of p38 is followed by an increase in insulin sensitivity of muscle glucose transport. However, activation of p38 is not necessary for induction of an increase in muscle insulin sensitivity by contractions. This finding provides evidence that contractions have an additional effect that makes p38 activation unnecessary for enhancement of insulin sensitivity by contractile activity.
Collapse
Affiliation(s)
- Paige C Geiger
- Departemnt of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
49
|
Rupp J, Hellwig-Burgel T, Wobbe V, Seitzer U, Brandt E, Maass M. Chlamydia pneumoniae infection promotes a proliferative phenotype in the vasculature through Egr-1 activation in vitro and in vivo. Proc Natl Acad Sci U S A 2005; 102:3447-52. [PMID: 15722416 PMCID: PMC552898 DOI: 10.1073/pnas.0407759102] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis is characterized by inflammation and proliferation of vascular cells. The intracellular bacterium Chlamydia (Chlamydophila) pneumoniae uses blood monocytes [peripheral blood mononuclear cells (PBMCs)] for dissemination, has been found to persist in atherosclerotic lesions, and has been implicated in atherogenesis by small GTPase activation and T lymphocyte recruitment. Infection of human coronary artery smooth muscle cells with C. pneumoniae significantly induced mRNA and protein for the angiogenic transcription factor Egr-1, resulting in enhanced coronary artery smooth muscle cell proliferation, which was reduced by transfection with small interfering RNA duplexes targeted at Egr-1 mRNA. These effects required viable chlamydiae and depended on p44/42 mitogen-activated protein kinase activity but not on the p38 mitogen-activated protein kinase pathway. Postinfectious Egr-1 mRNA up-regulation in arterial vessels was confirmed ex vivo in a rat aortic ring model of focal vascular chlamydial infection. An in vivo model based on the injection of C. pneumoniae-infected PBMCs into mice confirmed Egr-1 mRNA up-regulation within 24 h of endovascular infection. Arterial injury from repeated direct chlamydial infections and cell-to-cell contact with C. pneumoniae-infected PBMCs might represent a chronic focus of proliferative activity linked to the media proliferation seen in advanced atherosclerosis. Overall, chlamydial infection induces a proliferative phenotype in vascular cells via transcription factor Egr-1 activation in vitro, ex vivo, and in vivo.
Collapse
Affiliation(s)
- Jan Rupp
- Institutes of Medical Microbiology and Hygiene and Physiology, University of Luebeck, 23538 Luebeck, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Mu MM, Koide N, Hassan F, Islam S, Sugiyama T, Ito H, Mori I, Yoshida T, Yokochi T. A role of mitogen and stress-activated protein kinase 1/2 in survival of lipopolysaccharide-stimulated RAW 264.7 macrophages. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2005; 43:277-86. [PMID: 15681159 DOI: 10.1016/j.femsim.2004.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/19/2004] [Accepted: 09/13/2004] [Indexed: 01/09/2023]
Abstract
The effect of inhibition of mitogen and stress-activated protein kinases 1/2 (MSK1/2) on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells was investigated. Pretreatment with Ro 31-8220, an inhibitor of MSK1/2, induced cell death in LPS-stimulated RAW 264.7 cells. In contrast, calphostin C, another inhibitor of protein kinase C, did not cause cell death. Cell death was not mediated by the release of pro-inflammatory mediators from LPS-stimulated RAW 264.7 cells. Cell death was accompanied by DNA fragmentation and annexin V binding, suggesting apoptotic cell death. Further, several caspase inhibitors did not prevent LPS-induced cell death of Ro 31-8220-pretreated RAW 264.7 cells. Nuclear translocation of apoptosis-inducing factor (AIF) was detected in Ro 31-8220-pretreated cells after LPS stimulation. Cell death was due to mitochondrial damage. Ro 31-8220 exclusively inhibited the phosphorylation of cAMP-responsive element binding protein (CREB), a substrate of MSK1/2. RAW 264.7 cells transfected with the dominant-negative MSK1 clones underwent cell death in response to LPS. Hence, it was suggested that MSK1/2 might play a critical role in the survival of LPS-stimulated RAW 264.7 cells.
Collapse
Affiliation(s)
- Mya Mya Mu
- Department of Microbiology and Immunology and Research Center for Infectious Disease, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|