1
|
Gao K, Gao Z, Xia M, Li H, Di J. Role of plectin and its interacting molecules in cancer. Med Oncol 2023; 40:280. [PMID: 37632650 DOI: 10.1007/s12032-023-02132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/20/2023] [Indexed: 08/28/2023]
Abstract
Plectin, as the cytolinker and scaffolding protein, are widely expressed and abundant in many tissues, and has involved in various cellular activities contributing to tumorigenesis, such as cell adhesion, migration, and signal transduction. Due to the specific expression and differential localization of plectin in cancer, most researchers focus on the role of plectin in cancer, and it has emerged as a potent driver of malignant hallmarks in many human cancers, which provides the possibility for plectin to be widely used as a biomarker and therapeutic target in the early diagnosis and targeted drug delivery of the disease. However, there is still a lack of systematic review on the interaction molecules and mechanism of plectin. Herein, we summarized the structure, expression and function of plectin, and mainly focused on recent studies on the functional and physical interactions between plectin and its interacting molecules, shedding light on the potential of targeting plectin for cancer therapy.
Collapse
Affiliation(s)
- Keyu Gao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Zhimin Gao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Mingyi Xia
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Hailong Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
2
|
Loss of Fer Jeopardizes Metabolic Plasticity and Mitochondrial Homeostasis in Lung and Breast Carcinoma Cells. Int J Mol Sci 2021; 22:ijms22073387. [PMID: 33806191 PMCID: PMC8037256 DOI: 10.3390/ijms22073387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic plasticity is a hallmark of the ability of metastatic cancer cells to survive under stressful conditions. The intracellular Fer kinase is a selective constituent of the reprogramed mitochondria and metabolic system of cancer cells. In the current work, we deciphered the modulatory roles of Fer in the reprogrammed metabolic systems of metastatic, lung (H358), non-small cell lung cancer (NSCLC), and breast (MDA-MB-231), triple-negative breast cancer (TNBC), carcinoma cells. We show that H358 cells devoid of Fer (H358ΔFer), strictly depend on glucose for their proliferation and growth, and fail to compensate for glucose withdrawal by oxidizing and metabolizing glutamine. Furthermore, glucose deficiency caused increased reactive oxygen species (ROS) production and induction of a DNA damage response (DDR), accompanied by the onset of apoptosis and attenuated cell-cycle progression. Analysis of mitochondrial function revealed impaired respiratory and electron transport chain (ETC) complex 1 (comp. I) activity in the Fer-deficient H358ΔFer cells. This was manifested by decreased levels of NAD+ and ATP and relatively low abundance of tricarboxylic acid (TCA) cycle metabolites. Impaired electron transport chain comp. I activity and dependence on glucose were also confirmed in Fer-deficient, MDA-MB-231ΔFer cells. Although both H358ΔFer and MDA-MB-231ΔFer cells showed a decreased aspartate level, this seemed to be compensated by the predominance of pyrimidines synthesis over the urea cycle progression. Notably, absence of Fer significantly impeded the growth of H358ΔFer and MDA-MB-231ΔFer xenografts in mice provided with a carb-deficient, ketogenic diet. Thus, Fer plays a key role in the sustention of metabolic plasticity of malignant cells. In compliance with this notion, targeting Fer attenuates the progression of H358 and MDA-MB-231 tumors, an effect that is potentiated by a glucose-restrictive diet.
Collapse
|
3
|
Marciano O, Mehazri L, Shpungin S, Varvak A, Zacksenhaus E, Nir U. Fer and FerT Govern Mitochondrial Susceptibility to Metformin and Hypoxic Stress in Colon and Lung Carcinoma Cells. Cells 2021; 10:cells10010097. [PMID: 33430475 PMCID: PMC7826929 DOI: 10.3390/cells10010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Aerobic glycolysis is an important metabolic adaptation of cancer cells. However, there is growing evidence that reprogrammed mitochondria also play an important metabolic role in metastatic dissemination. Two constituents of the reprogrammed mitochondria of cancer cells are the intracellular tyrosine kinase Fer and its cancer- and sperm-specific variant, FerT. Here, we show that Fer and FerT control mitochondrial susceptibility to therapeutic and hypoxic stress in metastatic colon (SW620) and non-small cell lung cancer (NSCLC-H1299) cells. Fer- and FerT-deficient SW620 and H1299 cells (SW∆Fer/FerT and H∆Fer/FerT cells, respectively) become highly sensitive to metformin treatment and to hypoxia under glucose-restrictive conditions. Metformin impaired mitochondrial functioning that was accompanied by ATP deficiency and robust death in SW∆Fer/FerT and H∆Fer/FerT cells compared to the parental SW620 and H1299 cells. Notably, selective knockout of the fer gene without affecting FerT expression reduced sensitivity to metformin and hypoxia seen in SW∆Fer/FerT cells. Thus, Fer and FerT modulate the mitochondrial susceptibility of metastatic cancer cells to hypoxia and metformin. Targeting Fer/FerT may therefore provide a novel anticancer treatment by efficient, selective, and more versatile disruption of mitochondrial function in malignant cells.
Collapse
Affiliation(s)
- Odeya Marciano
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
| | - Linoy Mehazri
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
| | - Alexander Varvak
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
| | - Eldad Zacksenhaus
- Laboratory of Medicine & Pathology, University of Toronto, Toronto, ON M5G 2M1, Canada;
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
- Correspondence: ; Tel.: +972-52-4416968
| |
Collapse
|
4
|
Chemical genetics strategy to profile kinase target engagement reveals role of FES in neutrophil phagocytosis. Nat Commun 2020; 11:3216. [PMID: 32587248 PMCID: PMC7316778 DOI: 10.1038/s41467-020-17027-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Chemical tools to monitor drug-target engagement of endogenously expressed protein kinases are highly desirable for preclinical target validation in drug discovery. Here, we describe a chemical genetics strategy to selectively study target engagement of endogenous kinases. By substituting a serine residue into cysteine at the DFG-1 position in the ATP-binding pocket, we sensitize the non-receptor tyrosine kinase FES towards covalent labeling by a complementary fluorescent chemical probe. This mutation is introduced in the endogenous FES gene of HL-60 cells using CRISPR/Cas9 gene editing. Leveraging the temporal and acute control offered by our strategy, we show that FES activity is dispensable for differentiation of HL-60 cells towards macrophages. Instead, FES plays a key role in neutrophil phagocytosis via SYK kinase activation. This chemical genetics strategy holds promise as a target validation method for kinases.
Collapse
|
5
|
Dual Roles of Fer Kinase Are Required for Proper Hematopoiesis and Vascular Endothelium Organization during Zebrafish Development. BIOLOGY 2017; 6:biology6040040. [PMID: 29168762 PMCID: PMC5745445 DOI: 10.3390/biology6040040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 11/17/2022]
Abstract
Fer kinase, a protein involved in the regulation of cell-cell adhesion and proliferation, has been shown to be required during invertebrate development and has been implicated in leukemia, gastric cancer, and liver cancer. However, in vivo roles for Fer during vertebrate development have remained elusive. In this study, we bridge the gap between the invertebrate and vertebrate realms by showing that Fer kinase is required during zebrafish embryogenesis for normal hematopoiesis and vascular organization with distinct kinase dependent and independent functions. In situ hybridization, quantitative PCR and fluorescence activated cell sorting (FACS) analyses revealed an increase in both erythrocyte numbers and gene expression patterns as well as a decrease in the organization of vasculature endothelial cells. Furthermore, rescue experiments have shown that the regulation of hematopoietic proliferation is dependent on Fer kinase activity, while vascular organizing events only require Fer in a kinase-independent manner. Our data suggest a model in which separate kinase dependent and independent functions of Fer act in conjunction with Notch activity in a divergent manner for hematopoietic determination and vascular tissue organization.
Collapse
|
6
|
Abstract
As cells grow, move, and divide, they must reorganize and rearrange their membranes and cytoskeleton. The F-BAR protein family links cellular membranes with actin cytoskeletal rearrangements in processes including endocytosis, cytokinesis, and cell motility. Here we review emerging information on mechanisms of F-BAR domain oligomerization and membrane binding, and how these activities are coordinated with additional domains to accomplish scaffolding and signaling functions.
Collapse
Affiliation(s)
- Nathan A McDonald
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| | - Kathleen L Gould
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
7
|
Oneyama C, Yoshikawa Y, Ninomiya Y, Iino T, Tsukita S, Okada M. Fer tyrosine kinase oligomer mediates and amplifies Src-induced tumor progression. Oncogene 2015; 35:501-12. [PMID: 25867068 DOI: 10.1038/onc.2015.110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/07/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
Abstract
c-Src is upregulated in various human cancers, suggesting its role in malignant progression. However, the molecular circuits of c-Src oncogenic signaling remain elusive. Here we show that Fer tyrosine kinase oligomer mediates and amplifies Src-induced tumor progression. Previously, we showed that transformation of fibroblasts is promoted by the relocation of c-Src to non-raft membranes. In this study, we identified Fer and ezrin as non-raft c-Src targets. c-Src directly activated Fer by initiating its autophosphorylation, which was further amplified by Fer oligomerization. Fer interacted with active c-Src at focal adhesion membranes and activated Fer-phosphorylated ezrin to induce cell transformation. Fer was also crucial for cell transformation induced by v-Src or epidermal growth-factor receptor activation. Furthermore, Fer activation was required for tumorigenesis and invasiveness in some cancer cells in which c-Src is upregulated. We propose that the Src-Fer axis represents a new therapeutic target for treatment of a subset of human cancers.
Collapse
Affiliation(s)
- C Oneyama
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Y Yoshikawa
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Y Ninomiya
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - T Iino
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - S Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - M Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Sangrar W, Shi C, Mullins G, LeBrun D, Ingalls B, Greer PA. Amplified Ras-MAPK signal states correlate with accelerated EGFR internalization, cytostasis and delayed HER2 tumor onset in Fer-deficient model systems. Oncogene 2014; 34:4109-17. [DOI: 10.1038/onc.2014.340] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 12/20/2022]
|
9
|
Lennartsson J, Ma H, Wardega P, Pelka K, Engström U, Hellberg C, Heldin CH. The Fer tyrosine kinase is important for platelet-derived growth factor-BB-induced signal transducer and activator of transcription 3 (STAT3) protein phosphorylation, colony formation in soft agar, and tumor growth in vivo. J Biol Chem 2013; 288:15736-44. [PMID: 23589302 DOI: 10.1074/jbc.m113.476424] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fer is a cytoplasmic tyrosine kinase that is activated in response to platelet-derived growth factor (PDGF) stimulation. In the present report, we show that Fer associates with the activated PDGF β-receptor (PDGFRβ) through multiple autophosphorylation sites, i.e. Tyr-579, Tyr-581, Tyr-740, and Tyr-1021. Using low molecular weight inhibitors, we found that PDGF-BB-induced Fer activation is dependent on PDGFRβ kinase activity, but not on the enzymatic activity of Src or Jak kinases. In cells in which Fer was down-regulated using siRNA, PDGF-BB was unable to induce phosphorylation of STAT3, whereas phosphorylations of STAT5, ERK1/2, and Akt were unaffected. PDGF-BB-induced activation of STAT3 occurred also in cells expressing kinase-dead Fer, suggesting a kinase-independent adaptor role of Fer. Expression of Fer was dispensable for PDGF-BB-induced proliferation and migration but essential for colony formation in soft agar. Tumor growth in vivo was delayed in cells depleted of Fer expression. Our data suggest a critical role of Fer in PDGF-BB-induced STAT3 activation and cell transformation.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-75124, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
10
|
Khajah M, Andonegui G, Chan R, Craig AW, Greer PA, McCafferty DM. Fer kinase limits neutrophil chemotaxis toward end target chemoattractants. THE JOURNAL OF IMMUNOLOGY 2013; 190:2208-16. [PMID: 23355730 DOI: 10.4049/jimmunol.1200322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophil recruitment and directional movement toward chemotactic stimuli are important processes in innate immune responses. This study examines the role of Fer kinase in neutrophil recruitment and chemotaxis to various chemoattractants in vitro and in vivo. Mice targeted with a kinase-inactivating mutation (Fer(DR/DR)) or wild type (WT) were studied using time-lapse intravital microscopy to examine leukocyte recruitment and chemotaxis in vivo. In response to keratinocyte-derived cytokine, no difference in leukocyte chemotaxis was observed between WT and Fer(DR/DR) mice. However, in response to the chemotactic peptide WKYMVm, a selective agonist of the formyl peptide receptor, a 2-fold increase in leukocyte emigration was noted in Fer(DR/DR) mice (p < 0.05). To determine whether these defects were due to Fer signaling in the endothelium or other nonhematopoietic cells, bone marrow chimeras were generated. WKYMVm-induced leukocyte recruitment in chimeric mice (WT bone marrow to Fer(DR/DR) recipients or vice versa) was similar to WT mice, suggesting that Fer kinase signaling in both leukocytes and endothelial cells serves to limit chemotaxis. Purified Fer(DR/DR) neutrophils demonstrated enhanced chemotaxis toward end target chemoattractants (WKYMVm and C5a) compared with WT using an under-agarose gel chemotaxis assay. These defects were not observed in response to intermediate chemoattractants (keratinocyte-derived cytokine, MIP-2, or LTB(4)). Increased WKYMVm-induced chemotaxis of Fer(DR/DR) neutrophils correlated with sustained PI3K activity and reduced reliance on the p38 MAPK pathway compared with WT neutrophils. Together, these data identify Fer as a novel inhibitory kinase for neutrophil chemotaxis toward end target chemoattractants through modulation of PI3K activity.
Collapse
Affiliation(s)
- Maitham Khajah
- Department of Physiology and Pharmacology, Gastrointestinal Research Group, Institute of Inflammation, Immunity, and Infection, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
11
|
Kwok E, Everingham S, Zhang S, Greer PA, Allingham JS, Craig AW. FES Kinase Promotes Mast Cell Recruitment to Mammary Tumors via the Stem Cell Factor/KIT Receptor Signaling Axis. Mol Cancer Res 2012; 10:881-91. [DOI: 10.1158/1541-7786.mcr-12-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Trigg J, Gutwin K, Keating AE, Berger B. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone. PLoS One 2011; 6:e23519. [PMID: 21901122 PMCID: PMC3162000 DOI: 10.1371/journal.pone.0023519] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/20/2011] [Indexed: 12/23/2022] Open
Abstract
The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices) of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs) in a Markov Random Field (MRF). The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.
Collapse
Affiliation(s)
- Jason Trigg
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Karl Gutwin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Amy E. Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (BB); (AEK)
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (BB); (AEK)
| |
Collapse
|
13
|
Fps/Fes protein-tyrosine kinase regulates mast cell adhesion and migration downstream of Kit and β1 integrin receptors. Cell Signal 2010; 22:427-36. [DOI: 10.1016/j.cellsig.2009.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/23/2009] [Indexed: 11/17/2022]
|
14
|
Zoubeidi A, Rocha J, Zouanat FZ, Hamel L, Scarlata E, Aprikian AG, Chevalier S. The Fer tyrosine kinase cooperates with interleukin-6 to activate signal transducer and activator of transcription 3 and promote human prostate cancer cell growth. Mol Cancer Res 2009; 7:142-55. [PMID: 19147545 DOI: 10.1158/1541-7786.mcr-08-0117] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Androgen withdrawal is the most effective form of systemic therapy for men with advanced prostate cancer. Unfortunately, androgen-independent progression is inevitable, and the development of hormone-refractory disease and death occurs within 2 to 3 years in most men. The understanding of molecular mechanisms promoting the growth of androgen-independent prostate cancer cells is essential for the rational design of agents to treat advanced disease. We previously reported that Fer tyrosine kinase level correlates with the development of prostate cancer and aggressiveness of prostate cancer cell lines. Moreover, knocking down Fer expression interferes with prostate cancer cell growth in vitro. However, the mechanism by which Fer mediates prostate cancer progression remains elusive. We present here that Fer and phospho-Y705 signal transducer and activator of transcription 3 (STAT3) are barely detectable in human benign prostate tissues but constitutively expressed in the cytoplasm and nucleus of the same subsets of tumor cells in human prostate cancer. The interaction between STAT3 and Fer was observed in all prostate cancer cell lines tested, and this interaction is mediated via the Fer Src homology 2 domain and modulated by interleukin-6 (IL-6). Moreover, IL-6 triggered a rapid formation of Fer/gp130 and Fer/STAT3 complexes in a time-dependent manner and consistent with changes in Fer and STAT3 phosphorylation and cytoplasmic/nuclear distribution. The modulation of Fer expression/activation resulted in inhibitory or stimulatory effects on STAT3 phosphorylation, nuclear translocation, and transcriptional activation. These effects translated in IL-6-mediated PC-3 cell growth. Taken together, these results support an important function of Fer in prostate cancer.
Collapse
Affiliation(s)
- Amina Zoubeidi
- McGill University Health Center Research Institute, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4
| | | | | | | | | | | | | |
Collapse
|
15
|
Hsp90 and a tyrosine embedded in the Hsp90 recognition loop are required for the Fer tyrosine kinase activity. Cell Signal 2008; 21:588-96. [PMID: 19159681 DOI: 10.1016/j.cellsig.2008.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 01/17/2023]
Abstract
Hsp90 is a key regulator of tyrosine kinases activity and is therefore considered as a promising target for intervention with deregulated signaling pathways in malignant cells. Here we describe a novel Hsp90 client - the intracellular tyrosine kinase, Fer, which is subjected to a unique regulatory regime by this chaperone. Inhibition of Hsp90 activity led to proteasomal degradation of the Fer enzyme. However, circumventing the dependence of Fer accumulation on Hsp90, revealed the dependence of the Fer kinase activity and its ability to phosphorylate Stat3 on the chaperone, expressing the necessity of Hsp90 for its function. Mutation analysis unveiled a tyrosine (Tyr(616)) embedded in the Hsp90 recognition loop, which is required for the kinase activity of Fer. Replacement of this tyrosine by phenylalanine (Y616F) disabled the auto-phosphorylation activity of Fer and abolished its ability to phosphorylate Stat3. Notably, surrounding the replaced Y616F with subtle mutations restored the auto and trans-phosphorylation activities of Fer suggesting that Y(616) is not itself an essential auto-phosphorylation site of the kinase. Taken together, our results portray Hsp90 and its recognition loop as novel positive regulators of the Fer tyrosine kinase stability and activity.
Collapse
|
16
|
Contributions of F-BAR and SH2 domains of Fes protein tyrosine kinase for coupling to the FcepsilonRI pathway in mast cells. Mol Cell Biol 2008; 29:389-401. [PMID: 19001085 DOI: 10.1128/mcb.00904-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study investigates the roles of Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) and SH2 domains of Fes protein tyrosine kinase in regulating its activation and signaling downstream of the high-affinity immunoglobulin G (IgE) receptor (FcepsilonRI) in mast cells. Homology modeling of the Fes F-BAR domain revealed conservation of some basic residues implicated in phosphoinositide binding (R113/K114). The Fes F-BAR can bind phosphoinositides and induce tubulation of liposomes in vitro. Mutation of R113/K114 to uncharged residues (RK/QQ) caused a significant reduction in phosphoinositide binding in vitro and a more diffuse cytoplasmic localization in transfected COS-7 cells. RBL-2H3 mast cells expressing full-length Fes carrying the RK/QQ mutation show defects in FcepsilonRI-induced Fes tyrosine phosphorylation and degranulation compared to cells expressing wild-type Fes. This correlated with reduced localization to Lyn kinase-containing membrane fractions for the RK/QQ mutant compared to wild-type Fes in mast cells. The Fes SH2 domain also contributes to Fes signaling in mast cells, via interactions with the phosphorylated FcepsilonRI beta chain and the actin regulatory protein HS1. We show that Fes phosphorylates C-terminal tyrosine residues in HS1 implicated in actin stabilization. Thus, coordinated actions of the F-BAR and SH2 domains of Fes allow for coupling to FcepsilonRI signaling and potential regulation the actin reorganization in mast cells.
Collapse
|
17
|
The Fer tyrosine kinase regulates an axon retraction response to Semaphorin 3A in dorsal root ganglion neurons. BMC DEVELOPMENTAL BIOLOGY 2007; 7:133. [PMID: 18053124 PMCID: PMC2217550 DOI: 10.1186/1471-213x-7-133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 11/30/2007] [Indexed: 12/22/2022]
Abstract
Background Fps/Fes and Fer are the only two members of a distinct subclass of cytoplasmic protein tyrosine kinases. Fps/Fes was previously implicated in Semaphorin 3A (Sema3A)-induced growth cone collapse signaling in neurons from the dorsal root ganglion (DRG) through interaction with and phosphorylation of the Sema3A receptor component PlexinA1, and members of the collapsin response mediator protein (CRMP) family of microtubule regulators. However, the potential role of the closely related Fer kinase has not been examined. Results Here we provide novel biochemical and genetic evidence that Fer plays a prominent role in microtubule regulation in DRG neurons in response to Sema3A. Although Fps/Fes and Fer were both expressed in neonatal brains and isolated DRGs, Fer was expressed at higher levels; and Fer, but not Fps/Fes kinase activity was detected in vivo. Fer also showed higher in vitro kinase activity toward tubulin, as an exogenous substrate; and this activity was higher when the kinases were isolated from perinatal relative to adult brain stages. CRMP2 was a substrate for both kinases in vitro, but both CRMP2 and PlexinA1 inhibited their autophosphorylation activities. Cultured mouse DRG neurons retracted their axons upon exposure to Sema3A, and this response was significantly diminished in Fer-deficient, but only slightly attenuated in Fps/Fes-deficient DRG neurons. Conclusion Fps/Fes and Fer are both capable of phosphorylating tubulin and the microtubule regulator CRMP2 in vitro; and their in vitro kinase activities were both inhibited by CRMP2 or PlexinA1, suggesting a possible regulatory interaction. Furthermore, Fer plays a more prominent role than Fps/Fes in regulating the axon retraction response to Sema3A in DRG neurons. Therefore, Fps/Fes and Fer may play important roles in developmental or regenerative axon pathfinding through signaling from Sema3A to the microtubule cytoskeleton.
Collapse
|
18
|
Sangrar W, Gao Y, Scott M, Truesdell P, Greer PA. Fer-mediated cortactin phosphorylation is associated with efficient fibroblast migration and is dependent on reactive oxygen species generation during integrin-mediated cell adhesion. Mol Cell Biol 2007; 27:6140-52. [PMID: 17606629 PMCID: PMC1952165 DOI: 10.1128/mcb.01744-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The molecular details linking integrin engagement to downstream cortactin (Ctn) tyrosine phosphorylation are largely unknown. In this report, we show for the first time that Fer and Ctn are potently tyrosine phosphorylated in response to hydrogen peroxide (H2O2) in a variety of cell types. Working with catalytically inactive fer and src/yes/fyn-deficient murine embryonic fibroblasts (ferDR/DR and syf MEF, respectively), we observed that H2O2-induced Ctn tyrosine phosphorylation is primarily dependent on Fer but not Src family kinase (SFK) activity. We also demonstrated for the first time that Fer is activated by fibronectin engagement and, in concert with SFKs, mediates Ctn tyrosine phosphorylation in integrin signaling pathways. Reactive oxygen species (ROS) scavengers or the NADPH oxidase inhibitor, diphenylene iodonium, attenuated integrin-induced Fer and Ctn tyrosine phosphorylation. Taken together, these findings provide novel genetic evidence that a ROS-Fer signaling arm contributes to SFK-mediated Ctn tyrosine phosphorylation in integrin signaling. Lastly, a migration defect in ferDR/DR MEF suggests that integrin signaling through the ROS-Fer-Ctn signaling arm may be linked to mechanisms governing cell motility. These data demonstrate for the first time an oxidative link between integrin adhesion and an actin-binding protein involved in actin polymerization.
Collapse
Affiliation(s)
- Waheed Sangrar
- Queen's University Cancer Research Institute, Botterell Hall, Room A309, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
19
|
Udell CM, Samayawardhena LA, Kawakami Y, Kawakami T, Craig AWB. Fer and Fps/Fes participate in a Lyn-dependent pathway from FcepsilonRI to platelet-endothelial cell adhesion molecule 1 to limit mast cell activation. J Biol Chem 2006; 281:20949-20957. [PMID: 16731527 DOI: 10.1074/jbc.m604252200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cells express the high affinity IgE receptor FcepsilonRI, which upon aggregation by multivalent antigens elicits signals that cause rapid changes within the mast cell and in the surrounding tissue. We previously showed that FcepsilonRI aggregation caused a rapid increase in phosphorylation of both Fer and Fps/Fes kinases in bone marrow-derived mast cells. In this study, we report that FcepsilonRI aggregation leads to increased Fer/Fps kinase activities and that Fer phosphorylation downstream of FcepsilonRI is independent of Syk, Fyn, and Gab2 but requires Lyn. Activated Fer/Fps readily phosphorylate the C terminus of platelet-endothelial cell adhesion molecule 1 (Pecam-1) on immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a non-ITIM residue (Tyr(700)) in vitro and in transfected cells. Mast cells devoid of Fer/Fps kinase activities display a reduction in FcepsilonRI aggregation-induced tyrosine phosphorylation of Pecam-1, with no defects in recruitment of Shp1/Shp2 phosphatases observed. Lyn-deficient mast cells display a dramatic reduction in Pecam-1 phosphorylation at Tyr(685) and a complete loss of Shp2 recruitment, suggesting a role as an initiator kinase for Pecam-1. Consistent with previous studies of Pecam-1-deficient mast cells, we observe an exaggerated degranulation response in mast cells lacking Fer/Fps kinases at low antigen dosages. Thus, Lyn and Fer/Fps kinases cooperate to phosphorylate Pecam-1 and activate Shp1/Shp2 phosphatases that function in part to limit mast cell activation.
Collapse
Affiliation(s)
- Christian M Udell
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Andrew W B Craig
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
20
|
Putzke AP, Hikita ST, Clegg DO, Rothman JH. Essential kinase-independent role of a Fer-like non-receptor tyrosine kinase inCaenorhabditis elegansmorphogenesis. Development 2005; 132:3185-95. [PMID: 15958510 DOI: 10.1242/dev.01900] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis requires coordination of cell surface activity and cytoskeletal architecture. During the initial stage of morphogenesis in Caenorhabditis elegans, the concerted movement of surface epithelial cells results in enclosure of the embryo by the epidermis. We report that Fer-related kinase-1 (FRK-1), an ortholog of the mammalian non-receptor tyrosine kinase Fer, is necessary for embryonic enclosure and morphogenesis in C. elegans. Expression of FRK-1 in epidermal cells is sufficient to rescue a chromosomal deficiency that removes the frk-1locus, demonstrating its autonomous requirement in the epidermis. The essential function of FRK-1 is independent of its kinase domain, suggesting a non-enzymatic role in morphogenesis. Localization of FRK-1 to the plasma membrane requires β-catenin, but not cadherin or α-catenin, and muscle-expressed β-integrin is non-autonomously required for this localization; in the absence of these components FRK-1 becomes nuclear. Mouse FerT rescues the morphogenetic defects of frk-1 mutants and expression of FRK-1 in mammalian cells results in loss of adhesion, implying a conserved function for FRK-1/FerT in cell adhesion and morphogenesis. Thus,FRK-1 performs a kinase-independent function in differentiation and morphogenesis of the C. elegans epidermis during embryogenesis.
Collapse
Affiliation(s)
- Aaron P Putzke
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
21
|
Carlson A, Yates KE, Slamon DJ, Gasson JC. Spatial and temporal changes in the subcellular localization of the nuclear protein-tyrosine kinase, c-Fes. DNA Cell Biol 2005; 24:225-34. [PMID: 15812239 DOI: 10.1089/dna.2005.24.225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tyrosine phosphorylation has emerged as a mechanism to control cellular events in the nucleus. The c-Fes protein-tyrosine kinase is an important regulator of cell growth and differentiation in several cell types, and is found in the nucleus of hematopoietic cells. In this study, we showed nuclear localization of c-Fes in both hematopoietic (K562, TF-1, HEL, U937, and HL-60) and nonhematopoietic cell lines (293T, CaOv3, TfxH, MG-63, HeLa, DU-145) by immunofluorescence and confocal microscopy. c-Fes showed striking changes in subcellular localization at specific stages of mitosis. In interphase cells, the intranuclear distribution of c-Fes was diffuse with occasional bright foci. Some c-Fes was present in the cytosol after breakdown of the nuclear membrane, in prometaphase. At prometaphase and metaphase c-Fes was also associated with the chromosomes, in a punctate pattern that partially overlapped with the centromere. Further comparison with proteins that are known components of the kinetochore suggested that some c-Fes protein was located at the centromeric alpha-satellite DNA, between the kinetochores. At anaphase and telophase, c-Fes was entirely cytoplasmic and no protein was found associated with the chromosomes. The timing of c-Fes' appearance at the centromere coincides with the period of kinetochore assembly. These data suggest that c-Fes is recruited to the kinetochore during mitosis.
Collapse
Affiliation(s)
- Anne Carlson
- Division of Hematology-Oncology, Department of Medicine, UCLA School of Medicine and Jonsson Comprehensive Cancer Center, Los Angeles, California, USA
| | | | | | | |
Collapse
|
22
|
Sangrar W, Zirgnibl RA, Gao Y, Muller WJ, Jia Z, Greer PA. An Identity Crisis for fps/fes: Oncogene or Tumor Suppressor? Cancer Res 2005; 65:3518-22. [PMID: 15867340 DOI: 10.1158/0008-5472.can-04-3468] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fps/Fes proteins were among the first members of the protein tyrosine kinase family to be characterized as dominant-acting oncoproteins. Addition of retroviral GAG sequences or other experimentally induced mutations activated the latent transforming potential of Fps/Fes. However, activating mutations in fps/fes had not been found in human tumors until recently, when mutational analysis of a panel of colorectal cancers identified four somatic mutations in sequences encoding the Fps/Fes kinase domain. Here, we report biochemical and theoretical structural analysis demonstrating that three of these mutations result in inactivation, not activation, of Fps/Fes, whereas the fourth mutation compromised in vivo activity. These results did not concur with a classic dominant-acting oncogenic role for fps/fes involving activating somatic mutations but instead raised the possibility that inactivating fps/fes mutations might promote tumor progression in vivo. Consistent with this, we observed that tumor onset in a mouse model of breast epithelial cancer occurred earlier in mice targeted with either null or kinase-inactivating fps/fes mutations. Furthermore, a fps/fes transgene restored normal tumor onset kinetics in targeted fps/fes null mice. These data suggest a novel and unexpected tumor suppressor role for Fps/Fes in epithelial cells.
Collapse
Affiliation(s)
- Waheed Sangrar
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Salem Y, Shpungin S, Pasder O, Pomp O, Taler M, Malovani H, Nir U. Fer kinase sustains the activation level of ERK1/2 and increases the production of VEGF in hypoxic cells. Cell Signal 2005; 17:341-53. [PMID: 15567065 DOI: 10.1016/j.cellsig.2004.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 08/02/2004] [Accepted: 08/02/2004] [Indexed: 01/09/2023]
Abstract
Fer is a nuclear and cytoplasmic tyrosine kinase that is ubiquitously expressed in mammalian cells. Herein we show that Fer sustains a key signaling step in hypoxic cells. Knock-down of the Fer protein using a specific siRNA decreased the production of VEGF by the hypoxic cells. Conversely, ectopic expression of this kinase led to an elevated production of VEGF under hypoxia. At the molecular level, Fer was found to associate with ERK1/2 and this interaction was intensified under hypoxia. Moreover, Fer increased the activation levels of ERK1/2, and reducing the level of Fer, impaired the activation of ERK1/2 in hypoxic cells. Blocking the MEK-ERK1/2 signaling pathway with the MEK inhibitors U0126, or PD98059 led to the abrogation of ERK1/2 activity in hypoxic cells, an effect that was counteracted by Fer. Hence, Fer sustains the activation of ERK1/2 and increases the production of VEGF in hypoxic cells, without affecting the MEK-ERK signaling pathway.
Collapse
Affiliation(s)
- Yaniv Salem
- Faculty of Life Sciences, Bar-Ilan University, Geha Road, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
24
|
Laurent CE, Delfino FJ, Cheng HY, Smithgall TE. The human c-Fes tyrosine kinase binds tubulin and microtubules through separate domains and promotes microtubule assembly. Mol Cell Biol 2004; 24:9351-8. [PMID: 15485904 PMCID: PMC522259 DOI: 10.1128/mcb.24.21.9351-9358.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The c-Fes protein-tyrosine kinase (Fes) has been implicated in the differentiation of vascular endothelial, myeloid hematopoietic, and neuronal cells, promoting substantial morphological changes in these cell types. The mechanism by which Fes promotes morphological aspects of cellular differentiation is unknown. Using COS-7 cells as a model system, we observed that Fes strongly colocalizes with microtubules in vivo when activated via coiled-coil mutation or by coexpression with an active Src family kinase. In contrast, wild-type Fes showed a diffuse cytoplasmic localization in this system, which correlated with undetectable kinase activity. Coimmunoprecipitation and immunofluorescence microscopy showed that the N-terminal Fes/CIP4 homology (FCH) domain is involved in Fes interaction with soluble unpolymerized tubulin. However, the FCH domain was not required for colocalization with polymerized microtubules in vivo. In contrast, a functional SH2 domain was essential for microtubule localization of Fes, consistent with the strong tyrosine phosphorylation of purified tubulin by Fes in vitro. Using a microtubule nucleation assay, we observed that purified c-Fes also catalyzed extensive tubulin polymerization in vitro. Taken together, these results identify c-Fes as a regulator of the tubulin cytoskeleton that may contribute to Fes-induced morphological changes in myeloid hematopoietic and neuronal cells.
Collapse
Affiliation(s)
- Charles E Laurent
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
25
|
Fan L, Di Ciano-Oliveira C, Weed SA, Craig AWB, Greer PA, Rotstein OD, Kapus A. Actin depolymerization-induced tyrosine phosphorylation of cortactin: the role of Fer kinase. Biochem J 2004; 380:581-91. [PMID: 15030313 PMCID: PMC1224196 DOI: 10.1042/bj20040178] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 03/16/2004] [Accepted: 03/19/2004] [Indexed: 12/23/2022]
Abstract
The F-actin-binding protein cortactin is an important regulator of cytoskeletal dynamics, and a prominent target of various tyrosine kinases. Tyrosine phosphorylation of cortactin has been suggested to reduce its F-actin cross-linking capability. In the present study, we investigated whether a reciprocal relationship exists, i.e. whether the polymerization state of actin impacts on the cortactin tyrosine phosphorylation. Actin depolymerization by LB (latrunculin B) induced robust phosphorylation of C-terminal tyrosine residues of cortactin. In contrast, F-actin stabilization by jasplakinolide, which redistributed cortactin to F-actin-containing patches, prevented cortactin phosphorylation triggered by hypertonic stress or LB. Using cell lines deficient in candidate tyrosine kinases, we found that the F-actin depolymerization-induced cortactin phosphorylation was mediated by the Fyn/Fer kinase pathway, independent of Src and c-Abl. LB caused modest Fer activation and strongly facilitated the association between Fer and cortactin. Interestingly, the F-actin-binding region within the cortactin N-terminus was essential for the efficient phosphorylation of C-terminal tyrosine residues. Investigating the structural requirements for the Fer-cortactin association, we found that (i) phosphorylation-incompetent cortactin still bound to Fer; (ii) the isolated N-terminus associated with Fer; and (iii) the C-terminus alone was insufficient for binding. Thus the cortactin N-terminus participates in the Fer-cortactin interaction, which cannot be fully due to the binding of the Fer Src homology 2 domain to C-terminal tyrosine residues of cortactin. Taken together, F-actin stabilization prevents cortactin tyrosine phosphorylation, whereas depolymerization promotes it. Depolymerization-induced phosphorylation is mediated by Fer, and requires the actin-binding domain of cortactin. These results define a novel F-actin-dependent pathway that may serve as a feedback mechanism during cytoskeleton remodelling.
Collapse
Affiliation(s)
- Lingzhi Fan
- Department of Surgery, The Toronto General Hospital and University Health Network, 200 Elizabeth Street, Toronto, ON, Canada M5G 2C4
| | | | | | | | | | | | | |
Collapse
|
26
|
Takahashi S, Inatome R, Hotta A, Qin Q, Hackenmiller R, Simon MC, Yamamura H, Yanagi S. Role for Fes/Fps tyrosine kinase in microtubule nucleation through is Fes/CIP4 homology domain. J Biol Chem 2003; 278:49129-33. [PMID: 14551201 DOI: 10.1074/jbc.c300289200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have previously demonstrated that Fes/Fps (Fes) tyrosine kinase is involved in Semaphorin3A-mediated signaling. Here we report a role for Fes tyrosine kinase in microtubule dynamics. A fibrous formation of Fes was observed in a kinase-dependent manner, which associated with microtubules and functionally correlated with microtubule bundling. Microtubule regeneration assays revealed that Fes aggregates colocalized with gamma-tubulin at microtubule nucleation sites in a Fes/CIP4 homology (FCH) domain-dependent manner and that expression of FCH domain-deleted Fes mutants blocked normal centrosome formation. In support of these observations, mouse embryonic fibroblasts derived from Fes-deficient mice displayed an aberrant structure of nucleation and centrosome with unbundling and disoriented filaments of microtubules. Our findings suggest that Fes plays a critical role in microtubule dynamics including microtubule nucleation and bundling through its FCH domain.
Collapse
Affiliation(s)
- Shusuke Takahashi
- Department of Genome Sciences, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Senis YA, Craig AWB, Greer PA. Fps/Fes and Fer protein-tyrosinekinases play redundant roles in regulating hematopoiesis. Exp Hematol 2003; 31:673-81. [PMID: 12901971 DOI: 10.1016/s0301-472x(03)00107-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The highly related protein-tyrosine kinases Fps (also called Fes) and Fer are sole members of a subfamily of kinases. In this study, knock-in mice harboring kinase-inactivating mutations in both fps and fer alleles were used to assess functional redundancy between Fps and Fer kinases in regulating hematopoiesis. METHODS Mice harboring kinase-inactivating mutations in fps and fer alleles were generated previously. Compound homozygous mice were bred that lack both Fps and Fer kinase activities and progeny were analyzed for potential defects in viability and fertility. Potential differences in hematopoiesis were analyzed by lineage analysis of bone marrow cells, peripheral blood counts, and hematopoietic progenitor cell colony-forming assays. RESULTS Mice devoid of both Fps and Fer kinase activities were viable and displayed reduced fertility. Circulating levels of neutrophils, erythrocytes, and platelets were elevated in compound mutant mice compared to wild-type controls, suggesting that hematopoiesis is deregulated in the absence of Fps and Fer kinases. Compound mutant mice also showed reduced overall bone marrow cellularity, and lineage analysis revealed elevated CD11b(hi)Ly-6G(lo) myeloid cells, which may reflect increased granulocyte progenitors. Although no differences in the overall number of granulocyte/monocyte colony-forming progenitors were observed, qualitative differences in myeloid colonies from compound mutant mice suggested a role for Fps and Fer kinases in regulating cell-cell adhesion or a skewing in cellularity of colonies. CONCLUSIONS Mice lacking both Fps and Fer kinase activities develop normally, show reduced fertility, and display defects in hematopoiesis, thus providing evidence for functional redundancy between Fps and Fer kinases in regulating hematopoiesis.
Collapse
Affiliation(s)
- Yotis A Senis
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
28
|
Craig AWB, Greer PA. Fer kinase is required for sustained p38 kinase activation and maximal chemotaxis of activated mast cells. Mol Cell Biol 2002; 22:6363-74. [PMID: 12192036 PMCID: PMC135645 DOI: 10.1128/mcb.22.18.6363-6374.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 06/04/2002] [Accepted: 06/12/2002] [Indexed: 01/26/2023] Open
Abstract
Mast cells play important roles in inflammation and immunity and express the high-affinity immunoglobulin E receptor (Fc epsilon RI) and the receptor protein-tyrosine kinase Kit. Aggregation of Fc epsilon RI via antigen binding elicits signals leading to the release of preformed inflammatory mediators as well as de novo-synthesized lipid mediators and cytokines and to elevated cell adhesion and migration. Here, we report that in mouse bone marrow-derived mast cells, Fer kinase is activated downstream of activated Fc epsilon RI and activated Kit receptor, and this activation is abolished in cells homozygous for a kinase-inactivating mutation in Fer (fer(DR/DR)). Interestingly, the highly related Fps/Fes kinase is also activated upon Fc epsilon RI aggregation. This report represents the first description of a common signaling pathway activating Fer and Fps/Fes. While Fer-deficient cells showed similar activation of the Erk mitogen-activated protein (MAP) kinases, p38 MAP kinase activation was less sustained than that in wild-type cells. Although no major defects were observed in degranulation, leukotriene biosynthesis, and cytokine secretion, Fer-deficient cells displayed increased adhesion and decreased motility upon activation of Fc epsilon RI and the Kit receptor. The restoration of Fer kinase activity in fer(DR/DR) mast cells resulted in prolonged p38 kinase activation and increased antigen-mediated cell migration of sensitized mast cells. Thus, Fer is required for maximal p38 kinase activation to promote the chemotaxis of activated mast cells. Further studies with mast cells derived from fps/fes-deficient mice will be required to provide insight into the role of Fps/Fes in mast cell activation.
Collapse
Affiliation(s)
- Andrew W B Craig
- Department of Biochemistry, Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
29
|
Lunter PC, Wiche G. Direct binding of plectin to Fer kinase and negative regulation of its catalytic activity. Biochem Biophys Res Commun 2002; 296:904-10. [PMID: 12200133 DOI: 10.1016/s0006-291x(02)02007-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plectin is a cyoskeletal linker protein that protects tissues against mechanical stress. We report here that the N-terminal domain of the nonreceptor tyrosine kinase Fer interacts with N-terminal sequences of plectin. Recombinant protein encoded by exon 12-24 of rat plectin bound directly to amino acid 1-329 of murine Fer. Using an antiserum prepared to a recombinant N-terminal fragment of Fer kinase, plectin was coimmunoprecipitated with Fer from cell lysates of cultured mouse fibroblasts. Plectin was shown to partially colocalize with Fer in these cells. Upon transfection of full length Fer cDNA into plectin-negative mouse fibroblasts, hyperphosphorylation of Fer was observed; hyperphosphorylation was strongly reduced when N-terminal Fer deletion mutants were transfected. Immunocomplex kinase assays showed that the activity of Fer kinase transfected into plectin-negative fibroblasts was increased compared to that transfected into wild type cells. We conclude that Fer interacts with plectin and that this interaction may serve to negatively regulate Fer's activity.
Collapse
Affiliation(s)
- Pim C Lunter
- Institute of Biochemistry and Molecular Cell Biology, Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria
| | | |
Collapse
|
30
|
Orlovsky K, Theodor L, Malovani H, Chowers Y, Nir U. Gamma interferon down-regulates Fer and induces its association with inactive Stat3 in colon carcinoma cells. Oncogene 2002; 21:4997-5001. [PMID: 12118379 DOI: 10.1038/sj.onc.1205624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Revised: 04/08/2002] [Accepted: 04/26/2002] [Indexed: 11/09/2022]
Abstract
Gamma interferon (IFN-gamma) is a regulator of cell growth, which suppresses the proliferation of HT-29 colon carcinoma cells. Here we show that in HT-29 cells IFN-gamma transiently increased the cellular level of the tyrosine kinase Fer, whose functioning was found to be essential for the proliferation of malignant cell-lines. The transient elevation in the level of Fer, was followed by its down-regulation, an effect which was most prominent after 6-8 h of IFN-gamma treatment. Up- and down-regulation of Fer was paralleled by the activation and subsequent deactivation of Stat3, which is a potent oncogene and a putative substrate of the tyrosine kinase Fer. Moreover, IFN-gamma induced the association of Fer and Stat3 and the newly formed complex was most stable at the down-regulated states of the two proteins. Formation of the Fer/Stat3 complex was accompanied by an attenuation in cell-cycle progression and accumulation of cells in the G1 phase. Thus, Fer and Stat3 are two proliferation-promoting factors whose down-regulation could contribute to the cytostatic activity of IFN-gamma in colon carcinoma cells.
Collapse
Affiliation(s)
- Kira Orlovsky
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
31
|
Mitsui N, Inatome R, Takahashi S, Goshima Y, Yamamura H, Yanagi S. Involvement of Fes/Fps tyrosine kinase in semaphorin3A signaling. EMBO J 2002; 21:3274-85. [PMID: 12093729 PMCID: PMC125392 DOI: 10.1093/emboj/cdf328] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Collapsin response mediator proteins (CRMPs)/TOAD64/Ulips/DRPs and CRAM have emerged as strong candidates for a role in semaphorin signaling. In this study we identified Fes/Fps (Fes) tyrosine kinase in the CRMP-CRAM complex and investigated whether Fes was involved in semaphorin3A (Sema3A) signaling. In COS-7 cells, the interaction between Fes and plexinA1 (PlexA1) and the tyrosine phosphorylation of PlexA1 by Fes were observed; however, these events were significantly attenuated by co-expression of neuropilin-1 (NP-1). Even with NP-1 co-expression, Sema3A was able to enhance the association of Fes with PlexA1 and Fes-mediated tyrosine phosphorylation of PlexA1, CRAM and CRMP2. Co-expression of Fes with PlexA1 exhibited COS-7 cell contraction activity, indicating that Fes can convert inactive PlexA1 to its active form, whereas combination of Fes/NP-1/PlexA1 or Fes kinase-negative mutants/PlexA1 did not alter cell morphology. Finally, Sema3A-induced growth cone collapse of dorsal root ganglion neurons was suppressed by expression of Fes kinase-negative mutants. Taken together, our findings suggest that Fes links Sema3A signals to CRMP-CRAM, and that NP-1 negatively regulates PlexA1 activation by Fes in resting condition.
Collapse
Affiliation(s)
| | | | | | - Yoshio Goshima
- Division of Proteomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, 650-0017 and
Department of Pharmacology, Yokohama City University School of Medicine, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan Corresponding author e-mail:
N.Mitsui and R.Inatome contributed equally to this work
| | | | - Shigeru Yanagi
- Division of Proteomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, 650-0017 and
Department of Pharmacology, Yokohama City University School of Medicine, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan Corresponding author e-mail:
N.Mitsui and R.Inatome contributed equally to this work
| |
Collapse
|
32
|
Hackenmiller R, Simon MC. Truncation of c-fes via gene targeting results in embryonic lethality and hyperproliferation of hematopoietic cells. Dev Biol 2002; 245:255-69. [PMID: 11977979 DOI: 10.1006/dbio.2002.0643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The c-fes protooncogene encodes a nonreceptor tyrosine kinase (Fes) implicated in cytokine receptor signal transduction, granulocyte survival, and myeloid differentiation. To study the role of c-fes during myelopoiesis, we generated embryonic stem (ES) cells with a targeted disruption of the c-fes locus. Targeted mutagenesis deletes the C-terminal SH2 and tyrosine kinase domains of c-fes (referred to as c-fes(Delta c/Delta c)). We demonstrate that the c-fes(Delta c/Delta c) allele results in a truncated Fes protein that retains the N-terminal oligomerization domain, but lacks both the SH2 and the tyrosine kinase domain. In vitro differentiation of c-fes(Delta c/Delta c) ES cells results in hyperproliferation of an early myeloid cell. Generation of c-fes(Delta c/Delta c) mutant chimeric mice causes lethality by E13.5 with embryos exhibiting pleiotropic defects, the most striking being cardiovascular abnormalities. These results establish that c-fes is an important regulator of myeloid cell proliferation and embryonic development.
Collapse
Affiliation(s)
- Renee Hackenmiller
- Committee on Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
33
|
McCafferty DM, Craig AWB, Senis YA, Greer PA. Absence of Fer protein-tyrosine kinase exacerbates leukocyte recruitment in response to endotoxin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4930-5. [PMID: 11994443 DOI: 10.4049/jimmunol.168.10.4930] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The group IV cytoplasmic protein-tyrosine kinase Fer has been linked to cellular signaling responses to many different stimuli, including growth factors and cytokines. However, the biological relevance of Fer activation in vivo has not been demonstrated to date. Recently, we generated a transgenic mouse line in which Fer protein is expressed but lacks catalytic activity. Homozygous mutant mice were viable and fertile, and showed no overt defects. In this study, we used intravital microscopy to examine the role of Fer kinase in leukocyte recruitment (rolling adhesion and emigration) in response to LPS challenge in skeletal muscle microcirculation. In addition, we measured vascular permeability changes (FITC-albumin leakage, venular-to-interstitial space) in response to Ag to examine general endothelial cell function. Local administration of LPS induced decreased leukocyte rolling velocity and increased leukocyte adhesion and emigration in wild-type mice. LPS-induced changes in leukocyte rolling velocity and rolling flux were not significantly different in Fer mutants. However, LPS-induced leukocyte adhesion (23 +/- 3 vs 11 +/- 3 cells/100 microm) and emigration (100 +/- 5 vs 28 +/- 7 cells/field) were significantly elevated in Fer-mutant mice relative to wild-type mice, respectively, suggesting an essential role for the Fer kinase in regulating inflammation-induced leukocyte emigration. Vascular permeability increases in response to Ag were similar between the two groups, indicating that the ability of endothelial cells to retract is intact in the absence of Fer kinase. These data provide the first evidence for a biological role for Fer in regulation of leukocyte recruitment during the innate immune response.
Collapse
MESH Headings
- Animals
- Capillary Permeability/genetics
- Capillary Permeability/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Hemodynamics/genetics
- Hemodynamics/immunology
- Hypersensitivity, Immediate/genetics
- Hypersensitivity, Immediate/immunology
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Injections, Subcutaneous
- Kinetics
- Leukocytes/pathology
- Lipopolysaccharides/administration & dosage
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/immunology
- Muscle, Skeletal/pathology
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Rheology
Collapse
Affiliation(s)
- Donna-Marie McCafferty
- Immunology Research Group, Department of Medical Physiology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | |
Collapse
|
34
|
Abstract
Fps/Fes and Fer are the only known members of a distinct subfamily of the non-receptor protein-tyrosine kinase family. Recent studies indicate that these kinases have roles in regulating cytoskeletal rearrangements and inside out signalling that accompany receptor ligand, cell matrix and cell cell interactions. Genetic analysis using transgenic mouse models also implicates these kinases in the regulation of inflammation and innate immunity.
Collapse
MESH Headings
- Animals
- Biological Evolution
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 5/genetics
- Fusion Proteins, gag-onc/chemistry
- Fusion Proteins, gag-onc/genetics
- Fusion Proteins, gag-onc/physiology
- Humans
- Inflammation/physiopathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Models, Molecular
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Receptor Cross-Talk
- Receptors, Platelet-Derived Growth Factor/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Peter Greer
- Division of Cancer Research and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
35
|
Zirngibl RA, Senis Y, Greer PA. Enhanced endotoxin sensitivity in fps/fes-null mice with minimal defects in hematopoietic homeostasis. Mol Cell Biol 2002; 22:2472-86. [PMID: 11909942 PMCID: PMC133716 DOI: 10.1128/mcb.22.8.2472-2486.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The fps/fes proto-oncogene encodes a cytoplasmic protein tyrosine kinase implicated in growth factor and cytokine receptor signaling and thought to be essential for the survival and terminal differentiation of myeloid progenitors. Fps/Fes-null mice were healthy and fertile, displayed slightly reduced numbers of bone marrow myeloid progenitors and circulating mature myeloid cells, and were more sensitive to lipopolysaccharide (LPS). These phenotypes were rescued using a fps/fes transgene. This confirmed that Fps/Fes is involved in, but not required for, myelopoiesis and that it plays a role in regulating the innate immune response. Bone marrow-derived Fps/Fes-null macrophages showed no defects in granulocyte-macrophage colony-stimulating factor-, interleukin 6 (IL-6)-, or IL-3-induced activation of signal transducer and activator of transcription 3 (Stat3) and Stat5A or LPS-induced degradation of I kappa B or activation of p38, Jnk, Erk, or Akt.
Collapse
Affiliation(s)
- Ralph A Zirngibl
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario K7L-3N6, Canada
| | | | | |
Collapse
|
36
|
Cheng HY, Schiavone AP, Smithgall TE. A point mutation in the N-terminal coiled-coil domain releases c-Fes tyrosine kinase activity and survival signaling in myeloid leukemia cells. Mol Cell Biol 2001; 21:6170-80. [PMID: 11509660 PMCID: PMC87334 DOI: 10.1128/mcb.21.18.6170-6180.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The c-fes locus encodes a 93-kDa non-receptor protein tyrosine kinase (Fes) that regulates the growth and differentiation of hematopoietic and vascular endothelial cells. Unique to Fes is a long N-terminal sequence with two regions of strong homology to coiled-coil oligomerization domains. We introduced leucine-to-proline substitutions into the coiled coils that were predicted to disrupt the coiled-coil structure. The resulting mutant proteins, together with wild-type Fes, were fused to green fluorescent protein and expressed in Rat-2 fibroblasts. We observed that a point mutation in the first coiled-coil domain (L145P) dramatically increased Fes tyrosine kinase and transforming activities in this cell type. In contrast, a similar point mutation in the second coiled-coil motif (L334P) was without effect. However, combining the L334P and L145P mutations reduced transforming and kinase activities by approximately 50% relative to the levels of activity produced with the L145P mutation alone. To study the effects of the coiled-coil mutations in a biologically relevant context, we expressed the mutant proteins in the granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent myeloid leukemia cell line TF-1. In this cellular context, the L145P mutation induced GM-CSF independence, cell attachment, and spreading. These effects correlated with a marked increase in L145P protein autophosphorylation relative to that of wild-type Fes. In contrast, the double coiled-coil mutant protein showed greatly reduced kinase and biological activities in TF-1 cells. These data are consistent with a role for the first coiled coil in the negative regulation of kinase activity and a requirement for the second coiled coil in either oligomerization or recruitment of signaling partners. Gel filtration experiments showed that the unique N-terminal region interconverts between monomeric and oligomeric forms. Single point mutations favored oligomerization, while the double point mutant protein eluted essentially as the monomer. These data provide new evidence for coiled-coil-mediated regulation of c-Fes tyrosine kinase activity and signaling, a mechanism unique among tyrosine kinases.
Collapse
Affiliation(s)
- H Y Cheng
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
37
|
Zirngibl R, Schulze D, Mirski SE, Cole SP, Greer PA. Subcellular localization analysis of the closely related Fps/Fes and Fer protein-tyrosine kinases suggests a distinct role for Fps/Fes in vesicular trafficking. Exp Cell Res 2001; 266:87-94. [PMID: 11339827 DOI: 10.1006/excr.2001.5217] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The subcellular localizations of the Fps/Fes and closely related Fer cytoplasmic tyrosine kinases were studied using green fluorescent protein (GFP) fusions and confocal fluorescence microscopy. In contrast to previous reports, neither kinase localized to the nucleus. Fer was diffusely cytoplasmic throughout the cell cycle. Fps/Fes also displayed a diffuse cytoplasmic localization, but in addition it showed distinct accumulations in cytoplasmic vesicles as well as in a perinuclear region consistent with the Golgi. This localization was very similar to that of TGN38, a known marker of the trans Golgi. The localization of Fps/Fes and TGN38 were both perturbed by brefeldin A, a fungal metabolite that disrupts the Golgi apparatus. Fps/Fes was also found to colocalize to various extents with several Rab proteins, which are members of the monomeric G-protein superfamily involved in vesicular transport between specific subcellular compartments. Using Rabs that are involved in endocytosis (Rab5B and Rab7) or exocytosis (Rab1A and Rab3A), we showed that Fps/Fes is localized in both pathways. These results suggest that Fps/Fes may play a general role in the regulation of vesicular trafficking.
Collapse
Affiliation(s)
- R Zirngibl
- Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
38
|
Craig AW, Zirngibl R, Williams K, Cole LA, Greer PA. Mice devoid of fer protein-tyrosine kinase activity are viable and fertile but display reduced cortactin phosphorylation. Mol Cell Biol 2001; 21:603-13. [PMID: 11134346 PMCID: PMC86629 DOI: 10.1128/mcb.21.2.603-613.2001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ubiquitous Fer protein-tyrosine kinase has been proposed to regulate diverse processes such as cell growth, cell adhesion, and neurite outgrowth. To gain insight into the biological function of Fer, we have targeted the fer locus with a kinase-inactivating missense mutation (fer(D743R)). Mice homozygous for this mutation develop normally, have no overt phenotypic differences from wild-type mice, and are fertile. Since these mice lack both Fer and the testis-specific FerT kinase activities, these proteins are clearly not essential for development and survival. No differences were observed in overall cellularity of bone marrow, spleen, or thymus in the absence of Fer activity. While most platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation was unchanged in fer(D743R) homozygous embryonic fibroblasts, cortactin phosphorylation was reduced. However, Fer kinase activity was not required for PDGF-induced Stat3, p120(ctn), or epidermal growth factor (EGF)-induced beta-catenin phosphorylation. Also, no defects were observed in changes to the actin cytoskeleton, adherens junctions, or focal adhesions in PDGF- or EGF-stimulated fer(D743R) homozygous embryonic fibroblasts. Therefore, Fer likely serves a redundant role in regulating cell growth, cell adhesion, retinal development, and spermatogenesis but is required for efficient phosphorylation of cortactin.
Collapse
Affiliation(s)
- A W Craig
- Department of Biochemistry, Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
39
|
Iwanishi M, Czech MP, Cherniack AD. The protein-tyrosine kinase fer associates with signaling complexes containing insulin receptor substrate-1 and phosphatidylinositol 3-kinase. J Biol Chem 2000; 275:38995-9000. [PMID: 11006284 DOI: 10.1074/jbc.m006665200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In a screen for 3T3-F442A adipocyte proteins that bind SH2 domains, we isolated a cDNA encoding Fer, a nonreceptor protein-tyrosine kinase of the Fes/Fps family that contains a functional SH2 domain. A truncated splicing variant, iFer, was also cloned. iFer is devoid of both the tyrosine kinase domain and a functional SH2 domain but displays a unique 42-residue C terminus and retains the ability to form oligomers with Fer. Expression of both Fer and iFer proteins are strikingly increased upon differentiation of 3T3-L1 fibroblasts to adipocytes. Platelet-derived growth factor treatment of the cultured adipocytes caused rapid tyrosine phosphorylation of Fer and its recruitment to complexes containing platelet-derived growth factor receptor and the p85 regulatory subunit of phosphatidylinositol (PI) 3-kinase. Insulin treatment of 3T3-L1 adipocytes stimulated association of Fer with complexes containing tyrosine phosphorylated IRS-1 and PI 3-kinase but did not stimulate tyrosine phosphorylation of Fer. PI 3-kinase activity in anti-Fer immunoprecipitates was also acutely activated by insulin treatment of cultured adipocytes. These data demonstrate the presence of Fer tyrosine kinase in insulin signaling complexes, suggesting a role of Fer in insulin action.
Collapse
Affiliation(s)
- M Iwanishi
- Program in Molecular Medicine and Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
40
|
Cans C, Mangano R, Barilá D, Neubauer G, Superti-Furga G. Nuclear tyrosine phosphorylation: the beginning of a map. Biochem Pharmacol 2000; 60:1203-15. [PMID: 11007959 DOI: 10.1016/s0006-2952(00)00434-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tyrosine phosphorylation is usually associated with cytoplasmic events. Yet, over the years, many reports have accumulated on tyrosine phosphorylation of individual molecules in the nucleus, and several tyrosine kinases and phosphatases have been found to be at least partially nuclear. The question arises as to whether nuclear tyrosine phosphorylation represents a collection of loose ends of events originating in the cytoplasm or if there may be intranuclear signaling circuits relying on tyrosine phosphorylation to regulate specific processes. The recent discovery of a mechanism causing nuclear tyrosine phosphorylation has prompted us to review the cumulative evidence for nuclear tyrosine phosphorylation pathways and their possible role. While we found that no complex nuclear function has yet been shown to rely upon intranuclear tyrosine phosphorylation in an unambiguous fashion, we found a very high number of compelling observations on individual molecules that suggest underlying networks linking individual events. A systematic proteomics approach to nuclear tyrosine phosphorylation should help chart possible interaction pathways.
Collapse
Affiliation(s)
- C Cans
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
41
|
Kapus A, Di Ciano C, Sun J, Zhan X, Kim L, Wong TW, Rotstein OD. Cell volume-dependent phosphorylation of proteins of the cortical cytoskeleton and cell-cell contact sites. The role of Fyn and FER kinases. J Biol Chem 2000; 275:32289-98. [PMID: 10921917 DOI: 10.1074/jbc.m003172200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell volume affects diverse functions including cytoskeletal organization, but the underlying signaling pathways remained undefined. We have shown previously that shrinkage induces Fyn-dependent tyrosine phosphorylation of the cortical actin-binding protein, cortactin. Because FER kinase was implicated in the direct phosphorylation of cortactin, we investigated the osmotic responsiveness of FER and its relationship to Fyn and cortactin. Shrinkage increased FER activity and tyrosine phosphorylation. These effects were abolished by the Src family inhibitor PP2 and strongly mitigated in Fyn-deficient but not in Src-deficient cells. FER overexpression caused cortactin phosphorylation that was further enhanced by hypertonicity. Exchange of tyrosine residues 421, 466, and 482 for phenylalanine prevented cortactin phosphorylation by hypertonicity and strongly decreased it upon FER overexpression, suggesting that FER targets primarily the same osmo-sensitive tyrosines. Because constituents of the cell-cell contacts are substrates of Fyn and FER, we investigated the effect of shrinkage on the adherens junctions. Hypertonicity provoked Fyn-dependent tyrosine phosphorylation in beta-catenin, alpha-catenin, and p120(Cas) and caused the dissociation of beta-catenin from the contacts. This process was delayed in Fyn-deficient or PP2-treated cells. Thus, FER is a volume-sensitive kinase downstream from Fyn, and the Fyn/FER pathway may contribute to the cell size-dependent reorganization of the cytoskeleton and the cell-cell contacts.
Collapse
Affiliation(s)
- A Kapus
- Department of Surgery, The Toronto General Hospital and University of Toronto, Toronto, Ontario M5G 1L7, Canada.
| | | | | | | | | | | | | |
Collapse
|
42
|
Priel-Halachmi S, Ben-Dor I, Shpungin S, Tennenbaum T, Molavani H, Bachrach M, Salzberg S, Nir U. FER kinase activation of Stat3 is determined by the N-terminal sequence. J Biol Chem 2000; 275:28902-10. [PMID: 10878010 DOI: 10.1074/jbc.m003402200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p94(fer) and p51(ferT) are two tyrosine kinases that share identical SH2 and kinase domains but differ in their N-terminal regions. To further explore the cellular functions of these two highly related tyrosine kinases, their subcellular distribution profiles and in vivo phosphorylation activity were followed using double immunofluorescence assay. When combined with immunoprecipitation analysis, this assay showed that p94(fer) can lead to the tyrosine phosphorylation and activation of Stat3 but not of Stat1 or Stat2. Native p94(fer) exerted this activity when residing in the cytoplasm. However, modified forms of p94(fer), which are constitutively nuclear, could also lead to the phosphorylation of Stat3. Endogenous Stat3 and p94(fer) co-immunoprecipitated with each other, thus proving the interaction of these two proteins in vivo. Unlike p94(fer), p51(ferT) did not induce the phosphorylation of Stat3 but led to the phosphorylation of other nuclear proteins. Replacing the unique 43-amino acid-long N-terminal tail of p51(ferT) with a parallel segment from the N-terminal tail of p94(fer) did not change the subcellular localization of p51(ferT) but enabled it to activate Stat3. Thus the different N-terminal sequences of p94(fer) and p51(ferT) can affect their ability to induce phosphorylation of Stat3 and most probably direct their different cellular functions.
Collapse
Affiliation(s)
- S Priel-Halachmi
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Arregui C, Pathre P, Lilien J, Balsamo J. The nonreceptor tyrosine kinase fer mediates cross-talk between N-cadherin and beta1-integrins. J Cell Biol 2000; 149:1263-74. [PMID: 10851023 PMCID: PMC2175119 DOI: 10.1083/jcb.149.6.1263] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cadherins and integrins must function in a coordinated manner to effectively mediate the cellular interactions essential for development. We hypothesized that exchange of proteins associated with their cytoplasmic domains may play a role in coordinating function. To test this idea, we used Trojan peptides to introduce into cells and tissues peptide sequences designed to compete for the interaction of specific effectors with the cytoplasmic domain of N-cadherin, and assayed their effect on cadherin- and integrin-mediated adhesion and neurite outgrowth. We show that a peptide mimicking the juxtamembrane (JMP) region of the cytoplasmic domain of N-cadherin results in inhibition of N-cadherin and beta1-integrin function. The effect of JMP on beta1-integrin function depends on the expression of N-cadherin and is independent of transcription or translation. Treatment of cells with JMP results in the release of the nonreceptor tyrosine kinase Fer from the cadherin complex and its accumulation in the integrin complex. A peptide that mimics the first coiled-coil domain of Fer prevents Fer accumulation in the integrin complex and reverses the inhibitory effect of JMP. These findings suggest a new mechanism through which N-cadherin and beta1-integrins are coordinately regulated: loss of an effector from the cytoplasmic domain of N-cadherin and gain of that effector by the beta1-integrin complex.
Collapse
Affiliation(s)
- Carlos Arregui
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Purnima Pathre
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Jack Lilien
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Janne Balsamo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
44
|
Senis Y, Zirngibl R, McVeigh J, Haman A, Hoang T, Greer PA. Targeted disruption of the murine fps/fes proto-oncogene reveals that Fps/Fes kinase activity is dispensable for hematopoiesis. Mol Cell Biol 1999; 19:7436-46. [PMID: 10523632 PMCID: PMC84737 DOI: 10.1128/mcb.19.11.7436] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase that is functionally implicated in the survival and terminal differentiation of myeloid progenitors and in signaling from several members of the cytokine receptor superfamily. To gain further insight into the physiological function of fps/fes, we targeted the mouse locus with a kinase-inactivating missense mutation. Mutant Fps/Fes protein was expressed at normal levels in these mice, but it lacked detectable kinase activity. Homozygous mutant animals were viable and fertile, and they showed no obvious defects. Flow cytometry analysis of bone marrow showed no statistically significant differences in the levels of myeloid, erythroid, or B-cell precursors. Subtle abnormalities observed in mutant mice included slightly elevated total leukocyte counts and splenomegaly. In bone marrow hematopoietic progenitor cell colony-forming assays, mutant mice gave slightly elevated numbers and variable sizes of CFU-granulocyte macrophage in response to interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Tyrosine phosphorylation of Stat3 and Stat5A in bone marrow-derived macrophages was dramatically reduced in response to GM-CSF but not to IL-3 or IL-6. This suggests a distinct nonredundant role for Fps/Fes in signaling from the GM-CSF receptor that does not extend to the closely related IL-3 receptor. Lipopolysaccharide-induced Erk1/2 activation was also reduced in mutant macrophages. These subtle molecular phenotypes suggest a possible nonredundant role for Fps/Fes in myelopoiesis and immune responses.
Collapse
Affiliation(s)
- Y Senis
- Department of Pathology, Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6
| | | | | | | | | | | |
Collapse
|