1
|
Koldenhof P, Bemelmans MP, Ghosh B, Damm-Ganamet KL, van Vlijmen HWT, Pande V. Application of AlphaFold models in evaluating ligandable cysteines across E3 ligases. Proteins 2024; 92:819-829. [PMID: 38337153 DOI: 10.1002/prot.26675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Proteolysis Targeting Chimeras (PROTACs) are an emerging therapeutic modality and chemical biology tools for Targeted Protein Degradation (TPD). PROTACs contain a ligand targeting the protein of interest, a ligand recruiting an E3 ligase and a linker connecting these two ligands. There are over 600 E3 ligases known so far, but only a handful have been exploited for TPD applications. A key reason for this is the scarcity of ligands binding various E3 ligases and the paucity of structural data available, which complicates ligand design across the family. In this study, we aim to progress PROTAC discovery by proposing a shortlist of E3 ligases that can be prioritized for covalent targeting by performing systematic structural ligandability analysis on a chemoproteomic dataset of potentially reactive cysteines across hundreds of E3 ligases. One of the goals of this study is to apply AlphaFold (AF) models for ligandability evaluations, as for a vast majority of these ligases an experimental structure is not available in the protein data bank (PDB). Using a combination of pocket features, AF model quality and additional aspects, we propose a shortlist of E3 ligases and corresponding cysteines that can be prioritized to potentially discover covalent ligands and expand the PROTAC toolbox.
Collapse
Affiliation(s)
- Patrick Koldenhof
- Computer-Aided Drug Design, Janssen Pharmaceuticals, Beerse, Belgium
| | | | - Brahma Ghosh
- Discovery Chemistry, Janssen Pharmaceuticals, Spring House, Pennsylvania, USA
| | | | | | - Vineet Pande
- Computer-Aided Drug Design, Janssen Pharmaceuticals, Beerse, Belgium
| |
Collapse
|
2
|
Pinto ÉSM, Krause MJ, Dorn M, Feltes BC. The nucleotide excision repair proteins through the lens of molecular dynamics simulations. DNA Repair (Amst) 2023; 127:103510. [PMID: 37148846 DOI: 10.1016/j.dnarep.2023.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Mutations that affect the proteins responsible for the nucleotide excision repair (NER) pathway can lead to diseases such as xeroderma pigmentosum, trichothiodystrophy, Cockayne syndrome, and Cerebro-oculo-facio-skeletal syndrome. Hence, understanding their molecular behavior is needed to elucidate these diseases' phenotypes and how the NER pathway is organized and coordinated. Molecular dynamics techniques enable the study of different protein conformations, adaptable to any research question, shedding light on the dynamics of biomolecules. However, as important as they are, molecular dynamics studies focused on DNA repair pathways are still becoming more widespread. Currently, there are no review articles compiling the advancements made in molecular dynamics approaches applied to NER and discussing: (i) how this technique is currently employed in the field of DNA repair, focusing on NER proteins; (ii) which technical setups are being employed, their strengths and limitations; (iii) which insights or information are they providing to understand the NER pathway or NER-associated proteins; (iv) which open questions would be suited for this technique to answer; and (v) where can we go from here. These questions become even more crucial considering the numerous 3D structures published regarding the NER pathway's proteins in recent years. In this work, we tackle each one of these questions, revising and critically discussing the results published in the context of the NER pathway.
Collapse
Affiliation(s)
| | - Mathias J Krause
- Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Márcio Dorn
- Center for Biotechnology, Federal University of Rio Grande do Sul, RS, Brazil; Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institute of Science and Technology - Forensic Science, Porto Alegre, RS, Brazil
| | - Bruno César Feltes
- Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Schaich MA, Schnable BL, Kumar N, Roginskaya V, Jakielski R, Urban R, Zhong Z, Kad NM, Van Houten B. Single-molecule analysis of DNA-binding proteins from nuclear extracts (SMADNE). Nucleic Acids Res 2023; 51:e39. [PMID: 36861323 PMCID: PMC10123111 DOI: 10.1093/nar/gkad095] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Single-molecule characterization of protein-DNA dynamics provides unprecedented mechanistic details about numerous nuclear processes. Here, we describe a new method that rapidly generates single-molecule information with fluorescently tagged proteins isolated from nuclear extracts of human cells. We demonstrated the wide applicability of this novel technique on undamaged DNA and three forms of DNA damage using seven native DNA repair proteins and two structural variants, including: poly(ADP-ribose) polymerase (PARP1), heterodimeric ultraviolet-damaged DNA-binding protein (UV-DDB), and 8-oxoguanine glycosylase 1 (OGG1). We found that PARP1 binding to DNA nicks is altered by tension, and that UV-DDB did not act as an obligate heterodimer of DDB1 and DDB2 on UV-irradiated DNA. UV-DDB bound to UV photoproducts with an average lifetime of 39 seconds (corrected for photobleaching, τc), whereas binding lifetimes to 8-oxoG adducts were < 1 second. Catalytically inactive OGG1 variant K249Q bound oxidative damage 23-fold longer than WT OGG1, at 47 and 2.0 s, respectively. By measuring three fluorescent colors simultaneously, we also characterized the assembly and disassembly kinetics of UV-DDB and OGG1 complexes on DNA. Hence, the SMADNE technique represents a novel, scalable, and universal method to obtain single-molecule mechanistic insights into key protein-DNA interactions in an environment containing physiologically-relevant nuclear proteins.
Collapse
Affiliation(s)
- Matthew A Schaich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Brittani L Schnable
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Namrata Kumar
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Rachel C Jakielski
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Roman Urban
- School of Biosciences, University of Kent, Kent, UK
| | - Zhou Zhong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- LUMICKS, Waltham, MA, USA
| | - Neil M Kad
- School of Biosciences, University of Kent, Kent, UK
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Grønbæk-Thygesen M, Kampmeyer C, Hofmann K, Hartmann-Petersen R. The moonlighting of RAD23 in DNA repair and protein degradation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194925. [PMID: 36863450 DOI: 10.1016/j.bbagrm.2023.194925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
A moonlighting protein is one, which carries out multiple, often wholly unrelated, functions. The RAD23 protein is a fascinating example of this, where the same polypeptide and the embedded domains function independently in both nucleotide excision repair (NER) and protein degradation via the ubiquitin-proteasome system (UPS). Hence, through direct binding to the central NER component XPC, RAD23 stabilizes XPC and contributes to DNA damage recognition. Conversely, RAD23 also interacts directly with the 26S proteasome and ubiquitylated substrates to mediate proteasomal substrate recognition. In this function, RAD23 activates the proteolytic activity of the proteasome and engages specifically in well-characterized degradation pathways through direct interactions with E3 ubiquitin-protein ligases and other UPS components. Here, we summarize the past 40 years of research into the roles of RAD23 in NER and the UPS.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark.
| | - Caroline Kampmeyer
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Germany
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
The role of UV-DDB in processing 8-oxoguanine during base excision repair. Biochem Soc Trans 2022; 50:1481-1488. [DOI: 10.1042/bst20220748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
Recent data from our laboratory has shown that the nucleotide excision repair (NER) proteins UV-damaged DNA-binding protein (UV-DDB), xeroderma pigmentosum group C (XPC), and xeroderma pigmentosum group A (XPA) play important roles in the processing of 8-oxoG. This review first discusses biochemical studies demonstrating how UV-DDB stimulates human 8-oxoG glycosylase (OGG1), MUTYH, and apurinic/apyrimidinic (AP) endonuclease (APE1) to increase their turnover at damage sites. We further discuss our single-molecule studies showing that UV-DDB associates with these proteins at abasic moieties on DNA damage arrays. Data from cell experiments are then described showing that UV-DDB interacts with OGG1 at sites of 8-oxoG. Finally, since many glycosylases are inhibited from working on damage in the context of chromatin, we present a working model of how UV-DDB may be the first responder to alter the structure of damage containing-nucleosomes to allow access by base excision repair (BER) enzymes.
Collapse
|
6
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
7
|
Kusakabe M, Kakumu E, Kurihara F, Tsuchida K, Maeda T, Tada H, Kusao K, Kato A, Yasuda T, Matsuda T, Nakao M, Yokoi M, Sakai W, Sugasawa K. Histone deacetylation regulates nucleotide excision repair through an interaction with the XPC protein. iScience 2022; 25:104040. [PMID: 35330687 PMCID: PMC8938288 DOI: 10.1016/j.isci.2022.104040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 12/05/2022] Open
Abstract
The XPC protein complex plays a central role in DNA lesion recognition for global genome nucleotide excision repair (GG-NER). Lesion recognition can be accomplished in either a UV-DDB-dependent or -independent manner; however, it is unclear how these sub-pathways are regulated in chromatin. Here, we show that histone deacetylases 1 and 2 facilitate UV-DDB-independent recruitment of XPC to DNA damage by inducing histone deacetylation. XPC localizes to hypoacetylated chromatin domains in a DNA damage-independent manner, mediated by its structurally disordered middle (M) region. The M region interacts directly with the N-terminal tail of histone H3, an interaction compromised by H3 acetylation. Although the M region is dispensable for in vitro NER, it promotes DNA damage removal by GG-NER in vivo, particularly in the absence of UV-DDB. We propose that histone deacetylation around DNA damage facilitates the recruitment of XPC through the M region, contributing to efficient lesion recognition and initiation of GG-NER. Histone deacetylation by HDAC1/2 promotes the DNA lesion recognition by XPC The HDAC1/2 activators, MTA proteins, also promote the recruitment of XPC XPC tends to localize in hypoacetylated chromatin independently of DNA damage Disordered middle region of XPC interacts with histone H3 tail and promotes GG-NER
Collapse
|
8
|
Gaul L, Svejstrup JQ. Transcription-coupled repair and the transcriptional response to UV-Irradiation. DNA Repair (Amst) 2021; 107:103208. [PMID: 34416541 DOI: 10.1016/j.dnarep.2021.103208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Lesions in genes that result in RNA polymerase II (RNAPII) stalling or arrest are particularly toxic as they are a focal point of genome instability and potently block further transcription of the affected gene. Thus, cells have evolved the transcription-coupled nucleotide excision repair (TC-NER) pathway to identify damage-stalled RNAPIIs, so that the lesion can be rapidly repaired and transcription can continue. However, despite the identification of several factors required for TC-NER, how RNAPII is remodelled, modified, removed, or whether this is even necessary for repair remains enigmatic, and theories are intensely contested. Recent studies have further detailed the cellular response to UV-induced ubiquitylation and degradation of RNAPII and its consequences for transcription and repair. These advances make it pertinent to revisit the TC-NER process in general and with specific discussion of the fate of RNAPII stalled at DNA lesions.
Collapse
Affiliation(s)
- Liam Gaul
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
9
|
Jang S, Schaich MA, Khuu C, Schnable BL, Majumdar C, Watkins SC, David SS, Van Houten B. Single molecule analysis indicates stimulation of MUTYH by UV-DDB through enzyme turnover. Nucleic Acids Res 2021; 49:8177-8188. [PMID: 34232996 PMCID: PMC8373069 DOI: 10.1093/nar/gkab591] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022] Open
Abstract
The oxidative base damage, 8-oxo-7,8-dihydroguanine (8-oxoG) is a highly mutagenic lesion because replicative DNA polymerases insert adenine (A) opposite 8-oxoG. In mammalian cells, the removal of A incorporated across from 8-oxoG is mediated by the glycosylase MUTYH during base excision repair (BER). After A excision, MUTYH binds avidly to the abasic site and is thus product inhibited. We have previously reported that UV-DDB plays a non-canonical role in BER during the removal of 8-oxoG by 8-oxoG glycosylase, OGG1 and presented preliminary data that UV-DDB can also increase MUTYH activity. In this present study we examine the mechanism of how UV-DDB stimulates MUTYH. Bulk kinetic assays show that UV-DDB can stimulate the turnover rate of MUTYH excision of A across from 8-oxoG by 4-5-fold. Electrophoretic mobility shift assays and atomic force microscopy suggest transient complex formation between MUTYH and UV-DDB, which displaces MUTYH from abasic sites. Using single molecule fluorescence analysis of MUTYH bound to abasic sites, we show that UV-DDB interacts directly with MUTYH and increases the mobility and dissociation rate of MUTYH. UV-DDB decreases MUTYH half-life on abasic sites in DNA from 8800 to 590 seconds. Together these data suggest that UV-DDB facilitates productive turnover of MUTYH at abasic sites during 8-oxoG:A repair.
Collapse
Affiliation(s)
- Sunbok Jang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew A Schaich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Cindy Khuu
- Department of Chemistry and Biochemistry, Molecular, Cell and Development Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Brittani L Schnable
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburg, PA 15260, USA
| | - Chandrima Majumdar
- Department of Chemistry and Biochemistry, Molecular, Cell and Development Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Simon C Watkins
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sheila S David
- Department of Chemistry and Biochemistry, Molecular, Cell and Development Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburg, PA 15260, USA
| |
Collapse
|
10
|
Chauhan AK, Sun Y, Zhu Q, Wani AA. Timely upstream events regulating nucleotide excision repair by ubiquitin-proteasome system: ubiquitin guides the way. DNA Repair (Amst) 2021; 103:103128. [PMID: 33991872 DOI: 10.1016/j.dnarep.2021.103128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays crucial roles in regulation of multiple DNA repair pathways, including nucleotide excision repair (NER), which eliminates a broad variety of helix-distorting DNA lesions that can otherwise cause deleterious mutations and genomic instability. In mammalian NER, DNA damage sensors, DDB and XPC acting in global genomic NER (GG-NER), and, CSB and RNAPII acting in transcription-coupled NER (TC-NER) sub-pathways, undergo an array of post-translational ubiquitination at the DNA lesion sites. Accumulating evidence indicates that ubiquitination orchestrates the productive assembly of NER preincision complex by driving well-timed compositional changes in DNA damage-assembled sensor complexes. Conversely, the deubiquitination is also intimately involved in regulating the damage sensing aftermath, via removal of degradative ubiquitin modification on XPC and CSB to prevent their proteolysis for the factor recycling. This review summaries the relevant research efforts and latest findings in our understanding of ubiquitin-mediated regulation of NER and active participation by new regulators of NER, e.g., Cullin-Ring ubiquitin ligases (CRLs), ubiquitin-specific proteases (USPs) and ubiquitin-dependent segregase, valosin-containing protein (VCP)/p97. We project hypothetical step-by-step models in which VCP/p97-mediated timely extraction of damage sensors is integral to overall productive NER. The USPs and proteasome subtly counteract in fine-tuning the vital stability and function of NER damage sensors.
Collapse
Affiliation(s)
- Anil K Chauhan
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States
| | - Yingming Sun
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States
| | - Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States.
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States; Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, 43210, United States; James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
11
|
Gillet N, Bartocci A, Dumont E. Assessing the sequence dependence of pyrimidine-pyrimidone (6-4) photoproduct in a duplex double-stranded DNA: A pitfall for microsecond range simulation. J Chem Phys 2021; 154:135103. [PMID: 33832258 DOI: 10.1063/5.0041332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sequence dependence of the (6-4) photoproduct conformational landscape when embedded in six 25-bp duplexes is evaluated along extensive unbiased and enhanced (replica exchange with solute tempering, REST2) molecular dynamics simulations. The structural reorganization as the central pyrimidines become covalently tethered is traced back in terms of non-covalent interactions, DNA bending, and extrusion of adenines of the opposite strands. The close sequence pattern impacts the conformational landscape around the lesion, inducing different upstream and downstream flexibilities. Moreover, REST2 simulations allow us to probe structures possibly important for damaged DNA recognition.
Collapse
Affiliation(s)
- Natacha Gillet
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
| | - Alessio Bartocci
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
| | - Elise Dumont
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
| |
Collapse
|
12
|
He X, Wang P, Wang Y. Mitochondrial Transcription Factor A Binds to and Promotes Mutagenic Transcriptional Bypass of O4-Alkylthymidine Lesions. Anal Chem 2021; 93:1161-1169. [PMID: 33290046 PMCID: PMC7904241 DOI: 10.1021/acs.analchem.0c04224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
O2- and O4-alkylated thymidine lesions are known to be poorly repaired and persist in mammalian tissues. To understand how mammalian cells sense the presence and regulate the repair of these lesions, we employed a quantitative proteomic method to discover regioisomeric O2- and O4-n-butylthymidine (O2- and O4-nBudT)-binding proteins. We were able to identify 21 and 74 candidate DNA damage recognition proteins for O2-nBudT- and O4-nBudT-bearing DNA probes, respectively. Among these proteins, DDB1 and DDB2 selectively bind to O2-nBudT-containing DNA, whereas three high-mobility group (HMG) proteins (i.e., HMGB1, HMGB2, and mitochondrial transcription factor A (TFAM)) exhibit preferential binding to O4-nBudT-bearing DNA. We further demonstrated that TFAM binds directly and selectively with O4-alkyldT-harboring DNA, and the binding capacity depends mainly on the HMG box-A domain of TFAM. We also found that TFAM promotes transcriptional mutagenesis of O4-nBudT and O4-pyridyloxobutylthymidine, which is a DNA adduct induced by tobacco-specific N-nitrosamines, in vitro and in human cells. Together, we explored, for the first time, the interaction proteomes of O-alkyldT lesions, and our study expanded the functions of TFAM by revealing its capability in the recognition of O4-alkyldT-bearing DNA and uncovering its modulation of transcriptional mutagenesis of these lesions in human cells.
Collapse
Affiliation(s)
- Xiaomei He
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Pengcheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
13
|
The Dark Side of UV-Induced DNA Lesion Repair. Genes (Basel) 2020; 11:genes11121450. [PMID: 33276692 PMCID: PMC7761550 DOI: 10.3390/genes11121450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.
Collapse
|
14
|
Kumar N, Raja S, Van Houten B. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res 2020; 48:11227-11243. [PMID: 33010169 PMCID: PMC7672477 DOI: 10.1093/nar/gkaa777] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
The six major mammalian DNA repair pathways were discovered as independent processes, each dedicated to remove specific types of lesions, but the past two decades have brought into focus the significant interplay between these pathways. In particular, several studies have demonstrated that certain proteins of the nucleotide excision repair (NER) and base excision repair (BER) pathways work in a cooperative manner in the removal of oxidative lesions. This review focuses on recent data showing how the NER proteins, XPA, XPC, XPG, CSA, CSB and UV-DDB, work to stimulate known glycosylases involved in the removal of certain forms of base damage resulting from oxidative processes, and also discusses how some oxidative lesions are probably directly repaired through NER. Finally, since many glycosylases are inhibited from working on damage in the context of chromatin, we detail how we believe UV-DDB may be the first responder in altering the structure of damage containing-nucleosomes, allowing access to BER enzymes.
Collapse
Affiliation(s)
- Namrata Kumar
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
- UPMC Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
| | - Sripriya Raja
- UPMC Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Bennett Van Houten
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
- UPMC Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Functional impacts of the ubiquitin-proteasome system on DNA damage recognition in global genome nucleotide excision repair. Sci Rep 2020; 10:19704. [PMID: 33184426 PMCID: PMC7665181 DOI: 10.1038/s41598-020-76898-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) plays crucial roles in regulation of various biological processes, including DNA repair. In mammalian global genome nucleotide excision repair (GG-NER), activation of the DDB2-associated ubiquitin ligase upon UV-induced DNA damage is necessary for efficient recognition of lesions. To date, however, the precise roles of UPS in GG-NER remain incompletely understood. Here, we show that the proteasome subunit PSMD14 and the UPS shuttle factor RAD23B can be recruited to sites with UV-induced photolesions even in the absence of XPC, suggesting that proteolysis occurs at DNA damage sites. Unexpectedly, sustained inhibition of proteasome activity results in aggregation of PSMD14 (presumably with other proteasome components) at the periphery of nucleoli, by which DDB2 is immobilized and sequestered from its lesion recognition functions. Although depletion of PSMD14 alleviates such DDB2 immobilization induced by proteasome inhibitors, recruitment of DDB2 to DNA damage sites is then severely compromised in the absence of PSMD14. Because all of these proteasome dysfunctions selectively impair removal of cyclobutane pyrimidine dimers, but not (6-4) photoproducts, our results indicate that the functional integrity of the proteasome is essential for the DDB2-mediated lesion recognition sub-pathway, but not for GG-NER initiated through direct lesion recognition by XPC.
Collapse
|
16
|
Terai Y, Sato R, Matsumura R, Iwai S, Yamamoto J. Enhanced DNA repair by DNA photolyase bearing an artificial light-harvesting chromophore. Nucleic Acids Res 2020; 48:10076-10086. [PMID: 32901252 PMCID: PMC7544235 DOI: 10.1093/nar/gkaa719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/03/2022] Open
Abstract
Photolyases are flavoenzymes responsible for the repair of carcinogenic DNA damage caused by ultraviolet radiation. They harbor the catalytic cofactor flavin adenine dinucleotide (FAD). The light-driven electron transfer from the excited state of the fully-reduced form of FAD to the DNA lesions causes rearrangement of the covalent bonds, leading to the restoration of intact nucleobases. In addition to the catalytic chromophore, some photolyases bear a secondary chromophore with better light absorption capability than FAD, acting as a light-harvesting chromophore that harvests photons in sunlight efficiently and transfers light energy to the catalytic center, as observed in natural photoreceptor proteins. Inspired by nature, we covalently and site-specifically attached a synthetic chromophore to the surface of photolyase using oligonucleotides containing a modified nucleoside and a cyclobutane-type DNA lesion, and successfully enhanced its enzymatic activity in the light-driven DNA repair. Peptide mapping in combination with theoretical calculations identified the amino acid residue that binds to the chromophore, working as an artificial light-harvesting chromophore. Our results broaden the strategies for protein engineering and provide a guideline for tuning of the light perception abilities and enzymatic activity of the photoreceptor proteins.
Collapse
Affiliation(s)
- Yuma Terai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ryuma Sato
- Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Risa Matsumura
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
17
|
Protection from Ultraviolet Damage and Photocarcinogenesis by Vitamin D Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:227-253. [PMID: 32918222 DOI: 10.1007/978-3-030-46227-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds.
Collapse
|
18
|
Beecher M, Kumar N, Jang S, Rapić-Otrin V, Van Houten B. Expanding molecular roles of UV-DDB: Shining light on genome stability and cancer. DNA Repair (Amst) 2020; 94:102860. [PMID: 32739133 DOI: 10.1016/j.dnarep.2020.102860] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/13/2023]
Abstract
UV-damaged DNA binding protein (UV-DDB) is a heterodimeric complex, composed of DDB1 and DDB2, and is involved in global genome nucleotide excision repair. Mutations in DDB2 are associated with xeroderma pigmentosum complementation group E. UV-DDB forms a ubiquitin E3 ligase complex with cullin-4A and RBX that helps to relax chromatin around UV-induced photoproducts through the ubiquitination of histone H2A. After providing a brief historical perspective on UV-DDB, we review our current knowledge of the structure and function of this intriguing repair protein. Finally, this article discusses emerging data suggesting that UV-DDB may have other non-canonical roles in base excision repair and the etiology of cancer.
Collapse
Affiliation(s)
- Maria Beecher
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Namrata Kumar
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sunbok Jang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vesna Rapić-Otrin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bennett Van Houten
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Paul D, Mu H, Zhao H, Ouerfelli O, Jeffrey PD, Broyde S, Min JH. Structure and mechanism of pyrimidine-pyrimidone (6-4) photoproduct recognition by the Rad4/XPC nucleotide excision repair complex. Nucleic Acids Res 2020; 47:6015-6028. [PMID: 31106376 PMCID: PMC6614856 DOI: 10.1093/nar/gkz359] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
Failure in repairing ultraviolet radiation-induced DNA damage can lead to mutations and cancer. Among UV-lesions, the pyrimidine–pyrimidone (6-4) photoproduct (6-4PP) is removed from the genome much faster than the cyclobutane pyrimidine dimer (CPD), owing to the more efficient recognition of 6-4PP by XPC-RAD23B, a key initiator of global-genome nucleotide excision repair (NER). Here, we report a crystal structure of a Rad4–Rad23 (yeast XPC-Rad23B ortholog) bound to 6-4PP-containing DNA and 4-μs molecular dynamics (MD) simulations examining the initial binding of Rad4 to 6-4PP or CPD. This first structure of Rad4/XPC bound to a physiological substrate with matched DNA sequence shows that Rad4 flips out both 6-4PP-containing nucleotide pairs, forming an ‘open’ conformation. The MD trajectories detail how Rad4/XPC initiates ‘opening’ 6-4PP: Rad4 initially engages BHD2 to bend/untwist DNA from the minor groove, leading to unstacking and extrusion of the 6-4PP:AA nucleotide pairs towards the major groove. The 5′ partner adenine first flips out and is captured by a BHD2/3 groove, while the 3′ adenine extrudes episodically, facilitating ensuing insertion of the BHD3 β-hairpin to open DNA as in the crystal structure. However, CPD resists such Rad4-induced structural distortions. Untwisting/bending from the minor groove may be a common way to interrogate DNA in NER.
Collapse
Affiliation(s)
- Debamita Paul
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Hong Zhao
- Organic Synthesis Core, Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core, Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
20
|
Additional Evidence for DDB2 T338M as a Genetic Risk Factor for Ocular Squamous Cell Carcinoma in Horses. Int J Genomics 2019; 2019:3610965. [PMID: 31637255 PMCID: PMC6766160 DOI: 10.1155/2019/3610965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the most common periocular cancer in horses and the second most common tumor of the horse overall. A missense mutation in damage-specific DNA-binding protein 2 (DDB2, c.1012 C>T, p.Thr338Met) was previously found to be strongly associated with ocular SCC in Haflinger and Belgian horses, explaining 76% of cases across both breeds. To determine if this same variant in DDB2 contributes to risk for ocular SCC in the Arabian, Appaloosa, and Percheron breeds and to determine if the variant contributes to risk for oral or urogenital SCC, histologically confirmed SCC cases were genotyped for the DDB2 variant and associations were investigated. Horses with urogenital SCC that were heterozygous for the DDB2 risk allele were identified in the Appaloosa breed, but a significant association between the DDB2 variant and SCC occurring at any location in this breed was not detected. The risk allele was not identified in Arabians, and no Percherons were homozygous for the risk allele. High-throughput sequencing data from six Haflingers were analyzed to ascertain if any other variant from the previously associated 483 kb locus on ECA12 was more concordant with the SCC phenotype than the DDB2 variant. Sixty polymorphisms were prioritized for evaluation, and no other variant from this locus explained the genetic risk better than the DDB2 allele (P = 3.39 × 10−17, n = 118). These data provide further support of the DDB2 variant contributing to risk for ocular SCC, specifically in the Haflinger and Belgian breeds.
Collapse
|
21
|
Jang S, Kumar N, Beckwitt EC, Kong M, Fouquerel E, Rapić-Otrin V, Prasad R, Watkins SC, Khuu C, Majumdar C, David SS, Wilson SH, Bruchez MP, Opresko PL, Van Houten B. Damage sensor role of UV-DDB during base excision repair. Nat Struct Mol Biol 2019; 26:695-703. [PMID: 31332353 PMCID: PMC6684372 DOI: 10.1038/s41594-019-0261-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/28/2019] [Indexed: 12/22/2022]
Abstract
UV-DDB, a key protein in human global nucleotide excision repair (NER), binds avidly to abasic sites and 8-oxo-guanine (8-oxoG), suggesting a noncanonical role in base excision repair (BER). We investigated whether UV-DDB can stimulate BER for these two common forms of DNA damage, 8-oxoG and abasic sites, which are repaired by 8-oxoguanine glycosylase (OGG1) and apurinic/apyrimidinic endonuclease (APE1), respectively. UV-DDB increased both OGG1 and APE1 strand cleavage and stimulated subsequent DNA polymerase β-gap filling activity by 30-fold. Single-molecule real-time imaging revealed that UV-DDB forms transient complexes with OGG1 or APE1, facilitating their dissociation from DNA. Furthermore, UV-DDB moves to sites of 8-oxoG repair in cells, and UV-DDB depletion sensitizes cells to oxidative DNA damage. We propose that UV-DDB is a general sensor of DNA damage in both NER and BER pathways, facilitating damage recognition in the context of chromatin.
Collapse
Affiliation(s)
- Sunbok Jang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Namrata Kumar
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily C Beckwitt
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Muwen Kong
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Molecular Biophysics and Structural Biology Graduate Program, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University and Sydney Kimmel Medical College, Philadelphia, PA, USA
| | - Vesna Rapić-Otrin
- Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rajendra Prasad
- Genomic Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cindy Khuu
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Biochemistry, Molecular, Cellular and Developmental Graduate Group, University of California, Davis, Davis, CA, USA
| | - Chandrima Majumdar
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Biochemistry, Molecular, Cellular and Developmental Graduate Group, University of California, Davis, Davis, CA, USA
| | - Samuel H Wilson
- Genomic Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Patricia L Opresko
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Molecular Biophysics and Structural Biology Graduate Program, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Du K, Zhang X, Zou Z, Li B, Gu S, Zhang S, Qu X, Ling Y, Zhang H. Epigenetically modified N 6-methyladenine inhibits DNA replication by human DNA polymerase η. DNA Repair (Amst) 2019; 78:81-90. [PMID: 30991231 DOI: 10.1016/j.dnarep.2019.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
N6-methyladenine (6mA), as a newly reported epigenetic marker, plays significant roles in regulation of various biological processes in eukaryotes. However, the effect of 6mA on human DNA replication remain elusive. In this work, we used Y-family human DNA polymerase η as a model to investigate the kinetics of bypass of 6mA by hPol η. We found 6mA and its intermediate hypoxanthine (I) on template partially inhibited DNA replication by hPol η. dTMP incorporation opposite 6mA and dCMP incorporation opposite I can be considered as correct incorporation. However, both 6mA and I reduced correct incorporation efficiency, next-base extension efficiency, and the priority in extension beyond correct base pair. Both dTMP incorporation opposite 6mA and dCTP opposite I showed fast burst phases. However, 6mA and I reduced the burst incorporation rates (kpol) and increased the dissociation constant (Kd,dNTP), compared with that of dTMP incorporation opposite unmodified A. Biophysical binding assays revealed that both 6mA and I on template reduced the binding affinity of hPol η to DNA in binary or ternary complex compared with unmodified A. All the results explain the inhibition effects of 6mA and I on DNA replication by hPol η, providing new insight in the effects of epigenetically modified 6mA on human DNA replication.
Collapse
Affiliation(s)
- Ke Du
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangqian Zhang
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China
| | - Zhenyu Zou
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Bianbian Li
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiling Gu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuming Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyi Qu
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Panyu District, Guangzhou, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Kusakabe M, Onishi Y, Tada H, Kurihara F, Kusao K, Furukawa M, Iwai S, Yokoi M, Sakai W, Sugasawa K. Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes Environ 2019; 41:2. [PMID: 30700997 PMCID: PMC6346561 DOI: 10.1186/s41021-019-0119-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/08/2019] [Indexed: 11/10/2022] Open
Abstract
Nucleotide excision repair (NER) is a versatile DNA repair pathway, which can remove an extremely broad range of base lesions from the genome. In mammalian global genomic NER, the XPC protein complex initiates the repair reaction by recognizing sites of DNA damage, and this depends on detection of disrupted/destabilized base pairs within the DNA duplex. A model has been proposed that XPC first interacts with unpaired bases and then the XPD ATPase/helicase in concert with XPA verifies the presence of a relevant lesion by scanning a DNA strand in 5′-3′ direction. Such multi-step strategy for damage recognition would contribute to achieve both versatility and accuracy of the NER system at substantially high levels. In addition, recognition of ultraviolet light (UV)-induced DNA photolesions is facilitated by the UV-damaged DNA-binding protein complex (UV-DDB), which not only promotes recruitment of XPC to the damage sites, but also may contribute to remodeling of chromatin structures such that the DNA lesions gain access to XPC and the following repair proteins. Even in the absence of UV-DDB, however, certain types of histone modifications and/or chromatin remodeling could occur, which eventually enable XPC to find sites with DNA lesions. Exploration of novel factors involved in regulation of the DNA damage recognition process is now ongoing.
Collapse
Affiliation(s)
- Masayuki Kusakabe
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Yuki Onishi
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,2Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Haruto Tada
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,2Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Fumika Kurihara
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,2Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Kanako Kusao
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,3Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Mari Furukawa
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Shigenori Iwai
- 4Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531 Japan
| | - Masayuki Yokoi
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,2Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,3Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Wataru Sakai
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,2Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,3Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Kaoru Sugasawa
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,2Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,3Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| |
Collapse
|
24
|
Sugasawa K. Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. DNA Repair (Amst) 2019; 45:99-138. [DOI: 10.1016/bs.enz.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
cAMP-mediated regulation of melanocyte genomic instability: A melanoma-preventive strategy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 115:247-295. [PMID: 30798934 DOI: 10.1016/bs.apcsb.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant melanoma of the skin is the leading cause of death from skin cancer and ranks fifth in cancer incidence among all cancers in the United States. While melanoma mortality has remained steady for the past several decades, melanoma incidence has been increasing, particularly among fair-skinned individuals. According to the American Cancer Society, nearly 10,000 people in the United States will die from melanoma this year. Individuals with dark skin complexion are protected damage generated by UV-light due to the high content of UV-blocking melanin pigment in their epidermis as well as better capacity for melanocytes to cope with UV damage. There is now ample evidence that suggests that the melanocortin 1 receptor (MC1R) is a major melanoma risk factor. Inherited loss-of-function mutations in MC1R are common in melanoma-prone persons, correlating with a less melanized skin complexion and poorer recovery from mutagenic photodamage. We and others are interested in the MC1R signaling pathway in melanocytes, its mechanisms of enhancing genomic stability and pharmacologic opportunities to reduce melanoma risk based on those insights. In this chapter, we review melanoma risk factors, the MC1R signaling pathway, and the relationship between MC1R signaling and DNA repair.
Collapse
|
26
|
Mu H, Geacintov NE, Broyde S, Yeo JE, Schärer OD. Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. DNA Repair (Amst) 2018; 71:33-42. [PMID: 30174301 DOI: 10.1016/j.dnarep.2018.08.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global genome nucleotide excision repair (GG-NER) is the main pathway for the removal of bulky lesions from DNA and is characterized by an extraordinarily wide substrate specificity. Remarkably, the efficiency of lesion removal varies dramatically and certain lesions escape repair altogether and are therefore associated with high levels of mutagenicity. Central to the multistep mechanism of damage recognition in NER is the sensing of lesion-induced thermodynamic and structural alterations of DNA by the XPC-RAD23B protein and the verification of the damage by the transcription/repair factor TFIIH. Additional factors contribute to the process: UV-DDB, for the recognition of certain UV-induced lesions in particular in the context of chromatin, while the XPA protein is believed to have a role in damage verification and NER complex assembly. Here we consider the molecular mechanisms that determine repair efficiency in GG-NER based on recent structural, computational, biochemical, cellular and single molecule studies of XPC-RAD23B and its yeast ortholog Rad4. We discuss how the actions of XPC-RAD23B are integrated with those of other NER proteins and, based on recent high-resolution structures of TFIIH, present a structural model of how XPC-RAD23B and TFIIH cooperate in damage recognition and verification.
Collapse
Affiliation(s)
- Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea; Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
27
|
Pitta K, Krishnan M. Molecular Mechanism, Dynamics, and Energetics of Protein-Mediated Dinucleotide Flipping in a Mismatched DNA: A Computational Study of the RAD4-DNA Complex. J Chem Inf Model 2018; 58:647-660. [PMID: 29474070 DOI: 10.1021/acs.jcim.7b00636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA damage alters genetic information and adversely affects gene expression pathways leading to various complex genetic disorders and cancers. DNA repair proteins recognize and rectify DNA damage and mismatches with high fidelity. A critical molecular event that occurs during most protein-mediated DNA repair processes is the extrusion of orphaned bases at the damaged site facilitated by specific repairing enzymes. The molecular-level understanding of the mechanism, dynamics, and energetics of base extrusion is necessary to elucidate the molecular basis of protein-mediated DNA damage repair. The present article investigates the molecular mechanism of dinucleotide extrusion in a mismatched DNA (containing a stretch of three contiguous thymidine-thymidine base pairs) facilitated by Radiation sensitive 4 (RAD4), a key DNA repair protein, on an atom-by-atom basis using molecular dynamics (MD) and umbrella-sampling (US) simulations. Using atomistic models of RAD4-free and RAD4-bound mismatched DNA, the free energy profiles associated with extrusion of mismatched partner bases are determined for both systems. The mismatched bases adopted the most stable intrahelical conformation, and their extrusion was unfavorable in RAD4-free mismatched DNA due to the presence of prohibitively high barriers (>12.0 kcal/mol) along the extrusion pathways. Upon binding of RAD4 to the DNA, the global free energy minimum is shifted to the extrahelical state indicating the key role of RAD4-DNA interactions in catalyzing the dinucleotide base extrusion in the DNA-RAD4 complex. The critical residues of RAD4 contributing to the conformational stability of the mismatched bases are identified, and the energetics of insertion of a β-hairpin of RAD4 into the DNA duplex is examined. The conformational energy landscape-based mechanistic insight into RAD4-mediated base extrusion provided here may serve as a useful baseline to understand the molecular basis of xeroderma pigmentosum C (XPC)-mediated DNA damage repair in humans.
Collapse
Affiliation(s)
- Kartheek Pitta
- Center for Computational Natural Sciences and Bioinformatics , International Institute of Information Technology , Gachibowli 500032 , Hyderabad , Telangana , India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics , International Institute of Information Technology , Gachibowli 500032 , Hyderabad , Telangana , India
| |
Collapse
|
28
|
Chang Y, Lee WY, Lin YJ, Hsu T. Mercury (II) impairs nucleotide excision repair (NER) in zebrafish (Danio rerio) embryos by targeting primarily at the stage of DNA incision. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:97-104. [PMID: 28942072 DOI: 10.1016/j.aquatox.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 05/20/2023]
Abstract
Mercuric ion (Hg2+) is the most prevalent form of inorganic Hg found in polluted aquatic environment. As inhibition of DNA damage repair has been proposed as one of the mechanisms of Hg2+-induced genotoxicity in aquatic animals and mammalian cells, this study explored the susceptibility of different stages of nucleotide excision repair (NER) in zebrafish (Danio rerio) embryos to Hg2+ using UV-damaged DNA as the repair substrate. Exposure of embryos at 1h post fertilization (hpf) to HgCl2 at 0.1-2.5μM for 9h caused a concentration-dependent inhibition of NER capacity monitored by a transcription-based DNA repair assay. The extracts of embryos exposed to 2.5μM Hg2+ almost failed to up-regulate UV-suppressed marker cDNA transcription. No inhibition of ATP production was observed in all Hg2+-exposed embryos. Hg2+ exposure imposed either weak inhibitory or stimulating effects on the gene expression of NER factors, while band shift assay showed the inhibition of photolesion binding activities to about 40% of control in embryos treated with 1-2.5μM HgCl2. The damage incision stage of NER in zebrafish embryos was found to be more sensitive to Hg2+ than photolesion binding capacity due to the complete loss of damage incision activity in the extracts of embryos exposed to 1-2.5μM Hg2+. NER-related DNA incision was induced in UV-irradiated embryos based on the production of short DNA fragments matching the sizes of excision products generated by eukaryotic NER. Pre-exposure of embryos to Hg2+ at 0.1-2.5μM all suppressed DNA incision/excision in UV-irradiated embryos, reflecting a high sensitivity of DNA damage incision/excision to Hg2+. Our results showed the potential of Hg2+ at environmental relevant levels to disturb NER in zebrafish embryos by targeting primarily at the stage of DNA incision/excision.
Collapse
Affiliation(s)
- Yung Chang
- Institute of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan, Republic of China
| | - Wei-Yuan Lee
- Institute of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan, Republic of China
| | - Yu-Jie Lin
- Institute of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan, Republic of China
| | - Todd Hsu
- Institute of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan, Republic of China.
| |
Collapse
|
29
|
Mu H, Geacintov NE, Min JH, Zhang Y, Broyde S. Nucleotide Excision Repair Lesion-Recognition Protein Rad4 Captures a Pre-Flipped Partner Base in a Benzo[a]pyrene-Derived DNA Lesion: How Structure Impacts the Binding Pathway. Chem Res Toxicol 2017; 30:1344-1354. [PMID: 28460163 PMCID: PMC5478902 DOI: 10.1021/acs.chemrestox.7b00074] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The xeroderma pigmentosum C protein complex (XPC) recognizes a variety of environmentally induced DNA lesions and is the key in initiating their repair by the nucleotide excision repair (NER) pathway. When bound to a lesion, XPC flips two nucleotide pairs that include the lesion out of the DNA duplex, yielding a productively bound complex that can lead to successful lesion excision. Interestingly, the efficiencies of NER vary greatly among different lesions, influencing their toxicity and mutagenicity in cells. Though differences in XPC binding may influence NER efficiency, it is not understood whether XPC utilizes different mechanisms to achieve productive binding with different lesions. Here, we investigated the well-repaired 10R-(+)-cis-anti-benzo[a]pyrene-N2-dG (cis-B[a]P-dG) DNA adduct in a duplex containing normal partner C opposite the lesion. This adduct is derived from the environmental pro-carcinogen benzo[a]pyrene and is likely to be encountered by NER in the cell. We have extensively investigated its binding to the yeast XPC orthologue, Rad4, using umbrella sampling with restrained molecular dynamics simulations and free energy calculations. The NMR solution structure of this lesion in duplex DNA has shown that the dC complementary to the adducted dG is flipped out of the DNA duplex in the absence of XPC. However, it is not known whether the "pre-flipped" base would play a role in its recognition by XPC. Our results show that Rad4 first captures the displaced dC, which is followed by a tightly coupled lesion-extruding pathway for productive binding. This binding path differs significantly from the one deduced for the small cis-syn cyclobutane pyrimidine dimer lesion opposite mismatched thymines [ Mu , H. , ( 2015 ) Biochemistry , 54 ( 34 ), 5263 - 7 ]. The possibility of multiple paths that lead to productive binding to XPC is consistent with the versatile lesion recognition by XPC that is required for successful NER.
Collapse
Affiliation(s)
| | | | - Jung-Hyun Min
- Department of Chemistry, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Yingkai Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China
| | | |
Collapse
|
30
|
Kakumu E, Nakanishi S, Shiratori HM, Kato A, Kobayashi W, Machida S, Yasuda T, Adachi N, Saito N, Ikura T, Kurumizaka H, Kimura H, Yokoi M, Sakai W, Sugasawa K. Xeroderma pigmentosum group C protein interacts with histones: regulation by acetylated states of histone H3. Genes Cells 2017; 22:310-327. [PMID: 28233440 DOI: 10.1111/gtc.12479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
Abstract
In the mammalian global genome nucleotide excision repair pathway, two damage recognition factors, XPC and UV-DDB, play pivotal roles in the initiation of the repair reaction. However, the molecular mechanisms underlying regulation of the lesion recognition process in the context of chromatin structures remain to be understood. Here, we show evidence that damage recognition factors tend to associate with chromatin regions devoid of certain types of acetylated histones. Treatment of cells with histone deacetylase inhibitors retarded recruitment of XPC to sites of UV-induced DNA damage and the subsequent repair process. Biochemical studies showed novel multifaceted interactions of XPC with histone H3, which were profoundly impaired by deletion of the N-terminal tail of histone H3. In addition, histone H1 also interacted with XPC. Importantly, acetylation of histone H3 markedly attenuated the interaction with XPC in vitro, and local UV irradiation of cells decreased the level of H3K27ac in the damaged areas. Our results suggest that histone deacetylation plays a significant role in the process of DNA damage recognition for nucleotide excision repair and that the localization and functions of XPC can be regulated by acetylated states of histones.
Collapse
Affiliation(s)
- Erina Kakumu
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Seiya Nakanishi
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hiromi M Shiratori
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Akari Kato
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Wataru Kobayashi
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Shinichi Machida
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Takeshi Yasuda
- National Institute for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Naoko Adachi
- Division of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Naoaki Saito
- Division of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tsuyoshi Ikura
- Department of Mutagenesis, Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Masayuki Yokoi
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Wataru Sakai
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Kaoru Sugasawa
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
31
|
Ling LB, Chang Y, Liu CW, Lai PL, Hsu T. Oxidative stress intensity-related effects of cadmium (Cd) and paraquat (PQ) on UV-damaged-DNA binding and excision repair activities in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2017; 167:10-18. [PMID: 27705808 DOI: 10.1016/j.chemosphere.2016.09.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Our earlier studies showed the inhibitory effects of cadmium (Cd) and paraquat (PQ) on the gene expression of DNA mismatch recognition proteins in zebrafish (Danio rerio) embryos. This study explored the effects of Cd and PQ on nucleotide excision repair (NER) capacity in zebrafish embryos. Exposure of embryos at 1 h post fertilization (hpf) to 3-5 μM Cd or 30-100 μM PQ for 9 h induced a 2-3-fold increase of oxidative stress, while a 6.5-fold increase of oxidative stress was induced by 200 μM PQ. Real-time RT-PCR detected a down-regulated xeroderma pigmentosum C (XPC) and an up-regulated UV-DDB2 gene expression in mildly-stressed embryos, whereas 8-oxoguanine DNA glycosylase (OGG1) gene expression increased with PQ exposure levels. NER of UV-damaged DNA was enhanced in weakly oxidant-stressed embryos as shown by a transcription-based DNA repair assay, yet repair activities of both UV and cisplatin-damaged DNA were inhibited in embryos exposed to 200 μM PQ. Band shift assay showed a suppression of cyclobutane pyrimidine dimer (CPD) binding activity in all stressed embryos. In contrast, (6-4) photoproduct (6-4PP) recognition activity was weakly stimulated except in embryos exposed to 200 μM PQ, revealing a link of NER capacity to 6-4PP binding. Our results showed that Cd and PQ imposed similar inducing effects on UV-DDB2 gene expression, NER of UV-damaged DNA and 6-4PP binding activity in zebrafish embryo under low levels of oxidative stress and NER capacity could be inhibited if the intensity of oxidative stress increased to a critical level.
Collapse
Affiliation(s)
- Li-Bin Ling
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, No.2, Pei-Ning Rd., Keelung 20224, Taiwan, Republic of China
| | - Yung Chang
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, No.2, Pei-Ning Rd., Keelung 20224, Taiwan, Republic of China
| | - Chia-Wei Liu
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, No.2, Pei-Ning Rd., Keelung 20224, Taiwan, Republic of China
| | - Po-Ling Lai
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, No.2, Pei-Ning Rd., Keelung 20224, Taiwan, Republic of China
| | - Todd Hsu
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, No.2, Pei-Ning Rd., Keelung 20224, Taiwan, Republic of China.
| |
Collapse
|
32
|
Ma X, Ou YB, Gao YF, Lutts S, Li TT, Wang Y, Chen YF, Sun YF, Yao YA. Moderate salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants. Sci Rep 2016; 6:32890. [PMID: 27597726 PMCID: PMC5011775 DOI: 10.1038/srep32890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
The effects of moderate salinity on the responses of woody plants to UV-B radiation were investigated using two Populus species (Populus alba and Populus russkii). Under UV-B radiation, moderate salinity reduced the oxidation pressure in both species, as indicated by lower levels of cellular H2O2 and membrane peroxidation, and weakened the inhibition of photochemical efficiency expressed by O-J-I-P changes. UV-B-induced DNA lesions in chloroplast and nucleus were alleviated by salinity, which could be explained by the higher expression levels of DNA repair system genes under UV-B&salt condition, such as the PHR, DDB2, and MutSα genes. The salt-induced increase in organic osmolytes proline and glycine betaine, afforded more efficient protection against UV-B radiation. Therefore moderate salinity induced cross-tolerance to UV-B stress in poplar plants. It is thus suggested that woody plants growing in moderate salted condition would be less affected by enhanced UV-B radiation than plants growing in the absence of salt. Our results also showed that UV-B signal genes in poplar plants PaCOP1, PaSTO and PaSTH2 were quickly responding to UV-B radiation, but not to salt. The transcripts of PaHY5 and its downstream pathway genes (PaCHS1, PaCHS4, PaFLS1 and PaFLS2) were differently up-regulated by these treatments, but the flavonoid compounds were not involved in the cross-tolerance since their concentration increased to the same extent in both UV-B and combined stresses.
Collapse
Affiliation(s)
- Xuan Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Bin Ou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Feng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute–Agronomy (ELI-A), Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Tao-Tao Li
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Fu Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yu-Fang Sun
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yin-An Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
| |
Collapse
|
33
|
Zou N, Xie G, Cui T, Srivastava AK, Qu M, Yang L, Wei S, Zheng Y, Wang QE. DDB2 increases radioresistance of NSCLC cells by enhancing DNA damage responses. Tumour Biol 2016; 37:14183-14191. [PMID: 27553023 DOI: 10.1007/s13277-016-5203-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/13/2016] [Indexed: 01/24/2023] Open
Abstract
Radiotherapy resistance is one of the major factors limiting the efficacy of radiotherapy in lung cancer patients. The extensive investigations indicate the diversity in the mechanisms underlying radioresistance. Here, we revealed that DNA damage binding protein 2 (DDB2) is a potential regulator in the radiosensitivity of non-small cell lung cancer (NSCLC) cells. DDB2, originally identified as a DNA damage recognition factor in the nucleotide excision repair, promotes the survival and inhibits the apoptosis of NSCLC cell lines upon ionizing radiation (IR). Mechanistic investigations demonstrated that DDB2 is able to facilitate IR-induced phosphorylation of Chk1, which plays a critical role in the cell cycle arrest and DNA repair in response to IR-induced DNA double-strand breaks (DSBs). Indeed, knockdown of DDB2 compromised the G2 arrest in the p53-proficient A549 cell line and reduced the efficiency of homologous recombination (HR) repair. Taken together, our data indicate that the expression of DDB2 in NSCLC could be used as a biomarker to predict radiosensitivity of the patients. Targeting Chk1 can be used to increase the efficacy of radiotherapy in patients of NSCLC possessing high levels of DDB2.
Collapse
Affiliation(s)
- Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan, Hubei, 430079, China
- Department of Radiology, Division of Radiobiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Guozhen Xie
- Department of Radiology, Division of Radiobiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Dublin Coffman High School, Dublin, OH, 43017, USA
| | - Tiantian Cui
- Department of Radiology, Division of Radiobiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Amit Kumar Srivastava
- Department of Radiology, Division of Radiobiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Meihua Qu
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Linlin Yang
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Shaozhong Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Hospital, Wuhan, Hubei, 430079, China
| | - Yanfang Zheng
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China.
| | - Qi-En Wang
- Department of Radiology, Division of Radiobiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
34
|
Sugasawa K. Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair. DNA Repair (Amst) 2016; 44:110-117. [PMID: 27264556 DOI: 10.1016/j.dnarep.2016.05.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
35
|
Sugitani N, Sivley RM, Perry KE, Capra JA, Chazin WJ. XPA: A key scaffold for human nucleotide excision repair. DNA Repair (Amst) 2016; 44:123-135. [PMID: 27247238 DOI: 10.1016/j.dnarep.2016.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleotide excision repair (NER) is essential for removing many types of DNA lesions from the genome, yet the mechanisms of NER in humans remain poorly understood. This review summarizes our current understanding of the structure, biochemistry, interaction partners, mechanisms, and disease-associated mutations of one of the critical NER proteins, XPA.
Collapse
Affiliation(s)
- Norie Sugitani
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States
| | - Robert M Sivley
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States
| | - Kelly E Perry
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States
| | - John A Capra
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States
| | - Walter J Chazin
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States.
| |
Collapse
|
36
|
Abstract
Nucleotide excision repair (NER) is a highly versatile and efficient DNA repair process, which is responsible for the removal of a large number of structurally diverse DNA lesions. Its extreme broad substrate specificity ranges from DNA damages formed upon exposure to ultraviolet radiation to numerous bulky DNA adducts induced by mutagenic environmental chemicals and cytotoxic drugs used in chemotherapy. Defective NER leads to serious diseases, such as xeroderma pigmentosum (XP). Eight XP complementation groups are known of which seven (XPA-XPG) are caused by mutations in genes involved in the NER process. The eighth gene, XPV, codes for the DNA polymerase ɳ, which replicates through DNA lesions in a process called translesion synthesis (TLS). Over the past decade, detailed structural information of these DNA repair proteins involved in eukaryotic NER and TLS have emerged. These structures allow us now to understand the molecular mechanism of the NER and TLS processes in quite some detail and we have begun to understand the broad substrate specificity of NER. In this review, we aim to highlight recent advances in the process of damage recognition and repair as well as damage tolerance by the XP proteins.
Collapse
|
37
|
Horikoshi N, Tachiwana H, Kagawa W, Osakabe A, Matsumoto S, Iwai S, Sugasawa K, Kurumizaka H. Crystal structure of the nucleosome containing ultraviolet light-induced cyclobutane pyrimidine dimer. Biochem Biophys Res Commun 2016; 471:117-22. [PMID: 26837048 DOI: 10.1016/j.bbrc.2016.01.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/27/2016] [Indexed: 01/21/2023]
Abstract
The cyclobutane pyrimidine dimer (CPD) is induced in genomic DNA by ultraviolet (UV) light. In mammals, this photolesion is primarily induced within nucleosomal DNA, and repaired exclusively by the nucleotide excision repair (NER) pathway. However, the mechanism by which the CPD is accommodated within the nucleosome has remained unknown. We now report the crystal structure of a nucleosome containing CPDs. In the nucleosome, the CPD induces only limited local backbone distortion, and the affected bases are accommodated within the duplex. Interestingly, one of the affected thymine bases is located within 3.0 Å from the undamaged complementary adenine base, suggesting the formation of complementary hydrogen bonds in the nucleosome. We also found that UV-DDB, which binds the CPD at the initial stage of the NER pathway, also efficiently binds to the nucleosomal CPD. These results provide important structural and biochemical information for understanding how the CPD is accommodated and recognized in chromatin.
Collapse
Affiliation(s)
- Naoki Horikoshi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroaki Tachiwana
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Wataru Kagawa
- Department of Interdisciplinary Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino-shi, Tokyo 191-8506, Japan
| | - Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Syota Matsumoto
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka-shi, Osaka 560-8531, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
38
|
Han C, Srivastava AK, Cui T, Wang QE, Wani AA. Differential DNA lesion formation and repair in heterochromatin and euchromatin. Carcinogenesis 2015; 37:129-38. [PMID: 26717995 DOI: 10.1093/carcin/bgv247] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/13/2015] [Indexed: 11/15/2022] Open
Abstract
Discretely orchestrated chromatin condensation is important for chromosome protection from DNA damage. However, it is still unclear how different chromatin states affect the formation and repair of nucleotide excision repair (NER) substrates, e.g. ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPD) and the pyrimidine (6-4) pyrimidone photoproducts (6-4PP), as well as cisplatin-induced intrastrand crosslinks (Pt-GG). Here, by using immunofluorescence and chromatin immunoprecipitation assays, we have demonstrated that CPD, which cause minor distortion of DNA double helix, can be detected in both euchromatic and heterochromatic regions, while 6-4PP and Pt-GG, which cause major distortion of DNA helix, can exclusively be detected in euchromatin, indicating that the condensed chromatin environment specifically interferes with the formation of these DNA lesions. Mechanistic investigation revealed that the class III histone deacetylase SIRT1 is responsible for restricting the formation of 6-4PP and Pt-GG in cells, probably by facilitating the maintenance of highly condensed heterochromatin. In addition, we also showed that the repair of CPD in heterochromatin is slower than that in euchromatin, and DNA damage binding protein 2 (DDB2) can promote the removal of CPD from heterochromatic region. In summary, our data provide evidence for differential formation and repair of DNA lesions that are substrates of NER. Both the sensitivity of DNA to damage and the kinetics of repair can be affected by the underlying level of chromatin compaction.
Collapse
Affiliation(s)
| | - Amit Kumar Srivastava
- James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | | | - Qi-En Wang
- Department of Radiology and James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Altaf A Wani
- Department of Radiology and James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Structural basis of pyrimidine-pyrimidone (6-4) photoproduct recognition by UV-DDB in the nucleosome. Sci Rep 2015; 5:16330. [PMID: 26573481 PMCID: PMC4648065 DOI: 10.1038/srep16330] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/13/2015] [Indexed: 11/24/2022] Open
Abstract
UV-DDB, an initiation factor for the nucleotide excision repair pathway, recognizes
6–4PP lesions through a base flipping mechanism. As genomic DNA is
almost entirely accommodated within nucleosomes, the flipping of the
6–4PP bases is supposed to be extremely difficult if the lesion occurs
in a nucleosome, especially on the strand directly contacting the histone surface.
Here we report that UV-DDB binds efficiently to nucleosomal 6–4PPs that
are rotationally positioned on the solvent accessible or occluded surface. We
determined the crystal structures of nucleosomes containing 6–4PPs in
these rotational positions, and found that the 6–4PP DNA regions were
flexibly disordered, especially in the strand exposed to the solvent. This
characteristic of 6–4PP may facilitate UV-DDB binding to the damaged
nucleosome. We present the first atomic-resolution pictures of the detrimental DNA
cross-links of neighboring pyrimidine bases within the nucleosome, and provide the
mechanistic framework for lesion recognition by UV-DDB in chromatin.
Collapse
|
40
|
Mu H, Geacintov NE, Zhang Y, Broyde S. Recognition of Damaged DNA for Nucleotide Excision Repair: A Correlated Motion Mechanism with a Mismatched cis-syn Thymine Dimer Lesion. Biochemistry 2015; 54:5263-7. [PMID: 26270861 PMCID: PMC4748833 DOI: 10.1021/acs.biochem.5b00840] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Mammalian
global genomic nucleotide excision repair requires lesion
recognition by XPC, whose detailed binding mechanism remains to be
elucidated. Here we have delineated the dynamic molecular pathway
and energetics of lesion-specific and productive binding by the Rad4/yeast
XPC lesion recognition factor, as it forms the open complex [Min,
J. H., and Pavletich, N. P. (2007) Nature 449, 570–575;
Chen, X., et al. (2015) Nat. Commun. 6, 5849] that
is required for excision. We investigated extensively a cis-syn cyclobutane pyrimidine dimer in mismatched duplex DNA, using high-level
computational approaches. Our results delineate a preferred correlated
motion mechanism, which provides for the first time an atomistic description
of the sequence of events as Rad4 productively binds to the damaged
DNA.
Collapse
Affiliation(s)
| | | | - Yingkai Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China
| | | |
Collapse
|
41
|
Dai W, Ma W, Li Q, Tao Y, Ding P, Zhu R, Jin J. The 5'-UTR of DDB2 harbors an IRES element and upregulates translation during stress conditions. Gene 2015; 573:57-63. [PMID: 26187069 DOI: 10.1016/j.gene.2015.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 11/15/2022]
Abstract
DDB2 is a tumor-inhibiting factor not only involved a major DNA repair mechanism in the Nucleotide Excision Repair (NER), but also correlated with cell apoptosis in the DNA damage response pathway. During serum-starvation, we noted that the translation levels of DDB2 were increased. To evaluate whether the 5'-UTR of DDB2 harbors an IRES element, we used a bicistronic luciferase plasmid with the 5'-UTR of DDB2 inserted between two cistron coding regions. We found that DDB2 5'-UTR could initiate the downstream reporter, demonstrating that the 5'-UTR of DDB2 contained an IRES. The 5'-UTR of DDB2 was predicted into a relatively stable secondary structure by the Mfold program. We deleted the stem-loops in turn to analyze the core part of IRES and found that full length of the 5'-UTR was significant for the IRES activity. Furthermore, our data demonstrated that the DDB2 IRES activity was promoted during stress conditions. These results reveal a novel mechanism contributing to DDB2 expression.
Collapse
Affiliation(s)
- Wenyan Dai
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Wennan Ma
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Qi Li
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Yifen Tao
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Pengpeng Ding
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Ruiyu Zhu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China.
| | - Jian Jin
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
42
|
Structural insights into the recognition of cisplatin and AAF-dG lesion by Rad14 (XPA). Proc Natl Acad Sci U S A 2015; 112:8272-7. [PMID: 26100901 DOI: 10.1073/pnas.1508509112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) is responsible for the removal of a large variety of structurally diverse DNA lesions. Mutations of the involved proteins cause the xeroderma pigmentosum (XP) cancer predisposition syndrome. Although the general mechanism of the NER process is well studied, the function of the XPA protein, which is of central importance for successful NER, has remained enigmatic. It is known, that XPA binds kinked DNA structures and that it interacts also with DNA duplexes containing certain lesions, but the mechanism of interactions is unknown. Here we present two crystal structures of the DNA binding domain (DBD) of the yeast XPA homolog Rad14 bound to DNA with either a cisplatin lesion (1,2-GG) or an acetylaminofluorene adduct (AAF-dG). In the structures, we see that two Rad14 molecules bind to the duplex, which induces DNA melting of the duplex remote from the lesion. Each monomer interrogates the duplex with a β-hairpin, which creates a 13mer duplex recognition motif additionally characterized by a sharp 70° DNA kink at the position of the lesion. Although the 1,2-GG lesion stabilizes the kink due to the covalent fixation of the crosslinked dG bases at a 90° angle, the AAF-dG fully intercalates into the duplex to stabilize the kinked structure.
Collapse
|
43
|
Akita M, Tak YS, Shimura T, Matsumoto S, Okuda-Shimizu Y, Shimizu Y, Nishi R, Saitoh H, Iwai S, Mori T, Ikura T, Sakai W, Hanaoka F, Sugasawa K. SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair. Sci Rep 2015; 5:10984. [PMID: 26042670 PMCID: PMC4455304 DOI: 10.1038/srep10984] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/12/2015] [Indexed: 11/09/2022] Open
Abstract
The xeroderma pigmentosum group C (XPC) protein complex is a key factor that detects DNA damage and initiates nucleotide excision repair (NER) in mammalian cells. Although biochemical and structural studies have elucidated the interaction of XPC with damaged DNA, the mechanism of its regulation in vivo remains to be understood in more details. Here, we show that the XPC protein undergoes modification by small ubiquitin-related modifier (SUMO) proteins and the lack of this modification compromises the repair of UV-induced DNA photolesions. In the absence of SUMOylation, XPC is normally recruited to the sites with photolesions, but then immobilized profoundly by the UV-damaged DNA-binding protein (UV-DDB) complex. Since the absence of UV-DDB alleviates the NER defect caused by impaired SUMOylation of XPC, we propose that this modification is critical for functional interactions of XPC with UV-DDB, which facilitate the efficient damage handover between the two damage recognition factors and subsequent initiation of NER.
Collapse
Affiliation(s)
- Masaki Akita
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Yon-Soo Tak
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Tsutomu Shimura
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Syota Matsumoto
- 1] Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan [2] Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | | | | | - Ryotaro Nishi
- 1] Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan [2] Cellular Physiology Laboratory, RIKEN, Wako 351-0198, Japan
| | - Hisato Saitoh
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Toshio Mori
- Radioisotope Research Center, Nara Medical University, Kashihara 634-8521, Japan
| | - Tsuyoshi Ikura
- Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Wataru Sakai
- 1] Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan [2] Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Fumio Hanaoka
- 1] Cellular Physiology Laboratory, RIKEN, Wako 351-0198, Japan [2] Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Kaoru Sugasawa
- 1] Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan [2] Graduate School of Science, Kobe University, Kobe 657-8501, Japan [3] Cellular Physiology Laboratory, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
44
|
Alekseev S, Coin F. Orchestral maneuvers at the damaged sites in nucleotide excision repair. Cell Mol Life Sci 2015; 72:2177-86. [PMID: 25681868 PMCID: PMC11113351 DOI: 10.1007/s00018-015-1859-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
To safeguard the genome from the accumulation of deleterious effects arising from DNA lesions, cells developed several DNA repair mechanisms that remove specific types of damage from the genome. Among them, Nucleotide Excision Repair (NER) is unique in its ability to remove a very broad spectrum of lesions, the most important of which include UV-induced damage, bulky chemical adducts and some forms of oxidative damage. Two sub-pathways exist in NER; Transcription-Coupled Repair (TC-NER) removes lesion localized exclusively in transcribed genes while Global Genome Repair (GG-NER) removes lesions elsewhere. In TC- or GG-NER, more than 30 proteins detect, open, incise and resynthesize DNA. Intriguingly, half of them are involved in the detection of DNA damage, implying that this is a crucial repair step requiring a high level of regulation. We review here the complex damage recognition step of GG-NER with a focus on post-translational modifications that help the comings and goings of several protein complexes on the same short damaged DNA locus.
Collapse
Affiliation(s)
- Sergey Alekseev
- Department of Functional Genomics and Cancer, IGBMC, Equipe Labellisée Ligue 2014, CNRS/INSERM/University of Strasbourg, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France
| | - Frédéric Coin
- Department of Functional Genomics and Cancer, IGBMC, Equipe Labellisée Ligue 2014, CNRS/INSERM/University of Strasbourg, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France
| |
Collapse
|
45
|
Chiba J, Aoki S, Yamamoto J, Iwai S, Inouye M. Deformable nature of various damaged DNA duplexes estimated by an electrochemical analysis on electrodes. Chem Commun (Camb) 2015; 50:11126-8. [PMID: 25105179 DOI: 10.1039/c4cc04513k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We report bending flexibility of damaged duplexes possessing an apurinic/apyrimidinic (AP) site analogue, a cyclobutane pyrimidine dimer (CPD), and a pyrimidine(6-4)pyrimidone photoproduct (6-4PP). Based on the electrochemical evaluation on electrodes, the duplex flexibilities of the lesions increased in the following order: CPD < AP < 6-4PP. We discussed the possibility that the emerging local flexibility might be a good sign for UV-damaged DNA-binding proteins on duplexes.
Collapse
Affiliation(s)
- J Chiba
- Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | |
Collapse
|
46
|
Fujita M, Watanabe S, Yoshizawa M, Yamamoto J, Iwai S. Analysis of structural flexibility of damaged DNA using thiol-tethered oligonucleotide duplexes. PLoS One 2015; 10:e0117798. [PMID: 25679955 PMCID: PMC4332495 DOI: 10.1371/journal.pone.0117798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 12/31/2014] [Indexed: 11/18/2022] Open
Abstract
Bent structures are formed in DNA by the binding of small molecules or proteins. We developed a chemical method to detect bent DNA structures. Oligonucleotide duplexes in which two mercaptoalkyl groups were attached to the positions facing each other across the major groove were prepared. When the duplex contained the cisplatin adduct, which was proved to induce static helix bending, interstrand disulfide bond formation under an oxygen atmosphere was detected by HPLC analyses, but not in the non-adducted duplex, when the two thiol-tethered nucleosides were separated by six base pairs. When the insert was five and seven base pairs, the disulfide bond was formed and was not formed, respectively, regardless of the cisplatin adduct formation. The same reaction was observed in the duplexes containing an abasic site analog and the (6-4) photoproduct. Compared with the cisplatin case, the disulfide bond formation was slower in these duplexes, but the reaction rate was nearly independent of the linker length. These results indicate that dynamic structural changes of the abasic site- and (6-4) photoproduct-containing duplexes could be detected by our method. It is strongly suggested that the UV-damaged DNA-binding protein, which specifically binds these duplexes and functions at the first step of global-genome nucleotide excision repair, recognizes the easily bendable nature of damaged DNA.
Collapse
Affiliation(s)
- Masashi Fujita
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Shun Watanabe
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Mariko Yoshizawa
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
- * E-mail:
| |
Collapse
|
47
|
Matsumoto S, Fischer ES, Yasuda T, Dohmae N, Iwai S, Mori T, Nishi R, Yoshino KI, Sakai W, Hanaoka F, Thomä NH, Sugasawa K. Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein. Nucleic Acids Res 2015; 43:1700-13. [PMID: 25628365 PMCID: PMC4330392 DOI: 10.1093/nar/gkv038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In mammalian nucleotide excision repair, the DDB1-DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1-DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.
Collapse
Affiliation(s)
- Syota Matsumoto
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Eric S Fischer
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Takeshi Yasuda
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Naoshi Dohmae
- Global Research Cluster, RIKEN, Wako 351-0198, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Toshio Mori
- Advanced Medical Research Center, Nara Medical University, Kashihara 634-8521, Japan
| | - Ryotaro Nishi
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Ken-ichi Yoshino
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Wataru Sakai
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Fumio Hanaoka
- Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Kaoru Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
48
|
He J, Zhu Q, Wani G, Sharma N, Han C, Qian J, Pentz K, Wang QE, Wani AA. Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J Biol Chem 2014; 289:27278-27289. [PMID: 25118285 DOI: 10.1074/jbc.m114.589812] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis.
Collapse
Affiliation(s)
- Jinshan He
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210.
| | - Gulzar Wani
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Nidhi Sharma
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Chunhua Han
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Jiang Qian
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Kyle Pentz
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Qi-En Wang
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210; Department of Molecular and Cellular Biochemistry, and The Ohio State University, Columbus, Ohio 43210; James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
49
|
Miao M, Zhu Y, Qiao M, Tang X, Zhao W, Xiao F, Liu Y. The tomato DWD motif-containing protein DDI1 interacts with the CUL4-DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses. Biochem Biophys Res Commun 2014; 450:1439-45. [PMID: 25017913 DOI: 10.1016/j.bbrc.2014.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
CULLIN4(CUL4)-DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1-CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4-DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4-DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4-DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.
Collapse
Affiliation(s)
- Min Miao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China; School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China; Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Yunye Zhu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Maiju Qiao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xiaofeng Tang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China; School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Zhao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fangming Xiao
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China; School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
50
|
Dreze M, Calkins AS, Gálicza J, Echelman DJ, Schnorenberg MR, Fell GL, Iwai S, Fisher DE, Szüts D, Iglehart JD, Lazaro JB. Monitoring repair of UV-induced 6-4-photoproducts with a purified DDB2 protein complex. PLoS One 2014; 9:e85896. [PMID: 24489677 PMCID: PMC3904869 DOI: 10.1371/journal.pone.0085896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/03/2013] [Indexed: 01/01/2023] Open
Abstract
Because cells are constantly subjected to DNA damaging insults, DNA repair pathways are critical for genome integrity [1]. DNA damage recognition protein complexes (DRCs) recognize DNA damage and initiate DNA repair. The DNA-Damage Binding protein 2 (DDB2) complex is a DRC that initiates nucleotide excision repair (NER) of DNA damage caused by ultraviolet light (UV) [2]–[4]. Using a purified DDB2 DRC, we created a probe (“DDB2 proteo-probe”) that hybridizes to nuclei of cells irradiated with UV and not to cells exposed to other genotoxins. The DDB2 proteo-probe recognized UV-irradiated DNA in classical laboratory assays, including cyto- and histo-chemistry, flow cytometry, and slot-blotting. When immobilized, the proteo-probe also bound soluble UV-irradiated DNA in ELISA-like and DNA pull-down assays. In vitro, the DDB2 proteo-probe preferentially bound 6-4-photoproducts [(6-4)PPs] rather than cyclobutane pyrimidine dimers (CPDs). We followed UV-damage repair by cyto-chemistry in cells fixed at different time after UV irradiation, using either the DDB2 proteo-probe or antibodies against CPDs, or (6-4)PPs. The signals obtained with the DDB2 proteo-probe and with the antibody against (6-4)PPs decreased in a nearly identical manner. Since (6-4)PPs are repaired only by nucleotide excision repair (NER), our results strongly suggest the DDB2 proteo-probe hybridizes to DNA containing (6-4)PPs and allows monitoring of their removal during NER. We discuss the general use of purified DRCs as probes, in lieu of antibodies, to recognize and monitor DNA damage and repair.
Collapse
Affiliation(s)
- Matija Dreze
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Anne S. Calkins
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Judit Gálicza
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Daniel J. Echelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Mathew R. Schnorenberg
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Gillian L. Fell
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - David E. Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - David Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - J. Dirk Iglehart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Jean-Bernard Lazaro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|