1
|
Yanagisawa S, Kamei T, Shimada A, Gladyck S, Aras S, Hüttemann M, Grossman LI, Kubo M. Resonance Raman spectral analysis of the heme site structure of cytochrome c oxidase with its positive regulator CHCHD2. J Inorg Biochem 2024; 260:112673. [PMID: 39094247 DOI: 10.1016/j.jinorgbio.2024.112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Cytochrome c oxidase (CcO) reduces O2, pumps protons in the mitochondrial respiratory chain, and is essential for oxygen consumption in the cell. The coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2; also known as mitochondrial nuclear retrograde regulator 1 [MNRR1], Parkinson's disease 22 [PARK22] and aging-associated gene 10 protein [AAG10]) is a protein that binds to CcO from the intermembrane space and positively regulates the activity of CcO. Despite the importance of CHCHD2 in mitochondrial function, the mechanism of action of CHCHD2 and structural information regarding its binding to CcO remain unknown. Here, we utilized visible resonance Raman spectroscopy to investigate the structural changes around the hemes in CcO in the reduced and CO-bound states upon CHCHD2 binding. We found that CHCHD2 has a significant impact on the structure of CcO in the reduced state. Mapping of the heme peripheries that result in Raman spectral changes in the structure of CcO highlighted helices IX and X near the hemes as sites where CHCHD2 takes action. Part of helix IX is exposed in the intermembrane space, whereas helix X, located between both hemes, may play a key role in proton uptake to a proton-loading site in the reduced state for proton pumping. Taken together, our results suggested that CHCHD2 binds near helix IX and induces a structural change in helix X, accelerating proton uptake.
Collapse
Affiliation(s)
| | - Takuto Kamei
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Atsuhiro Shimada
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Stephanie Gladyck
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Minoru Kubo
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan.
| |
Collapse
|
2
|
Jiko C, Morimoto Y, Tsukihara T, Gerle C. Large-scale column-free purification of bovine F-ATP synthase. J Biol Chem 2024; 300:105603. [PMID: 38159856 PMCID: PMC10851226 DOI: 10.1016/j.jbc.2023.105603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
Mammalian F-ATP synthase is central to mitochondrial bioenergetics and is present in the inner mitochondrial membrane in a dynamic oligomeric state of higher oligomers, tetramers, dimers, and monomers. In vitro investigations of mammalian F-ATP synthase are often limited by the ability to purify the oligomeric forms present in vivo at a quantity, stability, and purity that meets the demand of the planned experiment. We developed a purification approach for the isolation of bovine F-ATP synthase from heart muscle mitochondria that uses a combination of buffer conditions favoring inhibitor factor 1 binding and sucrose density gradient ultracentrifugation to yield stable complexes at high purity in the milligram range. By tuning the glyco-diosgenin to lauryl maltose neopentyl glycol ratio in a final gradient, fractions that are either enriched in tetrameric or monomeric F-ATP synthase can be obtained. It is expected that this large-scale column-free purification strategy broadens the spectrum of in vitro investigation on mammalian F-ATP synthase.
Collapse
Affiliation(s)
- Chimari Jiko
- Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan.
| | - Yukio Morimoto
- Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Tomitake Tsukihara
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto, Kamigori, Hyogo, Japan; Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Christoph Gerle
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Osaka, Japan; Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, Hyogo, Japan.
| |
Collapse
|
3
|
Shimada A, Baba J, Nagao S, Shinzawa-Itoh K, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. Crystallographic cyanide-probing for cytochrome c oxidase reveals structural bases suggesting that a putative proton transfer H-pathway pumps protons. J Biol Chem 2023; 299:105277. [PMID: 37742916 PMCID: PMC10598403 DOI: 10.1016/j.jbc.2023.105277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Cytochrome c oxidase (CcO) reduces O2 in the O2-reduction site by sequential four-electron donations through the low-potential metal sites (CuA and Fea). Redox-coupled X-ray crystal structural changes have been identified at five distinct sites including Asp51, Arg438, Glu198, the hydroxyfarnesyl ethyl group of heme a, and Ser382, respectively. These sites interact with the putative proton-pumping H-pathway. However, the metal sites responsible for each structural change have not been identified, since these changes were detected as structural differences between the fully reduced and fully oxidized CcOs. Thus, the roles of these structural changes in the CcO function are yet to be revealed. X-ray crystal structures of cyanide-bound CcOs under various oxidation states showed that the O2-reduction site controlled only the Ser382-including site, while the low-potential metal sites induced the other changes. This finding indicates that these low-potential site-inducible structural changes are triggered by sequential electron-extraction from the low-potential sites by the O2-reduction site and that each structural change is insensitive to the oxidation and ligand-binding states of the O2-reduction site. Because the proton/electron coupling efficiency is constant (1:1), regardless of the reaction progress in the O2-reduction site, the structural changes induced by the low-potential sites are assignable to those critically involved in the proton pumping, suggesting that the H-pathway, facilitating these low-potential site-inducible structural changes, pumps protons. Furthermore, a cyanide-bound CcO structure suggests that a hypoxia-inducible activator, Higd1a, activates the O2-reduction site without influencing the electron transfer mechanism through the low-potential sites, kinetically confirming that the low-potential sites facilitate proton pump.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Jumpei Baba
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Shuhei Nagao
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Akoh, Hyogo, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kazumasa Muramoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Akoh, Hyogo, Japan.
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan; Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Akoh, Hyogo, Japan.
| |
Collapse
|
4
|
Ishigami I, Sierra RG, Su Z, Peck A, Wang C, Poitevin F, Lisova S, Hayes B, Moss FR, Boutet S, Sublett RE, Yoon CH, Yeh SR, Rousseau DL. Structural insights into functional properties of the oxidized form of cytochrome c oxidase. Nat Commun 2023; 14:5752. [PMID: 37717031 PMCID: PMC10505203 DOI: 10.1038/s41467-023-41533-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Cytochrome c oxidase (CcO) is an essential enzyme in mitochondrial and bacterial respiration. It catalyzes the four-electron reduction of molecular oxygen to water and harnesses the chemical energy to translocate four protons across biological membranes. The turnover of the CcO reaction involves an oxidative phase, in which the reduced enzyme (R) is oxidized to the metastable OH state, and a reductive phase, in which OH is reduced back to the R state. During each phase, two protons are translocated across the membrane. However, if OH is allowed to relax to the resting oxidized state (O), a redox equivalent to OH, its subsequent reduction to R is incapable of driving proton translocation. Here, with resonance Raman spectroscopy and serial femtosecond X-ray crystallography (SFX), we show that the heme a3 iron and CuB in the active site of the O state, like those in the OH state, are coordinated by a hydroxide ion and a water molecule, respectively. However, Y244, critical for the oxygen reduction chemistry, is in the neutral protonated form, which distinguishes O from OH, where Y244 is in the deprotonated tyrosinate form. These structural characteristics of O provide insights into the proton translocation mechanism of CcO.
Collapse
Affiliation(s)
- Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Zhen Su
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Ariana Peck
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Cong Wang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Frederic Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Frank R Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Altos Labs, Redwood City, CA, 94065, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Robert E Sublett
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Denis L Rousseau
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
5
|
Shimada A, Tsukihara T, Yoshikawa S. Recent progress in experimental studies on the catalytic mechanism of cytochrome c oxidase. Front Chem 2023; 11:1108190. [PMID: 37214485 PMCID: PMC10194837 DOI: 10.3389/fchem.2023.1108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Cytochrome c oxidase (CcO) reduces molecular oxygen (O2) to water, coupled with a proton pump from the N-side to the P-side, by receiving four electrons sequentially from the P-side to the O2-reduction site-including Fea3 and CuB-via the two low potential metal sites; CuA and Fea. The catalytic cycle includes six intermediates as follows, R (Fea3 2+, CuB 1+, Tyr244OH), A (Fea3 2+-O2, CuB 1+, Tyr244OH), Pm (Fea3 4+ = O2-, CuB 2+-OH-, Tyr244O•), F (Fea3 4+ = O2-, CuB 2+-OH-, Tyr244OH), O (Fea3 3+-OH-, CuB 2+-OH-, Tyr244OH), and E (Fea3 3+-OH-, CuB 1+-H2O, Tyr244OH). CcO has three proton conducting pathways, D, K, and H. The D and K pathways connect the N-side surface with the O2-reduction site, while the H-pathway is located across the protein from the N-side to the P-side. The proton pump is driven by electrostatic interactions between the protons to be pumped and the net positive charges created during the O2 reduction. Two different proton pump proposals, each including either the D-pathway or H-pathway as the proton pumping site, were proposed approximately 30 years ago and continue to be under serious debate. In our view, the progress in understanding the reaction mechanism of CcO has been critically rate-limited by the resolution of its X-ray crystallographic structure. The improvement of the resolutions of the oxidized/reduced bovine CcO up to 1.5/1.6 Å resolution in 2016 provided a breakthrough in the understanding of the reaction mechanism of CcO. In this review, experimental studies on the reaction mechanism of CcO before the appearance of the 1.5/1.6 Å resolution X-ray structures are summarized as a background description. Following the summary, we will review the recent (since 2016) experimental findings which have significantly improved our understanding of the reaction mechanism of CcO including: 1) redox coupled structural changes of bovine CcO; 2) X-ray structures of all six intermediates; 3) spectroscopic findings on the intermediate species including the Tyr244 radical in the Pm form, a peroxide-bound form between the A and Pm forms, and Fr, a one-electron reduced F-form; 4) time resolved X-ray structural changes during the photolysis of CO-bound fully reduced CcO using XFEL; 5) a simulation analysis for the Pm→Pr→F transition.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tomitake Tsukihara
- Department of Life Science, Graduate School of Science, University of Hyogo, Hyogo, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Shinya Yoshikawa
- Department of Life Science, Graduate School of Science, University of Hyogo, Hyogo, Japan
| |
Collapse
|
6
|
Muramoto K, Shinzawa-Itoh K. Calcium-bound structure of bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148956. [PMID: 36708913 DOI: 10.1016/j.bbabio.2023.148956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
The crystal structure of bovine cytochrome c oxidase (CcO) shows a sodium ion (Na+) bound to the surface of subunit I. Changes in the absorption spectrum of heme a caused by calcium ions (Ca2+) are detected as small red shifts, and inhibition of enzymatic activity under low turnover conditions is observed by addition of Ca2+ in a competitive manner with Na+. In this study, we determined the crystal structure of Ca2+-bound bovine CcO in the oxidized and reduced states at 1.7 Å resolution. Although Ca2+ and Na+ bound to the same site of oxidized and reduced CcO, they led to different coordination geometries. Replacement of Na+ with Ca2+ caused a small structural change in the loop segments near the heme a propionate and formyl groups, resulting in spectral changes in heme a. Redox-coupled structural changes observed in the Ca2+-bound form were the same as those previously observed in the Na+-bound form, suggesting that binding of Ca2+ does not severely affect enzymatic function, which depends on these structural changes. The relation between the Ca2+ binding and the inhibitory effect during slow turnover, as well as the possible role of bound Ca2+ are discussed.
Collapse
Affiliation(s)
- Kazumasa Muramoto
- Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan.
| | - Kyoko Shinzawa-Itoh
- Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan.
| |
Collapse
|
7
|
Structures of the intermediates in the catalytic cycle of mitochondrial cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148933. [PMID: 36403794 DOI: 10.1016/j.bbabio.2022.148933] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
|
8
|
Ishigami I, Sierra RG, Su Z, Peck A, Wang C, Poitevin F, Lisova S, Hayes B, Moss FR, Boutet S, Sublett RE, Yoon CH, Yeh SR, Rousseau DL. Structural basis for functional properties of cytochrome c oxidase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.530986. [PMID: 36993562 PMCID: PMC10055264 DOI: 10.1101/2023.03.20.530986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cytochrome c oxidase (CcO) is an essential enzyme in mitochondrial and bacterial respiration. It catalyzes the four-electron reduction of molecular oxygen to water and harnesses the chemical energy to translocate four protons across biological membranes, thereby establishing the proton gradient required for ATP synthesis1. The full turnover of the CcO reaction involves an oxidative phase, in which the reduced enzyme (R) is oxidized by molecular oxygen to the metastable oxidized OH state, and a reductive phase, in which OH is reduced back to the R state. During each of the two phases, two protons are translocated across the membranes2. However, if OH is allowed to relax to the resting oxidized state (O), a redox equivalent to OH, its subsequent reduction to R is incapable of driving proton translocation2,3. How the O state structurally differs from OH remains an enigma in modern bioenergetics. Here, with resonance Raman spectroscopy and serial femtosecond X-ray crystallography (SFX)4, we show that the heme a3 iron and CuB in the active site of the O state, like those in the OH state5,6, are coordinated by a hydroxide ion and a water molecule, respectively. However, Y244, a residue covalently linked to one of the three CuB ligands and critical for the oxygen reduction chemistry, is in the neutral protonated form, which distinguishes O from OH, where Y244 is in the deprotonated tyrosinate form. These structural characteristics of O provide new insights into the proton translocation mechanism of CcO.
Collapse
Affiliation(s)
- Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Zhen Su
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305 USA
| | - Ariana Peck
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Cong Wang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Frederic Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Robert E. Sublett
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Denis L. Rousseau
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
9
|
Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proc Natl Acad Sci U S A 2022; 119:e2122287119. [PMID: 35238637 PMCID: PMC8916010 DOI: 10.1073/pnas.2122287119] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metformin is the most commonly prescribed drug for the treatment of type 2 diabetes mellitus, yet the mechanism by which it lowers plasma glucose concentrations has remained elusive. Most studies to date have attributed metformin’s glucose-lowering effects to inhibition of complex I activity. Contrary to this hypothesis, we show that inhibition of complex I activity in vitro and in vivo does not reduce plasma glucose concentrations or inhibit hepatic gluconeogenesis. We go on to show that metformin, and the related guanides/biguanides, phenformin and galegine, inhibit complex IV activity at clinically relevant concentrations, which, in turn, results in inhibition of glycerol-3-phosphate dehydrogenase activity, increased cytosolic redox, and selective inhibition of glycerol-derived hepatic gluconeogenesis both in vitro and in vivo. Metformin exerts its plasma glucose-lowering therapeutic effect primarily through inhibition of hepatic gluconeogenesis. However, the precise molecular mechanism by which metformin inhibits hepatic gluconeogenesis is still unclear. Although inhibition of mitochondrial complex I is frequently invoked as metformin’s primary mechanism of action, the metabolic effects of complex I inhibition have not been thoroughly evaluated in vivo. Here, we show that acute portal infusion of piericidin A, a potent and specific complex I inhibitor, does not reduce hepatic gluconeogenesis in vivo. In contrast, we show that metformin, phenformin, and galegine selectively inhibit hepatic gluconeogenesis from glycerol. Specifically, we show that guanides/biguanides interact with complex IV to reduce its enzymatic activity, leading to indirect inhibition of glycerol-3-phosphate (G3P) dehydrogenase (GPD2), increased cytosolic redox, and reduced glycerol-derived gluconeogenesis. We report that inhibition of complex IV with potassium cyanide replicates the effects of the guanides/biguanides in vitro by selectively reducing glycerol-derived gluconeogenesis via increased cytosolic redox. Finally, we show that complex IV inhibition is sufficient to inhibit G3P-mediated respiration and gluconeogenesis from glycerol. Taken together, we propose a mechanism of metformin action in which complex IV–mediated inhibition of GPD2 reduces glycerol-derived hepatic gluconeogenesis.
Collapse
|
10
|
Ishigami I, Russi S, Cohen A, Yeh SR, Rousseau DL. Temperature-dependent structural transition following X-ray-induced metal center reduction in oxidized cytochrome c oxidase. J Biol Chem 2022; 298:101799. [PMID: 35257742 PMCID: PMC8971940 DOI: 10.1016/j.jbc.2022.101799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in the inner membrane of mitochondria. It contains four metal redox centers, two of which, CuB and heme a3, form the binuclear center (BNC), where dioxygen is reduced to water. Crystal structures of CcO in various forms have been reported, from which ligand-binding states of the BNC and conformations of the protein matrix surrounding it have been deduced to elucidate the mechanism by which the oxygen reduction chemistry is coupled to proton translocation. However, metal centers in proteins can be susceptible to X-ray-induced radiation damage, raising questions about the reliability of conclusions drawn from these studies. Here, we used microspectroscopy-coupled X-ray crystallography to interrogate how the structural integrity of bovine CcO in the fully oxidized state (O) is modulated by synchrotron radiation. Spectroscopic data showed that, upon X-ray exposure, O was converted to a hybrid O∗ state where all the four metal centers were reduced, but the protein matrix was trapped in the genuine O conformation and the ligands in the BNC remained intact. Annealing the O∗ crystal above the glass transition temperature induced relaxation of the O∗ structure to a new R∗ structure, wherein the protein matrix converted to the fully reduced R conformation with the exception of helix X, which partly remained in the O conformation because of incomplete dissociation of the ligands from the BNC. We conclude from these data that reevaluation of reported CcO structures obtained with synchrotron light sources is merited.
Collapse
Affiliation(s)
- Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Silvia Russi
- Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
| | - Aina Cohen
- Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Denis L Rousseau
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
11
|
Shimada A, Hara F, Shinzawa-Itoh K, Kanehisa N, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. Critical roles of the Cu B site in efficient proton pumping as revealed by crystal structures of mammalian cytochrome c oxidase catalytic intermediates. J Biol Chem 2021; 297:100967. [PMID: 34274318 PMCID: PMC8390519 DOI: 10.1016/j.jbc.2021.100967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022] Open
Abstract
Mammalian cytochrome c oxidase (CcO) reduces O2 to water in a bimetallic site including Fea3 and CuB giving intermediate molecules, termed A-, P-, F-, O-, E-, and R-forms. From the P-form on, each reaction step is driven by single-electron donations from cytochrome c coupled with the pumping of a single proton through the H-pathway, a proton-conducting pathway composed of a hydrogen-bond network and a water channel. The proton-gradient formed is utilized for ATP production by F-ATPase. For elucidation of the proton pumping mechanism, crystal structural determination of these intermediate forms is necessary. Here we report X-ray crystallographic analysis at ∼1.8 Å resolution of fully reduced CcO crystals treated with O2 for three different time periods. Our disentanglement of intermediate forms from crystals that were composed of multiple forms determined that these three crystallographic data sets contained ∼45% of the O-form structure, ∼45% of the E-form structure, and ∼20% of an oxymyoglobin-type structure consistent with the A-form, respectively. The O- and E-forms exhibit an unusually long CuB2+-OH- distance and CuB1+-H2O structure keeping Fea33+-OH- state, respectively, suggesting that the O- and E-forms have high electron affinities that cause the O→E and E→R transitions to be essentially irreversible and thus enable tightly coupled proton pumping. The water channel of the H-pathway is closed in the O- and E-forms and partially open in the R-form. These structures, together with those of the recently reported P- and F-forms, indicate that closure of the H-pathway water channel avoids back-leaking of protons for facilitating the effective proton pumping.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan
| | - Fumiyoshi Hara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan
| | - Nobuko Kanehisa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kazumasa Muramoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan.
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan; Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan.
| |
Collapse
|
12
|
Kruse F, Nguyen AD, Dragelj J, Heberle J, Hildebrandt P, Mroginski MA, Weidinger IM. A Resonance Raman Marker Band Characterizes the Slow and Fast Form of Cytochrome c Oxidase. J Am Chem Soc 2021; 143:2769-2776. [PMID: 33560128 DOI: 10.1021/jacs.0c10767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytochrome c oxidase (CcO) in its as-isolated form is known to exist in a slow and fast form, which differ drastically in their ability to bind oxygen and other ligands. While preparation methods have been established that yield either the fast or the slow form of the protein, the underlying structural differences have not been identified yet. Here, we have performed surface enhanced resonance Raman (SERR) spectroscopy of CcO immobilized on electrodes in both forms. SERR spectra obtained in resonance with the heme a3 metal-to-ligand charge transfer (MLCT) transition at 650 nm displayed a sharp vibrational band at 748 or 750 cm-1 when the protein was in its slow or fast form, respectively. DFT calculations identified the band as a mode of the His-419 ligand that is sensitive to the oxygen ligand and the protonation state of Tyr-288 within the binuclear complex. Potential-dependent SERR spectroscopy showed a redox-induced change of this band around 525 mV versus Ag/AgCl exclusively for the fast form, which coincides with the redox potential of the Tyr-O/Tyr-O- transition. Our data points to a peroxide ligand in the resting state of CcO for both forms. The observed frequencies and redox sensitivities of the Raman marker band suggest that a radical Tyr-288 is present in the fast form and a protonated Tyr-288 in the slow form.
Collapse
Affiliation(s)
- Fabian Kruse
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Anh Duc Nguyen
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Jovan Dragelj
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Department of Physics, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Inez M Weidinger
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
13
|
Shimada A, Etoh Y, Kitoh-Fujisawa R, Sasaki A, Shinzawa-Itoh K, Hiromoto T, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O 2 activation and unidirectional proton-pump mechanisms. J Biol Chem 2020; 295:5818-5833. [PMID: 32165497 PMCID: PMC7186171 DOI: 10.1074/jbc.ra119.009596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/09/2020] [Indexed: 01/07/2023] Open
Abstract
Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fe a32+ and CuB1+, and suggests that a peroxide-bound state (Fe a33+-O--O--CuB2+) rather than an O2-bound state (Fe a32+-O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fe a32+-O2, whereas Fe a33+-O--O--CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Å resolution. A 1.70 Å Fe-O distance of the ferryl center could best be described as Fe a34+ = O2-, not as Fe a34+-OH- The distance suggests an ∼800-cm-1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fe a33+-O--O--CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Yuki Etoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Rika Kitoh-Fujisawa
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Ai Sasaki
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Takeshi Hiromoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazumasa Muramoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan.
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan.
| |
Collapse
|
14
|
Suga M, Shimada A, Akita F, Shen JR, Tosha T, Sugimoto H. Time-resolved studies of metalloproteins using X-ray free electron laser radiation at SACLA. Biochim Biophys Acta Gen Subj 2019; 1864:129466. [PMID: 31678142 DOI: 10.1016/j.bbagen.2019.129466] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND The invention of the X-ray free-electron laser (XFEL) has provided unprecedented new opportunities for structural biology. The advantage of XFEL is an intense pulse of X-rays and a very short pulse duration (<10 fs) promising a damage-free and time-resolved crystallography approach. SCOPE OF REVIEW Recent time-resolved crystallographic analyses in XFEL facility SACLA are reviewed. Specifically, metalloproteins involved in the essential reactions of bioenergy conversion including photosystem II, cytochrome c oxidase and nitric oxide reductase are described. MAJOR CONCLUSIONS XFEL with pump-probe techniques successfully visualized the process of the reaction and the dynamics of a protein. Since the active center of metalloproteins is very sensitive to the X-ray radiation, damage-free structures obtained by XFEL are essential to draw mechanistic conclusions. Methods and tools for sample delivery and reaction initiation are key for successful measurement of the time-resolved data. GENERAL SIGNIFICANCE XFEL is at the center of approaches to gain insight into complex mechanism of structural dynamics and the reactions catalyzed by biological macromolecules. Further development has been carried out to expand the application of time-resolved X-ray crystallography. This article is part of a Special Issue entitled Novel measurement techniques for visualizing 'live' protein molecules.
Collapse
Affiliation(s)
- Michihiro Suga
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan..
| | - Atsuhiro Shimada
- Graduate School of Applied Biological Sciences and Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan..
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Takehiko Tosha
- Synchrotron Radiation Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hiroshi Sugimoto
- Synchrotron Radiation Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan..
| |
Collapse
|
15
|
Baba S, Shimada A, Mizuno N, Baba J, Ago H, Yamamoto M, Kumasaka T. A temperature-controlled cold-gas humidifier and its application to protein crystals with the humid-air and glue-coating method. J Appl Crystallogr 2019; 52:699-705. [PMID: 31396025 PMCID: PMC6662993 DOI: 10.1107/s1600576719006435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/06/2019] [Indexed: 11/23/2022] Open
Abstract
The room-temperature experiment has been revisited for macromolecular crystallography. Despite being limited by radiation damage, such experiments reveal structural differences depending on temperature, and it is expected that they will be able to probe structures that are physiologically alive. For such experiments, the humid-air and glue-coating (HAG) method for humidity-controlled experiments is proposed. The HAG method improves the stability of most crystals in capillary-free experiments and is applicable at both cryogenic and ambient temperatures. To expand the thermal versatility of the HAG method, a new humidifier and a protein-crystal-handling workbench have been developed. The devices provide temperatures down to 4°C and successfully maintain growth at that temperature of bovine cytochrome c oxidase crystals, which are highly sensitive to temperature variation. Hence, the humidifier and protein-crystal-handling workbench have proved useful for temperature-sensitive samples and will help reveal temperature-dependent variations in protein structures.
Collapse
Affiliation(s)
- Seiki Baba
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, Japan
| | - Nobuhiro Mizuno
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Junpei Baba
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| |
Collapse
|
16
|
Ueno G, Shimada A, Yamashita E, Hasegawa K, Kumasaka T, Shinzawa-Itoh K, Yoshikawa S, Tsukihara T, Yamamoto M. Low-dose X-ray structure analysis of cytochrome c oxidase utilizing high-energy X-rays. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:912-921. [PMID: 31274413 PMCID: PMC6613116 DOI: 10.1107/s1600577519006805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/12/2019] [Indexed: 05/29/2023]
Abstract
To investigate the effect of high-energy X-rays on site-specific radiation-damage, low-dose diffraction data were collected from radiation-sensitive crystals of the metal enzyme cytochrome c oxidase. Data were collected at the Structural Biology I beamline (BL41XU) at SPring-8, using 30 keV X-rays and a highly sensitive pixel array detector equipped with a cadmium telluride sensor. The experimental setup of continuous sample translation using multiple crystals allowed the average diffraction weighted dose per data set to be reduced to 58 kGy, and the resulting data revealed a ligand structure featuring an identical bond length to that in the damage-free structure determined using an X-ray free-electron laser. However, precise analysis of the residual density around the ligand structure refined with the synchrotron data showed the possibility of a small level of specific damage, which might have resulted from the accumulated dose of 58 kGy per data set. Further investigation of the photon-energy dependence of specific damage, as assessed by variations in UV-vis absorption spectra, was conducted using an on-line spectrometer at various energies ranging from 10 to 30 keV. No evidence was found for specific radiation damage being energy dependent.
Collapse
Affiliation(s)
- Go Ueno
- SR Life Science Instrumentation Team, Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Hasegawa
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Yamamoto
- SR Life Science Instrumentation Team, Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
17
|
Li C, Nishiguchi T, Shinzawa-Itoh K, Yoshikawa S, Ogura T, Nakashima S. Performance of a time-resolved IR facility for assessment of protonation states and polarity changes in carboxyl groups in a large membrane protein, mammalian cytochrome c oxidase, under turnover conditions in a sub-millisecond time resolution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1045-1050. [DOI: 10.1016/j.bbabio.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 11/17/2022]
|
18
|
Shimada A, Hatano K, Tadehara H, Yano N, Shinzawa-Itoh K, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. X-ray structural analyses of azide-bound cytochrome c oxidases reveal that the H-pathway is critically important for the proton-pumping activity. J Biol Chem 2018; 293:14868-14879. [PMID: 30077971 PMCID: PMC6153300 DOI: 10.1074/jbc.ra118.003123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/31/2018] [Indexed: 01/07/2023] Open
Abstract
Cytochrome c oxidase (CcO) is the terminal oxidase of cellular respiration, reducing O2 to water and pumping protons. X-ray structural features have suggested that CcO pumps protons via a mechanism involving electrostatic repulsions between pumping protons in the hydrogen-bond network of a proton-conducting pathway (the H-pathway) and net positive charges created upon oxidation of an iron site, heme a (Fe a2+), for reduction of O2 at another iron site, heme a3 (Fe a32+). The protons for pumping are transferred to the hydrogen-bond network from the N-side via the water channel of the H-pathway. Back-leakage of protons to the N-side is thought to be blocked by closure of the water channel. To experimentally test this, we examined X-ray structures of the azide-bound, oxidized bovine CcO and found that an azide derivative (N3--Fe a33+, CuB2+-N3-) induces a translational movement of the heme a3 plane. This was accompanied by opening of the water channel, revealing that Fe a3 and the H-pathway are tightly coupled. The channel opening in the oxidized state is likely to induce back-leakage of pumping protons, which lowers the proton level in the hydrogen-bond network during enzymatic turnover. The proton level decrease weakens the electron affinity of Fe a , if Fe a electrostatically interacts with protons in the hydrogen-bond network. The previously reported azide-induced redox-potential decrease in Fe a supports existence of the electrostatic interaction. In summary, our results indicate that the H-pathway is critical for CcO's proton-pumping function.
Collapse
Affiliation(s)
| | | | | | | | | | - Eiki Yamashita
- the Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, and
| | - Kazumasa Muramoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, , To whom correspondence may be addressed:
Dept. of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan. E-mail:
| | - Tomitake Tsukihara
- From the Picobiology Institute and ,the Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, and ,the Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, To whom correspondence may be addressed:
Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan. E-mail:
| | - Shinya Yoshikawa
- From the Picobiology Institute and , To whom correspondence may be addressed:
Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan. Tel.:
81-791-58-0189; E-mail:
| |
Collapse
|
19
|
Shimada S, Maeda S, Hikita M, Mieda-Higa K, Uene S, Nariai Y, Shinzawa-Itoh K. Solubilization conditions for bovine heart mitochondrial membranes allow selective purification of large quantities of respiratory complexes I, III, and V. Protein Expr Purif 2018; 150:33-43. [PMID: 29702187 DOI: 10.1016/j.pep.2018.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/28/2022]
Abstract
Ascertaining the structure and functions of mitochondrial respiratory chain complexes is essential to understanding the biological mechanisms of energy conversion; therefore, numerous studies have examined these complexes. A fundamental part of that research involves devising a method for purifying samples with good reproducibility; the samples obtained need to be stable and their constituents need to retain the same structure and functions they possess when in mitochondrial membranes. Submitochondrial bovine heart particles were isolated using differential centrifugation to adjust to a membrane concentration of 46.0% (w/v) or 31.5% (w/v) based on weight. After 0.7% (w/v) deoxycholic acid, 0.4% (w/v) decyl maltoside, and 7.2% (w/v) potassium chloride were added to the mitochondrial membranes, those membranes were solubilized. At a membrane concentration of 46%, complex V was selectively solubilized, whereas at a concentration of 31.5% (w/v), complexes I and III were solubilized. Two steps-sucrose density gradient centrifugation and anion-exchange chromatography on a POROS HQ 20 μm column-enabled selective purification of samples that retained their structure and functions. These two steps enabled complexes I, III, and V to be purified in two days with a high yield. Complexes I, III, and V were stabilized with n-decyl-β-D-maltoside. A total of 200 mg-300 mg of those complexes from one bovine heart (1.1 kg muscle) was purified with good reproducibility, and the complexes retained the same functions they possessed while in mitochondrial membranes.
Collapse
Affiliation(s)
- Satoru Shimada
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Shintaro Maeda
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Masahide Hikita
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Kaoru Mieda-Higa
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Shigefumi Uene
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Yukiko Nariai
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Kyoko Shinzawa-Itoh
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan.
| |
Collapse
|
20
|
A unique respiratory adaptation in Drosophila independent of supercomplex formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:154-163. [PMID: 29191512 DOI: 10.1016/j.bbabio.2017.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/13/2017] [Accepted: 11/23/2017] [Indexed: 01/06/2023]
Abstract
Large assemblies of respiratory chain complexes, known as supercomplexes, are present in the mitochondrial membrane in mammals and yeast, as well as in some bacterial membranes. The formation of supercomplexes is thought to contribute to efficient electron transfer, stabilization of each enzyme complex, and inhibition of reactive oxygen species (ROS) generation. In this study, mitochondria from various organisms were solubilized with digitonin, and then the solubilized complexes were separated by blue native PAGE (BN-PAGE). The results revealed a supercomplex consisting of complexes I, III, and IV in mitochondria from bovine and porcine heart, and a supercomplex consisting primarily of complexes I and III in mitochondria from mouse heart and liver. However, supercomplexes were barely detectable in Drosophila flight-muscle mitochondria, and only dimeric complex V was present. Drosophila mitochondria exhibited the highest rates of oxygen consumption and NADH oxidation, and the concentrations of the electron carriers, cytochrome c and quinone were higher than in other species. Respiratory chain complexes were tightly packed in the mitochondrial membrane containing abundant phosphatidylethanolamine with the fatty acid palmitoleic acid (C16:1), which is relatively high oxidation-resistant as compared to poly-unsaturated fatty acid. These properties presumably allow efficient electron transfer in Drosophila. These findings reveal the existence of a new mechanism of biological adaptation independent of supercomplex formation.
Collapse
|
21
|
Mitochondrial cytochrome c oxidase: catalysis, coupling and controversies. Biochem Soc Trans 2017; 45:813-829. [PMID: 28620043 DOI: 10.1042/bst20160139] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/04/2023]
Abstract
Mitochondrial cytochrome c oxidase is a member of a diverse superfamily of haem-copper oxidases. Its mechanism of oxygen reduction is reviewed in terms of the cycle of catalytic intermediates and their likely chemical structures. This reaction cycle is coupled to the translocation of protons across the inner mitochondrial membrane in which it is located. The likely mechanism by which this occurs, derived in significant part from studies of bacterial homologues, is presented. These mechanisms of catalysis and coupling, together with current alternative proposals of underlying mechanisms, are critically reviewed.
Collapse
|
22
|
Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature. Proc Natl Acad Sci U S A 2017; 114:8011-8016. [PMID: 28698372 DOI: 10.1073/pnas.1705628114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase (CcO), the terminal enzyme in the electron transfer chain, translocates protons across the inner mitochondrial membrane by harnessing the free energy generated by the reduction of oxygen to water. Several redox-coupled proton translocation mechanisms have been proposed, but they lack confirmation, in part from the absence of reliable structural information due to radiation damage artifacts caused by the intense synchrotron radiation. Here we report the room temperature, neutral pH (6.8), damage-free structure of bovine CcO (bCcO) in the carbon monoxide (CO)-bound state at a resolution of 2.3 Å, obtained by serial femtosecond X-ray crystallography (SFX) with an X-ray free electron laser. As a comparison, an equivalent structure was obtained at a resolution of 1.95 Å, from data collected at a synchrotron light source. In the SFX structure, the CO is coordinated to the heme a3 iron atom, with a bent Fe-C-O angle of ∼142°. In contrast, in the synchrotron structure, the Fe-CO bond is cleaved; CO relocates to a new site near CuB, which, in turn, moves closer to the heme a3 iron by ∼0.38 Å. Structural comparison reveals that ligand binding to the heme a3 iron in the SFX structure is associated with an allosteric structural transition, involving partial unwinding of the helix-X between heme a and a3, thereby establishing a communication linkage between the two heme groups, setting the stage for proton translocation during the ensuing redox chemistry.
Collapse
|
23
|
Shimada A, Kubo M, Baba S, Yamashita K, Hirata K, Ueno G, Nomura T, Kimura T, Shinzawa-Itoh K, Baba J, Hatano K, Eto Y, Miyamoto A, Murakami H, Kumasaka T, Owada S, Tono K, Yabashi M, Yamaguchi Y, Yanagisawa S, Sakaguchi M, Ogura T, Komiya R, Yan J, Yamashita E, Yamamoto M, Ago H, Yoshikawa S, Tsukihara T. A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase. SCIENCE ADVANCES 2017; 3:e1603042. [PMID: 28740863 PMCID: PMC5510965 DOI: 10.1126/sciadv.1603042] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/14/2017] [Indexed: 05/21/2023]
Abstract
Bovine cytochrome c oxidase (CcO), a 420-kDa membrane protein, pumps protons using electrostatic repulsion between protons transferred through a water channel and net positive charges created by oxidation of heme a (Fe a ) for reduction of O2 at heme a3 (Fe a3). For this process to function properly, timing is essential: The channel must be closed after collection of the protons to be pumped and before Fe a oxidation. If the channel were to remain open, spontaneous backflow of the collected protons would occur. For elucidation of the channel closure mechanism, the opening of the channel, which occurs upon release of CO from CcO, is investigated by newly developed time-resolved x-ray free-electron laser and infrared techniques with nanosecond time resolution. The opening process indicates that CuB senses completion of proton collection and binds O2 before binding to Fe a3 to close the water channel using a conformational relay system, which includes CuB, heme a3, and a transmembrane helix, to block backflow of the collected protons.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Minoru Kubo
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Seiki Baba
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Keitaro Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Nomura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsunari Kimura
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Junpei Baba
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Keita Hatano
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yuki Eto
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Akari Miyamoto
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Hironori Murakami
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yoshihiro Yamaguchi
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Sachiko Yanagisawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Miyuki Sakaguchi
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Ryo Komiya
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Jiwang Yan
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Corresponding author. (T.T.); (S.Y.); (H.A.)
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- Corresponding author. (T.T.); (S.Y.); (H.A.)
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Corresponding author. (T.T.); (S.Y.); (H.A.)
| |
Collapse
|
24
|
Yano N, Muramoto K, Shimada A, Takemura S, Baba J, Fujisawa H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Tsukihara T, Yoshikawa S. The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle. J Biol Chem 2016; 291:23882-23894. [PMID: 27605664 DOI: 10.1074/jbc.m115.711770] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 08/26/2016] [Indexed: 11/06/2022] Open
Abstract
Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H3O+ through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O2 bound to heme a3 To block backward proton movement, the water channel remains closed after O2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg2+ ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu198, which bridges the Mg2+ and CuA (the initial electron acceptor from cytochrome c) sites, suggest that the CuA-Glu198-Mg2+ system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg2+-containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO.
Collapse
Affiliation(s)
| | - Kazumasa Muramoto
- the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297
| | | | | | | | | | | | | | - Eiki Yamashita
- the Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, and
| | - Tomitake Tsukihara
- From the Picobiology Institute and.,the Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, and.,JSJT, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | |
Collapse
|
25
|
Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding. Proc Natl Acad Sci U S A 2016; 113:8230-5. [PMID: 27364008 DOI: 10.1073/pnas.1600354113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bovine cytochrome c oxidase is an integral membrane protein complex comprising 13 protein subunits and associated lipids. Dimerization of the complex has been proposed; however, definitive evidence for the dimer is lacking. We used advanced mass spectrometry methods to investigate the oligomeric state of cytochrome c oxidase and the potential role of lipids and posttranslational modifications in its subunit interfaces. Mass spectrometry of the intact protein complex revealed that both the monomer and the dimer are stabilized by large lipid entities. We identified these lipid species from the purified protein complex, thus implying that they interact specifically with the enzyme. We further identified phosphorylation and acetylation sites of cytochrome c oxidase, located in the peripheral subunits and in the dimer interface, respectively. Comparing our phosphorylation and acetylation sites with those found in previous studies of bovine, mouse, rat, and human cytochrome c oxidase, we found that whereas some acetylation sites within the dimer interface are conserved, suggesting a role for regulation and stabilization of the dimer, phosphorylation sites were less conserved and more transient. Our results therefore provide insights into the locations and interactions of lipids with acetylated residues within the dimer interface of this enzyme, and thereby contribute to a better understanding of its structure in the natural membrane. Moreover dimeric cytochrome c oxidase, comprising 20 transmembrane, six extramembrane subunits, and associated lipids, represents the largest integral membrane protein complex that has been transferred via electrospray intact into the gas phase of a mass spectrometer, representing a significant technological advance.
Collapse
|
26
|
Osuda Y, Shinzawa-Itoh K, Tani K, Maeda S, Yoshikawa S, Tsukihara T, Gerle C. Two-dimensional crystallization of monomeric bovine cytochrome c oxidase with bound cytochrome c in reconstituted lipid membranes. Microscopy (Oxf) 2016; 65:263-7. [PMID: 26754561 PMCID: PMC4892887 DOI: 10.1093/jmicro/dfv381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial cytochrome c oxidase utilizes electrons provided by cytochrome c for the active vectorial transport of protons across the inner mitochondrial membrane through the reduction of molecular oxygen to water. Direct structural evidence on the transient cytochrome c oxidase–cytochrome c complex thus far, however, remains elusive and its physiological relevant oligomeric form is unclear. Here, we report on the 2D crystallization of monomeric bovine cytochrome c oxidase with tightly bound cytochrome c at a molar ratio of 1:1 in reconstituted lipid membranes at the basic pH of 8.5 and low ionic strength.
Collapse
Affiliation(s)
- Yukiho Osuda
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Akoh, Hyogo 678-1297, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Akoh, Hyogo 678-1297, Japan
| | - Kazutoshi Tani
- Cellular and Structural Physiology Institute, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shintaro Maeda
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shinya Yoshikawa
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Akoh, Hyogo 678-1297, Japan
| | - Tomitake Tsukihara
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Akoh, Hyogo 678-1297, Japan Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Japan
| | - Christoph Gerle
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Akoh, Hyogo 678-1297, Japan Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Japan
| |
Collapse
|
27
|
Shinzawa-Itoh K, Shimomura H, Yanagisawa S, Shimada S, Takahashi R, Oosaki M, Ogura T, Tsukihara T. Purification of Active Respiratory Supercomplex from Bovine Heart Mitochondria Enables Functional Studies. J Biol Chem 2015; 291:4178-84. [PMID: 26698328 PMCID: PMC4759192 DOI: 10.1074/jbc.m115.680553] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 11/18/2022] Open
Abstract
To understand the roles of mitochondrial respiratory chain supercomplexes, methods for consistently separating and preparing supercomplexes must be established. To this end, we solubilized supercomplexes from bovine heart mitochondria with digitonin and then replaced digitonin with amphipol (A8–35), an amphiphilic polymer. Afterward, supercomplexes were separated from other complexes by sucrose density gradient centrifugation. Twenty-six grams of bovine myocardium yielded 3.2 mg of amphipol-stabilized supercomplex. The purified supercomplexes were analyzed based on their absorption spectra as well as Q10 (ubiquinone with ten isoprene units) and lipid assays. The supercomplex sample did not contain cytochrome c but did contain complexes I, III, and IV at a ratio of 1:2:1, 6 molecules of Q10, and 623 atoms of phosphorus. When cytochrome c was added, the supercomplex exhibited KCN-sensitive NADH oxidation; thus, the purified supercomplex was active. Reduced complex IV absorbs at 444 nm, so we measured the resonance Raman spectrum of the reduced amphipol-solubilized supercomplex and the mixture of amphipol-solubilized complexes I1, III2, and IV1 using an excitation wavelength of 441.6 nm, allowing measurement precision comparable with that obtained for complex IV alone. Use of the purified active sample provides insights into the effects of supercomplex formation.
Collapse
Affiliation(s)
- Kyoko Shinzawa-Itoh
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamighori, Akoh, Hyogo, 678-1297, Japan,
| | - Harunobu Shimomura
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamighori, Akoh, Hyogo, 678-1297, Japan
| | - Sachiko Yanagisawa
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamighori, Akoh, Hyogo, 678-1297, Japan
| | - Satoru Shimada
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamighori, Akoh, Hyogo, 678-1297, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan, and
| | - Ryoko Takahashi
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamighori, Akoh, Hyogo, 678-1297, Japan
| | - Marika Oosaki
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamighori, Akoh, Hyogo, 678-1297, Japan
| | - Takashi Ogura
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamighori, Akoh, Hyogo, 678-1297, Japan
| | - Tomitake Tsukihara
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamighori, Akoh, Hyogo, 678-1297, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan, and Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Affiliation(s)
- Shinya Yoshikawa
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| |
Collapse
|
29
|
Nomura T, Yanagisawa S, Shinzawa-Itoh K, Yoshikawa S, Ogura T. Effects of proton motive force on the structure and dynamics of bovine cytochrome C oxidase in phospholipid vesicles. Biochemistry 2014; 53:6382-91. [PMID: 25231381 DOI: 10.1021/bi501022j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A conventional method for reconstituting cytochrome c oxidase (CcO) into phospholipid vesicles (COV) has been modified to permit resonance Raman (RR) analysis in the presence and absence of proton motive force (ΔμH(+)). The COV has an average diameter of 20 nm and contains one CcO molecule within a unified orientation with CuA located outside the COV. The process of generation of ΔμH(+) across the membrane was monitored spectrophotometrically with rhodamine123 dye. The COV exhibits a respiratory control ratio (RCR) value of >30 and is tolerant to RR measurements with 10 mW laser illumination for 60 min at 441.6 nm. Structural perturbations at the heme sites caused by incorporation into vesicles were clarified by spectral comparisons between solubilized CcO and COV. Absorption spectroscopy revealed that the rate of electron transfer from cytochrome c to O2 is reduced significantly more in the presence of ΔμH(+) than in its absence. RR spectroscopic measurements indicate that CcO in COV in the "respiratory-controlled" state adopts a mixed-valence state (heme a(2+) and heme a3(3+)). This study establishes a supramolecular model system for experimentally examining the energy conversion protein machinery in the presence of ΔμH(+).
Collapse
Affiliation(s)
- Takashi Nomura
- Laboratory of Spectroscopy, Graduate School of Life Science, University of Hyogo , RSC-UH Leading Program Center, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | | | | | | |
Collapse
|
30
|
Hirata K, Shinzawa-Itoh K, Yano N, Takemura S, Kato K, Hatanaka M, Muramoto K, Kawahara T, Tsukihara T, Yamashita E, Tono K, Ueno G, Hikima T, Murakami H, Inubushi Y, Yabashi M, Ishikawa T, Yamamoto M, Ogura T, Sugimoto H, Shen JR, Yoshikawa S, Ago H. Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat Methods 2014; 11:734-6. [PMID: 24813624 DOI: 10.1038/nmeth.2962] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/25/2014] [Indexed: 12/24/2022]
Abstract
We report a method of femtosecond crystallography for solving radiation damage-free crystal structures of large proteins at sub-angstrom spatial resolution, using a large single crystal and the femtosecond pulses of an X-ray free-electron laser (XFEL). We demonstrated the performance of the method by determining a 1.9-Å radiation damage-free structure of bovine cytochrome c oxidase, a large (420-kDa), highly radiation-sensitive membrane protein.
Collapse
Affiliation(s)
- Kunio Hirata
- 1] RIKEN SPring-8 Center, Sayo, Japan. [2] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Japan. [3]
| | - Kyoko Shinzawa-Itoh
- 1] Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan. [2]
| | - Naomine Yano
- 1] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Japan. [2] Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Shuhei Takemura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Koji Kato
- 1] Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan. [2]
| | - Miki Hatanaka
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Kazumasa Muramoto
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Takako Kawahara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Tomitake Tsukihara
- 1] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Japan. [2] Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan. [3] Institute for Protein Research, Osaka University, Suita, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Go Ueno
- RIKEN SPring-8 Center, Sayo, Japan
| | | | | | | | | | | | | | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Sayo, Japan
| | | | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | | |
Collapse
|
31
|
Komori H, Sugiyama R, Kataoka K, Miyazaki K, Higuchi Y, Sakurai T. New insights into the catalytic active-site structure of multicopper oxidases. ACTA ACUST UNITED AC 2014; 70:772-9. [PMID: 24598746 DOI: 10.1107/s1399004713033051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/06/2013] [Indexed: 11/10/2022]
Abstract
Structural models determined by X-ray crystallography play a central role in understanding the catalytic mechanism of enzymes. However, X-ray radiation generates hydrated electrons that can cause significant damage to the active sites of metalloenzymes. In the present study, crystal structures of the multicopper oxidases (MCOs) CueO from Escherichia coli and laccase from a metagenome were determined. Diffraction data were obtained from a single crystal under low to high X-ray dose conditions. At low levels of X-ray exposure, unambiguous electron density for an O atom was observed inside the trinuclear copper centre (TNC) in both MCOs. The gradual reduction of copper by hydrated electrons monitored by measurement of the Cu K-edge X-ray absorption spectra led to the disappearance of the electron density for the O atom. In addition, the size of the copper triangle was enlarged by a two-step shift in the location of the type III coppers owing to reduction. Further, binding of O2 to the TNC after its full reduction was observed in the case of the laccase. Based on these novel structural findings, the diverse resting structures of the MCOs and their four-electron O2-reduction process are discussed.
Collapse
Affiliation(s)
- Hirofumi Komori
- Faculty of Education, Kagawa University, 1-1 Saiwai-cho, Takamatsu, Kagawa 760-8522, Japan
| | - Ryosuke Sugiyama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Kunishige Kataoka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Kentaro Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido 062-8517, Japan
| | - Yoshiki Higuchi
- RIKEN SPring-8 Center, 1-1-1 Koto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takeshi Sakurai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| |
Collapse
|
32
|
Kubo M, Nakashima S, Yamaguchi S, Ogura T, Mochizuki M, Kang J, Tateno M, Shinzawa-Itoh K, Kato K, Yoshikawa S. Effective pumping proton collection facilitated by a copper site (CuB) of bovine heart cytochrome c oxidase, revealed by a newly developed time-resolved infrared system. J Biol Chem 2013; 288:30259-30269. [PMID: 23996000 DOI: 10.1074/jbc.m113.473983] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-ray structural and mutational analyses have shown that bovine heart cytochrome c oxidase (CcO) pumps protons electrostatically through a hydrogen bond network using net positive charges created upon oxidation of a heme iron (located near the hydrogen bond network) for O2 reduction. Pumping protons are transferred by mobile water molecules from the negative side of the mitochondrial inner membrane through a water channel into the hydrogen bond network. For blockage of spontaneous proton back-leak, the water channel is closed upon O2 binding to the second heme (heme a3) after complete collection of the pumping protons in the hydrogen bond network. For elucidation of the structural bases for the mechanism of the proton collection and timely closure of the water channel, conformational dynamics after photolysis of CO (an O2 analog)-bound CcO was examined using a newly developed time-resolved infrared system feasible for accurate detection of a single C=O stretch band of α-helices of CcO in H2O medium. The present results indicate that migration of CO from heme a3 to CuB in the O2 reduction site induces an intermediate state in which a bulge conformation at Ser-382 in a transmembrane helix is eliminated to open the water channel. The structural changes suggest that, using a conformational relay system, including CuB, O2, heme a3, and two helix turns extending to Ser-382, CuB induces the conformational changes of the water channel that stimulate the proton collection, and senses complete proton loading into the hydrogen bond network to trigger the timely channel closure by O2 transfer from CuB to heme a3.
Collapse
Affiliation(s)
| | | | - Satoru Yamaguchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Akoh, Hyogo 678-1297 and
| | - Takashi Ogura
- From the Picobiology Institute,; Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Akoh, Hyogo 678-1297 and; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | - Masaru Tateno
- From the Picobiology Institute,; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | - Shinya Yoshikawa
- From the Picobiology Institute,; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
33
|
Structure Determination of Functional Membrane Proteins using Small-Angle Neutron Scattering (SANS) with Small, Mixed-Lipid Liposomes: Native Beef Heart Mitochondrial Cytochrome c Oxidase Forms Dimers. Protein J 2012; 32:27-38. [DOI: 10.1007/s10930-012-9455-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Yoshikawa S, Muramoto K, Shinzawa-Itoh K. Reaction mechanism of mammalian mitochondrial cytochrome c oxidase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:215-36. [PMID: 22729860 DOI: 10.1007/978-1-4614-3573-0_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytochrome c oxidase (COX) is the terminal oxidase of the mitochondrial respiratory system. This enzyme reduces molecular oxygen (O(2)) to water in a reaction coupled with the pumping of protons across the mitochondrial inner membrane. Progress in investigating the reaction mechanism of this enzyme has been limited by the resolution of its X-ray structure. Bovine heart COX has provided the highest resolution (1.8 Å) X-ray structure presently available among the terminal oxidases. The reaction mechanism of the bovine heart enzyme has been the most extensively studied, particularly with respect to (1) the reduction of O(2) to water without release of reactive oxygen species, (2) the mechanism of coupling between the O(2) reduction process and proton pumping, (3) the structural basis for unidirectional proton transfer (proton pumping), and (4) the effective prevention of proton leakage from the proton-pumping pathway to the proton pathway used for generation of water molecules. In this chapter, we will review recent structural studies of bovine heart COX and discuss the mechanisms described earlier in context of the structural data.
Collapse
|
35
|
Yu MA, Egawa T, Shinzawa-Itoh K, Yoshikawa S, Guallar V, Yeh SR, Rousseau DL, Gerfen GJ. Two tyrosyl radicals stabilize high oxidation states in cytochrome C oxidase for efficient energy conservation and proton translocation. J Am Chem Soc 2012; 134:4753-61. [PMID: 22296274 DOI: 10.1021/ja210535w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of oxidized bovine cytochrome c oxidase (bCcO) with hydrogen peroxide (H(2)O(2)) was studied by electron paramagnetic resonance (EPR) to determine the properties of radical intermediates. Two distinct radicals with widths of 12 and 46 G are directly observed by X-band EPR in the reaction of bCcO with H(2)O(2) at pH 6 and pH 8. High-frequency EPR (D-band) provides assignments to tyrosine for both radicals based on well-resolved g-tensors. The wide radical (46 G) exhibits g-values similar to a radical generated on L-Tyr by UV-irradiation and to tyrosyl radicals identified in many other enzyme systems. In contrast, the g-values of the narrow radical (12 G) deviate from L-Tyr in a trend akin to the radicals on tyrosines with substitutions at the ortho position. X-band EPR demonstrates that the two tyrosyl radicals differ in the orientation of their β-methylene protons. The 12 G wide radical has minimal hyperfine structure and can be fit using parameters unique to the post-translationally modified Y244 in bCcO. The 46 G wide radical has extensive hyperfine structure and can be fit with parameters consistent with Y129. The results are supported by mixed quantum mechanics and molecular mechanics calculations. In addition to providing spectroscopic evidence of a radical formed on the post-translationally modified tyrosine in CcO, this study resolves the much debated controversy of whether the wide radical seen at low pH in the bovine enzyme is a tyrosine or tryptophan. The possible role of radical formation and migration in proton translocation is discussed.
Collapse
Affiliation(s)
- Michelle A Yu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Structural studies on bovine heart cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:579-89. [PMID: 22236806 DOI: 10.1016/j.bbabio.2011.12.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/16/2011] [Accepted: 12/29/2011] [Indexed: 11/20/2022]
Abstract
Among the X-ray structures of bovine heart cytochrome c oxidase (CcO), reported thus far, the highest resolution is 1.8Å. CcO includes 13 different protein subunits, 7 species of phospholipids, 7 species of triglycerides, 4 redox-active metal sites (Cu(A), heme a (Fe(a)), Cu(B), heme a(3) (Fe(a3))) and 3 redox-inactive metal sites (Mg(2+), Zn(2+) and Na(+)). The effects of various O(2) analogs on the X-ray structure suggest that O(2) molecules are transiently trapped at the Cu(B) site before binding to Fe(a3)(2+) to provide O(2)(-). This provides three possible electron transfer pathways from Cu(B), Fe(a3) and Tyr244 via a water molecule. These pathways facilitate non-sequential 3 electron reduction of the bound O(2)(-) to break the OO bond without releasing active oxygen species. Bovine heart CcO has a proton conducting pathway that includes a hydrogen-bond network and a water-channel which, in tandem, connect the positive side phase with the negative side phase. The hydrogen-bond network forms two additional hydrogen-bonds with the formyl and propionate groups of heme a. Thus, upon oxidation of heme a, the positive charge created on Fe(a) is readily delocalized to the heme peripheral groups to drive proton-transport through the hydrogen-bond network. A peptide bond in the hydrogen-bond network and a redox-coupled conformational change in the water channel are expected to effectively block reverse proton transfer through the H-pathway. These functions of the pathway have been confirmed by site-directed mutagenesis of bovine CcO expressed in HeLa cells.
Collapse
|
37
|
Ogura T. Resonance Raman applications in investigations of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:575-8. [PMID: 22172733 DOI: 10.1016/j.bbabio.2011.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/24/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
Abstract
Recent applications of resonance Raman (RR) spectroscopy in investigations of cytochrome c oxidase (CcO) are reviewed. Red-excited RR spectra for the fully oxidized "as-isolated" CcO tuned to the ligand-to-metal charge transfer absorption band at 655nm exhibit a Raman band at 755cm(-1) assignable to the ν(OO) stretching mode of a peroxide. Binding of CN(-) diminishes the RR band concomitant with the loss of the charge transfer absorption band. This suggests that a peroxide forms a bridge between heme a(3) and Cu(B). Time-resolved RR spectroscopy of whole mitochondria identified a band at 571cm(-1) arising from the oxygenated intermediate at Δt=0.4, 0.6 and 1.4ms. Bands at 804 and 780cm(-1) of the P and F intermediates were observed at Δt=0.6 and 1.4ms, respectively. The coordination geometries of the three intermediates are essentially the same as the respective species observed for solubilized CcO. However, the lifetime of the oxygenated intermediate in mitochondria was significantly longer than the lifetime of this intermediate determined for solubilized CcO. This phenomenon is due either to the pH effect of mitochondrial matrix, the effect of ΔpH and/or ΔΨ across the membrane, or the effect of interactions with other membrane components and/or phospholipids.
Collapse
|
38
|
Active site intermediates in the reduction of O(2) by cytochrome oxidase, and their derivatives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:468-75. [PMID: 22079200 DOI: 10.1016/j.bbabio.2011.10.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 11/22/2022]
Abstract
The mechanism of dioxygen activation and reduction in cell respiration, as catalysed by cytochrome c oxidase, has a long history. The work by Otto Warburg, David Keilin and Britton Chance defined the dioxygen-binding heme iron centre, viz. das Atmungsferment, or cytochrome a(3). Chance brought the field further in the mid-1970's by ingenious low-temperature studies that for the first time identified the primary enzyme-substrate (ES) Michaelis complex of cell respiration, the dioxygen adduct of heme a(3), which he termed Compound A. Further work using optical, resonance Raman, EPR, and other sophisticated spectroscopic techniques, some of which with microsecond time resolution, has brought us to the situation today, where major principles of how O(2) reduction occurs in respiration are well understood. Nonetheless, some questions have remained open, for example concerning the precise structures, catalytic roles, and spectroscopic properties of the breakdown products of Compound A that have been called P, F (for peroxy and ferryl), and O (oxidised). This nomenclature has been known to be inadequate for some time already, and an alternative will be suggested here. In addition, the multiple forms of P, F and O states have been confusing, a situation that we endeavour to help clarifying. The P and F states formed artificially by reacting cytochrome oxidase with hydrogen peroxide are especially scrutinised, and some novel interpretations will be given that may account for previously unexplained observations.
Collapse
|
39
|
Abstract
Cytochrome c oxidase (CcO), as the terminal oxidase of cellular respiration, coupled with a proton-pumping process, reduces molecular oxygen (O(2)) to water. This intriguing and highly organized chemical process represents one of the most critical aspects of cellular respiration. It employs transition metals (Fe and Cu) at the O(2) reduction site and has been considered one of the most challenging research subjects in life science. Extensive X-ray structural and mutational analyses have provided two different proposals with regard to the mechanism of proton pumping. One mechanism is based on bovine CcO and includes an independent pathway for the pumped protons. The second mechanistic proposal includes a common pathway for the pumped and chemical protons and is based upon bacterial CcO. Here, recent progress in experimental evaluations of these proposals is reviewed and strategies for improving our understanding of the mechanism of this physiologically important process are discussed.
Collapse
|
40
|
Suga M, Yano N, Muramoto K, Shinzawa-Itoh K, Maeda T, Yamashita E, Tsukihara T, Yoshikawa S. Distinguishing between Cl−and O22−as the bridging element between Fe3+and Cu2+in resting-oxidized cytochromecoxidase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:742-4. [DOI: 10.1107/s0907444911022803] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/13/2011] [Indexed: 11/10/2022]
|
41
|
Yu MA, Egawa T, Shinzawa-Itoh K, Yoshikawa S, Yeh SR, Rousseau DL, Gerfen GJ. Radical formation in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1295-304. [PMID: 21718686 DOI: 10.1016/j.bbabio.2011.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 11/16/2022]
Abstract
The formation of radicals in bovine cytochrome c oxidase (bCcO), during the O(2) redox chemistry and proton translocation, is an unresolved controversial issue. To determine if radicals are formed in the catalytic reaction of bCcO under single turnover conditions, the reaction of O(2) with the enzyme, reduced by either ascorbate or dithionite, was initiated in a custom-built rapid freeze quenching (RFQ) device and the products were trapped at 77K at reaction times ranging from 50μs to 6ms. Additional samples were hand mixed to attain multiple turnover conditions and quenched with a reaction time of minutes. X-band (9GHz) continuous wave electron paramagnetic resonance (CW-EPR) spectra of the reaction products revealed the formation of a narrow radical with both reductants. D-band (130GHz) pulsed EPR spectra allowed for the determination of the g-tensor principal values and revealed that when ascorbate was used as the reductant the dominant radical species was localized on the ascorbyl moiety, and when dithionite was used as the reductant the radical was the SO(2)(-) ion. When the contributions from the reductants are subtracted from the spectra, no evidence for a protein-based radical could be found in the reaction of O(2) with reduced bCcO. As a surrogate for radicals formed on reaction intermediates, the reaction of hydrogen peroxide (H(2)O(2)) with oxidized bCcO was studied at pH 6 and pH 8 by trapping the products at 50μs with the RFQ device to determine the initial reaction events. For comparison, radicals formed after several minutes of incubation were also examined, and X-band and D-band analysis led to the identification of radicals on Tyr-244 and Tyr-129. In the RFQ measurements, a peroxyl (ROO) species was formed, presumably by the reaction between O(2) and an amino acid-based radical. It is postulated that Tyr-129 may play a central role as a proton loading site during proton translocation by ejecting a proton upon formation of the radical species and then becoming reprotonated during its reduction via a chain of three water molecules originating from the region of the propionate groups of heme a(3). This article is part of a Special Issue entitled: "Allosteric cooperativity in respiratory proteins".
Collapse
Affiliation(s)
- Michelle A Yu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Yano T, Kassovska-Bratinova S, Teh JS, Winkler J, Sullivan K, Isaacs A, Schechter NM, Rubin H. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem 2011; 286:10276-87. [PMID: 21193400 PMCID: PMC3060482 DOI: 10.1074/jbc.m110.200501] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/23/2010] [Indexed: 11/06/2022] Open
Abstract
The mechanism of action of clofazimine (CFZ), an antimycobacterial drug with a long history, is not well understood. The present study describes a redox cycling pathway that involves the enzymatic reduction of CFZ by NDH-2, the primary respiratory chain NADH:quinone oxidoreductase of mycobacteria and nonenzymatic oxidation of reduced CFZ by O(2) yielding CFZ and reactive oxygen species (ROS). This pathway was demonstrated using isolated membranes and purified recombinant NDH-2. The reduction and oxidation of CFZ was measured spectrally, and the production of ROS was measured using a coupled assay system with Amplex Red. Supporting the ROS-based killing mechanism, bacteria grown in the presence of antioxidants are more resistant to CFZ. CFZ-mediated increase in NADH oxidation and ROS production were not observed in membranes from three different Gram-negative bacteria but was observed in Staphylococcus aureus and Saccharomyces cerevisiae, which is consistent with the known antimicrobial specificity of CFZ. A more soluble analog of CFZ, KS6, was synthesized and was shown to have the same activities as CFZ. These studies describe a pathway for a continuous and high rate of reactive oxygen species production in Mycobacterium smegmatis treated with CFZ and a CFZ analog as well as evidence that cell death produced by these agents are related to the production of these radical species.
Collapse
Affiliation(s)
| | | | | | - Jeffrey Winkler
- Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kevin Sullivan
- Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Andre Isaacs
- Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Harvey Rubin
- From the Departments of Medicine
- Biochemistry and Biophysics, and
| |
Collapse
|
43
|
Muramoto K, Ohta K, Shinzawa-Itoh K, Kanda K, Taniguchi M, Nabekura H, Yamashita E, Tsukihara T, Yoshikawa S. Bovine cytochrome c oxidase structures enable O2 reduction with minimization of reactive oxygens and provide a proton-pumping gate. Proc Natl Acad Sci U S A 2010; 107:7740-5. [PMID: 20385840 PMCID: PMC2867921 DOI: 10.1073/pnas.0910410107] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The O(2) reduction site of cytochrome c oxidase (CcO), comprising iron (Fe(a3)) and copper (Cu(B)) ions, is probed by x-ray structural analyses of CO, NO, and CN(-) derivatives to investigate the mechanism of the complete reduction of O(2). Formation of the derivative contributes to the trigonal planar coordination of and displaces one of its three coordinated imidazole groups while a water molecule becomes hydrogen bonded to both the CN(-) ligand and the hydroxyl group of Tyr244. When O(2) is bound to Fe2+a3 , it is negatively polarized (O2- ), and expected to induce the same structural change induced by CN(-). This structural change allows to receive three electron equivalents nonsequentially from Cu1B+, Fe3+a3, and Tyr-OH, providing complete reduction of O(2) with minimization of production of active oxygen species. The proton-pumping pathway of bovine CcO comprises a hydrogen-bond network and a water channel which extend to the positive and negative side surfaces, respectively. Protons transferred through the water channel are pumped through the hydrogen-bond network electrostatically with positive charge created at the Fe(a) center by electron donation to the O(2) reduction site. Binding of CO or NO to induces significant narrowing of a section of the water channel near the hydrogen-bond network junction, which prevents access of water molecules to the network. In a similar manner, O(2) binding to is expected to prevent access of water molecules to the hydrogen-bond network. This blocks proton back-leak from the network and provides an efficient gate for proton-pumping.
Collapse
Affiliation(s)
- Kazumasa Muramoto
- Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigohri, Akoh, Hyogo 678-1297, Japan; and
| | - Kazuhiro Ohta
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kyoko Shinzawa-Itoh
- Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigohri, Akoh, Hyogo 678-1297, Japan; and
| | - Katsumasa Kanda
- Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigohri, Akoh, Hyogo 678-1297, Japan; and
| | - Maki Taniguchi
- Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigohri, Akoh, Hyogo 678-1297, Japan; and
| | - Hiroyuki Nabekura
- Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigohri, Akoh, Hyogo 678-1297, Japan; and
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tomitake Tsukihara
- Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigohri, Akoh, Hyogo 678-1297, Japan; and
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shinya Yoshikawa
- Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigohri, Akoh, Hyogo 678-1297, Japan; and
| |
Collapse
|
44
|
Sakaguchi M, Shinzawa-Itoh K, Yoshikawa S, Ogura T. A resonance Raman band assignable to the O–O stretching mode in the resting oxidized state of bovine heart cytochrome c oxidase. J Bioenerg Biomembr 2010; 42:241-3. [DOI: 10.1007/s10863-010-9282-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/07/2010] [Indexed: 10/19/2022]
|
45
|
Björn LO, Rasmusson AG. Photosensitivity in sponge due to cytochrome c oxidase? Photochem Photobiol Sci 2009; 8:755-7. [PMID: 19492101 DOI: 10.1039/b904988f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An action spectrum for photosensitivity in sponge larvae published by Leys et al. [J. Comp. Physiol., A, 2002, 188, 199-202] was interpreted by the authors as being due to a combination of light absorption by flavin or carotenoid in the blue region, and another pigment such as pterin in the long-wavelength region. Here we show here that their action spectrum closely matches the absorption spectrum of reduced cytochrome c oxidase that is present in sponges, and compare with other photoreactions which are thought to be due to this chromoprotein.
Collapse
Affiliation(s)
- Lars Olof Björn
- Department of Cell and Organism Biology, Lund University, 223 62 Lund, Sweden.
| | | |
Collapse
|
46
|
A peroxide bridge between Fe and Cu ions in the O2 reduction site of fully oxidized cytochrome c oxidase could suppress the proton pump. Proc Natl Acad Sci U S A 2009; 106:2165-9. [PMID: 19164527 DOI: 10.1073/pnas.0806391106] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fully oxidized form of cytochrome c oxidase, immediately after complete oxidation of the fully reduced form, pumps protons upon each of the initial 2 single-electron reduction steps, whereas protons are not pumped during single-electron reduction of the fully oxidized "as-isolated" form (the fully oxidized form without any reduction/oxidation treatment) [Bloch D, et al. (2004) The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. Proc Natl Acad Sci USA 101:529-533]. For identification of structural differences causing the remarkable functional difference between these 2 distinct fully oxidized forms, the X-ray structure of the fully oxidized as-isolated bovine heart cytochrome c oxidase was determined at 1.95-A resolution by limiting the X-ray dose for each shot and by using many (approximately 400) single crystals. This minimizes the effects of hydrated electrons induced by the X-ray irradiation. The X-ray structure showed a peroxide group bridging the 2 metal sites in the O(2) reduction site (Fe(3+)-O(-)-O(-)-Cu(2+)), in contrast to a ferric hydroxide (Fe(3+)-OH(-)) in the fully oxidized form immediately after complete oxidation from the fully reduced form, as has been revealed by resonance Raman analyses. The peroxide-bridged structure is consistent with the reductive titration results showing that 6 electron equivalents are required for complete reduction of the fully oxidized as-isolated form. The structural difference between the 2 fully oxidized forms suggests that the bound peroxide in the O(2) reduction site suppresses the proton pumping function.
Collapse
|
47
|
Sharpe MA, Ferguson-Miller S. A chemically explicit model for the mechanism of proton pumping in heme-copper oxidases. J Bioenerg Biomembr 2008; 40:541-9. [PMID: 18830692 DOI: 10.1007/s10863-008-9182-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/01/2008] [Indexed: 11/28/2022]
Abstract
A mechanism for proton pumping is described that is based on chemiosmotic principles and the detailed molecular structures now available for cytochrome oxidases. The importance of conserved water positions and a step-wise gated process of proton translocation is emphasized, where discrete electron transfer events are coupled to proton uptake and expulsion. The trajectory of each pumped proton is the same for all four substrate electrons. An essential role for the His-Tyr cross-linked species is discussed, in gating of the D- and K-channels and as an acceptor/donor of electrons and protons at the binuclear center.
Collapse
Affiliation(s)
- Martyn A Sharpe
- Department of Neurosurgery, The Methodist Hospital, Houston, TX 77030, USA.
| | | |
Collapse
|
48
|
Abstract
A redox-coupled conformational change in Asp51 of subunit I and a hydrogen-bond network connecting Asp51 with the matrix surface have been deduced from X-ray structures of bovine heart cytochrome c oxidase. This has provided evidence that Asp51 may play a role in the proton pumping process. However, the lack of complete conservation of a residue analogous to Asp51, the inclusion of a peptide bond in the hydrogen-bonding network and the lack of apparent involvement of the O2 reduction site have been used as arguments against the involvement of Asp51 in the mechanism of proton pumping. This minireview re-examines these arguments.
Collapse
Affiliation(s)
- Shinya Yoshikawa
- Department of Life Science, Himeji Institute of Technology, Kamighori Ako, Hyogo 678-1297, Japan.
| |
Collapse
|
49
|
Punter FA, Glerum DM. Mutagenesis reveals a specific role for Cox17p in copper transport to cytochrome oxidase. J Biol Chem 2003; 278:30875-80. [PMID: 12788943 DOI: 10.1074/jbc.m302358200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The provision of copper to cytochrome oxidase is one of the requisite steps in the assembly of the holoenzyme. Several proteins are involved in this process including Cox17p, Sco1p, and Cox11p. Cox17p, an 8-kDa protein, is the only molecule thought to be involved in shuttling copper from the cytoplasm into mitochondria. Given the small size of Cox17p, we have taken a random and site-directed mutagenesis approach to studying structure-function relationships in Cox17p. Mutations have been generated in 70% of the Cox17p amino acid residues, with only a small subset leading to a detectable respiration-deficient phenotype. We have characterized the respiration-deficient cox17 mutants and found in addition to the expected cytochrome oxidase deficiency, a specific lack of Cox2p and the presence of a misassembled cytochrome oxidase in a subset of mutants. These results suggest that Cox17p is involved upstream of Sco1p in delivering copper specifically to subunit 2 of cytochrome oxidase and predict the existence of a subunit 1-specific copper chaperone.
Collapse
Affiliation(s)
- Fiona A Punter
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
50
|
Affiliation(s)
- Shinya Yoshikawa
- Department of Life Science, Himeji Institute of Technology, and CREST, Japan Science and Technology Corporation (JST), Kamigohri Akoh, Hyogo 678-1297, Japan
| |
Collapse
|