1
|
Develin A, Fuglestad B. Inositol Hexaphosphate as an Inhibitor and Potential Regulator of p47 phox Membrane Anchoring. Biochemistry 2024; 63:1097-1106. [PMID: 38669178 PMCID: PMC11080064 DOI: 10.1021/acs.biochem.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
As a key component for NADPH oxidase 2 (NOX2) activation, the peripheral membrane protein p47phox translocates a cytosolic activating complex to the membrane through its PX domain. This study elucidates a potential regulatory mechanism of p47phox recruitment and NOX2 activation by inositol hexaphosphate (IP6). Through NMR, fluorescence polarization, and FRET experimental results, IP6 is shown to be capable of breaking the lipid binding and membrane anchoring events of p47phox-PX with low micromolar potency. Other phosphorylated inositol species such as IP5(1,3,4,5,6), IP4(1,3,4,5), and IP3(1,3,4) show weaker binding and no ability to inhibit lipid interactions in physiological concentration ranges. The low micromolar potency of IP6 inhibition of the p47phox membrane anchoring suggests that physiologically relevant concentrations of IP6 serve as regulators, as seen in other membrane anchoring domains. The PX domain of p47phox is known to be promiscuous to a variety of phosphatidylinositol phosphate (PIP) lipids, and this regulation may help target the domain only to the membranes most highly enriched with the highest affinity PIPs, such as the phagosomal membrane, while preventing aberrant binding to other membranes with high and heterogeneous PIP content, such as the plasma membrane. This study provides insight into a potential novel regulatory mechanism behind NOX2 activation and reveals a role for small-molecule regulation in this important NOX2 activator.
Collapse
Affiliation(s)
- Angela
M. Develin
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
| | - Brian Fuglestad
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
2
|
Wolpe AG, Luse MA, Baryiames C, Schug WJ, Wolpe JB, Johnstone SR, Dunaway LS, Juśkiewicz ZJ, Loeb SA, Askew Page HR, Chen YL, Sabapathy V, Pavelec CM, Wakefield B, Cifuentes-Pagano E, Artamonov MV, Somlyo AV, Straub AC, Sharma R, Beier F, Barrett EJ, Leitinger N, Pagano PJ, Sonkusare SK, Redemann S, Columbus L, Penuela S, Isakson BE. Pannexin-3 stabilizes the transcription factor Bcl6 in a channel-independent manner to protect against vascular oxidative stress. Sci Signal 2024; 17:eadg2622. [PMID: 38289985 DOI: 10.1126/scisignal.adg2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.
Collapse
Affiliation(s)
- Abigail G Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Melissa A Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | | | - Wyatt J Schug
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Jacob B Wolpe
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Zuzanna J Juśkiewicz
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Skylar A Loeb
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Henry R Askew Page
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Vikram Sabapathy
- Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Caitlin M Pavelec
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brent Wakefield
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Eugenia Cifuentes-Pagano
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mykhaylo V Artamonov
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Avril V Somlyo
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rahul Sharma
- Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Frank Beier
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Eugene J Barrett
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Patrick J Pagano
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Oncology (Division of Experimental Oncology), Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
3
|
Luan R, Ding D, Yang J. The protective effect of natural medicines against excessive inflammation and oxidative stress in acute lung injury by regulating the Nrf2 signaling pathway. Front Pharmacol 2022; 13:1039022. [PMID: 36467050 PMCID: PMC9709415 DOI: 10.3389/fphar.2022.1039022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
Acute lung injury (ALI) is a common critical disease of the respiratory system that progresses into acute respiratory distress syndrome (ARDS), with high mortality, mainly related to pulmonary oxidative stress imbalance and severe inflammation. However, there are no clear and effective treatment strategies at present. Nuclear factor erythroid 2-related factor 2(Nrf2) is a transcription factor that interacts with multiple signaling pathways and regulates the activity of multiple oxidases (NOX, NOS, XO, CYP) related to inflammation and apoptosis, and exhibits antioxidant and anti-inflammatory roles in ALI. Recently, several studies have reported that the active ingredients of natural medicines show protective effects on ALI via the Nrf2 signaling pathway. In addition, they are cheap, naturally available, and possess minimal toxicity, thereby having good clinical research and application value. Herein, we summarized various studies on the protective effects of natural pharmaceutical components such as polyphenols, flavonoids, terpenoids, alkaloids, and polysaccharides on ALI through the Nrf2 signaling pathway and demonstrated existing gaps as well as future perspectives.
Collapse
|
4
|
Gong H, Chen Y, Chen M, Li J, Zhang H, Yan S, Lv C. Advanced development and mechanism of sepsis-related acute respiratory distress syndrome. Front Med (Lausanne) 2022; 9:1043859. [PMID: 36452899 PMCID: PMC9701739 DOI: 10.3389/fmed.2022.1043859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2023] Open
Abstract
The introduction of the Sepsis 3.0 guidelines in 2016 improved our understanding of sepsis diagnosis and therapy. Personalized treatment strategies and nursing methods for sepsis patients are recommended in the "Save Sepsis Campaign" in 2021. However, mortality in sepsis patients remains high. Patients with sepsis-related acute respiratory distress syndrome account for around 30% of them, with fatality rates ranging from 30 to 40%. Pathological specimens from individuals with sepsis-related ARDS frequently demonstrate widespread alveolar damage, and investigations have revealed that pulmonary epithelial and pulmonary endothelial injury is the underlying cause. As a result, the purpose of this work is to evaluate the mechanism and research progress of pulmonary epithelial and pulmonary endothelial damage in sepsis-related ARDS, which may provide new directions for future research, diagnosis, and therapy.
Collapse
Affiliation(s)
- Huankai Gong
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yao Chen
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Meiling Chen
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Jiankang Li
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Hong Zhang
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shijiao Yan
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
- School of Public Health, Hainan Medical University, Haikou, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Paclet MH, Laurans S, Dupré-Crochet S. Regulation of Neutrophil NADPH Oxidase, NOX2: A Crucial Effector in Neutrophil Phenotype and Function. Front Cell Dev Biol 2022; 10:945749. [PMID: 35912108 PMCID: PMC9329797 DOI: 10.3389/fcell.2022.945749] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS), produced by the phagocyte NADPH oxidase, NOX2, are involved in many leukocyte functions. An excessive or inappropriate ROS production can lead to oxidative stress and tissue damage. On the other hand, an absence of ROS production due to a lack of a functional NADPH oxidase is associated with recurrent infections as well as inflammation disorders. Thus, it is clear that the enzyme NADPH oxidase must be tightly regulated. The NOX2 complex bears both membrane and cytosolic subunits. The membrane subunits constitute the flavocytochrome b558, consisting of gp91phox (Nox2) and p22phox subunits. The cytosolic subunits form a complex in resting cells and are made of three subunits (p47phox, p40phox, p67phox). Upon leukocyte stimulation, the cytosolic subunits and the small GTPase Rac assemble with the flavocytochrome b558 in order to make a functional complex. Depending on the stimulus, the NADPH oxidase can assemble either at the phagosomal membrane or at the plasma membrane. Many studies have explored NOX2 activation; however, how this activation is sustained and regulated is still not completely clear. Here we review the multiple roles of NOX2 in neutrophil functions, with a focus on description of its components and their assembly mechanisms. We then explain the role of energy metabolism and phosphoinositides in regulating NADPH oxidase activity. In particular, we discuss: 1) the link between metabolic pathways and NOX2 activity regulation through neutrophil activation and the level of released ROS, and 2) the role of membrane phosphoinositides in controlling the duration of NOX2 activity.
Collapse
Affiliation(s)
- Marie-Hélène Paclet
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, T-RAIG, Grenoble, France
| | - Salomé Laurans
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, Orsay, France
| | - Sophie Dupré-Crochet
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, Orsay, France
- *Correspondence: Sophie Dupré-Crochet,
| |
Collapse
|
6
|
Characterization of the binding of cytosolic phospholipase A 2 alpha and NOX2 NADPH oxidase in mouse macrophages. Mol Biol Rep 2022; 49:3511-3518. [PMID: 35092565 DOI: 10.1007/s11033-022-07191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Previous studies have demonstrated that cytosolic phospholipase A2α (cPLA2α) is required for NOX2 NADPH oxidase activation in human and mouse phagocytes. Moreover, upon stimulation, cPLA2α translocates to the plasma membranes by binding to the assembled oxidase, forming a complex between its C2 domain and the PX domain of the cytosolic oxidase factor, p47phox in human phagocytes. Intravenous administration of antisense against cPLA2α that significantly inhibited its expression in mouse peritoneal neutrophils and macrophages also inhibited superoxide production, in contrast to cPLA2α knockout mice that showed normal superoxide production. The present study aimed to determine whether there is a binding between cPLA2α-C2 domain and p47phox-PX in mouse macrophages, to further support the role of cPLA2α in oxidase regulation also in mouse phagocytes. METHODS AND RESULTS A significant binding of mouse GST-p47phox-PX domain fusion protein and cPLA2α in stimulated mouse phagocyte membranes was demonstrated by pull-down experiments, although lower than that detected by the human p47phox-PX domain. Substituting the amino acids Phe98, Asn99, and Gly100 to Cys98, Ser99, and Thr100 in the mouse p47phox-PX domain (present in the human p47phox-PX domain) caused strong binding that was similar to that detected by the human p47phox-PX domain CONCLUSIONS: The binding between cPLA2α-C2 and p47phox-PX domains exists in mouse macrophages and is not unique to human phagocytes. The binding between the two proteins is lower in the mice, probably due to the absence of amino acids Cys98, Ser 99, and Thr100in the p47phox-PX domain that facilitate the binding to cPLA2α.
Collapse
|
7
|
Romero-Pinedo S, Barros DIR, Ruiz-Magaña MJ, Maganto-García E, Moreno de Lara L, Abadía-Molina F, Terhorst C, Abadía-Molina AC. SLAMF8 Downregulates Mouse Macrophage Microbicidal Mechanisms via PI3K Pathways. Front Immunol 2022; 13:910112. [PMID: 35837407 PMCID: PMC9273976 DOI: 10.3389/fimmu.2022.910112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Signaling lymphocytic activation molecule family 8 (SLAMF8) is involved in the negative modulation of NADPH oxidase activation. However, the impact of SLAMF8 downregulation on macrophage functionality and the microbicide mechanism remains elusive. To study this in depth, we first analyzed NADPH oxidase activation pathways in wild-type and SLAMF8-deficient macrophages upon different stimulus. Herein, we describe increased phosphorylation of the Erk1/2 and p38 MAP kinases, as well as increased phosphorylation of NADPH oxidase subunits in SLAMF8-deficient macrophages. Furthermore, using specific inhibitors, we observed that specific PI3K inhibition decreased the differences observed between wild-type and SLAMF8-deficient macrophages, stimulated with either PMA, LPS, or Salmonella typhimurium infection. Consequently, SLAMF8-deficient macrophages also showed increased recruitment of small GTPases such as Rab5 and Rab7, and the p47phox subunit to cytoplasmic Salmonella, suggesting an impairment of Salmonella-containing vacuole (SCV) progression in SLAMF8-deficient macrophages. Enhanced iNOS activation, NO production, and IL-6 expression were also observed in the absence of SLAMF8 upon Salmonella infection, either in vivo or in vitro, while overexpression of SLAMF8 in RAW264.7 macrophages showed the opposite phenotype. In addition, SLAMF8-deficient macrophages showed increased activation of Src kinases and reduced SHP-1 phosphate levels upon IFNγ and Salmonella stimuli in comparison to wild-type macrophages. In agreement with in vitro results, Salmonella clearance was augmented in SLAMF8-deficient mice compared to that in wild-type mice. Therefore, in conclusion, SLAMF8 intervention upon bacterial infection downregulates mouse macrophage activation, and confirmed that SLAMF8 receptor could be a potential therapeutic target for the treatment of severe or unresolved inflammatory conditions.
Collapse
Affiliation(s)
- Salvador Romero-Pinedo
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Domingo I Rojas Barros
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - María José Ruiz-Magaña
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Elena Maganto-García
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Laura Moreno de Lara
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Francisco Abadía-Molina
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Instituto de Nutrición Y Tecnología de los Alimentos "José Mataix", (INYTIA), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ana C Abadía-Molina
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.,Departamento de Bioqu´ımica y Biolog´ıa Molecular III e Inmunolog´ıa, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
8
|
Salvia miltiorrhiza Protects Endothelial Dysfunction against Mitochondrial Oxidative Stress. Life (Basel) 2021; 11:life11111257. [PMID: 34833133 PMCID: PMC8622679 DOI: 10.3390/life11111257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Salvia miltiorrhiza (SM) is a common traditional Chinese medicine used in the treatment of cardiovascular and cerebrovascular diseases. Endothelial dysfunction plays an important role in the pathology of cardiovascular diseases. Endothelial dysfunction may induce inflammation and change vascular tone and permeability. The main pathological mechanism of endothelial dysfunction is the formation of reactive oxygen species (ROS). Mitochondria are the main source of energy and can also produce large amounts of ROS. Recent studies have shown that extracts of SM have antioxidative, anti-inflammatory, and antithrombus properties. In this review, we discuss the mechanism of oxidative stress in the mitochondria, endothelial dysfunction, and the role of SM in these oxidative events.
Collapse
|
9
|
Merő B, Koprivanacz K, Cserkaszky A, Radnai L, Vas V, Kudlik G, Gógl G, Sok P, Póti ÁL, Szeder B, Nyitray L, Reményi A, Geiszt M, Buday L. Characterization of the Intramolecular Interactions and Regulatory Mechanisms of the Scaffold Protein Tks4. Int J Mol Sci 2021; 22:ijms22158103. [PMID: 34360869 PMCID: PMC8348221 DOI: 10.3390/ijms22158103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
The scaffold protein Tks4 is a member of the p47phox-related organizer superfamily. It plays a key role in cell motility by being essential for the formation of podosomes and invadopodia. In addition, Tks4 is involved in the epidermal growth factor (EGF) signaling pathway, in which EGF induces the translocation of Tks4 from the cytoplasm to the plasma membrane. The evolutionarily-related protein p47phox and Tks4 share many similarities in their N-terminal region: a phosphoinositide-binding PX domain is followed by two SH3 domains (so called “tandem SH3”) and a proline-rich region (PRR). In p47phox, the PRR is followed by a relatively short, disordered C-terminal tail region containing multiple phosphorylation sites. These play a key role in the regulation of the protein. In Tks4, the PRR is followed by a third and a fourth SH3 domain connected by a long (~420 residues) unstructured region. In p47phox, the tandem SH3 domain binds the PRR while the first SH3 domain interacts with the PX domain, thereby preventing its binding to the membrane. Based on the conserved structural features of p47phox and Tks4 and the fact that an intramolecular interaction between the third SH3 and the PX domains of Tks4 has already been reported, we hypothesized that Tks4 is similarly regulated by autoinhibition. In this study, we showed, via fluorescence-based titrations, MST, ITC, and SAXS measurements, that the tandem SH3 domain of Tks4 binds the PRR and that the PX domain interacts with the third SH3 domain. We also investigated a phosphomimicking Thr-to-Glu point mutation in the PRR as a possible regulator of intramolecular interactions. Phosphatidylinositol-3-phosphate (PtdIns(3)P) was identified as the main binding partner of the PX domain via lipid-binding assays. In truncated Tks4 fragments, the presence of the tandem SH3, together with the PRR, reduced PtdIns(3)P binding, while the presence of the third SH3 domain led to complete inhibition.
Collapse
Affiliation(s)
- Balázs Merő
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Kitti Koprivanacz
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Anna Cserkaszky
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - László Radnai
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Virag Vas
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Gyöngyi Kudlik
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Gergő Gógl
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
| | - Péter Sok
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Ádám L. Póti
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
| | - Attila Reményi
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary;
| | - László Buday
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
- Department of Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
10
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
11
|
Maksouri H, Darif D, Estaquier J, Riyad M, Desterke C, Lemrani M, Dang PMC, Akarid K. The Modulation of NADPH Oxidase Activity in Human Neutrophils by Moroccan Strains of Leishmania major and Leishmania tropica Is Not Associated with p47 phox Phosphorylation. Microorganisms 2021; 9:1025. [PMID: 34068760 PMCID: PMC8151549 DOI: 10.3390/microorganisms9051025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the first phagocyte recruited and infected by Leishmania. They synthetize superoxide anions (O2-) under the control of the NADPH oxidase complex. In Morocco, Leishmania major and L. tropica are the main species responsible for cutaneous leishmaniasis (CL). The impact of these parasites on human PMN functions is still unclear. We evaluated the in vitro capacity of primary Moroccan strains of L. major and L. tropica to modulate PMN O2- production and p47phox phosphorylation status of the NADPH oxidase complex. PMNs were isolated from healthy blood donors, and their infection rate was measured by microscopy. O2- production was measured by superoxide dismutase-inhibitable reduction of cytochrome C. P47phox phosphorylation was analyzed by Western blot using specific antibodies against Ser328 and Ser345 sites. Whereas we did not observe any difference in PMN infectivity rate, our results indicated that only L. tropica promastigotes inhibited both fMLF- and PMA-mediated O2- production independently of p47phox phosphorylation. Leishmania soluble antigens (SLAs) from both species significantly inhibited O2- induced by fMLF or PMA. However, they only decreased PMA-induced p47phox phosphorylation. L. major and L. tropica modulated differently O2- production by human PMNs independently of p47phox phosphorylation. The inhibition of ROS production by L. tropica could be a mechanism of its survival within PMNs that might explain the reported chronic pathogenicity of L. tropica CL.
Collapse
Affiliation(s)
- Hasnaa Maksouri
- Research Team on Immunopathology of Infectious and Systemic Diseases, Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy (FMPC), Hassan II University of Casablanca (UH2C), 20000 Casablanca, Morocco; (H.M.); (M.R.)
- Molecular Genetics and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, UH2C, 20000 Casablanca, Morocco;
| | - Dounia Darif
- Molecular Genetics and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, UH2C, 20000 Casablanca, Morocco;
| | - Jerome Estaquier
- INSERM U1124, Paris University, 75006 Paris, France
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Quebec City, QC G1V0A6, Canada
| | - Myriam Riyad
- Research Team on Immunopathology of Infectious and Systemic Diseases, Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy (FMPC), Hassan II University of Casablanca (UH2C), 20000 Casablanca, Morocco; (H.M.); (M.R.)
| | - Christophe Desterke
- Faculty of Medicine of the Kremlin-Bicêtre, University Paris-Sud, 94270 Paris, France;
| | - Meryem Lemrani
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Maroc, 20250 Casablanca, Morocco;
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Inflammation Research Center, 75018 Paris, France;
- Inflamex Laboratory of Excellence, Faculty of Medicine, Site Xavier Bichat, University of Paris, 75018 Paris, France
| | - Khadija Akarid
- Molecular Genetics and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, UH2C, 20000 Casablanca, Morocco;
| |
Collapse
|
12
|
Xu Z, Liang Y, Delaney MK, Zhang Y, Kim K, Li J, Bai Y, Cho J, Ushio-Fukai M, Cheng N, Du X. Shear and Integrin Outside-In Signaling Activate NADPH-Oxidase 2 to Promote Platelet Activation. Arterioscler Thromb Vasc Biol 2021; 41:1638-1653. [PMID: 33691478 PMCID: PMC8057529 DOI: 10.1161/atvbaha.120.315773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zheng Xu
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Ying Liang
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - M. Keegan Delaney
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Dupage Medical Technology, Inc (M.K.D.)
| | - Yaping Zhang
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Kyungho Kim
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu (K.K.)
| | - Jing Li
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Yanyan Bai
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Masuko Ushio-Fukai
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Department of Medicine (Cardiology), Vascular Biology Center, Medical College of Georgia at Augusta University (M.U.-F.)
| | - Ni Cheng
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| |
Collapse
|
13
|
Abstract
Significance: The oxidative stress, resulting from an imbalance in the production and scavenging of reactive oxygen species (ROS), is known to be involved in the development and progression of several pathologies. The excess of ROS production is often due to an overactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and for this reason these enzymes became promising therapeutic targets. However, even if NOX are now well characterized, the development of new therapies is limited by the lack of highly isoform-specific inhibitors. Recent Advances: In the past decade, several groups and laboratories have screened thousands of molecules to identify new specific inhibitors with low off-target effects. These works have led to the characterization of several new potent NOX inhibitors; however, their specificity varies a lot depending on the molecules. Critical Issues: Here, we are reviewing more than 25 known NOX inhibitors, focusing mainly on the newly identified ones such as APX-115, NOS31, Phox-I1 and 2, GLX7013114, and GSK2795039. To have a better overall view of these molecules, the inhibitors were classified according to their specificity, from pan-NOX inhibitors to highly isoform-specific ones. We are also presenting the use of these compounds both in vitro and in vivo. Future Directions: Several of these new molecules are potent and very specific inhibitors that could be good candidates for the development of new drugs. Even if the results are very promising, most of these compounds were only validated in vitro or in mice models and further investigations will be required before using them as potential therapies.
Collapse
Affiliation(s)
- Mathieu Chocry
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| | - Ludovic Leloup
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| |
Collapse
|
14
|
Daly C, Logan B, Breeyear J, Whitaker K, Ahmed M, Seals DF. Tks5 SH3 domains exhibit differential effects on invadopodia development. PLoS One 2020; 15:e0227855. [PMID: 31999741 PMCID: PMC6991978 DOI: 10.1371/journal.pone.0227855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/31/2019] [Indexed: 11/23/2022] Open
Abstract
The Src substrate Tks5 helps scaffold matrix-remodeling invadopodia in invasive cancer cells. Focus was directed here on how the five SH3 domains of Tks5 impact that activity. Mutations designed to inhibit protein-protein interactions were created in the individual SH3 domains of Tks5, and the constructs were introduced into the LNCaP prostate carcinoma cell line, a model system with intrinsically low Tks5 expression and which our lab had previously showed the dependence of Src-dependent Tks5 phosphorylation on invadopodia development. In LNCaP cells, acute increases in wild-type Tks5 led to increased gelatin matrix degradation. A similar result was observed when Tks5 was mutated in its 4th or 5th SH3 domains. This was in contrast to the 1st, 2nd, and 3rd SH3 domain mutations of Tks5 where each had a remarkable accentuating effect on gelatin degradation. Conversely, in the invadopodia-competent Src-3T3 model system, mutations in any one of the first three SH3 domains had a dominant negative effect that largely eliminated the presence of invadopodia, inhibited gelatin degradation activity, and redistributed both Src, cortactin, and Tks5 to what are likely endosomal compartments. A hypothesis involving Tks5 conformational states and the regulation of endosomal trafficking is presented as an explanation for these seemingly disparate results.
Collapse
Affiliation(s)
- Christina Daly
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Brewer Logan
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Joseph Breeyear
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Kelley Whitaker
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Maryam Ahmed
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Darren F Seals
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| |
Collapse
|
15
|
Solbak SMØ, Zang J, Narayanan D, Høj LJ, Bucciarelli S, Softley C, Meier S, Langkilde AE, Gotfredsen CH, Sattler M, Bach A. Developing Inhibitors of the p47phox-p22phox Protein-Protein Interaction by Fragment-Based Drug Discovery. J Med Chem 2020; 63:1156-1177. [PMID: 31922756 DOI: 10.1021/acs.jmedchem.9b01492] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase isoform 2 is an enzyme complex, which generates reactive oxygen species and contributes to oxidative stress. The p47phox-p22phox interaction is critical for the activation of the catalytical NOX2 domain, and p47phox is a potential target for therapeutic intervention. By screening 2500 fragments using fluorescence polarization and a thermal shift assay and validation by surface plasmon resonance, we found eight hits toward the tandem SH3 domain of p47phox (p47phoxSH3A-B) with KD values of 400-600 μM. Structural studies revealed that fragments 1 and 2 bound two separate binding sites in the elongated conformation of p47phoxSH3A-B and these competed with p22phox for binding to p47phoxSH3A-B. Chemical optimization led to a dimeric compound with the ability to potently inhibit the p47phoxSH3A-B-p22phox interaction (Ki of 20 μM). Thereby, we reveal a new way of targeting p47phox and present the first report of drug-like molecules with the ability to bind p47phox and inhibit its interaction with p22phox.
Collapse
Affiliation(s)
- Sara Marie Øie Solbak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Jie Zang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Lars Jakobsen Høj
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Saskia Bucciarelli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Charlotte Softley
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Sebastian Meier
- Department of Chemistry , Technical University of Denmark , Kemitorvet , 2800 Kgs Lyngby , Denmark
| | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | | | - Michael Sattler
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| |
Collapse
|
16
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Gimenez M, Veríssimo-Filho S, Wittig I, Schickling BM, Hahner F, Schürmann C, Netto LES, Rosa JC, Brandes RP, Sartoretto S, De Lucca Camargo L, Abdulkader F, Miller FJ, Lopes LR. Redox Activation of Nox1 (NADPH Oxidase 1) Involves an Intermolecular Disulfide Bond Between Protein Disulfide Isomerase and p47 phox in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2019; 39:224-236. [PMID: 30580571 DOI: 10.1161/atvbaha.118.311038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- PDI (protein disulfide isomerase A1) was reported to support Nox1 (NADPH oxidase) activation mediated by growth factors in vascular smooth muscle cells. Our aim was to investigate the molecular mechanism by which PDI activates Nox1 and the functional implications of PDI in Nox1 activation in vascular disease. Approach and Results- Using recombinant proteins, we identified a redox interaction between PDI and the cytosolic subunit p47phox in vitro. Mass spectrometry of crosslinked peptides confirmed redox-dependent disulfide bonds between cysteines of p47phox and PDI and an intramolecular bond between Cys 196 and 378 in p47phox. PDI catalytic Cys 400 and p47phox Cys 196 were essential for the activation of Nox1 by PDI in vascular smooth muscle cells. Transfection of PDI resulted in the rapid oxidation of a redox-sensitive protein linked to p47phox, whereas PDI mutant did not promote this effect. Mutation of p47phox Cys 196, or the redox active cysteines of PDI, prevented Nox1 complex assembly and vascular smooth muscle cell migration. Proximity ligation assay confirmed the interaction of PDI and p47phox in murine carotid arteries after wire injury. Moreover, in human atheroma plaques, a positive correlation between the expression of PDI and p47phox occurred only in PDI family members with the a' redox active site. Conclusions- PDI redox cysteines facilitate Nox1 complex assembly, thus identifying a new mechanism through which PDI regulates Nox activity in vascular disease.
Collapse
Affiliation(s)
- Marcela Gimenez
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil.,Department of Medicine, University of Iowa, Iowa City (M.G., B.M.S., F.J.M.)
| | - Sidney Veríssimo-Filho
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil
| | - Ilka Wittig
- Functional Proteomics Core Unit (I.W.), Goethe-Universität, Frankfurt, Germany
| | - Brandon M Schickling
- Department of Medicine, University of Iowa, Iowa City (M.G., B.M.S., F.J.M.).,Department of Medicine, Duke University, Durham, NC (B.M.S., S.S., F.J.M.)
| | - Fabian Hahner
- Institute for Cardiovascular Physiology (F.H., C.S., R.P.B.), Goethe-Universität, Frankfurt, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology (F.H., C.S., R.P.B.), Goethe-Universität, Frankfurt, Germany
| | - Luis E S Netto
- Institute of Biomedical Sciences, Department of Genetics and Evolutionary Biology, Institute of Biosciences (L.E.S.N.), University of São Paulo, Brazil
| | - José César Rosa
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School (J.C.R.), University of São Paulo, Brazil
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology (F.H., C.S., R.P.B.), Goethe-Universität, Frankfurt, Germany
| | - Simone Sartoretto
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil.,Department of Medicine, Duke University, Durham, NC (B.M.S., S.S., F.J.M.)
| | - Lívia De Lucca Camargo
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil
| | - Fernando Abdulkader
- Department of Physiology and Biophysics (F.A.), University of São Paulo, Brazil
| | - Francis J Miller
- Department of Medicine, University of Iowa, Iowa City (M.G., B.M.S., F.J.M.).,Department of Medicine, Duke University, Durham, NC (B.M.S., S.S., F.J.M.).,Department of Medicine, Veterans Affairs Medical Center, Durham, NC (F.J.M.)
| | - Lucia Rossetti Lopes
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil
| |
Collapse
|
18
|
Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. Biomed Pharmacother 2019; 111:1478-1498. [DOI: 10.1016/j.biopha.2018.11.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
|
19
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
20
|
Sumimoto H, Minakami R, Miyano K. Soluble Regulatory Proteins for Activation of NOX Family NADPH Oxidases. Methods Mol Biol 2019; 1982:121-137. [PMID: 31172470 DOI: 10.1007/978-1-4939-9424-3_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
NOX family NADPH oxidases deliberately produce reactive oxygen species and thus contribute to a variety of biological functions. Of seven members in the human family, the three oxidases NOX2, NOX1, and NOX3 form a heterodimer with p22phox and are regulated by soluble regulatory proteins: p47phox, its related organizer NOXO1; p67phox, its related activator NOXA1; p40phox; and the small GTPase Rac. Activation of the phagocyte oxidase NOX2 requires p47phox, p67phox, and GTP-bound Rac. In addition to these regulators, p40phox plays a crucial role when NOX2 is activated during phagocytosis. On the other hand, NOX1 activation prefers NOXO1 and NOXA1, although Rac is also involved. NOX3 constitutively produces superoxide, which is enhanced by regulatory proteins such as p47phox, NOXO1, and p67phox. Here we describe mechanisms for NOX activation with special attention to the soluble regulatory proteins.
Collapse
Affiliation(s)
- Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Reiko Minakami
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kei Miyano
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
21
|
Gonzalez-Perilli L, Prolo C, Álvarez MN. Arachidonic Acid and Nitroarachidonic: Effects on NADPH Oxidase Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:85-95. [PMID: 31140173 DOI: 10.1007/978-3-030-11488-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arachidonic acid (AA) is a polyunsaturated fatty acid that participates in the inflammatory response mainly through bioactive-lipids formation in macrophages and also in the phagocytic NADPH oxidase 2 (NOX2) activation. NOX2 is the enzyme responsible for a huge superoxide formation in macrophages, essential to eliminate pathogens inside the phagosome. The oxidase is an enzymatic complex comprised of a membrane-bound flavocytochrome b 558 (gp91phox/p22phox), three cytosolic subunits (p47phox, p40phox and p67phox) and a Rac-GTPase. The enzyme becomes active when macrophages are exposed to appropriate stimuli that trigger the phosphorylation of cytosolic subunits and its migration to plasmatic membrane to form the active complex. It is proposed that AA stimulates NOX2 activity through AA interaction with different components of the NADPH oxidase complex. In inflammatory conditions, there is an increase in reactive oxygen and nitrogen species that results in the production of nitrated derivatives of AA, such as nitroarachidonic acid (NO2-AA). NO2-AA is capable to inhibit NOX2 activity by interfering with p47phox migration to the membrane without affecting phosphorylation of cytosolic proteins. Also, NO2-AA is capable to interact with protein disulfide isomerase (PDI), which is involved on NOX2 active complex formation. It has been demonstrated that NO2-AA forms a covalent adduct with PDI that could prevent the interaction with NOX2 and it would explain the inhibitory effects of the fatty acid upon NOX2. Together, current data indicate that AA is an important activator of NOX2 formed in the early events of the inflammatory response, leading to a massive production of oxidants that may, in turn, promote NO2-AA formation and shutting down the oxidative burst. Hence, AA and its derivatives could have antagonistic roles on NOX2 activity regulation.
Collapse
Affiliation(s)
- Lucía Gonzalez-Perilli
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina-Universidad de la República, Montevideo, Uruguay
| | - Carolina Prolo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina-Universidad de la República, Montevideo, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina-Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
22
|
Abstract
Assays based on ectopic expression of NOX NADPH oxidase subunits in heterologous mammalian cells are an important approach for investigating features of this family of enzymes. These model systems have been used to analyze the biosynthesis and functional domains of NOX enzyme components as well as their regulation and cellular activities. This chapter provides an overview of the basic principles and applications of heterologous whole cell assays in studying NOX NADPH oxidases.
Collapse
|
23
|
Beghin A, Comini M, Soresina A, Imberti L, Zucchi M, Plebani A, Montanelli A, Porta F, Lanfranchi A. Chronic Granulomatous Disease in children: a single center experience. Clin Immunol 2018; 188:12-19. [DOI: 10.1016/j.clim.2017.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/04/2023]
|
24
|
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol 2017; 7:373. [PMID: 28890882 PMCID: PMC5574878 DOI: 10.3389/fcimb.2017.00373] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these pathogens often rely on repair and detoxifying proteins in addition to these secreted effectors and toxins in order to resist mammalian sources of ROS. This suggests that pathogens have both intrinsic and extrinsic mechanisms to avoid restriction by PMN-derived ROS. Here, we review mechanisms of oxidative burst in PMNs in response to bacterial infections, as well as the mechanisms by which bacterial pathogens thwart restriction by ROS to survive under conditions of oxidative stress.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States
| | - Erin R Green
- Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States.,Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| |
Collapse
|
25
|
Souza-Silva L, Alves-Lopes R, Silva Miguez J, Dela Justina V, Neves KB, Mestriner FL, Tostes RDC, Giachini FR, Lima VV. Glycosylation with O-linked β-N-acetylglucosamine induces vascular dysfunction via production of superoxide anion/reactive oxygen species. Can J Physiol Pharmacol 2017; 96:232-240. [PMID: 28793197 DOI: 10.1139/cjpp-2017-0225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Overproduction of superoxide anion (•O2-) and O-linked β-N-acetylglucosamine (O-GlcNAc) modification in the vascular system are contributors to endothelial dysfunction. This study tested the hypothesis that increased levels of O-GlcNAc-modified proteins contribute to •O2- production via activation of NADPH oxidase, resulting in impaired vasodilation. Rat aortic segments and vascular smooth muscle cells (VSMCs) were incubated with vehicle (methanol) or O-(2-acetamido-2-deoxy-d-glucopyranosylidenamino) N-phenylcarbamate (PUGNAc) (100 μM). PUGNAc produced a time-dependent increase in O-GlcNAc levels in VSMC and decreased endothelium-dependent relaxation, which was prevented by apocynin and tiron, suggesting that •O2- contributes to endothelial dysfunction under augmented O-GlcNAc levels. Aortic segments incubated with PUGNAc also exhibited increased levels of reactive oxygen species, assessed by dihydroethidium fluorescence, and augmented •O2- production, determined by lucigenin-enhanced chemiluminescence. Additionally, PUGNAc treatment increased Nox-1 and Nox-4 protein expression in aortas and VSMCs. Translocation of the p47phox subunit from the cytosol to the membrane was greater in aortas incubated with PUGNAc. VSMCs displayed increased p22phox protein expression after PUGNAc incubation, suggesting that NADPH oxidase is activated in conditions where O-GlcNAc protein levels are increased. In conclusion, O-GlcNAc levels reduce endothelium-dependent relaxation by overproduction of •O2- via activation of NADPH oxidase. This may represent an additional mechanism by which augmented O-GlcNAc levels impair vascular function.
Collapse
Affiliation(s)
- Leonardo Souza-Silva
- a Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Rheure Alves-Lopes
- b Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil.,c Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Jéssica Silva Miguez
- a Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Vanessa Dela Justina
- a Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Karla Bianca Neves
- b Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil.,c Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Fabíola Leslie Mestriner
- b Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Rita de Cassia Tostes
- b Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernanda Regina Giachini
- a Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Victor Vitorino Lima
- a Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| |
Collapse
|
26
|
C-terminal tail of NADPH oxidase organizer 1 (Noxo1) mediates interaction with NADPH oxidase activator (Noxa1) in the NOX1 complex. Biochem Biophys Res Commun 2017. [PMID: 28625920 DOI: 10.1016/j.bbrc.2017.06.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
NOX1 (NADPH oxidase) similar to phagocyte NADPH oxidase, is expressed mainly in the colon epithelium and it is responsible for host defense against microbial infections by generating ROS (reactive oxygen species). NOX1 is activated by two regulatory cytosolic proteins that form a hetero-dimer, Noxo1 (NOX organizer 1) and Noxa1 (NOX activator 1). The interaction between Noxa1 and Noxo1 is critical for activating NOX1. However no structural studies for interaction between Noxa1 and Noxo1 has not been reported till date. Here, we studied the inter-molecular interaction between the SH3 domain of Noxa1 and Noxo1 using pull-down assay and NMR spectroscopy. 15N/13C-labeled SH3 domain of Noxa1 has been purified for hetero-nuclear NMR experiments (HNCACB, CBCACONH, HNCA, HNCO, and HSQC). TALOS analysis using backbone assignment data of the Noxa1 SH3 domain showed that the structure primarily consists of β-sheets. Data from pull-down assay between the Noxo1 and Noxa1 showed that the SH3 domains (Noxa1) is responsible for interaction with Noxo1 C-terminal tail harboring proline rich region (PRR). The concentration-dependent titration of the Noxo1 C-terminal tail to Noxa1 shows that Noxo1 particularly in the RT loop: Q407*, H408, S409, A412*, G414*, E416, D417, L418, and F420; n-Src loop: C430, E431*, V432*, A435, W436, and L437; and terminal region: I447; F448*, F452* and V454 interact with Noxa1. Our results will provide a detailed understanding for interaction between Noxa1 and Noxo1 at the molecular level, providing insights into their cytoplasmic activity-mediated functioning as well as regulatory role of C-terminal tail of Noxo1 in the NOX1 complex.
Collapse
|
27
|
Rastogi R, Geng X, Li F, Ding Y. NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease. Front Cell Neurosci 2017; 10:301. [PMID: 28119569 PMCID: PMC5222855 DOI: 10.3389/fncel.2016.00301] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX) is an enzyme complex with the sole function of producing superoxide anion and reactive oxygen species (ROS) at the expense of NADPH. Vital to the immune system as well as cellular signaling, NOX is also involved in the pathologies of a wide variety of disease states. Particularly, it is an integral player in many neurological diseases, including stroke, TBI, and neurodegenerative diseases. Pathologically, NOX produces an excessive amount of ROS that exceed the body’s antioxidant ability to neutralize them, leading to oxidative stress and aberrant signaling. This prevalence makes it an attractive therapeutic target and as such, NOX inhibitors have been studied and developed to counter NOX’s deleterious effects. However, recent studies of NOX have created a better understanding of the NOX complex. Comprised of independent cytosolic subunits, p47-phox, p67-phox, p40-phox and Rac, and membrane subunits, gp91-phox and p22-phox, the NOX complex requires a unique activation process through subunit interaction. Of these subunits, p47-phox plays the most important role in activation, binding and translocating the cytosolic subunits to the membrane and anchoring to p22-phox to organize the complex for NOX activation and function. Moreover, these interactions, particularly that between p47-phox and p22-phox, are dependent on phosphorylation initiated by upstream processes involving protein kinase C (PKC). This review will look at these interactions between subunits and with PKC. It will focus on the interaction involving p47-phox with p22-phox, key in bringing the cytosolic subunits to the membrane. Furthermore, the implication of these interactions as a target for NOX inhibitors such as apocynin will be discussed as a potential avenue for further investigation, in order to develop more specific NOX inhibitors based on the inhibition of NOX assembly and activation.
Collapse
Affiliation(s)
- Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
28
|
Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:105-137. [PMID: 29047084 PMCID: PMC7120947 DOI: 10.1007/978-3-319-63245-2_8] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The generation of reactive oxygen species (ROS) plays an important role for the maintenance of cellular processes and functions in the body. However, the excessive generation of oxygen radicals under pathological conditions such as acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) leads to increased endothelial permeability. Within this hallmark of ALI and ARDS, vascular microvessels lose their junctional integrity and show increased myosin contractions that promote the migration of polymorphonuclear leukocytes (PMNs) and the transition of solutes and fluids in the alveolar lumen. These processes all have a redox component, and this chapter focuses on the role played by ROS during the development of ALI/ARDS. We discuss the origins of ROS within the cell, cellular defense mechanisms against oxidative damage, the role of ROS in the development of endothelial permeability, and potential therapies targeted at oxidative stress.
Collapse
Affiliation(s)
- Manuela Kellner
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Satish Noonepalle
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Qing Lu
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Anup Srivastava
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Evgeny Zemskov
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Stephen M Black
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA.
| |
Collapse
|
29
|
Cifuentes-Pagano ME, Meijles DN, Pagano PJ. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors. Curr Pharm Des 2016; 21:6023-35. [PMID: 26510437 DOI: 10.2174/1381612821666151029112013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
Oxidative stress-related diseases underlie many if not all of the major leading causes of death in United States and the Western World. Thus, enormous interest from both academia and pharmaceutical industry has been placed on the development of agents which attenuate oxidative stress. With that in mind, great efforts have been placed in the development of inhibitors of NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its activity. In this review, we will provide an updated overview of the available Nox inhibitors, both peptidic and small molecules, and discuss the body of data related to their possible mechanisms of action and specificity towards each of the various isoforms of Nox. Indeed, there have been some very notable successes. However, despite great commitment by many in the field, the need for efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of major diseases as well as for delineating the contribution of a given Nox in physiological redox signalling, continues to grow.
Collapse
Affiliation(s)
| | | | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Biomedical Science Tower, 12th Floor, Room E1247, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
30
|
Bizouarn T, Karimi G, Masoud R, Souabni H, Machillot P, Serfaty X, Wien F, Réfrégiers M, Houée-Levin C, Baciou L. Exploring the arachidonic acid-induced structural changes in phagocyte NADPH oxidase p47phoxand p67phoxvia thiol accessibility and SRCD spectroscopy. FEBS J 2016; 283:2896-910. [DOI: 10.1111/febs.13779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Tania Bizouarn
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Gilda Karimi
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Rawand Masoud
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Hager Souabni
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Paul Machillot
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Xavier Serfaty
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Frank Wien
- Synchrotron SOLEIL, Campus Paris-Saclay; Gif-sur-Yvette Cedex France
| | | | - Chantal Houée-Levin
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Laura Baciou
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| |
Collapse
|
31
|
Advanced oxidative protein products induced human keratinocyte apoptosis through the NOX–MAPK pathway. Apoptosis 2016; 21:825-35. [DOI: 10.1007/s10495-016-1245-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Abstract
Since its discovery in 1999, a number of studies have evaluated the role of Nox1 NADPH oxidase in the cardiovascular system. Nox1 is activated in vascular cells in response to several different agonists, with its activity regulated at the transcriptional level as well as by NADPH oxidase complex formation, protein stabilization and post-translational modification. Nox1 has been shown to decrease the bioavailability of nitric oxide, transactivate the epidermal growth factor receptor, induce pro-inflammatory signalling, and promote cell migration and proliferation. Enhanced expression and activity of Nox1 under pathologic conditions results in excessive production of reactive oxygen species and dysregulated cellular function. Indeed, studies using genetic models of Nox1 deficiency or overexpression have revealed roles for Nox1 in the pathogenesis of cardiovascular diseases ranging from atherosclerosis to hypertension, restenosis and ischaemia/reperfusion injury. These data suggest that Nox1 is a potential therapeutic target for vascular disease, and drug development efforts are ongoing to identify a specific bioavailable inhibitor of Nox1.
Collapse
|
33
|
Thymoquinone strongly inhibits fMLF-induced neutrophil functions and exhibits anti-inflammatory properties in vivo. Biochem Pharmacol 2016; 104:62-73. [PMID: 26774451 DOI: 10.1016/j.bcp.2016.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/06/2016] [Indexed: 11/21/2022]
Abstract
Polymorphonuclear neutrophils are key players in host defense against pathogens through the robust production of superoxide anion by the NADPH oxidase and the release of antibacterial proteins from granules. However, inappropriate release of these agents in the extracellular environment induces severe tissue injury, thereby contributing to the physiopathology of acute and chronic inflammatory disorders. Many studies have been carried out to identify molecules capable of inhibiting phagocyte functions, in particular superoxide anion production, for therapeutic purposes. In the present study, we show that thymoquinone (TQ), the major component of the volatile oil from Nigella sativa (black cumin) seeds strongly inhibits fMLF-induced superoxide production and granules exocytosis in neutrophils. The inhibition of superoxide anion was not due to a scavenger effect, as TQ did not inhibit superoxide anion produced by the xanthine/xanthine oxidase system. Interestingly, TQ impaired the phosphorylation on Ser-304 and Ser-328 of p47(PHOX), a cytosolic subunit of the NADPH oxidase. TQ also attenuated specific and azurophilic granule exocytosis in fMLF-stimulated neutrophils as evidenced by decreased cell surface expression of gp91(PHOX) and CD11b, and release of myeloperoxidase. Furthermore, both the PKC and MAPK pathways, which are involved in p47(PHOX) phosphorylation and granules exocytosis, respectively, were inhibited by TQ in fMLF-stimulated neutrophils. Finally, in a model of pleurisy induced by λ-carrageenan in rats, TQ reduced neutrophil accumulation in the pleural space, showing that it not only inhibits PMN functions in vitro, but also exhibits anti-inflammatory properties in vivo. Thus, TQ possesses promising anti-inflammatory therapeutic potential.
Collapse
|
34
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76:208-26. [PMID: 25157786 DOI: 10.1016/j.freeradbiomed.2014.07.046] [Citation(s) in RCA: 495] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease.
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- ECCPS, Justus-Liebig-Universität, Member of the DZL, Giessen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
35
|
Vlahos R, Selemidis S. NADPH Oxidases as Novel Pharmacologic Targets against Influenza A Virus Infection. Mol Pharmacol 2014; 86:747-59. [DOI: 10.1124/mol.114.095216] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
36
|
Matono R, Miyano K, Kiyohara T, Sumimoto H. Arachidonic acid induces direct interaction of the p67(phox)-Rac complex with the phagocyte oxidase Nox2, leading to superoxide production. J Biol Chem 2014; 289:24874-84. [PMID: 25056956 DOI: 10.1074/jbc.m114.581785] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The phagocyte NADPH oxidase Nox2, heterodimerized with p22(phox) in the membrane, is dormant in resting cells but becomes activated upon cell stimulation to produce superoxide, a precursor of microbicidal oxidants. Nox2 activation requires two switches to be turned on simultaneously: a conformational change of the cytosolic protein p47(phox) and GDP/GTP exchange on the small GTPase Rac. These proteins, in an active form, bind to their respective targets, p22(phox) and p67(phox), leading to productive oxidase assembly at the membrane. Although arachidonic acid (AA) efficiently activates Nox2 both in vivo and in vitro, the mechanism has not been fully understood, except that AA induces p47(phox) conformational change. Here we show that AA elicits GDP-to-GTP exchange on Rac at the cellular level, consistent with its role as a potent Nox2 activator. However, even when constitutively active forms of p47(phox) and Rac1 are both expressed in HeLa cells, superoxide production by Nox2 is scarcely induced in the absence of AA. These active proteins also fail to effectively activate Nox2 in a cell-free reconstituted system without AA. Without affecting Rac-GTP binding to p67(phox), AA induces the direct interaction of Rac-GTP-bound p67(phox) with the C-terminal cytosolic region of Nox2. p67(phox)-Rac-Nox2 assembly and superoxide production are both abrogated by alanine substitution for Tyr-198, Leu-199, and Val-204 in the p67(phox) activation domain that localizes the C-terminal to the Rac-binding domain. Thus the "third" switch (AA-inducible interaction of p67(phox)·Rac-GTP with Nox2) is required to be turned on at the same time for Nox2 activation.
Collapse
Affiliation(s)
- Rumi Matono
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kei Miyano
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takuya Kiyohara
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
37
|
Yamamoto A, Takeya R, Matsumoto M, Nakayama KI, Sumimoto H. Phosphorylation of Noxo1 at threonine 341 regulates its interaction with Noxa1 and the superoxide-producing activity of Nox1. FEBS J 2013; 280:5145-59. [PMID: 23957209 DOI: 10.1111/febs.12489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED Superoxide production by Nox1, a member of the Nox family NAPDH oxidases, requires expression of its regulatory soluble proteins Noxo1 (Nox organizer 1) and Noxa1 (Nox activator 1) and is markedly enhanced upon cell stimulation with phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinase C (PKC). The mechanism underlying PMA-induced enhancement of Nox1 activity, however, remains to be elucidated. Here we show that, in response to PMA, Noxo1 undergoes phosphorylation at multiple sites, which is inhibited by the PKC inhibitor GF109203X. Among them, Thr341 in Noxo1 is directly phosphorylated by PKC in vitro, and alanine substitution for this residue reduces not only PMA-induced Noxo1 phosphorylation but also PMA-dependent enhancement of Nox1-catalyzed superoxide production. Phosphorylation of Thr341 allows Noxo1 to sufficiently interact with Noxa1, an interaction that participates in Nox1 activation. Thus phosphorylation of Noxo1 at Thr341 appears to play a crucial role in PMA-elicited activation of Nox1, providing a molecular link between PKC-mediated signal transduction and Nox1-catalyzed superoxide production. Furthermore, Ser154 in Noxo1 is phosphorylated in both resting and PMA-stimulated cells, and the phosphorylation probably participates in a PMA-independent constitutive activity of Nox1. Ser154 may also be involved in protein kinase A (PKA) mediated regulation of Nox1; this serine is the major residue that is phosphorylated by PKA in vitro. Thus phosphorylation of Noxo1 at Thr341 and at Ser154 appears to regulate Nox1 activity in different manners. STRUCTURED DIGITAL ABSTRACT Noxo1 binds to p22phox by pull down (1, 2, 3) Noxo1 binds to Noxo1 by pull down (View interaction) Noxa1 binds to Noxo1 by pull down (1, 2, 3, 4, 5).
Collapse
Affiliation(s)
- Asataro Yamamoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
38
|
Bréchard S, Plançon S, Tschirhart EJ. New insights into the regulation of neutrophil NADPH oxidase activity in the phagosome: a focus on the role of lipid and Ca(2+) signaling. Antioxid Redox Signal 2013; 18:661-76. [PMID: 22867131 PMCID: PMC3549206 DOI: 10.1089/ars.2012.4773] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SIGNIFICANCE Reactive oxygen species, produced by the phagosomal NADPH oxidase of neutrophils, play a significant physiological role during normal defense. Their role is not only to kill invading pathogens, but also to act as modulators of global physiological functions of phagosomes. Given the importance of NADPH oxidase in the immune system, its activity has to be decisively controlled by distinctive mechanisms to ensure appropriate regulation at the phagosome. RECENT ADVANCES Here, we describe the signal transduction pathways that regulate phagosomal NADPH oxidase in neutrophils, with an emphasis on the role of lipid metabolism and intracellular Ca(2+) mobilization. CRITICAL ISSUES The potential involvement of Ca(2+)-binding S100A8 and S100A9 proteins, known to interact with the plasma membrane NADPH oxidase, is also considered. FUTURE DIRECTIONS Recent technical progress in advanced live imaging microscopy will permit to focus more accurately on phagosomal rather than plasma membrane NADPH oxidase regulation during neutrophil phagocytosis.
Collapse
Affiliation(s)
- Sabrina Bréchard
- Calcium Signaling and Inflammation Group, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | | | | |
Collapse
|
39
|
Debbabi M, Kroviarski Y, Bournier O, Gougerot‐Pocidalo M, El‐Benna J, Dang PM. NOXO1 phosphorylation on serine 154 is critical for optimal NADPH oxidase 1 assembly and activation. FASEB J 2013; 27:1733-48. [DOI: 10.1096/fj.12-216432] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maya Debbabi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773Centre de Recherche Biomédicale Bichat Beaujon CRB3ParisFrance
- Université Paris 7 Site BichatUnité Mixte de Recherche (UMR) 773ParisFrance
- Université de Paris‐SudOrsayFrance
| | - Yolande Kroviarski
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773Centre de Recherche Biomédicale Bichat Beaujon CRB3ParisFrance
- Université Paris 7 Site BichatUnité Mixte de Recherche (UMR) 773ParisFrance
- Assistance Publique‐Hôpitaux de Paris (AP‐HP)Centre Hospitalier Universitaire Xavier BichatCentre d'Investigations Biomédicales(CIB) PhenogenParisFrance
| | - Odile Bournier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773Centre de Recherche Biomédicale Bichat Beaujon CRB3ParisFrance
- Université Paris 7 Site BichatUnité Mixte de Recherche (UMR) 773ParisFrance
- Assistance Publique‐Hôpitaux de Paris (AP‐HP)Centre Hospitalier Universitaire Xavier BichatCentre d'Investigations Biomédicales(CIB) PhenogenParisFrance
| | - Marie‐Anne Gougerot‐Pocidalo
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773Centre de Recherche Biomédicale Bichat Beaujon CRB3ParisFrance
- Université Paris 7 Site BichatUnité Mixte de Recherche (UMR) 773ParisFrance
- Assistance Publique‐Hôpitaux de Paris (AP‐HP)Centre Hospitalier Universitaire Xavier BichatCentre d'Investigations Biomédicales(CIB) PhenogenParisFrance
| | - Jamel El‐Benna
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773Centre de Recherche Biomédicale Bichat Beaujon CRB3ParisFrance
- Université Paris 7 Site BichatUnité Mixte de Recherche (UMR) 773ParisFrance
| | - Pham My‐Chan Dang
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773Centre de Recherche Biomédicale Bichat Beaujon CRB3ParisFrance
- Université Paris 7 Site BichatUnité Mixte de Recherche (UMR) 773ParisFrance
| |
Collapse
|
40
|
Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 2012; 110:1364-90. [PMID: 22581922 PMCID: PMC3365576 DOI: 10.1161/circresaha.111.243972] [Citation(s) in RCA: 610] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/09/2012] [Indexed: 02/07/2023]
Abstract
The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels, and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke, and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4, and 5), their roles in cardiovascular cell biology, and their contributions to disease development.
Collapse
Affiliation(s)
- Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
41
|
Stampoulis P, Ueda T, Matsumoto M, Terasawa H, Miyano K, Sumimoto H, Shimada I. Atypical membrane-embedded phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2)-binding site on p47(phox) Phox homology (PX) domain revealed by NMR. J Biol Chem 2012; 287:17848-17859. [PMID: 22493288 DOI: 10.1074/jbc.m111.332874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Phox homology (PX) domain is a functional module that targets membranes through specific interactions with phosphoinositides. The p47(phox) PX domain preferably binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) and plays a pivotal role in the assembly of phagocyte NADPH oxidase. We describe the PI(3,4)P(2) binding mode of the p47(phox) PX domain as identified by a transferred cross-saturation experiment. The identified PI(3,4)P(2)-binding site, which includes the residues of helices α1 and α1' and the following loop up to the distorted left-handed PP(II) helix, is located at a unique position, as compared with the phosphoinositide-binding sites of all other PX domains characterized thus far. Mutational analyses corroborated the results of the transferred cross-saturation experiments. Moreover, experiments with intact cells demonstrated the importance of this unique binding site for the function of the NADPH oxidase. The low affinity and selectivity of the atypical phosphoinositide-binding site on the p47(phox) PX domain suggest that different types of phosphoinositides sequentially bind to the p47(phox) PX domain, allowing the regulation of the multiple events that characterize the assembly and activation of phagocyte NADPH oxidase.
Collapse
Affiliation(s)
- Pavlos Stampoulis
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033; Japan Biological Informatics Consortium, Tokyo 104-0032
| | - Takumi Ueda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033
| | - Masahiko Matsumoto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033
| | - Hiroaki Terasawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033
| | - Kei Miyano
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582
| | - Hideki Sumimoto
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033; Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan.
| |
Collapse
|
42
|
Suzuki K, Namiki H. Restraint of spreading-dependent activation of polymorphonuclear leukocyte NADPH oxidase in an acidified environment. J Cell Biochem 2012; 113:899-910. [PMID: 22371970 DOI: 10.1002/jcb.23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Elucidation of the mechanisms by which environmental pH affects or regulates the functions of polymorphonuclear leukocytes (PMNs) is important because severe acidification of the microenvironment often prevails at sites of inflammation where they act in host defense. In the present study, we investigated the effect of an acidic environment on spreading-dependent activation of O2- -producing NADPH oxidase in PMNs. We found that PMNs underwent spreading spontaneously over type I collagen and plastic surfaces at both neutral and acidic pH, although spreading over fibrinogen surfaces, for which cellular stimulation with H2O2 is required, was inhibited by acidic pH. At acidic pH, however, PMNs were unable to undergo spreading-dependent production of O2-. Pharmacological experiments showed that p38 mitogen-activated protein kinase (MAPK) was involved in the signaling pathways mediating the spreading-dependent activation of NADPH oxidase, and that its spreading-dependent phosphorylation of Thr-180 and Tyr-182, a hallmark of activation, was impaired at acidic pH. Furthermore, the inhibition by acidic pH of O2- production as well as p38 MAPK phosphorylation subsequent to spreading induction was reversible; environmental neutralization and acidification after induction of spreading at acidic and neutral pH, respectively, up- and down-regulated the two phenomena. Acidic pH did not affect the O2- production activity of NADPH oxidase pre-activated by phorbol 12-myristate 13-acetate (PMA). These results suggest that, in PMNs, the p38 MAPK-mediated signaling pathway functions as a pH-sensing regulator of spreading-dependent NADPH oxidase activation.
Collapse
Affiliation(s)
- Kingo Suzuki
- Department of Biology, School of Education, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| | | |
Collapse
|
43
|
Ueyama T, Nakakita J, Nakamura T, Kobayashi T, Kobayashi T, Son J, Sakuma M, Sakaguchi H, Leto TL, Saito N. Cooperation of p40(phox) with p47(phox) for Nox2-based NADPH oxidase activation during Fcγ receptor (FcγR)-mediated phagocytosis: mechanism for acquisition of p40(phox) phosphatidylinositol 3-phosphate (PI(3)P) binding. J Biol Chem 2011; 286:40693-705. [PMID: 21956105 DOI: 10.1074/jbc.m111.237289] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During activation of the phagocyte (Nox2-based) NADPH oxidase, the cytoplasmic Phox complex (p47(phox)-p67(phox)-p40(phox)) translocates and associates with the membrane-spanning flavocytochrome b(558). It is unclear where (in cytoplasm or on membranes), when (before or after assembly), and how p40(phox) acquires its PI(3)P-binding capabilities. We demonstrated that in addition to conformational changes induced by H(2)O(2) in the cytoplasm, p40(phox) acquires PI(3)P-binding through direct or indirect membrane targeting. We also found that p40(phox) is essential when p47(phox) is partially phosphorylated during FcγR-mediated oxidase activation; however, p40(phox) is less critical when p47(phox) is adequately phosphorylated, using phosphorylation-mimicking mutants in HEK293(Nox2/FcγRIIa) and RAW264.7(p40/p47KD) cells. Moreover, PI binding to p47(phox) is less important when the autoinhibitory PX-PB1 domain interaction in p40(phox) is disrupted or when p40(phox) is targeted to membranes. Furthermore, we suggest that high affinity PI(3)P binding of the p40(phox) PX domain is critical during its accumulation on phagosomes, even when masked by the PB1 domain in the resting state. Thus, in addition to mechanisms for directly acquiring PI(3)P binding in the cytoplasm by H(2)O(2), p40(phox) can acquire PI(3)P binding on targeted membranes in a p47(phox)-dependent manner and functions both as a "carrier" of the cytoplasmic Phox complex to phagosomes and an "adaptor" of oxidase assembly on phagosomes in cooperation with p47(phox), using positive feedback mechanisms.
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hultqvist M, Sareila O, Vilhardt F, Norin U, Olsson LM, Olofsson P, Hellman U, Holmdahl R. Positioning of a polymorphic quantitative trait nucleotide in the Ncf1 gene controlling oxidative burst response and arthritis severity in rats. Antioxid Redox Signal 2011; 14:2373-83. [PMID: 21275845 DOI: 10.1089/ars.2010.3440] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Ncf1 gene, encoding the P47(PHOX) protein that regulates production of reactive oxygen species (ROS) by the phagocyte NADPH oxidase (NOX2) complex, is associated with autoimmunity and arthritis severity in rats. We have now identified that the single-nucleotide polymorphism (SNP) resulting in an M153T amino acid substitution mediates arthritis resistance and thus explains the molecular polymorphism underlying the earlier identified Ncf1 gene effect. We identified the SNP in position 153 to regulate ROS production using COS(PHOX) cells transfected with mutated Ncf1. To determine the role of this SNP for control of arthritis, we used the Wistar strain, identified to carry only the postulated arthritis resistant SNP in position 153. When this Ncf1 allele was backcrossed to the arthritis susceptible DA strain, both granulocyte ROS production and arthritis resistance were restored. Position 153 is located in the hinge region between the PX and SH3 domains of P47(PHOX). Mutational analysis of this position revealed a need for an -OH group in the side chain but we found no evidence for phosphorylation. The polymorphism did not affect assembly of the P47(PHOX)/P67(PHOX) complex in the cytosol or membrane localization, but is likely to operate downstream of assembly, affecting activity of the membrane NOX2 complex.
Collapse
Affiliation(s)
- Malin Hultqvist
- Medical Inflammation Research, C12 BMC, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ago T, Kuroda J, Kamouchi M, Sadoshima J, Kitazono T. Pathophysiological roles of NADPH oxidase/nox family proteins in the vascular system. -Review and perspective-. Circ J 2011; 75:1791-800. [PMID: 21673456 DOI: 10.1253/circj.cj-11-0388] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has been established that oxidative stress plays a crucial role in the development and progression of vascular diseases. Besides the mitochondria, the NADPH oxidase/Nox family proteins are now thought to be important origins of the reactive oxygen species that underlie various vascular disease states, such as hypertension, atherosclerosis, angiogenesis, and ischemia/reperfusion injury. This review summarizes the basis of vascular Nox proteins and discusses their pathophysiological roles in the vascular system.
Collapse
Affiliation(s)
- Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan.
| | | | | | | | | |
Collapse
|
46
|
Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 2011; 10:453-71. [PMID: 21629295 PMCID: PMC3361719 DOI: 10.1038/nrd3403] [Citation(s) in RCA: 690] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NADPH oxidases are a family of enzymes that generate reactive oxygen species (ROS). The NOX1 (NADPH oxidase 1) and NOX2 oxidases are the major sources of ROS in the artery wall in conditions such as hypertension, hypercholesterolaemia, diabetes and ageing, and so they are important contributors to the oxidative stress, endothelial dysfunction and vascular inflammation that underlies arterial remodelling and atherogenesis. In this Review, we advance the concept that compared to the use of conventional antioxidants, inhibiting NOX1 and NOX2 oxidases is a superior approach for combating oxidative stress. We briefly describe some common and emerging putative NADPH oxidase inhibitors. In addition, we highlight the crucial role of the NADPH oxidase regulatory subunit, p47phox, in the activity of vascular NOX1 and NOX2 oxidases, and suggest how a better understanding of its specific molecular interactions may enable the development of novel isoform-selective drugs to prevent or treat cardiovascular diseases.
Collapse
Affiliation(s)
- Grant R Drummond
- Vascular Biology & Immunopharmacology Group, Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
47
|
Shin JW, Ohnishi K, Murakami A, Lee JS, Kundu JK, Na HK, Ohigashi H, Surh YJ. Zerumbone induces heme oxygenase-1 expression in mouse skin and cultured murine epidermal cells through activation of Nrf2. Cancer Prev Res (Phila) 2011; 4:860-70. [PMID: 21367956 DOI: 10.1158/1940-6207.capr-10-0354] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zerumbone, a sesquiterpene derived from tropical ginger, contains an electrophilic α,β-unsaturated carbonyl moiety and was found to suppress chemically induced papilloma formation in mouse skin. Here, we report that topical application of zerumbone onto dorsal skin of hairless mice induces activation of NF-E2-related factor 2 (Nrf2) and expression of heme oxygenase-1 (HO-1). We compared the levels of HO-1 protein in the skin of zerumbone-treated Nrf2 wild-type and Nrf2 knockout mice, and nrf2-deficient mice expressed HO-1 protein to a much lesser extent than the wild-type animals following topical application of zerumbone. Treatment of mouse epidermal JB6 cells with zerumbone caused a marked increase of Nrf2 nuclear translocation followed by the promoter activity of HO-1, and also enhanced direct binding of Nrf2 to the antioxidant response element. Moreover, knockdown of Nrf2 in JB6 cells diminished the zerumbone-induced upregulation of HO-1. Notably, α-humulene and 8-hydroxy-α-humulene, the structural analogues of zerumbone that lack the α,β-unsaturated carbonyl group, failed to activate Nrf2 and were unable to increase HO-1 expression. Unlike zerumbone, these nonelectrophilic analogues could not suppress the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced JB6 cell transformation and the intracellular accumulation of reactive oxygen species (ROS). Interestingly, when JB6 cells were treated with carbon monoxide-releasing molecule that mimics the HO-1 activity, the TPA-induced ROS production was markedly reduced. Taken together, these findings suggest that upregulation of HO-1 expression by zerumbone is mediated through activation of Nrf2 signaling, which provides a mechanistic basis for the chemopreventive effects of this sesquiterpene on mouse skin carcinogenesis.
Collapse
Affiliation(s)
- Jun-Wan Shin
- College of Pharmacy, Graduate School of Convergence Science and Technology, Seoul National University, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Parkinson disease (PD) is second only to Alzheimer disease as the most common neurodegenerative disorder in humans. Despite intense investigations, no effective therapy is available to halt the progression of PD. Although statins are widely used cholesterol-lowering drugs throughout the world, recent studies suggest that these drugs modulate neurodegeneration-related signaling processes and may be beneficial for PD. Simvastatin is the most potent statin in crossing the blood-brain barrier, and this particular statin drug negatively correlates with the incidence of PD and shows efficacy in animal models of PD. However, PD mainly occurs in the aging population, who are more vulnerable to cholesterol or lipid-related disorders, raising questions whether this possible beneficial effect of statins in PD patients is cholesterol dependent or cholesterol independent. This article presents data on the therapeutic efficacy of simvastatin in a chronic MPTP model of PD, reviews recent literature, and discusses the pros and cons of statin therapy in PD.
Collapse
Affiliation(s)
- Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
49
|
Nam HJ, Park YY, Yoon G, Cho H, Lee JH. Co-treatment with hepatocyte growth factor and TGF-beta1 enhances migration of HaCaT cells through NADPH oxidase-dependent ROS generation. Exp Mol Med 2010; 42:270-9. [PMID: 20177149 DOI: 10.3858/emm.2010.42.4.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Wound healing requires re-epithelialization from the wound margin through keratinocyte proliferation and migration, and some growth factors are known to influence this process. In the present study, we found that the co-treatment with hepatocyte growth factor (HGF) and TGF-beta1 resulted in enhanced migration of HaCaT cells compared with either growth factor alone, and that N-acetylcysteine, an antioxidant agent, was the most effective among several inhibitors tested, suggesting the involvement of reactive oxygen species (ROS). Fluorescence-activated cell sorter analysis using 2,7-dichlorofluorescein diacetate (DCF-DA) dye showed an early (30 min) as well as a late (24 h) increase of ROS after scratch, and the increase was more prominent with the growth factor treatment. Diphenyliodonium (DPI), a potent inhibitor of NADPH oxidase, abolished the increase of ROS at 30 min, followed by the inhibition of migration, but not the late time event. More precisely, gene knockdown by shRNA for either Nox-1 or Nox-4 isozyme of gp91phox subunit of NADPH oxidase abolished both the early time ROS production and migration. However, HaCaT cell migration was not enhanced by treatment with H((2))O((2)). Collectively, co-treatment with HGF and TGF-beta1 enhances keratinocyte migration, accompanied with ROS generation through NADPH oxidase, involving Nox-1 and Nox-4 isozymes.
Collapse
Affiliation(s)
- Hyun-Ja Nam
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721, Korea
| | | | | | | | | |
Collapse
|
50
|
Rasmussen I, Pedersen LH, Byg L, Suzuki K, Sumimoto H, Vilhardt F. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia. BMC Immunol 2010; 11:44. [PMID: 20825680 PMCID: PMC2944333 DOI: 10.1186/1471-2172-11-44] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin dynamics, and without consideration for the subcellular distribution of the perturbed actin cytoskeleton. Results Here, we in addition to toxins use conditional expression of the major actin regulatory protein LIM kinase-1 (LIMK1), and shRNA knock-down of cofilin to modulate the cellular F/G-actin ratio in the Ra2 microglia cell line, and we use Fluorescence Recovery after Photobleaching (FRAP) in β-actin-YFP-transduced cells to obtain a dynamic measure of actin recovery rates (actin turn-over rates) in different F/G-actin states of the actin cytoskeleton. Our data demonstrate that stimulated NADPH oxidase function was severely impaired only at extreme actin recovery rates and F/G-actin ratios, and surprisingly, that any moderate changes of these parameters of the actin cytoskeleton invariably resulted in an increased NADPH oxidase activity. Conclusion moderate actin polymerization and depolymerization both increase the FMLP and PMA-stimulated NADPH oxidase activity of microglia, which is directly correlated with neither actin recovery rate nor F/G- actin ratio. Our results indicate that NADPH oxidase functions in an enhanced state of activity in stimulated phagocytes despite widely different states of the actin cytoskeleton.
Collapse
Affiliation(s)
- Izabela Rasmussen
- Dept of Cellular and Molecular Medicine, The Panum Institute, Copenhagen University, 2200N Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|