1
|
Backe SJ, Sager RA, Heritz JA, Wengert LA, Meluni KA, Aran-Guiu X, Panaretou B, Woodford MR, Prodromou C, Bourboulia D, Mollapour M. Activation of autophagy depends on Atg1/Ulk1-mediated phosphorylation and inhibition of the Hsp90 chaperone machinery. Cell Rep 2023; 42:112807. [PMID: 37453059 PMCID: PMC10529509 DOI: 10.1016/j.celrep.2023.112807] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular homeostasis relies on both the chaperoning of proteins and the intracellular degradation system that delivers cytoplasmic constituents to the lysosome, a process known as autophagy. The crosstalk between these processes and their underlying regulatory mechanisms is poorly understood. Here, we show that the molecular chaperone heat shock protein 90 (Hsp90) forms a complex with the autophagy-initiating kinase Atg1 (yeast)/Ulk1 (mammalian), which suppresses its kinase activity. Conversely, environmental cues lead to Atg1/Ulk1-mediated phosphorylation of a conserved serine in the amino domain of Hsp90, inhibiting its ATPase activity and altering the chaperone dynamics. These events impact a conformotypic peptide adjacent to the activation and catalytic loop of Atg1/Ulk1. Finally, Atg1/Ulk1-mediated phosphorylation of Hsp90 leads to dissociation of the Hsp90:Atg1/Ulk1 complex and activation of Atg1/Ulk1, which is essential for initiation of autophagy. Our work indicates a reciprocal regulatory mechanism between the chaperone Hsp90 and the autophagy kinase Atg1/Ulk1 and consequent maintenance of cellular proteostasis.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jennifer A Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Laura A Wengert
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Katherine A Meluni
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Xavier Aran-Guiu
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, UK
| | - Barry Panaretou
- School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London SE1 9NQ, UK
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
2
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
3
|
Karunanayake C, Page RC. Cytosolic protein quality control machinery: Interactions of Hsp70 with a network of co-chaperones and substrates. Exp Biol Med (Maywood) 2021; 246:1419-1434. [PMID: 33730888 PMCID: PMC8243209 DOI: 10.1177/1535370221999812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The chaperone heat shock protein 70 (Hsp70) and its network of co-chaperones serve as a central hub of cellular protein quality control mechanisms. Domain organization in Hsp70 dictates ATPase activity, ATP dependent allosteric regulation, client/substrate binding and release, and interactions with co-chaperones. The protein quality control activities of Hsp70 are classified as foldase, holdase, and disaggregase activities. Co-chaperones directly assisting protein refolding included J domain proteins and nucleotide exchange factors. However, co-chaperones can also be grouped and explored based on which domain of Hsp70 they interact. Here we discuss how the network of cytosolic co-chaperones for Hsp70 contributes to the functions of Hsp70 while closely looking at their structural features. Comparison of domain organization and the structures of co-chaperones enables greater understanding of the interactions, mechanisms of action, and roles played in protein quality control.
Collapse
Affiliation(s)
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
4
|
Chaudhury S, Keegan BM, Blagg BSJ. The role and therapeutic potential of Hsp90, Hsp70, and smaller heat shock proteins in peripheral and central neuropathies. Med Res Rev 2021; 41:202-222. [PMID: 32844464 PMCID: PMC8485878 DOI: 10.1002/med.21729] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
Heat shock proteins (Hsps) are molecular chaperones that also play important roles in the activation of the heat shock response (HSR). The HSR is an evolutionary conserved and protective mechanism that is used to counter abnormal physiological conditions, stressors, and disease states, such as those exemplified in cancer and/or neurodegeneration. In normal cells, heat shock factor-1 (HSF-1), the transcription factor that regulates the HSR, remains in a dormant multiprotein complex that is formed upon association with chaperones (Hsp90, Hsp70, etc.), co-chaperones, and client proteins. However, under cellular stress, HSF-1 dissociates from Hsp90 and induces the transcriptional upregulation of Hsp70 to afford protection against the encountered cellular stress. As a consequence of both peripheral and central neuropathies, cellular stress occurs and results in the accumulation of unfolded and/or misfolded proteins, which can be counterbalanced by activation of the HSR. Since Hsp90 is the primary regulator of the HSR, modulation of Hsp90 by small molecules represents an attractive therapeutic approach against both peripheral and central neuropathies.
Collapse
Affiliation(s)
- Subhabrata Chaudhury
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| | - Bradley M Keegan
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
5
|
Darby JF, Vidler LR, Simpson PJ, Al-Lazikani B, Matthews SJ, Sharp SY, Pearl LH, Hoelder S, Workman P. Solution structure of the Hop TPR2A domain and investigation of target druggability by NMR, biochemical and in silico approaches. Sci Rep 2020; 10:16000. [PMID: 32994435 PMCID: PMC7524759 DOI: 10.1038/s41598-020-71969-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that plays an important role in tumour biology by promoting the stabilisation and activity of oncogenic 'client' proteins. Inhibition of Hsp90 by small-molecule drugs, acting via its ATP hydrolysis site, has shown promise as a molecularly targeted cancer therapy. Owing to the importance of Hop and other tetratricopeptide repeat (TPR)-containing cochaperones in regulating Hsp90 activity, the Hsp90-TPR domain interface is an alternative site for inhibitors, which could result in effects distinct from ATP site binders. The TPR binding site of Hsp90 cochaperones includes a shallow, positively charged groove that poses a significant challenge for druggability. Herein, we report the apo, solution-state structure of Hop TPR2A which enables this target for NMR-based screening approaches. We have designed prototype TPR ligands that mimic key native 'carboxylate clamp' interactions between Hsp90 and its TPR cochaperones and show that they block binding between Hop TPR2A and the Hsp90 C-terminal MEEVD peptide. We confirm direct TPR-binding of these ligands by mapping 1H-15N HSQC chemical shift perturbations to our new NMR structure. Our work provides a novel structure, a thorough assessment of druggability and robust screening approaches that may offer a potential route, albeit difficult, to address the chemically challenging nature of the Hop TPR2A target, with relevance to other TPR domain interactors.
Collapse
Affiliation(s)
- John F Darby
- Division of Cancer Therapeutics, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Lewis R Vidler
- Division of Cancer Therapeutics, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Peter J Simpson
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Bruker UK Ltd, Banner Lane, Coventry, CV4 9GH, UK
| | - Bissan Al-Lazikani
- Division of Cancer Therapeutics, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Stephen J Matthews
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Swee Y Sharp
- Division of Cancer Therapeutics, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
- Division of Structural Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Swen Hoelder
- Division of Cancer Therapeutics, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Paul Workman
- Division of Cancer Therapeutics, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK.
- Cancer Research UK Convergence Science Centre, The Institute of Cancer Research and Imperial College London, London, UK.
| |
Collapse
|
6
|
Abstract
Small RNAs govern almost every biological process in eukaryotes associating with the Argonaute (AGO) proteins to form the RNA-induced silencing complex (mRISC). AGO proteins constitute the core of RISCs with different members having variety of protein-binding partners and biochemical properties. This review focuses on the AGO subfamily of the AGOs that are ubiquitously expressed and are associated with small RNAs. The structure, function and role of the AGO proteins in the cell is discussed in detail.
Collapse
Affiliation(s)
- Saife Niaz
- Department of Biotechnology, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
7
|
Centenera MM, Selth LA, Ebrahimie E, Butler LM, Tilley WD. New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030478. [PMID: 29530945 PMCID: PMC6280715 DOI: 10.1101/cshperspect.a030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent genomic analyses of metastatic prostate cancer have provided important insight into adaptive changes in androgen receptor (AR) signaling that underpin resistance to androgen deprivation therapies. Novel strategies are required to circumvent these AR-mediated resistance mechanisms and thereby improve prostate cancer survival. In this review, we present a summary of AR structure and function and discuss mechanisms of AR-mediated therapy resistance that represent important areas of focus for the development of new therapies.
Collapse
Affiliation(s)
- Margaret M Centenera
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Luke A Selth
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Wayne D Tilley
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
8
|
Assimon VA, Southworth DR, Gestwicki JE. Specific Binding of Tetratricopeptide Repeat Proteins to Heat Shock Protein 70 (Hsp70) and Heat Shock Protein 90 (Hsp90) Is Regulated by Affinity and Phosphorylation. Biochemistry 2015; 54:7120-31. [PMID: 26565746 PMCID: PMC4714923 DOI: 10.1021/acs.biochem.5b00801] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) require the help of tetratricopeptide repeat (TPR) domain-containing cochaperones for many of their functions. Each monomer of Hsp70 or Hsp90 can interact with only a single TPR cochaperone at a time, and each member of the TPR cochaperone family brings distinct functions to the complex. Thus, competition for TPR binding sites on Hsp70 and Hsp90 appears to shape chaperone activity. Recent structural and biophysical efforts have improved our understanding of chaperone-TPR contacts, focusing on the C-terminal EEVD motif that is present in both chaperones. To better understand these important protein-protein interactions on a wider scale, we measured the affinity of five TPR cochaperones, CHIP, Hop, DnaJC7, FKBP51, and FKBP52, for the C-termini of four members of the chaperone family, Hsc70, Hsp72, Hsp90α, and Hsp90β, in vitro. These studies identified some surprising selectivity among the chaperone-TPR pairs, including the selective binding of FKBP51/52 to Hsp90α/β. These results also revealed that other TPR cochaperones are only able to weakly discriminate between the chaperones or between their paralogs. We also explored whether mimicking phosphorylation of serine and threonine residues near the EEVD motif might impact affinity and found that pseudophosphorylation had selective effects on binding to CHIP but not other cochaperones. Together, these findings suggest that both intrinsic affinity and post-translational modifications tune the interactions between the Hsp70 and Hsp90 proteins and the TPR cochaperones.
Collapse
Affiliation(s)
| | | | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158
| |
Collapse
|
9
|
Hsp90 Inhibitors for the Treatment of Chronic Myeloid Leukemia. LEUKEMIA RESEARCH AND TREATMENT 2015; 2015:757694. [PMID: 26770832 PMCID: PMC4681826 DOI: 10.1155/2015/757694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 12/29/2022]
Abstract
Chronic myeloid leukemia (CML) is a hematological malignancy that arises due to reciprocal translocation of 3' sequences from c-Abelson (ABL) protooncogene of chromosome 9 with 5' sequence of truncated break point cluster region (BCR) on chromosome 22. BCR-ABL is a functional oncoprotein p210 that exhibits constitutively activated tyrosine kinase causing genomic alteration of hematopoietic stem cells. BCR-ABL specific tyrosine kinase inhibitors (TKIs) successfully block CML progression. However, drug resistance owing to BCR-ABL mutations and overexpression is still an issue. Heat-shock proteins (Hsps) function as molecular chaperones facilitating proper folding of nascent polypeptides. Their increased expression under stressful conditions protects cells by stabilizing unfolded or misfolded peptides. Hsp90 is the major mammalian protein and is required by BCR-ABL for stabilization and maturation. Hsp90 inhibitors destabilize the binding of BCR-ABL protein thus leading to the formation of heteroprotein complex that is eventually degraded by the ubiquitin-proteasome pathway. Results of many novel Hsp90 inhibitors that have entered into various clinical trials are encouraging. The present review targets the current development in the CML treatment by availing Hsp90 specific inhibitors.
Collapse
|
10
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
11
|
Philp LK, Butler MS, Hickey TE, Butler LM, Tilley WD, Day TK. SGTA: a new player in the molecular co-chaperone game. Discov Oncol 2013; 4:343-57. [PMID: 23818240 PMCID: PMC7091355 DOI: 10.1007/s12672-013-0151-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/12/2013] [Indexed: 12/25/2022] Open
Abstract
Small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) is a steroid receptor molecular co-chaperone that may substantially influence hormone action and, consequently, hormone-mediated carcinogenesis. To date, published studies describe SGTA as a protein that is potentially critical in a range of biological processes, including viral infection, cell division, mitosis, and cell cycle checkpoint activation. SGTA interacts with the molecular chaperones, heat shock protein 70 (HSP70) and HSP90, and with steroid receptor complexes, including those containing the androgen receptor. Steroid receptors are critical for maintaining cell growth and differentiation in hormonally regulated tissues, such as male and female reproductive tissues, and also play a role in disease states involving these tissues. There is growing evidence that, through its interactions with chaperones and steroid receptors, SGTA may be a key player in the pathogenesis of hormonally influenced disease states, including prostate cancer and polycystic ovary syndrome. Research into the function of SGTA has been conducted in several model organisms and cell types, with these studies showing that SGTA functionality is cell-specific and tissue-specific. However, very few studies have been replicated in multiple cell types or experimental systems. Although a broad range of functions have been attributed to SGTA, there is a serious lack of mechanistic information to describe how SGTA acts. In this review, published evidence linking SGTA with hormonally regulated disease states is summarized and discussed, highlighting the need for future research to more clearly define the biological function(s) of this potentially important co-chaperone.
Collapse
Affiliation(s)
- Lisa K. Philp
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000 Australia
| | - Miriam S. Butler
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000 Australia
| | - Theresa E. Hickey
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000 Australia
| | - Lisa M. Butler
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000 Australia
| | - Wayne D. Tilley
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000 Australia
| | - Tanya K. Day
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000 Australia
| |
Collapse
|
12
|
Iki T, Yoshikawa M, Meshi T, Ishikawa M. Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J 2012; 31:267-78. [PMID: 22045333 PMCID: PMC3261558 DOI: 10.1038/emboj.2011.395] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/06/2011] [Indexed: 12/30/2022] Open
Abstract
Posttranscriptional gene silencing is mediated by RNA-induced silencing complexes (RISCs) that contain AGO proteins and single-stranded small RNAs. The assembly of plant AGO1-containing RISCs depends on the molecular chaperone HSP90. Here, we demonstrate that cyclophilin 40 (CYP40), protein phosphatase 5 (PP5), and several other proteins with the tetratricopeptide repeat (TPR) domain associates with AGO1 in an HSP90-dependent manner in extracts of evacuolated tobacco protoplasts (BYL). Intriguingly, CYP40, but not the other TPR proteins, could form a complex with small RNA duplex-bound AGO1. Moreover, CYP40 that was synthesized by in-vitro translation using BYL uniquely facilitated binding of small RNA duplexes to AGO1, and as a result, increased the amount of mature RISCs that could cleave target RNAs. CYP40 was not contained in mature RISCs, indicating that the association is transient. Addition of PP5 or cyclophilin-binding drug cyclosporine A prevented the association of endogenous CYP40 with HSP90-AGO1 complex and inhibited RISC assembly. These results suggest that a complex of AGO1, HSP90, CYP40, and a small RNA duplex is a key intermediate of RISC assembly in plants.
Collapse
Affiliation(s)
- Taichiro Iki
- Division of Plant Sciences, Plant–Microbe Interactions Research Unit, National Institute of Agrobiological Sciences (NIAS), Ibaraki, Japan
| | - Manabu Yoshikawa
- Division of Plant Sciences, Plant–Microbe Interactions Research Unit, National Institute of Agrobiological Sciences (NIAS), Ibaraki, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan
| | - Tetsuo Meshi
- Division of Plant Sciences, Plant–Microbe Interactions Research Unit, National Institute of Agrobiological Sciences (NIAS), Ibaraki, Japan
| | - Masayuki Ishikawa
- Division of Plant Sciences, Plant–Microbe Interactions Research Unit, National Institute of Agrobiological Sciences (NIAS), Ibaraki, Japan
| |
Collapse
|
13
|
The adaptor protein 14-3-3 binds to the calcium-sensing receptor and attenuates receptor-mediated Rho kinase signalling. Biochem J 2012; 441:995-1006. [DOI: 10.1042/bj20111277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A yeast two-hybrid screen performed to identify binding partners of the CaR (calcium-sensing receptor) intracellular tail identified the adaptor protein 14-3-3θ as a novel binding partner that bound to the proximal membrane region important for CaR expression and signalling. The 14-3-3θ protein directly interacted with the CaR tail in pull-down studies and FLAG-tagged CaR co-immunoprecipitated with EGFP (enhanced green fluorescent protein)-tagged 14-3-3θ when co-expressed in HEK (human embryonic kidney)-293 or COS-1 cells. The interaction between the CaR and 14-3-3θ did not require a putative binding site in the membrane-proximal region of the CaR tail and was independent of PKC (protein kinase C) phosphorylation. Confocal microscopy demonstrated co-localization of the CaR and EGFP–14-3-3θ in the ER (endoplasmic reticulum) of HEK-293 cells that stably expressed the CaR (HEK-293/CaR cells), but 14-3-3θ overexpression had no effect on membrane expression of the CaR. Overexpression of 14-3-3θ in HEK-293/CaR cells attenuated CaR-mediated Rho signalling, but had no effect on ERK (extracellular-signal-regulated kinase) 1/2 signalling. Another isoform identified from the library, 14-3-3ζ, exhibited similar behaviour to that of 14-3-3θ with respect to CaR tail binding, cellular co-localization and impact on receptor-mediated signalling. However, unlike 14-3-3θ, this isoform, when overexpressed, significantly reduced CaR plasma membrane expression. Results indicate that 14-3-3 proteins mediate CaR-dependent Rho signalling and may modulate the plasma membrane expression of the CaR.
Collapse
|
14
|
da Silva VCH, Ramos CHI. The network interaction of the human cytosolic 90 kDa heat shock protein Hsp90: A target for cancer therapeutics. J Proteomics 2012; 75:2790-802. [PMID: 22236519 DOI: 10.1016/j.jprot.2011.12.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
In the cell, proteins interact within a network in which a small number of proteins are highly connected nodes or hubs. A disturbance in the hub proteins usually has a higher impact on the cell physiology than a disturbance in poorly connected nodes. In eukaryotes, the cytosolic Hsp90 is considered to be a hub protein as it interacts with molecular chaperones and co-chaperones, and has key regulatory proteins as clients, such as transcriptional factors, protein kinases and hormone receptors. The large number of Hsp90 partners suggests that Hsp90 is involved in very important functions, such as signaling, proteostasis and epigenetics. Some of these functions are dysregulated in cancer, making Hsp90 a potential target for therapeutics. The number of Hsp90 interactors appears to be so large that a precise answer to the question of how many proteins interact with this chaperone has no definitive answer yet, not even if the question refers to specific Hsp90s as one of the human cytosolic forms. Here we review the major chaperones and co-chaperones that interact with cytosolic Hsp90s, highlighting the latest findings regarding client proteins and the role that posttranslational modifications have on the function and interactions of these molecular chaperones. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- Viviane C H da Silva
- Institute of Chemistry, University of Campinas-UNICAMP. P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | | |
Collapse
|
15
|
Earley KW, Poethig RS. Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis. J Biol Chem 2011; 286:38184-38189. [PMID: 21908611 PMCID: PMC3207435 DOI: 10.1074/jbc.m111.290130] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/09/2011] [Indexed: 11/06/2022] Open
Abstract
SQN (SQUINT) is the Arabidopsis ortholog of the immunophilin CyP40 (cyclophilin 40) and promotes microRNA activity by promoting the activity of AGO1. In animals and Saccharomyces cerevisiae, CyP40 promotes protein activity in association with the protein chaperone Hsp90. To determine whether CyP40 also acts in association with Hsp90 in plants, we examined the interaction between SQN and Hsp90 in vitro and tested the importance of this interaction for the function of SQN in planta. We found that SQN interacts with cytoplasmic Hsp90 proteins but not with Hsp90 proteins localized to chloroplasts, mitochondria, or the endoplasmic reticulum. The interaction between SQN and Hsp90 in vitro requires the MEEVD domain of Hsp90, as well as several conserved amino acids within the tetratricopeptide repeat domain of SQN. Amino acid substitutions that disrupt the interaction between SQN and Hsp90 in vitro also impair the activity of SQN in planta. Our results indicate that the interaction between CyP40 and Hsp90 is conserved in plants and that this interaction is essential for the function of CyP40.
Collapse
Affiliation(s)
- Keith W Earley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
16
|
Magno AL, Ingley E, Brown SJ, Conigrave AD, Ratajczak T, Ward BK. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling. Biochem Biophys Res Commun 2011; 412:584-9. [DOI: 10.1016/j.bbrc.2011.07.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 07/30/2011] [Indexed: 11/15/2022]
|
17
|
Affiliation(s)
- Yizhi Jane Tao
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, MS140, Houston, TX 77005, USA.
| | | |
Collapse
|
18
|
Abstract
BACKGROUND The 90-kDa heat-shock proteins (Hsp90) have rapidly evolved into promising therapeutic targets for the treatment of several diseases, including cancer and neurodegenerative diseases. Hsp90 is a molecular chaperone that aids in the conformational maturation of nascent polypeptides, as well as the rematuration of denatured proteins. DISCUSSION Many of the Hsp90-dependent client proteins are associated with cellular growth and survival and, consequently, inhibition of Hsp90 represents a promising approach for the treatment of cancer. Conversely, stimulation of heat-shock protein levels has potential therapeutic applications for the treatment of neurodegenerative diseases that result from misfolded and aggregated proteins. CONCLUSION Hsp90 modulation exhibits the potential to treat unrelated disease states, from cancer to neurodegenerative diseases, and, thus, to fold or not to fold, becomes a question of great value.
Collapse
|
19
|
Gallo LI, Lagadari M, Piwien-Pilipuk G, Galigniana MD. The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress. J Biol Chem 2011; 286:30152-60. [PMID: 21730050 DOI: 10.1074/jbc.m111.256610] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Confocal microscopy images revealed that the tetratricopeptide repeat motif (TPR) domain immunophilin FKBP51 shows colocalization with the specific mitochondrial marker MitoTracker. Signal specificity was tested with different antibodies and by FKBP51 knockdown. This unexpected subcellular localization of FKBP51 was confirmed by colocalization studies with other mitochondrial proteins, biochemical fractionation, and electron microscopy imaging. Interestingly, FKBP51 forms complexes in mitochondria with the glucocorticoid receptor and the Hsp90/Hsp70-based chaperone heterocomplex. Although Hsp90 inhibitors favor FKBP51 translocation from mitochondria to the nucleus in a reversible manner, TPR domain-deficient mutants of FKBP51 are constitutively nuclear and fully excluded from mitochondria, suggesting that a functional TPR domain is required for its mitochondrial localization. FKBP51 overexpression protects cells against oxidative stress, whereas FKBP51 knockdown makes them more sensitive to injury. In summary, this is the first demonstration that FKBP51 is a major mitochondrial factor that undergoes nuclear-mitochondrial shuttling, an observation that may be related to antiapoptotic mechanisms triggered during the stress response.
Collapse
Affiliation(s)
- Luciana I Gallo
- Instituto de Biología y Medicina Experimental/Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME/CONICET), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
20
|
Allan RK, Ratajczak T. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 2011; 16:353-67. [PMID: 21153002 PMCID: PMC3118826 DOI: 10.1007/s12192-010-0248-0] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/21/2010] [Accepted: 11/24/2010] [Indexed: 12/30/2022] Open
Abstract
The tetratricopeptide repeat (TPR) motif is one of many repeat motifs that form structural domains in proteins that can act as interaction scaffolds in the formation of multi-protein complexes involved in numerous cellular processes such as transcription, the cell cycle, protein translocation, protein degradation and host defence against invading pathogens. The crystal structures of many TPR domain-containing proteins have been determined, showing TPR motifs as two anti-parallel α-helices packed in tandem arrays to form a structure with an amphipathic groove which can bind a target peptide. This is however not the only mode of target recognition by TPR domains, with short amino acid insertions and alternative TPR motif conformations also shown to contribute to protein interactions, highlighting diversity in TPR domains and the versatility of this structure in mediating biological events.
Collapse
Affiliation(s)
- Rudi Kenneth Allan
- Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009 Australia
- The Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009 Australia
| | - Thomas Ratajczak
- Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009 Australia
- The Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009 Australia
| |
Collapse
|
21
|
Sengupta S, Badhwar I, Upadhyay M, Singh S, Ganesh S. Malin and laforin are essential components of a protein complex that protects cells from thermal stress. J Cell Sci 2011; 124:2277-86. [PMID: 21652633 DOI: 10.1242/jcs.082800] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heat-shock response is a conserved cellular process characterized by the induction of a unique group of proteins known as heat-shock proteins. One of the primary triggers for this response, at least in mammals, is heat-shock factor 1 (HSF1)--a transcription factor that activates the transcription of heat-shock genes and confers protection against stress-induced cell death. In the present study, we investigated the role of the phosphatase laforin and the ubiquitin ligase malin in the HSF1-mediated heat-shock response. Laforin and malin are defective in Lafora disease (LD), a neurodegenerative disorder associated with epileptic seizures. Using cellular models, we demonstrate that these two proteins, as a functional complex with the co-chaperone CHIP, translocate to the nucleus upon heat shock and that all the three members of this complex are required for full protection against heat-shock-induced cell death. We show further that laforin and malin interact with HSF1 and contribute to its activation during stress by an unknown mechanism. HSF1 is also required for the heat-induced nuclear translocation of laforin and malin. This study demonstrates that laforin and malin are key regulators of HSF1 and that defects in the HSF1-mediated stress response pathway might underlie some of the pathological symptoms in LD.
Collapse
Affiliation(s)
- Sonali Sengupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | | | | | | | | |
Collapse
|
22
|
In silico identification of carboxylate clamp type tetratricopeptide repeat proteins in Arabidopsis and rice as putative co-chaperones of Hsp90/Hsp70. PLoS One 2010; 5:e12761. [PMID: 20856808 PMCID: PMC2939883 DOI: 10.1371/journal.pone.0012761] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 07/16/2010] [Indexed: 11/19/2022] Open
Abstract
The essential eukaryotic molecular chaperone Hsp90 operates with the help of different co-chaperones, which regulate its ATPase activity and serve as adaptors to recruit client proteins and other molecular chaperones, such as Hsp70, to the Hsp90 complex. Several Hsp90 and Hsp70 co-chaperones contain the tetratricopeptide repeat (TPR) domain, which interacts with the highly conserved EEVD motif at the C-terminal ends of Hsp90 and Hsp70. The acidic side chains in EEVD interact with a subset of basic residues in the TPR binding pocket called a 'carboxylate clamp'. Since the carboxylate clamp residues are conserved in the TPR domains of known Hsp90/Hsp70 co-chaperones, we carried out an in silico search for TPR proteins in Arabidopsis and rice comprising of at least one three-motif TPR domain with conserved amino acid residues required for Hsp90/Hsp70 binding. This approach identified in Arabidopsis a total of 36 carboxylate clamp (CC)-TPR proteins, including 24 novel proteins, with potential to interact with Hsp90/Hsp70. The newly identified CC-TPR proteins in Arabidopsis and rice contain additional protein domains such as ankyrin, SET, octicosapeptide/Phox/Bem1p (Phox/PB1), DnaJ-like, thioredoxin, FBD and F-box, and protein kinase and U-box, indicating varied functions for these proteins. To provide proof-of-concept of the newly identified CC-TPR proteins for interaction with Hsp90, we demonstrated interaction of AtTPR1 and AtTPR2 with AtHsp90 in yeast two-hybrid and in vitro pull down assays. These findings indicate that the in silico approach used here successfully identified in a genome-wide context CC-TPR proteins with potential to interact with Hsp90/Hsp70, and further suggest that the Hsp90/Hsp70 system relies on TPR co-chaperones more than it was previously realized.
Collapse
|
23
|
Schülke JP, Wochnik GM, Lang-Rollin I, Gassen NC, Knapp RT, Berning B, Yassouridis A, Rein T. Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors. PLoS One 2010; 5:e11717. [PMID: 20661446 PMCID: PMC2908686 DOI: 10.1371/journal.pone.0011717] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 06/24/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tetratricopeptide repeat (TPR) motif containing co-chaperones of the chaperone Hsp90 are considered control modules that govern activity and specificity of this central folding platform. Steroid receptors are paradigm clients of Hsp90. The influence of some TPR proteins on selected receptors has been described, but a comprehensive analysis of the effects of TPR proteins on all steroid receptors has not been accomplished yet. METHODOLOGY AND PRINCIPAL FINDINGS We compared the influence of the TPR proteins FK506 binding proteins 51 and 52, protein phosphatase-5, C-terminus of Hsp70 interacting protein, cyclophillin 40, hepatitis-virus-B X-associated protein-2, and tetratricopeptide repeat protein-2 on all six steroid hormone receptors in a homogeneous mammalian cell system. To be able to assess each cofactor's effect on the transcriptional activity of on each steroid receptor we employed transient transfection in a reporter gene assay. In addition, we evaluated the interactions of the TPR proteins with the receptors and components of the Hsp90 chaperone heterocomplex by coimmunoprecipitation. In the functional assays, corticosteroid and progesterone receptors displayed the most sensitive and distinct reaction to the TPR proteins. Androgen receptor's activity was moderately impaired by most cofactors, whereas the Estrogen receptors' activity was impaired by most cofactors only to a minor degree. Second, interaction studies revealed that the strongly receptor-interacting co-chaperones were all among the inhibitory proteins. Intriguingly, the TPR-proteins also differentially co-precipitated the heterochaperone complex components Hsp90, Hsp70, and p23, pointing to differences in their modes of action. CONCLUSION AND SIGNIFICANCE The results of this comprehensive study provide important insight into chaperoning of diverse client proteins via the combinatorial action of (co)-chaperones. The differential effects of the TPR proteins on steroid receptors bear on all physiological processes related to steroid hormone activity.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Line, Tumor
- Peptidyl-Prolyl Isomerase F
- Cyclophilins/genetics
- Cyclophilins/metabolism
- HSP40 Heat-Shock Proteins/genetics
- HSP40 Heat-Shock Proteins/metabolism
- Heat-Shock Proteins
- Humans
- Immunoblotting
- Immunoprecipitation
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Molecular Chaperones
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Tacrolimus Binding Proteins/genetics
- Tacrolimus Binding Proteins/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Jan-Philip Schülke
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | - Barbara Berning
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Theo Rein
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
24
|
Choi BH, Feng L, Yoon HS. FKBP38 protects Bcl-2 from caspase-dependent degradation. J Biol Chem 2010; 285:9770-9779. [PMID: 20139069 DOI: 10.1074/jbc.m109.032466] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cellular processes that regulate Bcl-2 at the posttranslational levels are as important as those that regulate bcl-2 synthesis. Previously we demonstrated that the suppression of FK506-binding protein 38 (FKBP38) contributes to the instability of Bcl-2 or leaves Bcl-2 unprotected from degradation in an unknown mechanism. Here, we studied the underlying molecular mechanism mediating this process. We first showed that Bcl-2 binding-defective mutants of FKBP38 fail to accumulate Bcl-2 protein. We demonstrated that the FKBP38-mediated Bcl-2 stability is specific as the levels of other anti-apoptotic proteins such as Bcl-X(L) and Mcl-1 remained unaffected. FKBP38 enhanced the Bcl-2 stability under the blockade of de novo protein synthesis, indicating it is posttranslational. We showed that the overexpression of FKBP38 attenuates reduction rate of Bcl-2, thus resulting in an increment of the intracellular Bcl-2 level, contributing to the resistance of apoptotic cell death induced by the treatment of kinetin riboside, an anticancer drug. Caspase inhibitors markedly induced the accumulation of Bcl-2. In caspase-3-activated cells, the knockdown of endogenous FKBP38 by small interfering RNA resulted in Bcl-2 down-regulation as well, which was significantly recovered by the treatment with caspase inhibitors or overexpression of FKBP38. Finally we presented that the Bcl-2 cleavage by caspase-3 is blocked when Bcl-2 binds to FKBP38 through the flexible loop. Taken together, these results suggest that FKBP38 is a key player in regulating the function of Bcl-2 by antagonizing caspase-dependent degradation through the direct interaction with the flexible loop domain of Bcl-2, which contains the caspase cleavage site.
Collapse
Affiliation(s)
- Bo-Hwa Choi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Lin Feng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| |
Collapse
|
25
|
Wang N, Whang I, Lee JS, Lee J. Molecular characterization and expression analysis of a heat shock protein 90 gene from disk abalone (Haliotis discus). Mol Biol Rep 2010; 38:3055-60. [PMID: 20131011 DOI: 10.1007/s11033-010-9972-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
Heat shock protein 90s (hsp90s) are chaperones that contribute to the proper folding of cellular proteins and help animals cope with the cellular protein damages in stress conditions. In this study, an hsp90 gene was isolated from disc abalone (Haliotis discus). The complete nucleotide sequence of the hsp90 gene contains an open reading frame of 2,184 base pairs, encoding an 84 kDa protein. Disk abalone hsp90 shares high sequence similarity with other hsp90 family proteins. Although the phylogenetic analysis did not classify it into the hsp90α group, the inductivity of this gene was confirmed by heat shock and lipopolysaccharide (LPS) challenge test. Disk abalone hsp90 gene displayed a rapid and reversible induction response to both an exposure of typical heat shock and the LPS challenge. Once given the sublethal heat shock treatment, the transcription of disk abalone hsp90 gene was significantly up-regulated. With a recovery of 12 h, the transcription of disk abalone hsp90 gene gradually attenuated to the control level. These observations reflected the feedback regulation of abalone heat shock responses faithfully. In response to LPS challenge, the transcription of disk abalone hsp90 gene was significantly increased within 2 h and it approached maximum induction at 4 h later and recovered finally the reference level in 24 h. Take all together, the cloning and expression analysis of disk abalone hsp90 gene provided useful molecular information of abalone responses in stress conditions and potential ways to monitor the chronic stressors in abalone culture environments and diagnose the animal health status.
Collapse
Affiliation(s)
- Ning Wang
- Department of Marine Life Sciences, College of Ocean Science, Jeju National University, Jeju-si 690-756, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Echeverria PC, Picard D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:641-9. [PMID: 20006655 DOI: 10.1016/j.bbamcr.2009.11.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
Steroid hormone receptors (SHRs) are notorious intracellular travellers, transiting among different cellular compartments as they mature, are subjected to regulation and exert their biological functions. Understanding the processes governing the intracellular traffic of SHRs is important, since their unbalanced or erroneous localization could lead to the development of diseases. In this review, we not only explore the functions of the heat-shock protein 90 (Hsp90) molecular chaperone machine for the intracellular transport of SHRs, but also for the regulation of their nuclear mobility, for their recycling and for the regulation of their transcriptional output.
Collapse
Affiliation(s)
- Pablo C Echeverria
- Département de Biologie Cellulaire, Université de Genève, 1211 Genève 4, Switzerland
| | | |
Collapse
|
27
|
Jisa E, Graumann K, Jungbauer A. Proteins Accompanying the Estrogen Receptor α and β: A Model for Studying Protein Hetero-Complexes. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420108992028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Hernández Torres J, Papandreou N, Chomilier J. Sequence analyses reveal that a TPR-DP module, surrounded by recombinable flanking introns, could be at the origin of eukaryotic Hop and Hip TPR-DP domains and prokaryotic GerD proteins. Cell Stress Chaperones 2009; 14:281-9. [PMID: 18987995 PMCID: PMC2728264 DOI: 10.1007/s12192-008-0083-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 09/15/2008] [Indexed: 11/27/2022] Open
Abstract
The co-chaperone Hop [heat shock protein (HSP) organising protein] is known to bind both Hsp70 and Hsp90. Hop comprises three repeats of a tetratricopeptide repeat (TPR) domain, each consisting of three TPR motifs. The first and last TPR domains are followed by a domain containing several dipeptide (DP) repeats called the DP domain. These analyses suggest that the hop genes result from successive recombination events of an ancestral TPR-DP module. From a hydrophobic cluster analysis of homologous Hop protein sequences derived from gene families, we can postulate that shifts in the open reading frames are at the origin of the present sequences. Moreover, these shifts can be related to the presence or absence of biological function. We propose to extend the family of Hop co-chaperons into the kingdom of bacteria, as several structurally related genes have been identified by hydrophobic cluster analysis. We also provide evidence of common structural characteristics between hop and hip genes, suggesting a shared precursor of ancestral TPR-DP domains.
Collapse
Affiliation(s)
- Jorge Hernández Torres
- Laboratorio de Biología Molecular, Escuela de Biología, Universidad Industrial de Santander, Apartado Aéreo 678, Bucaramanga, Colombia.
| | | | | |
Collapse
|
29
|
Hui KKW, Liadis N, Robertson J, Kanungo A, Henderson JT. Calcineurin inhibition enhances motor neuron survival following injury. J Cell Mol Med 2009; 14:671-86. [PMID: 19243469 PMCID: PMC3823465 DOI: 10.1111/j.1582-4934.2009.00715.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The immunosuppressive agents cyclosporin A (CsA) and FK-506 have previously been shown to exhibit neurotrophic and neuroprotective properties in vivo. Given that significant clinical expertise exists for both drugs, they represent an attractive starting point for treatment of acute neural injuries. One putative mechanism for neuroprotection by these drugs relates to inhibition of calcineurin activity. However each drug-immunophilin complex can potentially influence additional signal transduction pathways. Furthermore, several non-immunosuppressive immunophilin ligands have been described as possessing neuroprotective properties, suggesting that neuroprotection may be separable from calcineurin inhibition. In the present study, we examined the mechanism of this neuroprotection in facial motor neurons following axotomy-induced injury. Similar to previous studies in rats, CsA and FK-506 enhanced motor neuron survival in mice following acute injury. To examine the mechanism responsible for neuroprotection by these agents, pharmacologic inhibitors of several potential alternate signalling pathways (17-(allylamino)-17-demethoxygeldanamycin, rapamycin, cypermethrin) were evaluated with respect to neuroprotection. Of these, only cypermethrin, a direct calcineurin inhibitor not previously associated with neuronal survival properties, was observed to significantly enhance motor neuron survival following injury. The results demonstrate for the first time that direct inhibition of calcineurin is neuroprotective in vivo. These data support a model in which calcineurin inhibition promotes neuronal survival, distinct from effects upon neurite outgrowth.
Collapse
Affiliation(s)
- Kelvin K W Hui
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
30
|
Banerjee A, Periyasamy S, Wolf IM, Hinds TD, Yong W, Shou W, Sanchez ER. Control of glucocorticoid and progesterone receptor subcellular localization by the ligand-binding domain is mediated by distinct interactions with tetratricopeptide repeat proteins. Biochemistry 2008; 47:10471-80. [PMID: 18771283 DOI: 10.1021/bi8011862] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The TPR proteins FKBP52, FKBP51, Cyp40, and PP5 are found in steroid receptor (SR) complexes, but their receptor-specific preferences and roles remain unresolved. We have undertaken a systematic approach to this problem by examining the contribution of all four TPRs to the localization properties of glucocorticoid (GR) and progesterone (PR) receptors. The GR of L929 cells was found in the cytoplasm in a complex containing PP5 and FKBP51, while the GR of WCL2 cells was nuclear and contained PP5 and FKBP52. Cyp40 did not interact with the GR in either cell line. To test whether FKBP interaction determined localization, we overexpressed Flag-tagged FKBP51 in WCL2 cells and Flag-FKBP52 in L929 cells. In WCL2 cells, the GR exhibited a shift to greater cytoplasmic localization that correlated with recruitment of Flag-FKBP51. In contrast, Flag-FKBP52 was not recruited to the GR of L929 cells, and no change in localization was observed, suggesting that both cell-type-specific mechanisms and TPR abundance contribute to the SR-TPR interaction. As a further test, GR-GFP and PR-GFP constructs were expressed in COS cells. The GR-GFP construct localized to the cytoplasm, while the PR-GFP construct was predominantly nuclear. Similar to L929 cells, the GR in COS interacted with PP5 and FKBP51, while PR interacted with FKBP52. Analysis of GR-PR chimeric constructs revealed that the ligand-binding domain of each receptor determines both TPR specificity and localization. Lastly, we analyzed GR and PR localization in cells completely lacking TPR. PR in FKBP52 KO cells showed a complete shift to the cytoplasm, while GR in FKBP51 KO and PP5 KO cells showed a moderate shift to the nucleus, indicating that both TPRs contribute to GR localization. Our results demonstrate that SRs have distinct preferences for TPR proteins, a property that resides in the LBD and which can now explain long-standing differences in receptor subcellular localization.
Collapse
Affiliation(s)
- Ananya Banerjee
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, 3035 Arlington Avenue, Toledo, Ohio 43614-5804, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Millson S, Vaughan C, Zhai C, Ali M, Panaretou B, Piper P, Pearl L, Prodromou C. Chaperone ligand-discrimination by the TPR-domain protein Tah1. Biochem J 2008; 413:261-8. [PMID: 18412542 PMCID: PMC2865030 DOI: 10.1042/bj20080105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/11/2008] [Accepted: 04/15/2008] [Indexed: 01/22/2023]
Abstract
Tah1 [TPR (tetratricopeptide repeat)-containing protein associated with Hsp (heat-shock protein) 90] has been identified as a TPR-domain protein. TPR-domain proteins are involved in protein-protein interactions and a number have been characterized that interact either with Hsp70 or Hsp90, but a few can bind both chaperones. Independent studies suggest that Tah1 interacts with Hsp90, but whether it can also interact with Hsp70/Ssa1 has not been investigated. Amino-acid-sequence alignments suggest that Tah1 is most similar to the TPR2b domain of Hop (Hsp-organizing protein) which when mutated reduces binding to both Hsp90 and Hsp70. Our alignments suggest that there are three TPR-domain motifs in Tah1, which is consistent with the architecture of the TPR2b domain. In the present study we find that Tah1 is specific for Hsp90, and is able to bind tightly the yeast Hsp90, and the human Hsp90alpha and Hsp90beta proteins, but not the yeast Hsp70 Ssa1 isoform. Tah1 acheives ligand discrimination by favourably binding the methionine residue in the conserved MEEVD motif (Hsp90) and positively discriminating against the first valine residue in the VEEVD motif (Ssa1). In the present study we also show that Tah1 can affect the ATPase activity of Hsp90, in common with some other TPR-domain proteins.
Collapse
Key Words
- atpase activity
- heat-shock protein 90 (hsp90)
- heat-shock protein 70 (hsp70)
- tetratricopeptide-repeat-containing protein associated with heat-shock protein 90 (tah1)
- tetratricopeptide repeat (tpr) domain
- stress-inducible protein 1/heat-shock protein organizing protein/p60 (sti1/hop/p60)
- chip, c-terminal of heat-shock protein 70-interacting protein
- cpr6, cyclosporin-sensitive proline rotamase 6
- fkbp51, fk506-binding protein 51
- gst, glutathione transferase
- hop, heat-shock-protein-organizing protein
- hsp, heat-shock protein
- itc, isothermal titration calorimetry
- sti1, stress-inducible protein 1 (the yeast homologue of hop)
- csti1, c-terminal of sti1
- tah1, tetratricopeptide-repeat-containing protein associated with hsp90
- tpr, tetratricopeptide repeat
Collapse
Affiliation(s)
- Stefan H. Millson
- *Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K
| | - Cara K. Vaughan
- †Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
| | - Chao Zhai
- ‡Pharmaceutical Science Research Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Maruf M. U. Ali
- †Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
| | - Barry Panaretou
- ‡Pharmaceutical Science Research Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Peter W. Piper
- *Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K
| | - Laurence H. Pearl
- †Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
| | - Chrisostomos Prodromou
- †Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
| |
Collapse
|
32
|
Chadli A, Bruinsma ES, Stensgard B, Toft D. Analysis of Hsp90 Cochaperone Interactions Reveals a Novel Mechanism for TPR Protein Recognition. Biochemistry 2008; 47:2850-7. [DOI: 10.1021/bi7023332] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ahmed Chadli
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Elizabeth S. Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Bridget Stensgard
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - David Toft
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
33
|
Heat-shock protein 90alpha1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. Proc Natl Acad Sci U S A 2008; 105:554-9. [PMID: 18182494 DOI: 10.1073/pnas.0707330105] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heat-shock protein 90alpha (Hsp90alpha) is a member of the molecular chaperone family involved in protein folding and assembly. The role of Hsp90alpha in the developmental process, however, remains unclear. Here we report that zebrafish contains two Hsp90alpha genes, Hsp90alpha1, and Hsp90alpha2. Hsp90alpha1 is specifically expressed in developing somites and skeletal muscles of zebrafish embryos. We have demonstrated that Hsp90alpha1 is essential for myofibril organization in skeletal muscles of zebrafish embryos. Knockdown of Hsp90alpha1 resulted in paralyzed zebrafish embryos with poorly organized myofibrils in skeletal muscles. In contrast, knockdown of Hsp90alpha2 had no effect on muscle contraction and myofibril organization. The filament defects could be rescued in a cell autonomous manner by an ectopic expression of Hsp90alpha1. Biochemical analyses revealed that knockdown of Hsp90alpha1 resulted in significant myosin degradation and up-regulation of unc-45b gene expression. These results indicate that Hsp90alpha1 plays an important role in muscle development, likely through facilitating myosin folding and assembly into organized myofibril filaments.
Collapse
|
34
|
Moriishi K, Matsuura Y. Evaluation systems for anti-HCV drugs. Adv Drug Deliv Rev 2007; 59:1213-21. [PMID: 17720275 DOI: 10.1016/j.addr.2007.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 12/31/2022]
Abstract
Development of therapeutics for chronic hepatitis C has been hampered by the lack of an efficient cell culture system and a small animal model for the hepatitis C virus (HCV). An RNA replicon system, in which the HCV genome replicates autonomously in cells, and replication competent viruses derived from an HCV genotype 2a JFH1 strain efficiently propagating in Huh7 cells have been developed, and these systems have contributed to the evaluation of anti-HCV drugs targeted to viral and host proteins involved in the replication of HCV. Several compounds counteracting the viral enzymes, such as RNA polymerase and proteases, and host proteins involved in the lipid synthesis and protein folding are reported to have anti-HCV activities based on assessments using these in vitro systems. Furthermore, a mouse model transplanted with human liver fragments was shown to be capable of replicating HCV and has been used to evaluate the efficacy of antiviral drugs in vivo. In this review, we summarize information regarding systems for studying the HCV life cycle and potential new targets for therapeutic intervention for chronic hepatitis C.
Collapse
Affiliation(s)
- Kohji Moriishi
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | |
Collapse
|
35
|
Richardson JM, Dornan J, Opamawutthikul M, Bruce S, Page AP, Walkinshaw MD. Cloning, expression and characterisation of FKB-6, the sole large TPR-containing immunophilin from C. elegans. Biochem Biophys Res Commun 2007; 360:566-72. [PMID: 17610845 DOI: 10.1016/j.bbrc.2007.06.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 06/09/2007] [Indexed: 11/19/2022]
Abstract
We have cloned, expressed, purified and characterised ceFKB-6, the only large tetratricopeptide repeat motif-containing immunophilin in Caenorhabditis elegans which is similar to the human orthologues FKBP51 and FKBP52. It shows increased peptidyl prolyl isomerase activity, the measured k(cat)/K(m) of 1.3 x 10(6) M(-1) s(-1)is twofold greater than that of hFKBP12 and hFKBP51. NMR studies of the interaction between FKB-6 and the C-terminal DAF-21 pentapeptide MEEVD show interactions consistent with those found between the large human immunophilin TPR domains and human Hsp90. In vivo localisation studies show that the fkb-6 gene is expressed in all stages from embryo to adult with predominant expression being noted in the adult dorsal and ventral nerve cords.
Collapse
Affiliation(s)
- Julia M Richardson
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Subhabrata Chaudhury
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, Kansas 66045-7563, USA
| | | | | |
Collapse
|
37
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone essential for activating many signaling proteins in the eukaryotic cell. Biochemical and structural analysis of Hsp90 has revealed a complex mechanism of ATPase-coupled conformational changes and interactions with cochaperone proteins, which facilitate activation of Hsp90's diverse "clientele." Despite recent progress, key aspects of the ATPase-coupled mechanism of Hsp90 remain controversial, and the nature of the changes, engendered by Hsp90 in client proteins, is largely unknown. Here, we discuss present knowledge of Hsp90 structure and function gleaned from crystallographic studies of individual domains and recent progress in obtaining a structure for the ATP-bound conformation of the intact dimeric chaperone. Additionally, we describe the roles of the plethora of cochaperones with which Hsp90 cooperates and growing insights into their biochemical mechanisms, which come from crystal structures of Hsp90 cochaperone complexes.
Collapse
Affiliation(s)
- Laurence H Pearl
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, United Kingdom.
| | | |
Collapse
|
38
|
Blagg BSJ, Kerr TD. Hsp90 inhibitors: small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation. Med Res Rev 2006; 26:310-38. [PMID: 16385472 DOI: 10.1002/med.20052] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 90 kDa heat shock proteins (Hsp90) are responsible for the conformational maturation of nascent polypeptides and the renaturation of denatured proteins. In transformed cells, numerous mutated and overexpressed proteins rely on the Hsp90 protein folding machinery for tumor progression. The Hsp90-mediated protein folding process is dependent upon ATP, and when inhibitors of ATP are present, the Hsp90 machinery is unable to fold client proteins into their biologically active form, which results in the degradation of protein substrates via the ubiquitin-proteasome pathway. Consequently, Hsp90 has evolved into a promising anti-cancer target because multiple oncogenic proteins can be simultaneously degraded as a consequence of Hsp90 inhibition. This review serves to explain the Hsp90 protein folding process, the impact of Hsp90 inhibition, the identification of natural product inhibitors, and the development of rationally designed inhibitors of the Hsp90 protein folding machinery.
Collapse
Affiliation(s)
- Brian S J Blagg
- The Department of Medicinal Chemistry, The University of Kansas, Lawrence, 66045, USA.
| | | |
Collapse
|
39
|
Keppler BR, Grady AT, Jarstfer MB. The biochemical role of the heat shock protein 90 chaperone complex in establishing human telomerase activity. J Biol Chem 2006; 281:19840-8. [PMID: 16714764 DOI: 10.1074/jbc.m511067200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Telomerase is a ribonucleoprotein complex that synthesizes the G-rich DNA found at the 3'-ends of linear chromosomes. Human telomerase consists minimally of a catalytic protein (hTERT) and a template-containing RNA (hTR), although other proteins are involved in regulating telomerase activity in vivo. Several chaperone proteins, including hsp90 and p23, have demonstrable roles in establishing telomerase activity both in vitro and in vivo, and previous reports indicate that hsp90 and p23 are required for the reconstitution of telomerase activity from recombinant hTERT and hTR. Here we report that hTERT and hTR associate in the absence of a functional hsp90-p23 heterocomplex. We also report that hsp90 inhibitors geldanamycin and novobiocin inhibit recombinant telomerase even after telomerase is assembled. Inhibition by geldanamycin could be overcome by allowing telomerase to first bind its primer, suggesting a role for hsp90 in loading telomerase onto the telomere. Inhibition by novobiocin could not similarly be overcome but instead resulted in destabilization of the hTERT polypeptide. We propose that the hsp90-p23 complex fine tunes and stabilizes a functional telomerase structure, allowing primer loading and extension.
Collapse
Affiliation(s)
- Brian R Keppler
- School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, North Carolina 27599-7360, USA
| | | | | |
Collapse
|
40
|
Mok D, Allan RK, Carrello A, Wangoo K, Walkinshaw MD, Ratajczak T. The chaperone function of cyclophilin 40 maps to a cleft between the prolyl isomerase and tetratricopeptide repeat domains. FEBS Lett 2006; 580:2761-8. [PMID: 16650407 DOI: 10.1016/j.febslet.2006.04.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 04/08/2006] [Indexed: 10/24/2022]
Abstract
Cyclophilin 40 (CyP40), an immunophilin cochaperone present in steroid receptor-Hsp90 complexes, contains an N-terminal peptidylprolyl isomerase (PPIase) domain separated from a C-terminal Hsp90-binding tetratricopeptide repeat (TPR) domain by a 30-residue linker. To map CyP40 chaperone function, CyP40 deletion mutants were prepared and analysed for chaperone activity. CyP40 fragments containing the PPIase domain plus linker or the linker region and the adjoining TPR domain retained chaperone activity, whilst individually, the catalytic and TPR domains were devoid of chaperoning ability. CyP40 chaperone function then, is localized within the linker that forms a binding cleft with potential to accommodate non-native substrates.
Collapse
Affiliation(s)
- Danny Mok
- Laboratory for Molecular Endocrinology, Western Australian Institute for Medical Research and UWA Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Chadli A, Graham JD, Abel MG, Jackson TA, Gordon DF, Wood WM, Felts SJ, Horwitz KB, Toft D. GCUNC-45 is a novel regulator for the progesterone receptor/hsp90 chaperoning pathway. Mol Cell Biol 2006; 26:1722-30. [PMID: 16478993 PMCID: PMC1430258 DOI: 10.1128/mcb.26.5.1722-1730.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hsp90 chaperoning pathway is a multiprotein system that is required for the production or activation of many cell regulatory proteins, including the progesterone receptor (PR). We report here the identity of GCUNC-45 as a novel modulator of PR chaperoning by hsp90. GCUNC-45, previously implicated in the activities of myosins, can interact in vivo and in vitro with both PR-A and PR-B and with hsp90. Overexpression and knockdown experiments show GCUNC-45 to be a positive factor in promoting PR function in the cell. GCUNC-45 binds to the ATP-binding domain of hsp90 to prevent the activation of its ATPase activity by the cochaperone Aha1. This effect limits PR chaperoning by hsp90, but this can be reversed by FKBP52, a cochaperone that is thought to act later in the pathway. These findings reveal a new cochaperone binding site near the N terminus of hsp90, add insight on the role of FKBP52, and identify GCUNC-45 as a novel regulator of the PR signaling pathway.
Collapse
Affiliation(s)
- Ahmed Chadli
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. Southwest, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bösl B, Grimminger V, Walter S. The molecular chaperone Hsp104--a molecular machine for protein disaggregation. J Struct Biol 2006; 156:139-48. [PMID: 16563798 DOI: 10.1016/j.jsb.2006.02.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/06/2006] [Accepted: 02/09/2006] [Indexed: 11/25/2022]
Abstract
At the Cold Spring Harbor Meeting on 'Molecular Chaperones and the Heat Shock Response' in May 1996, Susan Lindquist presented evidence that a chaperone of yeast termed Hsp104, which her group had been investigating for several years, is able to dissolve protein aggregates (Glover, J.R., Lindquist, S., 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73-82). Among many of the participants this news stimulated reactions reaching from decided skepticism to utter disbelief because protein aggregation was widely considered to be an irreversible process. Several years and publications later, it is undeniable that Susan had been right. Hsp104 is an ATP dependent molecular machine that-in cooperation with Hsp70 and Hsp40-extracts polypeptide chains from protein aggregates and facilitates their refolding, although the molecular details of this process are still poorly understood. Meanwhile, close homologues of Hsp104 have been identified in bacteria (ClpB), in mitochondria (Hsp78), and in the cytosol of plants (Hsp101), but intriguingly not in the cytosol of animal cells (Mosser, D.D., Ho, S., Glover, J.R., 2004. Saccharomyces cerevisiae Hsp104 enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling. Biochemistry 43, 8107-8115). Observations that Hsp104 plays an essential role in the maintenance of yeast prions (see review by James Shorter in this issue) have attracted even more attention to the molecular mechanism of this ATP dependent chaperone (Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G., Liebman, S.W., 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268, 880-884).
Collapse
Affiliation(s)
- Benjamin Bösl
- Department für Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | |
Collapse
|
43
|
Allan RK, Mok D, Ward BK, Ratajczak T. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization. J Biol Chem 2006; 281:7161-71. [PMID: 16421106 DOI: 10.1074/jbc.m512406200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal domain of Hsp90 displays independent chaperone activity, mediates dimerization, and contains the MEEVD motif essential for interaction with tetratricopeptide repeat-containing immunophilin cochaperones assembled in mature steroid receptor complexes. An alpha-helical region, upstream of the MEEVD peptide, helps form the dimerization interface and includes a hydrophobic microdomain that contributes to the Hsp90 interaction with the immunophilin cochaperones and corresponds to the binding site for novobiocin, a coumarin-related Hsp90 inhibitor. Mutation of selected residues within the hydrophobic microdomain significantly impacted the chaperone function of a recombinant C-terminal Hsp90 fragment and novobiocin inhibited wild-type chaperone activity. Prior incubation of the Hsp90 fragment with novobiocin led to a direct blockade of immunophilin cochaperone binding. However, the drug had little influence on the pre-formed Hsp90-immunophilin complex, suggesting that bound cochaperones mask the novobiocin-binding site. We observed a differential effect of the drug on Hsp90-immunophilin interaction, suggesting that the immunophilins make distinct contacts within the C-terminal domain to specifically modulate Hsp90 function. Novobiocin also precluded the interaction of full-length Hsp90 with the p50(cdc37) cochaperone, which targets the N-terminal nucleotide-binding domain, and is prevalent in Hsp90 complexes with protein kinase substrates. Novobiocin therefore acts locally and allosterically to induce conformational changes within multiple regions of the Hsp90 protein. We provide evidence that coumermycin A1, a coumarin structurally related to novobiocin, interferes with dimerization of the Hsp90 C-terminal domain. Coumarin-based inhibitors then may antagonize Hsp90 function by inducing a conformation favoring separation of the C-terminal domains and release of substrate.
Collapse
Affiliation(s)
- Rudi K Allan
- Laboratory for Molecular Endocrinology, Western Australian Institute for Medical Research, Queen Elizabeth II Medical Centre, The University of Western Australia, Hospital Avenue, Nedlands, WA 6009, Australia
| | | | | | | |
Collapse
|
44
|
Wandinger SK, Suhre MH, Wegele H, Buchner J. The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. EMBO J 2006; 25:367-76. [PMID: 16407978 PMCID: PMC1383513 DOI: 10.1038/sj.emboj.7600930] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 12/01/2005] [Indexed: 12/24/2022] Open
Abstract
Ppt1 is the yeast member of a novel family of protein phosphatases, which is characterized by the presence of a tetratricopeptide repeat (TPR) domain. Ppt1 is known to bind to Hsp90, a molecular chaperone that performs essential functions in the folding and activation of a large number of client proteins. The function of Ppt1 in the Hsp90 chaperone cycle remained unknown. Here, we analyzed the function of Ppt1 in vivo and in vitro. We show that purified Ppt1 specifically dephosphorylates Hsp90. This activity requires Hsp90 to be directly attached to Ppt1 via its TPR domain. Deletion of the ppt1 gene leads to hyperphosphorylation of Hsp90 in vivo and an apparent decrease in the efficiency of the Hsp90 chaperone system. Interestingly, several Hsp90 client proteins were affected in a distinct manner. Our findings indicate that the Hsp90 multichaperone cycle is more complex than was previously thought. Besides its regulation via the Hsp90 ATPase activity and the sequential binding and release of cochaperones, with Ppt1, a specific phosphatase exists, which positively modulates the maturation of Hsp90 client proteins.
Collapse
Affiliation(s)
| | - Michael H Suhre
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Harald Wegele
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Department of Chemistry, Technische Universität München, Garching, Germany
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany. Tel.: +49 89 289 13341; Fax: +49 89 289 13345; E-mail:
| |
Collapse
|
45
|
Pratt WB, Galigniana MD, Harrell JM, DeFranco DB. Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 2005; 16:857-72. [PMID: 15157665 DOI: 10.1016/j.cellsig.2004.02.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Accepted: 01/30/2004] [Indexed: 11/16/2022]
Abstract
The ubiquitous protein chaperone hsp90 has been shown to regulate more than 100 proteins involved in cellular signalling. These proteins are called 'client proteins' for hsp90, and a multiprotein hsp90/hsp70-based chaperone machinery forms client protein.hsp90 heterocomplexes in the cytoplasm and the nucleus. In the case of signalling proteins that act as transcription factors, the client protein.hsp90 complexes also contain one of several TPR domain immunophilins or immunophilin homologs that bind to a TPR domain binding site on hsp90. Using several intracellular receptors and the tumor suppressor p53 as examples, we review evidence that dynamic assembly of heterocomplexes with hsp90 is required for rapid movement through the cytoplasm to the nucleus along microtubular tracks. The role of the immunophilin in this system is to connect the client protein.hsp90 complex to cytoplasmic dynein, the motor protein for retrograde movement toward the nucleus. Upon arrival at the nuclear pores, the receptor.hsp90.immunophilin complexes are transferred to the nuclear interior by importin-dependent facilitated diffusion. The unliganded receptors then distribute within the nucleus to diffuse patches from which they proceed in a ligand-dependent manner to discrete nuclear foci where chromatin binding occurs. We review evidence that dynamic assembly of heterocomplexes with hsp90 is required for movement to these foci and for the dynamic exchange of transcription factors between chromatin and the nucleoplasm.
Collapse
Affiliation(s)
- William B Pratt
- Department of Pharmacology, University of Michigan Medical School, 1301 Med. Sci. Res. Building III, Ann Arbor, MI 48109-0632, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
The molecular chaperone machinery contains multiple protein components that have 1 or more structural domains composed of tetratricopeptide repeat (TPR) motifs. Many other proteins of separate or unknown function also have TPR domains, so this motif is not exclusive to molecular chaperones. A general function of TPR domains is to bind other polypeptides, but this otherwise prosaic function has been exploited in an assortment of ways that link chaperones and other protein systems into cooperative networks. Among the best-characterized TPR proteins are several cochaperones that participate in assembly and regulation of steroid receptor complexes. Steroid receptors, members of the nuclear receptor subfamily, are hormone-dependent transcription factors that regulate many vertebrate pathways of homeostasis, growth, differentiation, reproduction, and pathology and, as such, have been of great interest to biologists and clinicians. Moreover, the steroid receptors are among the first recognized native clients for chaperones and have been widely studied models for complex chaperone interactions. To provide a coherent, representative minireview of TPR protein function, the scope of this article has been narrowed down primarily to functions of steroid receptor-associated TPR cochaperones.
Collapse
Affiliation(s)
- David F Smith
- S.C. Johnson Research Center, Mayo Clinic Scottsdale, Scottsdale, AZ 85259, USA.
| |
Collapse
|
47
|
Cliff MJ, Williams MA, Brooke-Smith J, Barford D, Ladbury JE. Molecular recognition via coupled folding and binding in a TPR domain. J Mol Biol 2005; 346:717-32. [PMID: 15713458 DOI: 10.1016/j.jmb.2004.12.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/08/2004] [Accepted: 12/08/2004] [Indexed: 10/26/2022]
Abstract
The majority of known tetratricopeptide repeat (TPR) domains consist of three copies of the helix-turn-helix TPR motif, together with a seventh C-terminal helix. TPR domains function as protein-protein recognition modules in intracellular signalling. This function is exemplified by the TPR domain of protein phosphatase 5 (PP5), which binds to the C terminus of the chaperone protein Hsp90. Here, we report NMR and CD spectroscopic studies that reveal that this domain is largely unfolded at physiological temperatures, and that interaction with an MEEVD pentapeptide derived from Hsp90 stabilises a folded structure. This complex, coupled folding-binding mechanism is characterised further by its observed enthalpy change on binding (determined by isothermal titration calorimetry), which displays a markedly non-linear relationship with temperature. A nested Gibbs-Helmholtz model is used in a novel combined analysis of the CD and ITC data to determine separately the thermodynamic contributions of the intrinsic folding and binding events to the overall coupled process. The analysis shows that, despite the expected large entropic opposition to the folding process, a nearly equal favourable folding enthalpy means the net effect of coupled folding on the observed affinity is small across a broad range of temperature. We hypothesise that a coupled folding-binding mechanism is common in this class of domains.
Collapse
Affiliation(s)
- Matthew J Cliff
- Department of Biochemistry and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
48
|
Carrigan PE, Riggs DL, Chinkers M, Smith DF. Functional comparison of human and Drosophila Hop reveals novel role in steroid receptor maturation. J Biol Chem 2005; 280:8906-11. [PMID: 15632128 DOI: 10.1074/jbc.m414245200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp70/Hsp90 organizing protein (Hop) coordinates Hsp70 and Hsp90 interactions during assembly of steroid receptor complexes. Hop is composed of three tetratricopeptide repeat (TPR) domains (TPR1, TPR2a, and TPR2b) and two DP repeat domains (DP1 and DP2); Hsp70 interacts directly with TPR1 and Hsp90 with TPR2a, but the function of other domains is less clear. Human Hop and the Saccharomyces cerevisiae ortholog Sti1p, which share a common domain arrangement, are functionally interchangeable in a yeast growth assay and in supporting the efficient maturation of glucocorticoid receptor (GR) function. To gain a better understanding of Hop structure/function relationships, we have extended comparisons to the Hop ortholog from Drosophila melanogaster (dHop), which lacks DP1. Although dHop binds Hsp70 and Hsp90 and can rescue the growth defect in yeast lacking Sti1p, dHop failed to support GR function in yeast, which suggests a novel role for Hop in GR maturation that goes beyond Hsp binding. Chimeric Hop constructs combining human and Drosophila domains demonstrate that the C-terminal domain DP2 is critical for this previously unrecognized role in steroid receptor function.
Collapse
Affiliation(s)
- Patricia E Carrigan
- Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|
49
|
Carrigan PE, Nelson GM, Roberts PJ, Stoffer J, Riggs DL, Smith DF. Multiple Domains of the Co-chaperone Hop Are Important for Hsp70 Binding. J Biol Chem 2004; 279:16185-93. [PMID: 14960564 DOI: 10.1074/jbc.m314130200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hop/Sti1 co-chaperone binds to both Hsp70 and Hsp90. Biochemical and co-crystallographic studies have suggested that the EEVD-containing C terminus of Hsp70 or Hsp90 binds specifically to one of the Hop tetratricopeptide repeat domains, TPR1 or TPR2a, respectively. Mutational analyses of Hsp70 and Hop were undertaken to better characterize interactions between the C terminus of Hsp70 and Hop domains. Surprisingly, truncation of EEVD plus as many as 34 additional amino acids from the Hsp70 C terminus did not reduce the ability of Hsp70 mutants to co-immunoprecipitate with Hop, although further truncation eliminated Hop binding. Hop point mutations targeting a carboxylate clamp position in TPR1 disrupted Hsp70 binding, as was expected; however, similar point mutations in TPR2a or TPR2b also inhibited Hsp70 binding in some settings. Using a yeast-based in vivo assay for Hop function, wild type Hop and TPR2b mutants could fully complement deletion of Sti1p; TPR1 and TPR2a point mutants could partially restore activity. Conformations of Hop and Hop mutants were probed by limited proteolysis. The TPR1 mutant digested in a similar manner to wild type; however, TPR2a and TPR2b mutants each displayed greater resistance to chymotryptic digestion. All point mutants retained an ability to dimerize, and none appeared to be grossly misfolded. These results raise questions about current models for Hop/Hsp70 interaction.
Collapse
Affiliation(s)
- Patricia E Carrigan
- Samuel C. Johnson Research Center, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Molecular chaperones are a functionally defined set of proteins which assist the structure formation of proteins in vivo. Without certain protective mechanisms, such as binding nascent polypeptide chains by molecular chaperones, cellular protein concentrations would lead to misfolding and aggregation. In the mammalian system, the molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins, like steroid hormone receptors, transcription factors, and kinases, some of which are involved in cancer progression. Hsp70 and Hsp90 form a multichaperone complex, in which both are connected by a third protein called Hop. The connection of and the interplay between the two chaperone machineries is of crucial importance for cell viability. This review provides a detailed view of the Hsp70 and Hsp90 machineries, their cofactors and their mode of regulation. It summarizes the current knowledge in the field, including the ATP-dependent regulation of the Hsp70/Hsp90 multichaperone cycle and elucidates the complex interplay and their synergistic interaction.
Collapse
Affiliation(s)
- H Wegele
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|