1
|
Mezu-Ndubuisi OJ, Maheshwari A. The role of integrins in inflammation and angiogenesis. Pediatr Res 2021; 89:1619-1626. [PMID: 33027803 PMCID: PMC8249239 DOI: 10.1038/s41390-020-01177-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Integrins are heterodimeric transmembrane cell adhesion molecules made up of alpha (α) and beta (β) subunits arranged in numerous dimeric pairings. These complexes have varying affinities to extracellular ligands. Integrins regulate cellular growth, proliferation, migration, signaling, and cytokine activation and release and thereby play important roles in cell proliferation and migration, apoptosis, tissue repair, as well as in all processes critical to inflammation, infection, and angiogenesis. This review presents current evidence from human and animal studies on integrin structure and molecular signaling, with particular emphasis on signal transduction in infants. We have included evidence from our own laboratory studies and from an extensive literature search in databases PubMed, EMBASE, Scopus, and the electronic archives of abstracts presented at the annual meetings of the Pediatric Academic Societies. To avoid bias in identification of existing studies, key words were short-listed prior to the actual search both from anecdotal experience and from PubMed's Medical Subject Heading (MeSH) thesaurus. IMPACT: Integrins are a family of ubiquitous αβ heterodimeric receptors that interact with numerous ligands in physiology and disease. Integrins play a key role in cell proliferation, tissue repair, inflammation, infection, and angiogenesis. This review summarizes current evidence from human and animal studies on integrin structure and molecular signaling and promising role in diseases of inflammation, infection, and angiogenesis in infants. This review shows that integrin receptors and ligands are novel therapeutic targets of clinical interest and hold promise as novel therapeutic targets in the management of several neonatal diseases.
Collapse
Affiliation(s)
- Olachi J. Mezu-Ndubuisi
- grid.14003.360000 0001 2167 3675Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Akhil Maheshwari
- grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
2
|
Lietha D, Izard T. Roles of Membrane Domains in Integrin-Mediated Cell Adhesion. Int J Mol Sci 2020; 21:ijms21155531. [PMID: 32752284 PMCID: PMC7432473 DOI: 10.3390/ijms21155531] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The composition and organization of the plasma membrane play important functional and regulatory roles in integrin signaling, which direct many physiological and pathological processes, such as development, wound healing, immunity, thrombosis, and cancer metastasis. Membranes are comprised of regions that are thick or thin owing to spontaneous partitioning of long-chain saturated lipids from short-chain polyunsaturated lipids into domains defined as ordered and liquid-disorder domains, respectively. Liquid-ordered domains are typically 100 nm in diameter and sometimes referred to as lipid rafts. We posit that integrin β senses membrane thickness and that mechanical force on the membrane regulates integrin activation through membrane thinning. This review examines what we know about the nature and mechanism of the interaction of integrins with the plasma membrane and its effects on regulating integrins and its binding partners.
Collapse
Affiliation(s)
- Daniel Lietha
- Cell Signaling and Adhesion Group, Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB-CSIC), E-28040 Madrid, Spain;
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
3
|
|
4
|
Botelho SC, Enquist K, von Heijne G, Draheim RR. Differential repositioning of the second transmembrane helices from E. coli Tar and EnvZ upon moving the flanking aromatic residues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:615-21. [PMID: 25445668 DOI: 10.1016/j.bbamem.2014.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/29/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023]
Abstract
Aromatic tuning, i.e. repositioning aromatic residues found at the cytoplasmic end of transmembrane (TM) domains within bacterial receptors, has been previously shown to modulate signal output from the aspartate chemoreceptor (Tar) and the major osmosensor EnvZ of Escherichia coli. In the case of Tar, changes in signal output consistent with the vertical position of the native Trp-Tyr aromatic tandem within TM2 were observed. In contrast, within EnvZ, where a Trp-Leu-Phe aromatic triplet was repositioned, the surface that the triplet resided upon was the major determinant governing signal output. However, these studies failed to determine whether moving the aromatic residues was sufficient to physically reposition the TM helix within a membrane. Recent coarse-grained molecular dynamics (CG-MD) simulations predicted displacement of Tar TM2 upon moving the aromatic residues at the cytoplasmic end of the helix. Here, we demonstrate that repositioning the Trp-Tyr tandem within Tar TM2 displaces the C-terminal boundary of the helix relative to the membrane. In a similar analysis of EnvZ, an abrupt initial displacement of TM2 was observed but no subsequent movement was seen, suggesting that the vertical position of TM2 is not governed by the location of the Trp-Leu-Phe triplet. Our results also provide another set of experimental data, i.e. the resistance of EnvZ TM2 to being displaced upon aromatic tuning, which could be useful for subsequent refinement of the initial CG-MD simulations. Finally, we discuss the limitations of these methodologies, how moving flanking aromatic residues might impact steady-state signal output and the potential to employ aromatic tuning in other bacterial membrane-spanning receptors.
Collapse
Affiliation(s)
- Salomé C Botelho
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Karl Enquist
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Roger R Draheim
- Division of Pharmacy, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, England, UK; Wolfson Research Institute for Health and Wellbeing, Durham University, Queen's Campus, Stockton-on-Tees, TS17 6BH, England, UK.
| |
Collapse
|
5
|
Provasi D, Negri A, Coller BS, Filizola M. Talin-driven inside-out activation mechanism of platelet αIIbβ3 integrin probed by multimicrosecond, all-atom molecular dynamics simulations. Proteins 2014; 82:3231-3240. [PMID: 24677266 DOI: 10.1002/prot.24540] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 01/20/2023]
Abstract
Platelet aggregation is the consequence of the binding of extracellular bivalent ligands such as fibrinogen and von Willebrand factor to the high affinity, active state of integrin αIIbβ3. This state is achieved through a so-called "inside-out" mechanism characterized by the membrane-assisted formation of a complex between the F2 and F3 subdomains of intracellular protein talin and the integrin β3 tail. Here, we present the results of multi-microsecond, all-atom molecular dynamics simulations carried on the complete transmembrane (TM) and C-terminal (CT) domains of αIIbβ3 integrin in an explicit lipid-water environment, and in the presence or absence of the talin-1 F2 and F3 subdomains. These large-scale simulations provide unprecedented molecular-level insights into the talin-driven inside-out activation of αIIbβ3 integrin. Specifically, they suggest a preferred conformation of the complete αIIbβ3 TM/CT domains in a lipid-water environment, and testable hypotheses of key intermolecular interactions between αIIbβ3 integrin and the F2/F3 domains of talin-1. Notably, not only do these simulations give support to a stable left-handed reverse turn conformation of the αIIb juxtamembrane motif rather than a helical turn, but they raise the question as to whether TM helix separation is required for talin-driven integrin activation.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029
| | - Ana Negri
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029
| | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, Box 309, New York, New York 10065
| | - Marta Filizola
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029
| |
Collapse
|
6
|
Virkki MT, Agrawal N, Edsbäcker E, Cristobal S, Elofsson A, Kauko A. Folding of Aquaporin 1: multiple evidence that helix 3 can shift out of the membrane core. Protein Sci 2014; 23:981-92. [PMID: 24777974 PMCID: PMC4088982 DOI: 10.1002/pro.2483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/29/2022]
Abstract
The folding of most integral membrane proteins follows a two-step process: initially, individual transmembrane helices are inserted into the membrane by the Sec translocon. Thereafter, these helices fold to shape the final conformation of the protein. However, for some proteins, including Aquaporin 1 (AQP1), the folding appears to follow a more complicated path. AQP1 has been reported to first insert as a four-helical intermediate, where helix 2 and 4 are not inserted into the membrane. In a second step, this intermediate is folded into a six-helical topology. During this process, the orientation of the third helix is inverted. Here, we propose a mechanism for how this reorientation could be initiated: first, helix 3 slides out from the membrane core resulting in that the preceding loop enters the membrane. The final conformation could then be formed as helix 2, 3, and 4 are inserted into the membrane and the reentrant regions come together. We find support for the first step in this process by showing that the loop preceding helix 3 can insert into the membrane. Further, hydrophobicity curves, experimentally measured insertion efficiencies and MD-simulations suggest that the barrier between these two hydrophobic regions is relatively low, supporting the idea that helix 3 can slide out of the membrane core, initiating the rearrangement process.
Collapse
Affiliation(s)
- Minttu T Virkki
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm UniversitySolna, SE-171 21, Sweden
| | - Nitin Agrawal
- Department of Biosciences, Biochemistry, Åbo AkademiTurku, FI-20520, Finland
| | - Elin Edsbäcker
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm UniversitySolna, SE-171 21, Sweden
| | - Susana Cristobal
- Department of Clinical and Experimental Medicine, Cell Biology, Faculty of Health Science, Linköping UniversityLinköping, Sweden
- Department of Physiology, IKERBASQUE, Basque Foundation for Science, Faculty of Medicine and Dentistry, University of the Basque CountryLeioa, Spain
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm UniversitySolna, SE-171 21, Sweden
| | - Anni Kauko
- Department of Biosciences, Biochemistry, Åbo AkademiTurku, FI-20520, Finland
| |
Collapse
|
7
|
Virkki MT, Peters C, Nilsson D, Sörensen T, Cristobal S, Wallner B, Elofsson A. The positive inside rule is stronger when followed by a transmembrane helix. J Mol Biol 2014; 426:2982-91. [PMID: 24927974 DOI: 10.1016/j.jmb.2014.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022]
Abstract
The translocon recognizes transmembrane helices with sufficient level of hydrophobicity and inserts them into the membrane. However, sometimes less hydrophobic helices are also recognized. Positive inside rule, orientational preferences of and specific interactions with neighboring helices have been shown to aid in the recognition of these helices, at least in artificial systems. To better understand how the translocon inserts marginally hydrophobic helices, we studied three naturally occurring marginally hydrophobic helices, which were previously shown to require the subsequent helix for efficient translocon recognition. We find no evidence for specific interactions when we scan all residues in the subsequent helices. Instead, we identify arginines located at the N-terminal part of the subsequent helices that are crucial for the recognition of the marginally hydrophobic transmembrane helices, indicating that the positive inside rule is important. However, in two of the constructs, these arginines do not aid in the recognition without the rest of the subsequent helix; that is, the positive inside rule alone is not sufficient. Instead, the improved recognition of marginally hydrophobic helices can here be explained as follows: the positive inside rule provides an orientational preference of the subsequent helix, which in turn allows the marginally hydrophobic helix to be inserted; that is, the effect of the positive inside rule is stronger if positively charged residues are followed by a transmembrane helix. Such a mechanism obviously cannot aid C-terminal helices, and consequently, we find that the terminal helices in multi-spanning membrane proteins are more hydrophobic than internal helices.
Collapse
Affiliation(s)
- Minttu T Virkki
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Christoph Peters
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; Swedish e-Science Research Center (SeRC), SE-100 44 Stockholm, Sweden.
| | - Daniel Nilsson
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Therese Sörensen
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Susana Cristobal
- Department of Clinical and Experimental Medicine, Cell Biology, Faculty of Health Science, Linköping University, 581 83 Linköping, Sweden; Department of Physiology, IKERBASQUE, Basque Foundation for Science, Faculty of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Spain.
| | - Björn Wallner
- Swedish e-Science Research Center (SeRC), SE-100 44 Stockholm, Sweden; Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden.
| | - Arne Elofsson
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; Swedish e-Science Research Center (SeRC), SE-100 44 Stockholm, Sweden.
| |
Collapse
|
8
|
Virkki M, Boekel C, Illergård K, Peters C, Shu N, Tsirigos KD, Elofsson A, von Heijne G, Nilsson I. Large tilts in transmembrane helices can be induced during tertiary structure formation. J Mol Biol 2014; 426:2529-38. [PMID: 24793448 DOI: 10.1016/j.jmb.2014.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/19/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
While early structural models of helix-bundle integral membrane proteins posited that the transmembrane α-helices [transmembrane helices (TMHs)] were orientated more or less perpendicular to the membrane plane, there is now ample evidence from high-resolution structures that many TMHs have significant tilt angles relative to the membrane. Here, we address the question whether the tilt is an intrinsic property of the TMH in question or if it is imparted on the TMH during folding of the protein. Using a glycosylation mapping technique, we show that four highly tilted helices found in multi-spanning membrane proteins all have much shorter membrane-embedded segments when inserted by themselves into the membrane than seen in the high-resolution structures. This suggests that tilting can be induced by tertiary packing interactions within the protein, subsequent to the initial membrane-insertion step.
Collapse
Affiliation(s)
- Minttu Virkki
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, SE-17177 Solna, Sweden
| | - Carolina Boekel
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Kristoffer Illergård
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, SE-17177 Solna, Sweden
| | - Christoph Peters
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, SE-17177 Solna, Sweden
| | - Nanjiang Shu
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, SE-17177 Solna, Sweden
| | - Konstantinos D Tsirigos
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, SE-17177 Solna, Sweden
| | - Arne Elofsson
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, SE-17177 Solna, Sweden
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, SE-17177 Solna, Sweden.
| | - IngMarie Nilsson
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
9
|
Zeltz C, Lu N, Gullberg D. Integrin α11β1: A Major Collagen Receptor on Fibroblastic Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:73-83. [DOI: 10.1007/978-94-017-9153-3_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Surya W, Li Y, Millet O, Diercks T, Torres J. Transmembrane and Juxtamembrane Structure of αL Integrin in Bicelles. PLoS One 2013; 8:e74281. [PMID: 24069290 PMCID: PMC3771934 DOI: 10.1371/journal.pone.0074281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/30/2013] [Indexed: 12/28/2022] Open
Abstract
The accepted model for the interaction of α and β integrins in the transmembrane (TM) domain is based on the pair αIIbβ3. This involves the so-called outer and inner membrane association clasps (OMC and IMC, respectively). In the α chain, the OMC involves a GxxxG-like motif, whereas in the IMC a conserved juxtamembrane GFFKR motif experiences a backbone reversal that partially fills the void generated by TM separation towards the cytoplasmic half. However, the GFFKR motif of several α integrin cytoplasmic tails in non-bicelle environments has been shown to adopt an α-helical structure that is not membrane-embedded and which was shown to bind a variety of cytoplasmic proteins. Thus it is not known if a membrane-embedded backbone reversal is a conserved structural feature in α integrins. We have studied the system αLβ2 because of its importance in leukocytes, where integrin deactivation is particularly important. Herein we show that the backbone reversal feature is not only present in αIIb but also in αL-TM when reconstituted in bicelles. Additionally, titration with β2 TM showed eight residues clustering along one side of αL-TM, forming a plausible interacting face with β2. The latter orientation is consistent with a previously predicted reported polar interaction between αL Ser-1071 and β2 Thr-686.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Oscar Millet
- Structural Biology Unit, CIC BioGUNE, Derio Vizcaya, Spain
| | - Tammo Diercks
- Structural Biology Unit, CIC BioGUNE, Derio Vizcaya, Spain
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
11
|
Kurtz L, Kao L, Newman D, Kurtz I, Zhu Q. Integrin αIIbβ3 inside-out activation: an in situ conformational analysis reveals a new mechanism. J Biol Chem 2012; 287:23255-65. [PMID: 22613710 DOI: 10.1074/jbc.m112.360966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrins are a family of heterodimeric adhesion receptors that transmit signals bi-directionally across the plasma membranes. The transmembrane domain (TM) of integrin plays a critical role in mediating transition of the receptor from the default inactive to the active state on the cell surfaces. In this study, we successfully applied the substituted cysteine scanning accessibility method to determine the intracellular border of the integrin α(IIb)β(3) TM in the inactive and active states in living cells. We examined the aqueous accessibility of 75 substituted cysteines comprising the C terminus of both α(IIb) and β(3) TMs, the intracellular membrane-proximal regions, and the whole cytoplasmic tails, to the labeling of a membrane-permeable, cysteine-specific chemical biotin maleimide (BM). The active state of integrin α(IIb)β(3) heterodimer was generated by co-expression of activating partners with the cysteine-substituted constructs. Our data revealed that, in the inactive state, the intracellular lipid/aqueous border of α(IIb) TM was at Lys(994) and β(3) TM was at Phe(727) respectively; in the active state, the border of α(IIb) TM shifted to Pro(998), whereas the border of β(3) TM remained unchanged, suggesting that complex conformational changes occurred in the TMs upon α(IIb)β(3) inside-out activation. On the basis of the results, we propose a new inside-out activation mechanism for integrin α(IIb)β(3) and by inference, all of the integrins in their native cellular environment.
Collapse
Affiliation(s)
- Lisa Kurtz
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1689, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Regulation of cell-cell and cell-matrix interaction is essential for the normal physiology of metazoans and is important in many diseases. Integrin adhesion receptors can rapidly increase their affinity (integrin activation) in response to intracellular signaling events in a process termed inside-out signaling. The transmembrane domains of integrins and their interactions with the membrane are important in inside-out signaling. Moreover, integrin activation is tightly regulated by a complex network of signaling pathways. Here, we review recent progress in understanding how the membrane environment can, in cooperation with integrin-binding proteins, regulate integrin activation.
Collapse
Affiliation(s)
- Chungho Kim
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
13
|
Lim J, Dupuy AG, Critchley DR, Caron E. Rap1 controls activation of the α(M)β(2) integrin in a talin-dependent manner. J Cell Biochem 2011; 111:999-1009. [PMID: 20665668 DOI: 10.1002/jcb.22788] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The small GTPase Rap1 and the cytoskeletal protein talin regulate binding of C3bi-opsonised red blood cells (RBC) to integrin α(M)β(2) in phagocytic cells, although the mechanism has not been investigated. Using COS-7 cells transfected with α(M)β(2), we show that Rap1 acts on the β(2) and not the α(M) chain, and that residues 732-761 of the β(2) subunit are essential for Rap1-induced RBC binding. Activation of α(M)β(2) by Rap1 was dependent on W747 and F754 in the β(2) tails, which are required for talin head binding, suggesting a link between Rap1 and talin in this process. Using talin1 knock-out cells or siRNA-mediated talin1 knockdown in the THP-1 monocytic cell line, we show that Rap1 acts upstream of talin but surprisingly, RIAM knockdown had little effect on integrin-mediated RBC binding or cell spreading. Interestingly, Rap1 and talin influence each other's localisation at phagocytic cups, and co-immunoprecipitation experiments suggest that they interact together. These results show that Rap1-mediated activation of α(M)β(2) in macrophages shares both common and distinct features from Rap1 activation of α(IIb)β(3) expressed in CHO cells.
Collapse
Affiliation(s)
- Jenson Lim
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, UK.
| | | | | | | |
Collapse
|
14
|
Ulmer TS. Structural basis of transmembrane domain interactions in integrin signaling. Cell Adh Migr 2010; 4:243-8. [PMID: 20168080 DOI: 10.4161/cam.4.2.10592] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric alphabeta integrins is correlated to the association state of the single-pass alpha and beta transmembrane domains. The association of integrin alphaIIbbeta3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (alphaIIb) and tilted (beta3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual alphaIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the beta3 transmembrane helix, enabling alphaIIb(D723)beta3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/beta complex that overlap with the alphabeta transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.
Collapse
Affiliation(s)
- Tobias S Ulmer
- Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 2010; 11:288-300. [PMID: 20308986 PMCID: PMC3929966 DOI: 10.1038/nrm2871] [Citation(s) in RCA: 762] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-directed changes in the ligand-binding affinity ('activation') of integrins regulate cell adhesion and migration, extracellular matrix assembly and mechanotransduction, thereby contributing to embryonic development and diseases such as atherothrombosis and cancer. Integrin activation comprises triggering events, intermediate signalling events and, finally, the interaction of integrins with cytoplasmic regulators, which changes an integrin's affinity for its ligands. The first two events involve diverse interacting signalling pathways, whereas the final steps are immediately proximal to integrins, thus enabling integrin-focused therapeutic strategies. Recent progress provides insight into the structure of integrin transmembrane domains, and reveals how the final steps of integrin activation are mediated by integrin-binding proteins such as talins and kindlins.
Collapse
Affiliation(s)
- Sanford J Shattil
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | |
Collapse
|
16
|
Repositioning of transmembrane alpha-helices during membrane protein folding. J Mol Biol 2010; 397:190-201. [PMID: 20109468 DOI: 10.1016/j.jmb.2010.01.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 11/30/2022]
Abstract
We have determined the optimal placement of individual transmembrane helices in the Pyrococcus horikoshii Glt(Ph) glutamate transporter homolog in the membrane. The results are in close agreement with theoretical predictions based on hydrophobicity, but do not, in general, match the known three-dimensional structure, suggesting that transmembrane helices can be repositioned relative to the membrane during folding and oligomerization. Theoretical analysis of a database of membrane protein structures provides additional support for this idea. These observations raise new challenges for the structure prediction of membrane proteins and suggest that the classical two-stage model often used to describe membrane protein folding needs to be modified.
Collapse
|
17
|
Abstract
Integrins are the principal cell adhesion receptors that mediate leukocyte migration and activation in the immune system. These receptors signal bidirectionally through the plasma membrane in pathways referred to as inside-out and outside-in signaling. Each of these pathways is mediated by conformational changes in the integrin structure. Such changes allow high-affinity binding of the receptor with counter-adhesion molecules on the vascular endothelium or extracellular matrix and lead to association of the cytoplasmic tails of the integrins with intracellular signaling molecules. Leukocyte functional responses resulting from outside-in signaling include migration, proliferation, cytokine secretion, and degranulation. Here, we review the key signaling events that occur in the inside-out versus outside-in pathways, highlighting recent advances in our understanding of how integrins are activated by a variety of stimuli and how they mediate a diverse array of cellular responses.
Collapse
Affiliation(s)
- Clare L Abram
- Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California 94143-0451, USA
| | | |
Collapse
|
18
|
Lau TL, Kim C, Ginsberg MH, Ulmer TS. The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J 2009; 28:1351-61. [PMID: 19279667 PMCID: PMC2683045 DOI: 10.1038/emboj.2009.63] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/18/2009] [Indexed: 12/16/2022] Open
Abstract
Heterodimeric integrin adhesion receptors regulate cell migration, survival and differentiation in metazoa by communicating signals bi-directionally across the plasma membrane. Protein engineering and mutagenesis studies have suggested that the dissociation of a complex formed by the single-pass transmembrane (TM) segments of the alpha and beta subunits is central to these signalling events. Here, we report the structure of the integrin alphaIIbbeta3 TM complex, structure-based site-directed mutagenesis and lipid embedding estimates to reveal the structural event that underlies the transition from associated to dissociated states, that is, TM signalling. The complex is stabilized by glycine-packing mediated TM helix crossing within the extracellular membrane leaflet, and by unique hydrophobic and electrostatic bridges in the intracellular leaflet that mediate an unusual, asymmetric association of the 24- and 29-residue alphaIIb and beta3 TM helices. The structurally unique, highly conserved integrin alphaIIbbeta3 TM complex rationalizes bi-directional signalling and represents the first structure of a heterodimeric TM receptor complex.
Collapse
Affiliation(s)
- Tong-Lay Lau
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chungho Kim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tobias S Ulmer
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Legate KR, Fässler R. Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails. J Cell Sci 2009; 122:187-98. [PMID: 19118211 DOI: 10.1242/jcs.041624] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cells recognize and respond to their extracellular environment through transmembrane receptors such as integrins, which physically connect the extracellular matrix to the cytoskeleton. Integrins provide the basis for the assembly of intracellular signaling platforms that link to the cytoskeleton and influence nearly every aspect of cell physiology; however, integrins possess no enzymatic or actin-binding activity of their own and thus rely on adaptor molecules, which bind to the short cytoplasmic tails of integrins, to mediate and regulate these functions. Many adaptors compete for relatively few binding sites on integrin tails, so regulatory mechanisms have evolved to reversibly control the spatial and temporal binding of specific adaptors. This Commentary discusses the adaptor proteins that bind directly to the tails of beta integrins and, using talin, tensin, filamin, 14-3-3 and integrin-linked kinase (ILK) as examples, describes the ways in which their binding is regulated.
Collapse
Affiliation(s)
- Kyle R Legate
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | | |
Collapse
|
20
|
Yan Y, Vasudevan S, Nguyen HTT, Merlin D. Intestinal epithelial CD98: an oligomeric and multifunctional protein. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:1087-92. [PMID: 18625289 PMCID: PMC2602860 DOI: 10.1016/j.bbagen.2008.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/12/2008] [Accepted: 06/17/2008] [Indexed: 01/01/2023]
Abstract
The intestinal epithelial cell-surface molecule, CD98 is a type II membrane glycoprotein. Molecular orientation studies have demonstrated that the C-terminal tail of human CD98 (hCD98), which contains a PDZ-binding domain, is extracellular. In intestinal epithelial cells, CD98 is covalently linked to an amino-acid transporter with which it forms a heterodimer. This heterodimer associates with beta(1)-integrin and intercellular adhesion molecular 1 (ICAM-1) to form a macromolecular complex in the basolateral membranes of polarized intestinal epithelial cells. This review focuses on the multifunctional roles of CD98, including involvement in extracellular signaling, adhesion/polarity, and amino-acid transporter expression in intestinal epithelia. A role for CD98 in intestinal inflammation, such as Intestinal Bowel Disease (IBD), is also proposed.
Collapse
Affiliation(s)
- Yutao Yan
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
21
|
Lau TL, Dua V, Ulmer TS. Structure of the integrin alphaIIb transmembrane segment. J Biol Chem 2008; 283:16162-8. [PMID: 18417472 PMCID: PMC3259656 DOI: 10.1074/jbc.m801748200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/10/2008] [Indexed: 12/19/2022] Open
Abstract
Integrin cell-adhesion receptors transduce signals bidirectionally across the plasma membrane via the single-pass transmembrane segments of each alpha and beta subunit. While the beta3 transmembrane segment consists of a linear 29-residue alpha-helix, the structure of the alphaIIb transmembrane segment reveals a linear 24-residue alpha-helix (Ile-966 -Lys-989) followed by a backbone reversal that packs Phe-992-Phe-993 against the transmembrane helix. The length of the alphaIIb transmembrane helix implies the absence of a significant transmembrane helix tilt in contrast to its partnering beta3 subunit. Sequence alignment shows Gly-991-Phe-993 to be fully conserved among all 18 human integrin alpha subunits, suggesting that their unusual structural motif is prototypical for integrin alpha subunits. The alphaIIb transmembrane structure demonstrates a level of complexity within the membrane that is beyond simple transmembrane helices and forms the structural basis for assessing the extent of structural and topological rearrangements upon alphaIIb-beta3 association, i.e. integrin transmembrane signaling.
Collapse
Affiliation(s)
| | | | - Tobias S. Ulmer
- Department of Biochemistry and Molecular Biology and Zilkha Neurogenetic
Institute, Keck School of Medicine, University of Southern California, Los
Angeles, California 90033
| |
Collapse
|
22
|
Lau TL, Partridge AW, Ginsberg MH, Ulmer TS. Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles. Biochemistry 2008; 47:4008-16. [PMID: 18321071 DOI: 10.1021/bi800107a] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Integrin adhesion receptors transduce bidirectional signals across the plasma membrane, with the integrin transmembrane domains acting as conduits in this process. Here, we report the first high-resolution structure of an integrin transmembrane domain. To assess the influence of the membrane model system, structure determinations of the beta3 integrin transmembrane segment and flanking sequences were carried out in both phospholipid bicelles and detergent micelles. In bicelles, a 30-residue linear alpha-helix, encompassing residues I693-H772, is adopted, of which I693-I721 appear embedded in the hydrophobic bicelle core. This relatively long transmembrane helix implies a pronounced helix tilt within a typical lipid bilayer, which facilitates the snorkeling of K716's charged side chain out of the lipid core while simultaneously immersing hydrophobic L717-I721 in the membrane. A shortening of bicelle lipid hydrocarbon tails does not lead to the transfer of L717-I721 into the aqueous phase, suggesting that the reported embedding represents the preferred beta3 state. The nature of the lipid headgroup affected only the intracellular part of the transmembrane helix, indicating that an asymmetric lipid distribution is not required for studying the beta3 transmembrane segment. In the micelle, residues L717-I721 are also embedded but deviate from linear alpha-helical conformation in contrast to I693-K716, which closely resemble the bicelle structure.
Collapse
Affiliation(s)
- Tong-Lay Lau
- Department of Biochemistry and Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
23
|
Krishnakumar SS, London E. The control of transmembrane helix transverse position in membranes by hydrophilic residues. J Mol Biol 2007; 374:1251-69. [PMID: 17997412 DOI: 10.1016/j.jmb.2007.10.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 11/18/2022]
Abstract
The ability of hydrophilic residues to shift the transverse position of transmembrane (TM) helices within bilayers was studied in model membrane vesicles. Transverse shifts were detected by fluorescence measurements of the membrane depth of a Trp residue at the center of a hydrophobic sequence. They were also estimated from the effective length of the TM-spanning sequence, derived from the stability of the TM configuration under conditions of negative hydrophobic mismatch. Hydrophilic residues (at the fifth position in a 21-residue hydrophobic sequence composed of alternating Leu and Ala residues and flanked on both ends by two Lys) induced transverse shifts that moved the hydrophilic residue closer to the membrane surface. At pH 7, the dependence of the extent of shift upon the identity of the hydrophilic residue increased in the order: L < G approximately = Y approximately = T < R approximately = H < S < P < K < E approximately = Q < N < D. By varying pH, shifts with ionizable residues fully charged or uncharged were measured, and the extent of shift increased in the order: L < G approximately = Y approximately = H(o) approximately = T < E(o) approximately = R < S < P < K+ < Q approximately = D(o) approximately = H+ < N approximately = E- < D-. The dependence of transverse shifts upon hydrophilic residue identity was consistent with the hypothesis that shift magnitude is largely controlled by the combination of side chain hydrophilicity, ionization state, and ability to position polar groups near the bilayer surface (snorkeling). Additional experiments showed that shift was also modulated by the position of the hydrophilic residue in the sequence and the hydrophobicity of the sequence moved out of the bilayer core upon shifting. Combined, these studies show that the insertion boundaries of TM helices are very sensitive to sequence, and can be altered even by weakly hydrophilic residues. Thus, many TM helices may have the capacity to exist in more than one transverse position. Knowledge of the magnitudes of transverse shifts induced by different hydrophilic residues should be useful for design of mutagenesis studies measuring the effect of transverse TM helix position upon function.
Collapse
Affiliation(s)
- Shyam S Krishnakumar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
24
|
Abstract
Integrin alpha(IIb)beta(3) plays a critical role in platelet aggregation, a central response in hemostasis and thrombosis. This function of alpha(IIb)beta(3) depends upon a transition from a resting to an activated state such that it acquires the capacity to bind soluble ligands. Diverse platelet agonists alter the cytoplasmic domain of alpha(IIb)beta(3) and initiate a conformational change that traverses the transmembrane region and ultimately triggers rearrangements in the extracellular domain to permit ligand binding. The membrane-proximal regions of alpha(IIb) and beta(3) cytoplasmic tails, together with the transmembrane segments of the subunits, contact each other to form a complex which restrains the integrin in the resting state. It is unclasping of this complex that induces integrin activation. This clasping/unclasping process is influenced by multiple cytoplasmic tail binding partners. Among them, talin appears to be a critical trigger of alpha(IIb)beta(3) activation, but other binding partners, which function as activators or suppressors, are likely to act as co-regulators of integrin activation.
Collapse
Affiliation(s)
- Y-Q Ma
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
25
|
|
26
|
Abstract
The platelet integrin alpha(IIb)beta(3) is required for platelet aggregation. Like other integrins, alpha(IIb)beta(3) resides on cell surfaces in an equilibrium between inactive and active conformations. Recent experiments suggest that the shift between these conformations involves a global reorganization of the alpha(IIb)beta(3) molecule and disruption of constraints imposed by the heteromeric association of the alpha(IIb) and beta(3) transmembrane and cytoplasmic domains. The biochemical, biophysical, and ultrastructural results that support this conclusion are discussed in this Review.
Collapse
Affiliation(s)
- Joel S Bennett
- Hematology-Oncology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| |
Collapse
|
27
|
Abstract
Alphabeta heterodimeric integrins mediate dynamic adhesive cell-cell and cell-extracellular matrix (ECM) interactions in metazoa that are critical in growth and development, hemostasis, and host defense. A central feature of these receptors is their capacity to change rapidly and reversibly their adhesive functions by modulating their ligand-binding affinity. This is normally achieved through interactions of the short cytoplasmic integrin tails with intracellular proteins, which trigger restructuring of the ligand-binding site through long-range conformational changes in the ectodomain. Ligand binding in turn elicits conformational changes that are transmitted back to the cell to regulate diverse responses. The publication of the integrin alphaVbeta3 crystal structure has provided the context for interpreting decades-old biochemical studies. Newer NMR, crystallographic, and EM data, reviewed here, are providing a better picture of the dynamic integrin structure and the allosteric changes that guide its diverse functions.
Collapse
Affiliation(s)
- M A Arnaout
- Structural Biology Program, Leukocyte Biology and Inflammation Program, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachussetts 02129, USA.
| | | | | |
Collapse
|
28
|
Ginsberg MH, Partridge A, Shattil SJ. Integrin regulation. Curr Opin Cell Biol 2005; 17:509-16. [PMID: 16099636 DOI: 10.1016/j.ceb.2005.08.010] [Citation(s) in RCA: 355] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 08/03/2005] [Indexed: 01/16/2023]
Abstract
Integrin signaling is bidirectional. 'Inside-out' signals regulate integrin affinity for adhesive ligands, and ligand-dependent 'outside-in' signals regulate cellular responses to adhesion. Integrin extracellular domains are yielding to high-resolution structural analyses, and intracellular proteins involved in integrin signaling are being identified. However, a key unresolved question is how integrins propagate signals across the plasma membrane.
Collapse
Affiliation(s)
- Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
29
|
Gottschalk KE. A coiled-coil structure of the alphaIIbbeta3 integrin transmembrane and cytoplasmic domains in its resting state. Structure 2005; 13:703-12. [PMID: 15893661 DOI: 10.1016/j.str.2005.02.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 02/03/2005] [Accepted: 02/08/2005] [Indexed: 01/22/2023]
Abstract
One of the hallmark features of the integrin receptors is the ability to transmit signals bidirectionally through the cell membrane. The transmembrane integrin domains are pivotal to the signaling events. An understanding of the signaling mechanism requires structural information. Here, we report a structural model of the transmembrane and part of the cytosolic domains of the alphaIIbbeta3 integrin in its resting state. The model was obtained computationally by a restrained conformational search of helix-helix interactions. It agrees with one published NMR structure of the cytoplasmic complex and can put many experimental findings on structural grounds. According to our model, integrins form an intricately designed coiled-coil structure in the resting state. The conserved Glycophorin A (GpA)-like sequence motif of the alpha, but not the beta, subunit, is in the interface of this model. Based on our calculations and other data, a signaling mechanism that involves a transient GpA-like structure is proposed.
Collapse
Affiliation(s)
- Kay-Eberhard Gottschalk
- Department of Biological Chemistry, The Weizmann Institute of Science, Herzl St. 1, 76100 Rehovot, Israel.
| |
Collapse
|
30
|
Blamey CJ, Ceccarelli C, Naik UP, Bahnson BJ. The crystal structure of calcium- and integrin-binding protein 1: insights into redox regulated functions. Protein Sci 2005; 14:1214-21. [PMID: 15840829 PMCID: PMC2253279 DOI: 10.1110/ps.041270805] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Calcium- and integrin-binding protein 1 (CIB1) is involved in the process of platelet aggregation by binding the cytoplasmic tail of the alpha(IIb) subunit of the platelet-specific integrin alpha(Iib)beta(3). Although poorly understood, it is widely believed that CIB1 acts as a global signaling regulator because it is expressed in many tissues that do not express integrin alpha(Iib)beta(3). We report the structure of human CIB1 to a resolution of 2.3 A, crystallized as a dimer. The dimer interface includes an extensive hydrophobic patch in a crystal form with 80% solvent content. Although the dimer form of CIB1 may not be physiologically relevant, this intersub-unit surface is likely to be linked to alpha(IIb) binding and to the binding of other signaling partner proteins. The C-terminal domain of CIB1 is structurally similar to other EF-hand proteins such as calmodulin and calcineurin B. Despite structural homology to the C-terminal domain, the N-terminal domain of CIB1 lacks calcium-binding sites. The structure of CIB1 revealed a complex with a molecule of glutathione in the reduced state bond to the N-terminal domain of one of the two subunits poised to interact with the free thiol of C35. Glutathione bound in this fashion suggests CIB1 may be redox regulated. Next to the bound GSH, the orientation of residues C35, H31, and S48 is suggestive of a cysteine-type protein phosphatase active site. The potential enzymatic activity of CIB1 is discussed and suggests a mechanism by which it regulates a wide variety of proteins in cells in addition to platelets.
Collapse
Affiliation(s)
- Chad J Blamey
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
31
|
Ryndak MB, Chung H, London E, Bliska JB. Role of predicted transmembrane domains for type III translocation, pore formation, and signaling by the Yersinia pseudotuberculosis YopB protein. Infect Immun 2005; 73:2433-43. [PMID: 15784589 PMCID: PMC1087397 DOI: 10.1128/iai.73.4.2433-2443.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
YopB is a 401-amino-acid protein that is secreted by a plasmid-encoded type III secretion system in pathogenic Yersinia species. YopB is required for Yersinia spp. to translocate across the host plasma membrane a set of secreted effector proteins that function to counteract immune signaling responses and to induce apoptosis. YopB contains two predicted transmembrane helices (residues 166 to 188 and 228 to 250) that are thought to insert into the host plasma membrane during translocation. YopB is also required for pore formation and host-cell-signaling responses to the type III machinery, and these functions of YopB may also require membrane insertion. To elucidate the importance of membrane insertion for YopB function, YopB proteins containing helix-disrupting double consecutive proline substitutions in the center of each transmembrane domain were constructed. Yersinia pseudotuberculosis strains expressing the mutant YopB proteins were used to infect macrophages or epithelial cells. Effector translocation, pore formation, and host-cell-signaling responses were studied. Introduction of helix-disrupting substitutions into the second transmembrane domain of YopB resulted in a nonfunctional protein that was not secreted by the type III machinery. Introduction of helix-disrupting substitutions into the first transmembrane domain of YopB resulted in a protein that was fully functional for secretion and for interaction with YopD, another component of the translocation machinery. However, the YopB protein with helix-disrupting substitutions in the first transmembrane domain was partially defective for translocation, pore formation, and signaling, suggesting that all three functions of YopB involve insertion into host membrane.
Collapse
Affiliation(s)
- Michelle B Ryndak
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, 130 Life Sciences, SUNY at Stony Brook, Stony Brook, NY 11794-5222, USA
| | | | | | | |
Collapse
|
32
|
Li W, Metcalf DG, Gorelik R, Li R, Mitra N, Nanda V, Law PB, Lear JD, Degrado WF, Bennett JS. A push-pull mechanism for regulating integrin function. Proc Natl Acad Sci U S A 2005; 102:1424-9. [PMID: 15671157 PMCID: PMC547819 DOI: 10.1073/pnas.0409334102] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Indexed: 11/18/2022] Open
Abstract
Homomeric and heteromeric interactions between the alphaIIb and beta3 transmembrane domains are involved in the regulation of integrin alphaIIbbeta3 function. These domains appear to interact in the inactivated state but separate upon integrin activation. Moreover, homomeric interactions may increase the level of alphaIIbbeta3 activity by competing for the heteromeric interaction that specifies the resting state. To test this model, a series of mutants were examined that had been shown previously to either enhance or disrupt the homomeric association of the alphaIIb transmembrane domain. One mutation that enhanced the dimerization of the alphaIIb transmembrane domain indeed induced constitutive alphaIIbbeta3 activation. However, a series of mutations that disrupted homodimerization also led to alphaIIbbeta3 activation. These results suggest that the homo- and heterodimerization motifs overlap in the alphaIIb transmembrane domain, and that mutations that disrupt the alphaIIb/beta3 transmembrane domain heterodimer are sufficient to activate the integrin. The data also imply a mechanism for alphaIIbbeta3 regulation in which the integrin can be shifted from its inactive to its active state by destabilizing an alphaIIb/beta3 transmembrane domain heterodimer and by stabilizing the resulting alphaIIb and beta3 transmembrane domain homodimers.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicine, Hematology-Oncology Division, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Partridge AW, Liu S, Kim S, Bowie JU, Ginsberg MH. Transmembrane domain helix packing stabilizes integrin alphaIIbbeta3 in the low affinity state. J Biol Chem 2004; 280:7294-300. [PMID: 15591321 DOI: 10.1074/jbc.m412701200] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Regulated changes in the affinity of integrin adhesion receptors ("activation") play an important role in numerous biological functions including hemostasis, the immune response, and cell migration. Physiological integrin activation is the result of conformational changes in the extracellular domain initiated by the binding of cytoplasmic proteins to integrin cytoplasmic domains. The conformational changes in the extracellular domain are likely caused by disruption of intersubunit interactions between the alpha and beta transmembrane (TM) and cytoplasmic domains. Here, we reasoned that mutation of residues contributing to alpha/beta interactions that stabilize the low affinity state should lead to integrin activation. Thus, we subjected the entire intracellular domain of the beta3 integrin subunit to unbiased random mutagenesis and selected it for activated mutants. 25 unique activating mutations were identified in the TM and membrane-proximal cytoplasmic domain. In contrast, no activating mutations were identified in the more distal cytoplasmic tail, suggesting that this region is dispensable for the maintenance of the inactive state. Among the 13 novel TM domain mutations that lead to integrin activation were several informative point mutations that, in combination with computational modeling, suggested the existence of a specific TM helix-helix packing interface that maintains the low affinity state. The interactions predicted by the model were used to identify additional activating mutations in both the alpha and beta TM domains. Therefore, we propose that helical packing of the alpha and beta TM domains forms a clasp that regulates integrin activation.
Collapse
Affiliation(s)
- Anthony W Partridge
- The Department of Medicine, University of California San Diego, La Jolla, California 92093-0726, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
The ability of cells to regulate dynamically their adhesion to one another and to the extracellular matrix (ECM) that surrounds them is essential in multicellular organisms. The integrin family of transmembrane adhesion receptors mediates both cell-cell and cell-ECM adhesion. One important, rapid and reversible mechanism for regulating adhesion is by increasing the affinity of integrin receptors for their extracellular ligands (integrin activation). This is controlled by intracellular signals that, through their action on integrin cytoplasmic domains, induce conformational changes in integrin extracellular domains that result in increased affinity for ligand. Recent studies have shed light on the final intracellular steps in this process and have revealed a vital role for the cytoskeletal protein talin.
Collapse
Affiliation(s)
- David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, Sterling Hall of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
35
|
Caputo GA, London E. Position and ionization state of Asp in the core of membrane-inserted alpha helices control both the equilibrium between transmembrane and nontransmembrane helix topography and transmembrane helix positioning. Biochemistry 2004; 43:8794-806. [PMID: 15236588 DOI: 10.1021/bi049696p] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The behavior of model-membrane-inserted polyLeu-rich peptides containing Asp residues located at various positions in their hydrophobic core was investigated. The topography of the bilayer-inserted alpha helices formed by these peptides was evaluated by measuring the emission lambda(max) and quenching the fluorescence of a Trp at the center of the peptide sequence. When Asp residues were protonated (at low pH), peptides that were incorporated into vesicles composed of dioleoylphosphatidylcholine (DOPC) adopted a topography in which the polyLeu sequence predominantly formed a normal transmembrane (TM) helix. When Asp residues were ionized (at neutral or high pH), topography was altered in a manner that would allow the charged Asp residues to reside near the bilayer surface. In DOPC vesicles, most peptides repositioned so that the longest segment of consecutive hydrophobic residues (12 residue minimum) formed a truncated/shifted TM structure. However, peptides with one or two charged Asp residues close to the center of the hydrophobic sequence and thus lacking even a 12-residue continuous hydrophobic segment, formed a helical non-TM state locating near the bilayer surface. At low pH, incorporation of the peptides into thicker bilayers composed of dierucoylphosphatidylcholine (DEuPC) resulted in the formation of a mixture of the normal TM state and the non-TM helical state located near the bilayer surface. In DEuPC vesicles at high pH, the non-TM state tended to predominate. How Asp-ionization-dependent shifts in helix topography may regulate the function of membrane proteins exposed to environments with differing pH in vivo (e.g., endosomes) is discussed.
Collapse
Affiliation(s)
- Gregory A Caputo
- Department of Biochemistry and Cell Biology, Stony Brook University, State University of New York, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
36
|
Luo BH, Springer TA, Takagi J. A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol 2004; 2:e153. [PMID: 15208712 PMCID: PMC423134 DOI: 10.1371/journal.pbio.0020153] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 03/17/2004] [Indexed: 01/14/2023] Open
Abstract
Conformational communication across the plasma membrane between the extracellular and intracellular domains of integrins is beginning to be defined by structural work on both domains. However, the role of the α and β subunit transmembrane domains and the nature of signal transmission through these domains have been elusive. Disulfide bond scanning of the exofacial portions of the integrin αIIβ and β3 transmembrane domains reveals a specific heterodimerization interface in the resting receptor. This interface is lost rather than rearranged upon activation of the receptor by cytoplasmic mutations of the α subunit that mimic physiologic inside-out activation, demonstrating a link between activation of the extracellular domain and lateral separation of transmembrane helices. Introduction of disulfide bridges to prevent or reverse separation abolishes the activating effect of cytoplasmic mutations, confirming transmembrane domain separation but not hinging or piston-like motions as the mechanism of transmembrane signaling by integrins. Integrin receptors mediate cell-matrix interactions by altering the conformation of their intra- and extra- cellular domains, a process mediated by lateral separation of the transmembrane helices
Collapse
Affiliation(s)
- Bing-Hao Luo
- 1Center for Blood Research (CBR) Institute for Biomedical Research and Department of Pathology, Harvard Medical SchoolBoston, MassachusettsUnited States of America
| | - Timothy A Springer
- 1Center for Blood Research (CBR) Institute for Biomedical Research and Department of Pathology, Harvard Medical SchoolBoston, MassachusettsUnited States of America
| | - Junichi Takagi
- 1Center for Blood Research (CBR) Institute for Biomedical Research and Department of Pathology, Harvard Medical SchoolBoston, MassachusettsUnited States of America
| |
Collapse
|
37
|
Vinogradova O, Vaynberg J, Kong X, Haas TA, Plow EF, Qin J. Membrane-mediated structural transitions at the cytoplasmic face during integrin activation. Proc Natl Acad Sci U S A 2004; 101:4094-9. [PMID: 15024114 PMCID: PMC384700 DOI: 10.1073/pnas.0400742101] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic face-mediated integrin inside-out activation remains a paradigm in transmembrane signal transduction. Emerging evidence suggests that this process involves dissociation of the complex between the integrin cytoplasmic tails; however, a dynamic image of how it occurs on the membrane surface remains elusive. We show here that, whereas membrane-proximal helices of integrin alpha/beta cytoplasmic tails associate in cytoplasm-like aqueous medium, they become partially embedded into membrane-mimetic micelles when unclasped. Membrane embedding induces substantial structural changes of the cytoplasmic tails as compared to their aqueous conformations and suggests there may be an upward movement of the membrane-proximal helices into the membrane during their separation. We further demonstrate that the beta3 tail exhibits additional membrane binding site at its C terminus containing the NPLY motif. Talin, a key intracellular integrin activator, recognizes this site as well as the membrane-proximal helix, thereby promoting cytoplasmic tail separation along the membrane surface. These data provide a structural basis of membrane-mediated changes at the cytoplasmic face in regulating integrin activation and signaling.
Collapse
Affiliation(s)
- Olga Vinogradova
- Structural Biology Program, Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
38
|
Armulik A, Velling T, Johansson S. The integrin beta1 subunit transmembrane domain regulates phosphatidylinositol 3-kinase-dependent tyrosine phosphorylation of Crk-associated substrate. Mol Biol Cell 2004; 15:2558-67. [PMID: 15034138 PMCID: PMC420082 DOI: 10.1091/mbc.e03-09-0700] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Our previous studies on the transmembrane domain of human integrin subunits have shown that a conserved basic amino acid in both subunits of integrin heterodimers is positioned in the plasma membrane in the absence of interacting proteins. To investigate the possible functional role of the lipid-embedded lysine in the mouse integrin beta1 subunit, this amino acid was replaced with leucine, and the mutated beta1 subunit (beta1A(K756L)) was stably expressed in beta1-deficient GD25 cells. The extracellular domain of beta1A(K756L) integrins possesses a competent conformation for ligand binding as determined by the ability to mediate cell adhesion, and by the presence of the monoclonal antibody 9EG7 epitope. However, the spreading of GD25-beta1A(K756L) cells on fibronectin and laminin-1 was impaired, and the rate of migration of GD25-beta1A(K756L) cells on fibronectin was reduced compared with GD25-beta1A cells. Phosphorylation of tyrosines in focal adhesion kinase (FAK) and the Y416 in c-Src in response to beta1A(K756L)-mediated adhesion was similar to that induced by wild-type beta1. The tyrosine phosphorylation level of paxillin, a downstream target of FAK/Src, was unaffected by the beta1 mutation, whereas tyrosine phosphorylation of CAS was strongly reduced. The results demonstrate that CAS is a target for phosphorylation both by FAK-dependent and -independent pathways after integrin ligation. The latter pathway was inhibited by wortmannin and LY294002, implicating that it required an active phosphatidylinositol 3-kinase. Furthermore, the K756L mutation in the beta1 subunit was found to interfere with beta1-induced activation of Akt. The results from this study identify phosphatidylinositol 3-kinase as an early component of a FAK-independent integrin signaling pathway triggered by the membrane proximal part of the beta1 subunit.
Collapse
Affiliation(s)
- Annika Armulik
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, SE-751 23, Uppsala, Sweden.
| | | | | |
Collapse
|
39
|
Stefansson A, Armulik A, Nilsson I, von Heijne G, Johansson S. Determination of N- and C-terminal borders of the transmembrane domain of integrin subunits. J Biol Chem 2004; 279:21200-5. [PMID: 15016834 DOI: 10.1074/jbc.m400771200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies on the membrane-cytoplasm interphase of human integrin subunits have shown that a conserved lysine in subunits alpha(2), alpha(5), beta(1), and beta(2) is embedded in the plasma membrane in the absence of interacting proteins (Armulik, A., Nilsson, I., von Heijne, G., and Johansson, S. (1999) in J. Biol. Chem. 274, 37030-37034). Using a glycosylation mapping technique, we here show that alpha(10) and beta(8), two subunits that deviate significantly from the integrin consensus sequences in the membrane-proximal region, were found to have the conserved lysine at a similar position in the lipid bilayer. Thus, this organization at the C-terminal end of the transmembrane (TM) domain seems likely to be general for all 24 integrin subunits. Furthermore, we have determined the N-terminal border of the TM domains of the alpha(2), alpha(5), alpha(10), beta(1), and beta(8) subunits. The TM domain of subunit beta(8) is found to be 22 amino acids long, with a second basic residue (Arg(684)) positioned just inside the membrane at the exoplasmic side, whereas the lipidembedded domains of the other subunits are longer, varying from 25 (alpha(2)) to 29 amino acids (alpha(10)). These numbers implicate that the TM region of the analyzed integrins (except beta(8)) would be tilted or bent in the membrane. Integrin signaling by transmembrane conformational change may involve alteration of the position of the segment adjacent to the conserved lysine. To test the proposed "piston" model for signaling, we forced this region at the C-terminal end of the alpha(5) and beta(1) TM domains out of the membrane into the cytosol by replacing Lys-Leu with Lys-Lys. The mutation was found to not alter the position of the N-terminal end of the TM domain in the membrane, indicating that the TM domain is not moving as a piston. Instead the shift results in a shorter and therefore less tilted or bent TM alpha-helix.
Collapse
Affiliation(s)
- Anne Stefansson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, SE-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
40
|
Alahari SK, Nasrallah H. A membrane proximal region of the integrin alpha5 subunit is important for its interaction with nischarin. Biochem J 2004; 377:449-57. [PMID: 14535848 PMCID: PMC1223876 DOI: 10.1042/bj20030411] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Revised: 09/17/2003] [Accepted: 10/09/2003] [Indexed: 11/17/2022]
Abstract
In a previous study [Alahari, Lee and Juliano (2000) J. Cell Biol. 151, 1141-1154], we have identified a novel protein, nischarin, that specifically interacts with the cytoplasmic tail of the alpha5 integrin subunit. Overexpression of this protein profoundly affects cell migration. To examine the nischarin-alpha5 interaction in detail, and to find the minimal region required for the interaction, several mutants of nischarin and alpha5 were created. The results obtained for the yeast two-hybrid system indicate that a 99-aminoacid region of nischarin (from residues 464 to 562) is indispensable for the interaction. Also, we demonstrate that the membrane proximal region (from residues 1017 to 1030) of the alpha5 cytoplasmic tail is essential for the interaction. To characterize more directly the properties of the interaction between nischarin and alpha5, we performed surface-plasmon resonance studies in which peptides were immobilized on the surface of a sensor chip, and the recombinant nischarin protein fragments were injected. Consistent with the two-hybrid results, recombinant nischarin binds well to immobilized alpha5 peptides. In addition, mutational analysis revealed that residues Tyr(1018) and Lys(1022) are crucial for alpha5-nischarin interactions. These results provide evidence that nischarin is capable of directly and selectively binding to a portion of the alpha5 cytoplasmic domain. Further studies demonstrated that the minimal alpha5 binding region of nischarin does not affect cell migration.
Collapse
Affiliation(s)
- Suresh K Alahari
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7365, USA.
| | | |
Collapse
|
41
|
Schneider D, Engelman DM. Involvement of transmembrane domain interactions in signal transduction by alpha/beta integrins. J Biol Chem 2003; 279:9840-6. [PMID: 14681217 DOI: 10.1074/jbc.m312749200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha and beta subunits of alpha/beta heterodimeric integrins function together to bind ligands in the extracellular region and transduce signals across cellular membranes. A possible function for the transmembrane regions in integrin signaling has been proposed from structural and computational data. We have analyzed the capacity of the integrin alpha(2), alpha(IIb), alpha(4), beta(1), beta(3), and beta(7) transmembrane domains to form homodimers and/or heterodimers. Our data suggest that the integrin transmembrane helices can help to stabilize heterodimeric integrins but that the interactions do not specifically associate particular pairs of alpha and beta subunits; rather, the alpha/beta subunit interaction constrains the extramembranous domains, facilitating signal transduction by a promiscuous transmembrane helix-helix association.
Collapse
Affiliation(s)
- Dirk Schneider
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
42
|
Xiong JP, Stehle T, Goodman SL, Arnaout MA. New insights into the structural basis of integrin activation. Blood 2003; 102:1155-9. [PMID: 12714499 DOI: 10.1182/blood-2003-01-0334] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrins are cell adhesion receptors that communicate biochemical and mechanical signals in a bidirectional manner across the plasma membrane and thus influence most cellular functions. Intracellular signals switch integrins into a ligand-competent state as a result of elicited conformational changes in the integrin ectodomain. Binding of extracellular ligands induces, in turn, structural changes that convey distinct signals to the cell interior. The structural basis of this bidirectional signaling has been the focus of intensive study for the past 3 decades. In this perspective, we develop a new hypothesis for integrin activation based on recent crystallographic, electron microscopic, and biochemical studies.
Collapse
Affiliation(s)
- Jian-Ping Xiong
- Renal Unit, Leukocyte Biology and Inflammation Program, Structural Biology Program, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
43
|
Ulmer TS, Calderwood DA, Ginsberg MH, Campbell ID. Domain-specific interactions of talin with the membrane-proximal region of the integrin beta3 subunit. Biochemistry 2003; 42:8307-12. [PMID: 12846579 DOI: 10.1021/bi034384s] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation (affinity regulation) of integrin adhesion receptors controls cell migration and extracellular matrix assembly. Talin connects integrins with actin filaments and influences integrin affinity by binding to the integrins' short cytoplasmic beta-tail. The principal beta-tail binding site in talin is a FERM domain, comprised of three subdomains (F1, F2, and F3). Previous studies of integrin alphaIIbbeta3 have shown that both F2 and F3 bind the beta3 tail, but only F3, or the F2-F3 domain pair, induces activation. Here, talin-induced perturbations of beta3 NMR resonances were examined to explore integrin activation mechanisms. F3 and F2-F3, but not F2, distinctly perturbed the membrane-proximal region of the beta3 tail. All domains also perturbed more distal regions of the beta3 tail that appear to form the major interaction surface, since the beta3(Y747A) mutation suppressed those effects. These results suggest that perturbation of the beta3 tail membrane-proximal region is associated with talin-mediated integrin activation.
Collapse
Affiliation(s)
- Tobias S Ulmer
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
44
|
Battle MA, Maher VM, McCormick JJ. ST7 is a novel low-density lipoprotein receptor-related protein (LRP) with a cytoplasmic tail that interacts with proteins related to signal transduction pathways. Biochemistry 2003; 42:7270-82. [PMID: 12809483 DOI: 10.1021/bi034081y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In 1997, McCormick and co-workers identified a novel putative tumor suppressor gene, designated ST7, encoding a unique protein with transmembrane receptor characteristics [Qing et al. (1999) Oncogene 18, 335-342]. Using degenerate primers corresponding to the highly conserved region of the ligand-binding domains of members of the low-density lipoprotein receptor (LDLR) superfamily, Ishii et al. [Genomics (1998) 51, 132-135] discovered a low-density lipoprotein receptor-related protein (LRP) that closely resembles ST7. Later, another LRP closely resembling ST7 and LRP3 was found (murine LRP9) [Sugiyama et al. (2000) Biochemistry 39, 15817-15825]. These results strongly suggested that ST7 was also a novel member of the low-density lipoprotein receptor superfamily. Proteins of this superfamily have been shown to function in endocytosis and/or signal transduction. To evaluate the relationship of ST7 to the LDLR superfamily proteins and to determine whether ST7 may function in endocytosis and/or signal transduction, we used proteomic tools to analyze the functional motifs present in the protein. Our results indicate that ST7 is a member of a subfamily of the LDLR superfamily and that its cytoplasmic domain contains several motifs implicated in endocytosis and signal transduction. Use of the yeast two-hybrid system to identify proteins that associate with ST7's cytoplasmic domain revealed that this domain interacts with three proteins involved in signal transduction and/or endocytosis, viz., receptor for activated protein C kinase 1 (RACK1), muscle integrin binding protein (MIBP), and SMAD anchor for receptor activation (SARA), suggesting that ST7, like other proteins in the LDLR superfamily, functions in these two pathways. Clearly, ST7 is an LRP, and therefore, it should now be referred to as LRP12.
Collapse
Affiliation(s)
- Michele A Battle
- Carcinogenesis Laboratory, Cell and Molecular Biology Program, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1302, USA
| | | | | |
Collapse
|
45
|
Affiliation(s)
- Richard O Hynes
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
46
|
Travis MA, Humphries JD, Humphries MJ. An unraveling tale of how integrins are activated from within. Trends Pharmacol Sci 2003; 24:192-7. [PMID: 12707006 DOI: 10.1016/s0165-6147(03)00069-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrin cytoplasmic tail domains are short, but are essential for normal receptor function because of their key role in relaying bidirectional signals across the plasma membrane. Although it is well established that the cytoplasmic tails both initiate signalling pathways inside the cell and control the transition of integrins from a resting to a ligand-binding competent state, until recently the structural basis of these changes has been unclear. In the past year, however, a series of structural studies has revealed certain features of cytoplasmic domain function, and in this review we focus on how these advances have enlightened our understanding of integrin tail structure and function.
Collapse
Affiliation(s)
- Mark A Travis
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
47
|
Li R, Babu CR, Valentine K, Lear JD, Wand AJ, Bennett JS, DeGrado WF. Characterization of the monomeric form of the transmembrane and cytoplasmic domains of the integrin beta 3 subunit by NMR spectroscopy. Biochemistry 2002; 41:15618-24. [PMID: 12501190 DOI: 10.1021/bi026822l] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have characterized a membrane protein containing residues P688-T762 of the integrin beta3 subunit, encompassing its transmembrane and cytoplasmic domains, by nuclear magnetic resonance spectroscopy. Under conditions in which it is monomeric in dodecylphosphocholine micelles, the protein consists mainly of alpha-helical structures. An amino-terminal helix corresponding to the beta3 transmembrane helix extends into the membrane-proximal region of the cytoplasmic domain. Moreover, following an apparent hinge at residues H722-D723, residues K725-A735 are mostly alpha-helical. In the presence of membrane-mimicking detergents, the cytoplasmic domain connected to the transmembrane helix is substantially ordered at pH 4.8 and 50 degrees C. Its carboxyl-terminal end takes on a turn-helix configuration characteristic of the immunoreceptor tyrosine-based activation motif. These structural features of the beta3 subunit should help to explain its interaction with numerous cytosolic interacting proteins and begin to illuminate the mechanism of integrin activation.
Collapse
Affiliation(s)
- Renhao Li
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
In their roles as major adhesion receptors, integrins signal across the plasma membrane in both directions. Recent structural and cell biological data suggest models for how integrins transmit signals between their extracellular ligand binding adhesion sites and their cytoplasmic domains, which link to the cytoskeleton and to signal transduction pathways. Long-range conformational changes couple these functions via allosteric equilibria.
Collapse
Affiliation(s)
- Richard O Hynes
- Howard Hughes Medical Institute, Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
49
|
Zhang WM, Popova SN, Bergman C, Velling T, Gullberg MK, Gullberg D. Analysis of the human integrin alpha11 gene (ITGA11) and its promoter. Matrix Biol 2002; 21:513-23. [PMID: 12392762 DOI: 10.1016/s0945-053x(02)00054-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Integrin alpha11beta1 is a collagen receptor which is expressed in a subset of mesenchymally-derived tissues during embryogenesis. Based on available human chromosome 15-derived sequences and genomic PCR, the complete exon structure of ITGA11, including the proximal promoter, was assembled into 30 exons. The inserted region (encoding amino acids 804-826) distinguishing alpha11 from other integrin alpha chains, was placed in the very beginning of exon 20. PCR data failed to show alternative splicing of RNA transcribed from this region. Using the oligo-capping technique a major transcription start site was mapped 30 nucleotides upstream of the translation start and identified as an abbreviated initiator sequence. Promoter sequence analysis in silico suggested the presence of multiple binding sites for transcription factors in the region upstream of the transcription start. 3 kb of the 5' flanking sequence was isolated and used to generate luciferase promoter constructs. In the fibrosarcoma cell line HT1080 a core promoter [nt (-)127-(+)25], a potential silencer region [nt (-)400-(-)127] and a potential enhancer region [nt (-)1519-(-)400], were identified as being important for alpha11 transcription in mesenchymal cells. Furthermore, studies of the promoter region will provide valuable information regarding the molecular mechanisms underlying the cell- and tissue- specific expression pattern of ITGA11.
Collapse
Affiliation(s)
- Wan-Ming Zhang
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Box 582, Husargatan 3, Uppsala University, S-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Gullberg DE, Lundgren-Akerlund E. Collagen-binding I domain integrins--what do they do? PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2002; 37:3-54. [PMID: 11876085 DOI: 10.1016/s0079-6336(02)80008-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Collagens are the most abundant proteins in the mammalian body and it is well recognized that collagens fulfill an important structural role in the extracellular matrix in a number of tissues. Inactivation of the collagen alpha 1(I) gene in mice results in embryonic lethality and collagen mutations in humans cause defects leading to disease. Integrins constitute a major group of receptors for extracellular matrix components, including collagens. Currently four collagen-binding I domain-containing integrins are known, namely alpha 1 beta 1, alpha 2 beta 1, alpha 10 beta 1 and alpha 11 beta 1. Unlike the undisputed role of collagens as structural elements, the biological importance of integrin mediated cell-collagen interactions is far from clear. This is in part due to the limited information available on the most recent additions of the integrin family, alpha 10 beta 1 and alpha 11 beta 1. Future studies using gene inactivation of individual and multiple integrin genes will allow testing of the hypothesis that collagen-binding integrins have redundant functions but will also shed light on their importance in pathological conditions. In this review we will describe what is currently known about the collagen-binding integrins and discuss their biological functions.
Collapse
Affiliation(s)
- Donald E Gullberg
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Box 582, Uppsala University, S-75123 Uppsala, Sweden.
| | | |
Collapse
|