1
|
Nakatsu G, Andreeva N, MacDonald MH, Garrett WS. Interactions between diet and gut microbiota in cancer. Nat Microbiol 2024; 9:1644-1654. [PMID: 38907007 DOI: 10.1038/s41564-024-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/20/2024] [Indexed: 06/23/2024]
Abstract
Dietary patterns and specific dietary components, in concert with the gut microbiota, can jointly shape susceptibility, resistance and therapeutic response to cancer. Which diet-microbial interactions contribute to or mitigate carcinogenesis and how they work are important questions in this growing field. Here we interpret studies of diet-microbial interactions to assess dietary determinants of intestinal colonization by opportunistic and oncogenic bacteria. We explore how diet-induced expansion of specific gut bacteria might drive colonic epithelial tumorigenesis or create immuno-permissive tumour milieus and introduce recent findings that provide insight into these processes. Additionally, we describe available preclinical models that are widely used to study diet, microbiome and cancer interactions. Given the rising clinical interest in dietary modulations in cancer treatment, we highlight promising clinical trials that describe the effects of different dietary alterations on the microbiome and cancer outcomes.
Collapse
Affiliation(s)
- Geicho Nakatsu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Natalia Andreeva
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Meghan H MacDonald
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Shui B, Beyett TS, Chen Z, Li X, La Rocca G, Gazlay WM, Eck MJ, Lau KS, Ventura A, Haigis KM. Oncogenic K-Ras suppresses global miRNA function. Mol Cell 2023; 83:2509-2523.e13. [PMID: 37402366 PMCID: PMC10527862 DOI: 10.1016/j.molcel.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
K-Ras frequently acquires gain-of-function mutations (K-RasG12D being the most common) that trigger significant transcriptomic and proteomic changes to drive tumorigenesis. Nevertheless, oncogenic K-Ras-induced dysregulation of post-transcriptional regulators such as microRNAs (miRNAs) during oncogenesis is poorly understood. Here, we report that K-RasG12D promotes global suppression of miRNA activity, resulting in the upregulation of hundreds of targets. We constructed a comprehensive profile of physiological miRNA targets in mouse colonic epithelium and tumors expressing K-RasG12D using Halo-enhanced Argonaute pull-down. Combining this with parallel datasets of chromatin accessibility, transcriptome, and proteome, we uncovered that K-RasG12D suppressed the expression of Csnk1a1 and Csnk2a1, subsequently decreasing Ago2 phosphorylation at Ser825/829/832/835. Hypo-phosphorylated Ago2 increased binding to mRNAs while reducing its activity to repress miRNA targets. Our findings connect a potent regulatory mechanism of global miRNA activity to K-Ras in a pathophysiological context and provide a mechanistic link between oncogenic K-Ras and the post-transcriptional upregulation of miRNA targets.
Collapse
Affiliation(s)
- Bing Shui
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA; Program in Biological and Biomedical Sciences, Division of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler S Beyett
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhengyi Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Xiaoyi Li
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - William M Gazlay
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA; Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Abstract
Mouse models of colorectal cancer (CRC) have been crucial in the identification of the role of genes responsible for the full range of pathology of the human disease and have proved to be dependable for testing anti-cancer drugs. Recent research points toward the relevance of tumor, angiogenic, and immune microenvironments in CRC progression to late-stage disease, as well as the treatment of it. This study examines important mouse models in CRC, discussing inherent strengths and weaknesses disclosed during their construction. It endeavors to provide both a synopsis of previous work covering how investigators have defined various models and to evaluate critically how researchers are most likely to use them in the future. Accumulated evidence regarding the metastatic process and the hope of using checkpoint inhibitors and immunological inhibitor therapies points to the need for a genetically engineered mouse model that is both immunocompetent and autochthonous.
Collapse
Affiliation(s)
- Melanie Haas Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Wiley MB, Bauer J, Mehrotra K, Zessner-Spitzenberg J, Kolics Z, Cheng W, Castellanos K, Nash MG, Gui X, Kone L, Maker AV, Qiao G, Reddi D, Church DN, Kerr RS, Kerr DJ, Grippo PJ, Jung B. Non-Canonical Activin A Signaling Stimulates Context-Dependent and Cellular-Specific Outcomes in CRC to Promote Tumor Cell Migration and Immune Tolerance. Cancers (Basel) 2023; 15:3003. [PMID: 37296966 PMCID: PMC10252122 DOI: 10.3390/cancers15113003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
We have shown that activin A (activin), a TGF-β superfamily member, has pro-metastatic effects in colorectal cancer (CRC). In lung cancer, activin activates pro-metastatic pathways to enhance tumor cell survival and migration while augmenting CD4+ to CD8+ communications to promote cytotoxicity. Here, we hypothesized that activin exerts cell-specific effects in the tumor microenvironment (TME) of CRC to promote anti-tumoral activity of immune cells and the pro-metastatic behavior of tumor cells in a cell-specific and context-dependent manner. We generated an Smad4 epithelial cell specific knockout (Smad4-/-) which was crossed with TS4-Cre mice to identify SMAD-specific changes in CRC. We also performed IHC and digital spatial profiling (DSP) of tissue microarrays (TMAs) obtained from 1055 stage II and III CRC patients in the QUASAR 2 clinical trial. We transfected the CRC cells to reduce their activin production and injected them into mice with intermittent tumor measurements to determine how cancer-derived activin alters tumor growth in vivo. In vivo, Smad4-/- mice displayed elevated colonic activin and pAKT expression and increased mortality. IHC analysis of the TMA samples revealed increased activin was required for TGF-β-associated improved outcomes in CRC. DSP analysis identified that activin co-localization in the stroma was coupled with increases in T-cell exhaustion markers, activation markers of antigen presenting cells (APCs), and effectors of the PI3K/AKT pathway. Activin-stimulated PI3K-dependent CRC transwell migration, and the in vivo loss of activin lead to smaller CRC tumors. Taken together, activin is a targetable, highly context-dependent molecule with effects on CRC growth, migration, and TME immune plasticity.
Collapse
Affiliation(s)
- Mark B. Wiley
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Jessica Bauer
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Kunaal Mehrotra
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Jasmin Zessner-Spitzenberg
- Clinical Department for Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Zoe Kolics
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Wenxuan Cheng
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Karla Castellanos
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Michael G. Nash
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Xianyong Gui
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lyonell Kone
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ajay V. Maker
- Department of Surgery, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Guilin Qiao
- Department of Surgery, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Deepti Reddi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David N. Church
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 4BH, UK
- NIHR Oxford Comprehensive Biomedical Research Center, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford OX1 4BH, UK
| | - Rachel S. Kerr
- Department of Oncology, University of Oxford, Oxford OX1 4BH, UK
| | - David J. Kerr
- Radcliffe Department of Medicine, University of Oxford, Oxford OX1 4BH, UK
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Barbara Jung
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| |
Collapse
|
5
|
Ko FC, Jochum SB, Wilson BM, Adra A, Patel N, Lee H, Wilber S, Shaikh M, Forsyth C, Keshavarzian A, Swanson GR, Sumner DR. Colon epithelial cell-specific Bmal1 deletion impairs bone formation in mice. Bone 2023; 168:116650. [PMID: 36584784 PMCID: PMC9911378 DOI: 10.1016/j.bone.2022.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
The circadian clock system regulates multiple metabolic processes, including bone metabolism. Previous studies have demonstrated that both central and peripheral circadian signaling regulate skeletal growth and homeostasis in mice. Disruption in central circadian rhythms has been associated with a decline in bone mineral density in humans and the global and osteoblast-specific disruption of clock genes in bone tissue leads to lower bone mass in mice. Gut physiology is highly sensitive to circadian disruption. Since the gut is also known to affect bone remodeling, we sought to test the hypothesis that circadian signaling disruption in colon epithelial cells affects bone. We therefore assessed structural, functional, and cellular properties of bone in 8 week old Ts4-Cre and Ts4-Cre;Bmal1fl/fl (cBmalKO) mice, where the clock gene Bmal1 is deleted in colon epithelial cells. Axial and appendicular trabecular bone volume was significantly lower in cBmalKO compared to Ts4-Cre 8-week old mice in a sex-dependent fashion, with male but not female mice showing the phenotype. Similarly, the whole bone mechanical properties were deteriorated in cBmalKO male mice. The tissue level mechanisms involved suppressed bone formation with normal resorption, as evidenced by serum markers and dynamic histomorphometry. Our studies demonstrate that colon epithelial cell-specific deletion of Bmal1 leads to failure to acquire trabecular and cortical bone in male mice.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America.
| | - Sarah B Jochum
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Brittany M Wilson
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Amal Adra
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Nikhil Patel
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Hoomin Lee
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Sherry Wilber
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Christopher Forsyth
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Ali Keshavarzian
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Garth R Swanson
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - D Rick Sumner
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| |
Collapse
|
6
|
Won Y, Choi E. Mouse models of Kras activation in gastric cancer. Exp Mol Med 2022; 54:1793-1798. [PMID: 36369466 PMCID: PMC9723172 DOI: 10.1038/s12276-022-00882-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer has one of the highest incidence rates and is one of the leading causes of cancer-related mortality worldwide. Sequential steps within the carcinogenic process are observed in gastric cancer as well as in pancreatic cancer and colorectal cancer. Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most well-known oncogene and can be constitutively activated by somatic mutations in the gene locus. For over 2 decades, the functions of Kras activation in gastrointestinal (GI) cancers have been studied to elucidate its oncogenic roles during the carcinogenic process. Different approaches have been utilized to generate distinct in vivo models of GI cancer, and a number of mouse models have been established using Kras-inducible systems. In this review, we summarize the genetically engineered mouse models in which Kras is activated with cell-type and/or tissue-type specificity that are utilized for studying carcinogenic processes in gastric cancer as well as pancreatic cancer and colorectal cancer. We also provide a brief description of histological phenotypes and characteristics of those mouse models and the current limitations in the gastric cancer field to be investigated further.
Collapse
Affiliation(s)
- Yoonkyung Won
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
DeStefanis RA, Kratz JD, Olson AM, Sunil A, DeZeeuw AK, Gillette AA, Sha GC, Johnson KA, Pasch CA, Clipson L, Skala MC, Deming DA. Impact of baseline culture conditions of cancer organoids when determining therapeutic response and tumor heterogeneity. Sci Rep 2022; 12:5205. [PMID: 35338174 PMCID: PMC8956720 DOI: 10.1038/s41598-022-08937-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Representative models are needed to screen new therapies for patients with cancer. Cancer organoids are a leap forward as a culture model that faithfully represents the disease. Mouse-derived cancer organoids (MDCOs) are becoming increasingly popular, however there has yet to be a standardized method to assess therapeutic response and identify subpopulation heterogeneity. There are multiple factors unique to organoid culture that could affect how therapeutic response and MDCO heterogeneity are assessed. Here we describe an analysis of nearly 3500 individual MDCOs where individual organoid morphologic tracking was performed. Change in MDCO diameter was assessed in the presence of control media or targeted therapies. Individual organoid tracking was identified to be more sensitive to treatment response than well-level assessment. The impact of different generations of mice of the same genotype, different regions of the colon, and organoid specific characteristics including baseline size, passage number, plating density, and location within the matrix were examined. Only the starting size of the MDCO altered the subsequent growth. These results were corroborated using ~ 1700 patient-derived cancer organoids (PDCOs) isolated from 19 patients. Here we establish organoid culture parameters for individual organoid morphologic tracking to determine therapeutic response and growth/response heterogeneity for translational studies.
Collapse
Affiliation(s)
- Rebecca A DeStefanis
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
| | - Jeremy D Kratz
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Autumn M Olson
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
| | - Aishwarya Sunil
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
| | - Alyssa K DeZeeuw
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
| | - Amani A Gillette
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Gioia C Sha
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
| | - Katherine A Johnson
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA
| | - Cheri A Pasch
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa C Skala
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Dustin A Deming
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 6507 WIMR2, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Gough NR, Xiang X, Mishra L. TGF-β Signaling in Liver, Pancreas, and Gastrointestinal Diseases and Cancer. Gastroenterology 2021; 161:434-452.e15. [PMID: 33940008 PMCID: PMC8841117 DOI: 10.1053/j.gastro.2021.04.064] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Genetic alterations affecting transforming growth factor-β (TGF-β) signaling are exceptionally common in diseases and cancers of the gastrointestinal system. As a regulator of tissue renewal, TGF-β signaling and the downstream SMAD-dependent transcriptional events play complex roles in the transition from a noncancerous disease state to cancer in the gastrointestinal tract, liver, and pancreas. Furthermore, this pathway also regulates the stromal cells and the immune system, which may contribute to evasion of the tumors from immune-mediated elimination. Here, we review the involvement of the TGF-β pathway mediated by the transcriptional regulators SMADs in disease progression to cancer in the digestive system. The review integrates human genomic studies with animal models that provide clues toward understanding and managing the complexity of the pathway in disease and cancer.
Collapse
Affiliation(s)
- Nancy R. Gough
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, New York
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, New York
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, New York; Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, District of Columbia.
| |
Collapse
|
9
|
Tian X, Zhou B. Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution. J Biol Chem 2021; 296:100509. [PMID: 33676891 PMCID: PMC8050033 DOI: 10.1016/j.jbc.2021.100509] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
Site-specific recombinases (SSRs) are invaluable genome engineering tools that have enormously boosted our understanding of gene functions and cell lineage relationships in developmental biology, stem cell biology, regenerative medicine, and multiple diseases. However, the ever-increasing complexity of biomedical research requires the development of novel site-specific genetic recombination technologies that can manipulate genomic DNA with high efficiency and fine spatiotemporal control. Here, we review the latest innovative strategies of the commonly used Cre-loxP recombination system and its combinatorial strategies with other site-specific recombinase systems. We also highlight recent progress with a focus on the new generation of chemical- and light-inducible genetic systems and discuss the merits and limitations of each new and established system. Finally, we provide the future perspectives of combining various recombination systems or improving well-established site-specific genetic tools to achieve more efficient and precise spatiotemporal genetic manipulation.
Collapse
Affiliation(s)
- Xueying Tian
- Key Laboratory of Regenerative Medicine of Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
10
|
Zafra MP, Parsons MJ, Kim J, Alonso-Curbelo D, Goswami S, Schatoff EM, Han T, Katti A, Fernandez MTC, Wilkinson JE, Piskounova E, Dow LE. An In Vivo Kras Allelic Series Reveals Distinct Phenotypes of Common Oncogenic Variants. Cancer Discov 2020; 10:1654-1671. [PMID: 32792368 DOI: 10.1158/2159-8290.cd-20-0442] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022]
Abstract
KRAS is the most frequently mutated oncogene in cancer, yet there is little understanding of how specific KRAS amino acid changes affect tumor initiation, progression, or therapy response. Using high-fidelity CRISPR-based engineering, we created an allelic series of new LSL-Kras mutant mice, reflecting codon 12 and 13 mutations that are highly prevalent in lung (KRASG12C), pancreas (KRASG12R), and colon (KRASG13D) cancers. Induction of each allele in either the murine colon or pancreas revealed striking quantitative and qualitative differences between KRAS mutants in driving the early stages of transformation. Furthermore, using pancreatic organoid models, we show that KRASG13D mutants are sensitive to EGFR inhibition, whereas KRASG12C-mutant organoids are selectively responsive to covalent G12C inhibitors only when EGFR is suppressed. Together, these new mouse strains provide an ideal platform for investigating KRAS biology in vivo and for developing preclinical precision oncology models of KRAS-mutant pancreas, colon, and lung cancers. SIGNIFICANCE: KRAS is the most frequently mutated oncogene. Here, we describe new preclinical models that mimic tissue-selective KRAS mutations and show that each mutation has distinct cellular consequences in vivo and carries differential sensitivity to targeted therapeutic agents.See related commentary by Kostyrko and Sweet-Cordero, p. 1626.This article is highlighted in the In This Issue feature, p. 1611.
Collapse
Affiliation(s)
- Maria Paz Zafra
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.
| | - Marie J Parsons
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Jangkyung Kim
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Direna Alonso-Curbelo
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sukanya Goswami
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Teng Han
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Alyna Katti
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | | | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Elena Piskounova
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.,Department of Dermatology, Weill Cornell Medicine, New York, New York.,Department of Biochemistry, Weill Cornell Medicine, New York, New York
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York. .,Department of Biochemistry, Weill Cornell Medicine, New York, New York.,Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
11
|
Wong M, Gilmour D. Getting back on track: exploiting canalization to uncover the mechanisms of developmental robustness. Curr Opin Genet Dev 2020; 63:53-60. [DOI: 10.1016/j.gde.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023]
|
12
|
Wang YB, de Lartigue G, Page AJ. Dissecting the Role of Subtypes of Gastrointestinal Vagal Afferents. Front Physiol 2020; 11:643. [PMID: 32595525 PMCID: PMC7300233 DOI: 10.3389/fphys.2020.00643] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) vagal afferents convey sensory signals from the GI tract to the brain. Numerous subtypes of GI vagal afferent have been identified but their individual roles in gut function and feeding regulation are unclear. In the past decade, technical approaches to selectively target vagal afferent subtypes and to assess their function has significantly progressed. This review examines the classification of GI vagal afferent subtypes and discusses the current available techniques to study vagal afferents. Investigating the distribution of GI vagal afferent subtypes and understanding how to access and modulate individual populations are essential to dissect their fundamental roles in the gut-brain axis.
Collapse
Affiliation(s)
- Yoko B Wang
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States.,Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, United States
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
13
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient’s CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development – even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
14
|
A Mouse Model to Assess STAT3 and STAT5A/B Combined Inhibition in Health and Disease Conditions. Cancers (Basel) 2019; 11:cancers11091226. [PMID: 31443474 PMCID: PMC6770775 DOI: 10.3390/cancers11091226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022] Open
Abstract
Genetically-engineered mouse models (GEMMs) lacking diseased-associated gene(s) globally or in a tissue-specific manner represent an attractive tool with which to assess the efficacy and toxicity of targeted pharmacological inhibitors. Stat3 and Stat5a/b transcription factors have been implicated in several pathophysiological conditions, and pharmacological inhibition of both transcription factors has been proposed to treat certain diseases, such as malignancies. To model combined inhibition of Stat3 and Stat5a/b we have developed a GEMM harboring a flox Stat3-Stat5a/b allele (Stat5/3loxP/loxP mice) and generated mice lacking Stat3 and Stat5a/b in hepatocytes (Stat5/3Δhep/Δhep). Stat5/3Δhep/Δhep mice exhibited a marked reduction of STAT3, STAT5A and STAT5B proteins in the liver and developed steatosis, a phenotype that resembles mice lacking Stat5a/b in hepatocytes. In addition, embryonic deletion of Stat3 and Stat5a/b (Stat5/3Δ/Δ mice) resulted in lethality, similar to Stat3Δ/Δ mice. This data illustrates that Stat5/3loxP/loxP mice are functional and can be used as a valuable tool to model the combined inhibition of Stat3 and Stat5a/b in tumorigenesis and other diseases.
Collapse
|
15
|
Gournaris E, Park W, Cho S, Bentrem DJ, Larson AC, Kim DH. Near-Infrared Fluorescent Endoscopic Image-Guided Photothermal Ablation Therapy of Colorectal Cancer Using Dual-Modal Gold Nanorods Targeting Tumor-Infiltrating Innate Immune Cells in a Transgenic TS4 CRE/APC loxΔ468 Mouse Model. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21353-21359. [PMID: 31117445 PMCID: PMC7233689 DOI: 10.1021/acsami.9b04186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Colorectal cancer (CRC) is diagnosed with colonoscopy and treated with focal therapies. CRC is a good candidate for nanoparticle-mediated photothermal ablation (PTA) therapy. Herein, we developed a near-infrared fluorescent (NIRF) endoscopic image-guided PTA approach using a nanoparticle capable of simultaneously diagnosing and treating CRC. Dual-modal NIR heating and fluorescent gold nanorods (dual-modal GNRs) were synthesized by conjugation of GNRs to an NIRF probe. To validate the translational potential of our approach, a well-characterized transgenic TS4 CRE/APC loxΔ468 colon cancer mouse model was used to carry out NIRF image-guided PTA using our dual-modal GNRs under clinically relevant conditions. Intravenously infused dual-modal GNRs were effectively targeted at colon polyps by immunogenic capturing of the GNRs within tumor-infiltrating innate immune cells. NIRF endoscopic image-guided PTA using the GNRs permitted successful detection and ablation of inflammatory colon polyps. NIRF endoscopy image-guided PTA using dual-modal GNRs can be utilized for diagnosis and treatment of CRC and various inflammatory diseases.
Collapse
Affiliation(s)
- Elias Gournaris
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Wooram Park
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Soojeong Cho
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - David J. Bentrem
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Andrew C. Larson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Corresponding Author:
| |
Collapse
|
16
|
Eckrich S, Hecker D, Sorg K, Blum K, Fischer K, Münkner S, Wenzel G, Schick B, Engel J. Cochlea-Specific Deletion of Ca v1.3 Calcium Channels Arrests Inner Hair Cell Differentiation and Unravels Pitfalls of Conditional Mouse Models. Front Cell Neurosci 2019; 13:225. [PMID: 31178698 PMCID: PMC6538774 DOI: 10.3389/fncel.2019.00225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022] Open
Abstract
Inner hair cell (IHC) Cav1.3 Ca2+ channels are multifunctional channels mediating Ca2+ influx for exocytosis at ribbon synapses, the generation of Ca2+ action potentials in pre-hearing IHCs and gene expression. IHCs of deaf systemic Cav1.3-deficient (Cav1.3-/-) mice stay immature because they fail to up-regulate voltage- and Ca2+-activated K+ (BK) channels but persistently express small conductance Ca2+-activated K+ (SK2) channels. In pre-hearing wildtype mice, cholinergic neurons from the superior olivary complex (SOC) exert efferent inhibition onto spontaneously active immature IHCs by activating their SK2 channels. Because Cav1.3 plays an important role for survival, health and function of SOC neurons, SK2 channel persistence and lack of BK channels in systemic Cav1.3-/- IHCs may result from malfunctioning neurons of the SOC. Here we analyze cochlea-specific Cav1.3 knockout mice with green fluorescent protein (GFP) switch reporter function, Pax2::cre;Cacna1d-eGFPflex/flexand Pax2::cre;Cacna1d-eGFPflex/-. Profound hearing loss, lack of BK channels and persistence of SK2 channels in Pax2::cre;Cacna1d-eGFPflex/- mice recapitulated the phenotype of systemic Cav1.3-/- mice, indicating that in wildtype mice, regulation of SK2 and BK channel expression is independent of Cav1.3 expression in SOC neurons. In addition, we noticed dose-dependent GFP toxicity leading to death of basal coil IHCs of Pax2::cre;Cacna1d-eGFPflex/flex mice, likely because of high GFP concentration and small repair capacity. This and the slower time course of Pax2-driven Cre recombinase in switching two rather than one Cacna1d-eGFPflex allele lead us to study Pax2::cre;Cacna1d-eGFPflex/- mice. Notably, control Cacna1d-eGFPflex/- IHCs showed a significant reduction in Cav1.3 channel cluster sizes and currents, suggesting that the intronic construct interfered with gene translation or splicing. These pitfalls are likely to be a frequent problem of many genetically modified mice with complex or multiple gene-targeting constructs or fluorescent proteins. Great caution and appropriate controls are therefore required.
Collapse
Affiliation(s)
- Stephanie Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Dietmar Hecker
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Katharina Sorg
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Kerstin Blum
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Kerstin Fischer
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Stefan Münkner
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Gentiana Wenzel
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
17
|
Khan N, Jajeh F, Eberhardt EL, Miller DD, Albrecht DM, Van Doorn R, Hruby MD, Maresh ME, Clipson L, Mukhtar H, Halberg RB. Fisetin and 5-fluorouracil: Effective combination for PIK3CA-mutant colorectal cancer. Int J Cancer 2019; 145:3022-3032. [PMID: 31018249 DOI: 10.1002/ijc.32367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022]
Abstract
The normal colon epithelium is transformed into its neoplastic counterpart through a series of genetic alterations in driver genes including activating mutations in PIK3CA. Treatment often involves surgery followed by 5-fluorouracil (5-FU) based therapy, which has limited efficiency and serious side effects. We sought to determine whether fisetin, a dietary flavonoid, alone or in combination with 5-FU affected tumorigenesis in the mammalian intestine. We first determined the effect of fisetin, 5-FU or their combination on PIK3CA-mutant and PIK3CA wild-type colon cancer cells by assessing cell viability, colony formation, apoptosis and effects on PI3K/AKT/mTOR signaling. Treatment of PIK3CA-mutant cells with fisetin and 5-FU reduced the expression of PI3K, phosphorylation of AKT, mTOR, its target proteins, constituents of mTOR signaling complex and this treatment increased the phosphorylation of AMPKα. We then determined whether fisetin and 5-FU together or singly affected tumorigenesis in ApcMin/+ mice that also express constitutively active PI3K in the distal small intestine and colon. Tumor incidence was markedly lower in fisetin-treated FC1 3K1 ApcMin/+ mice that also express constitutively active PI3K in distal small intestine and colon, as compared to control animals, indicating that fisetin is a strong preventive agent. In addition, the combination of fisetin and 5-FU also reduced the total number of intestinal tumors. Fisetin could be used as a preventive agent plus an adjuvant with 5-FU for the treatment of PIK3CA-mutant colorectal cancer.
Collapse
Affiliation(s)
- Naghma Khan
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI.,University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Farah Jajeh
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI
| | - Emily L Eberhardt
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Devon D Miller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Dawn M Albrecht
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Rachel Van Doorn
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Melissa D Hruby
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI
| | - Morgan E Maresh
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Linda Clipson
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI.,University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Richard B Halberg
- University of Wisconsin Carbone Cancer Center, Madison, WI.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, WI.,Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
18
|
Fricke SL, Payne SN, Favreau PF, Kratz JD, Pasch CA, Foley TM, Yueh AE, Van De Hey DR, Depke MG, Korkos DP, Sha GC, DeStefanis RA, Clipson L, Burkard ME, Lemmon KK, Parsons BM, Kenny PA, Matkowskyj KA, Newton MA, Skala MC, Deming DA. MTORC1/2 Inhibition as a Therapeutic Strategy for PIK3CA Mutant Cancers. Mol Cancer Ther 2019; 18:346-355. [PMID: 30425131 PMCID: PMC6363831 DOI: 10.1158/1535-7163.mct-18-0510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/20/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
Abstract
PIK3CA mutations are common in clinical molecular profiling, yet an effective means to target these cancers has yet to be developed. MTORC1 inhibitors are often used off-label for patients with PIK3CA mutant cancers with only limited data to support this approach. Here we describe a cohort of patients treated with cancers possessing mutations activating the PI3K signaling cascade with minimal benefit to treatment with the MTORC1 inhibitor everolimus. Previously, we demonstrated that dual PI3K/mTOR inhibition could decrease proliferation, induce differentiation, and result in a treatment response in APC and PIK3CA mutant colorectal cancer. However, reactivation of AKT was identified, indicating that the majority of the benefit may be secondary to MTORC1/2 inhibition. TAK-228, an MTORC1/2 inhibitor, was compared with dual PI3K/mTOR inhibition using BEZ235 in murine colorectal cancer spheroids. A reduction in spheroid size was observed with TAK-228 and BEZ235 (-13% and -14%, respectively) compared with an increase of >200% in control (P < 0.001). These spheroids were resistant to MTORC1 inhibition. In transgenic mice possessing Pik3ca and Apc mutations, BEZ235 and TAK-228 resulted in a median reduction in colon tumor size of 19% and 20%, respectively, with control tumors having a median increase of 18% (P = 0.02 and 0.004, respectively). This response correlated with a decrease in the phosphorylation of 4EBP1 and RPS6. MTORC1/2 inhibition is sufficient to overcome resistance to everolimus and induce a treatment response in PIK3CA mutant colorectal cancers and deserves investigation in clinical trials and in future combination regimens.
Collapse
Affiliation(s)
- Stephanie L Fricke
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Susan N Payne
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Jeremy D Kratz
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Cheri A Pasch
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tyler M Foley
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alexander E Yueh
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dana R Van De Hey
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mitchell G Depke
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Demetra P Korkos
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gioia Chengcheng Sha
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rebecca A DeStefanis
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mark E Burkard
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kayla K Lemmon
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | - Kristina A Matkowskyj
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- William S Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Michael A Newton
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Melissa C Skala
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Morgridge Institute for Research, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dustin A Deming
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
19
|
Liu Z, Li C, Chen S, Lin H, Zhao H, Liu M, Weng J, Liu T, Li X, Lei C, Li C, Jiang Y, Moyer MP, Yin C, Zhou X. MicroRNA-21 increases the expression level of occludin through regulating ROCK1 in prevention of intestinal barrier dysfunction. J Cell Biochem 2018; 120:4545-4554. [PMID: 30302792 DOI: 10.1002/jcb.27742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study is to investigate the role of molecular mechanism of microRNA (miR)-21 on tight junction (TJ)-proteins and its protective effects on the intestinal barrier. METHODS TJ proteins and target genes expression were analyzed in miR-21 inhibition and overexpression NCM460 cell lines. To further verify the role of miR-21, the mmu-miR-21 intestinal epithelial conditional knockout (IKO) mice model was established. MiR-21 expression was detected in clinical specimens of acute stercoral obstruction patients. RESULTS Rho-associated protein kinase 1 (ROCK1) were identified as target genes of miR-21. There is a negative correlation between miR-21 expression level and TJ proteins levels. TJ protein and ROCK1 were significantly decreased in miR-21 IKO mice, which presented intestinal inflammation response and intestinal barrier dysfunction (both P < 0.05). Determination of clinical samples showed consistent results with NCM460 cell line and miR-21 IKO mice. CONCLUSIONS MiR-21 could be a protective factor of intestinal barrier dysfunction, which promoting the expression of TJ protein by targeting ROCK1 in vivo and in vitro.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao Li
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shihua Chen
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongcheng Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huan Zhao
- Department of Shenzhen Ruikang Pharmaceutical Technology Co. Ltd, Shenzhen, Guangdong, China
| | - Min Liu
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinsheng Weng
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Li
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Lei
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Li
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanqiong Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mary Pat Moyer
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chunxia Yin
- Department of Gynaecology and Obstetrics, Changchun Obstetrics and Gynecology Hospital, Changchun, Jilin, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
A new method for discovering EMAST sequences in animal models of cancer. Sci Rep 2018; 8:13764. [PMID: 30214002 PMCID: PMC6137214 DOI: 10.1038/s41598-018-32057-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023] Open
Abstract
Elevated Microsatellite Alterations at Selected Tetranucleotide repeats (EMAST) occur in up to 60% of colorectal cancers and may associate with aggressive and advanced disease in patients. Although EMAST occurs in many cancer types, current understanding is limited due to the lack of an animal model. Reported here is the design and implementation of an algorithm for detecting EMAST repeats in mice. This algorithm incorporates properties of known human EMAST sequences to identify repeat sequences in animal genomes and was able to identify EMAST-like sequences in the mouse. Seven of the identified repeats were analyzed further in a colon cancer mouse model and six of the seven displayed EMAST instability characteristic of that seen in human colorectal cancers. In conclusion, the algorithm developed successfully identified EMAST repeats in an animal genome and, for the first time, EMAST has been shown to occur in a mouse model of colon cancer.
Collapse
|
21
|
Bishehsari F, Engen PA, Preite NZ, Tuncil YE, Naqib A, Shaikh M, Rossi M, Wilber S, Green SJ, Hamaker BR, Khazaie K, Voigt RM, Forsyth CB, Keshavarzian A. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes (Basel) 2018; 9:genes9020102. [PMID: 29462896 PMCID: PMC5852598 DOI: 10.3390/genes9020102] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies propose a protective role for dietary fiber in colon cancer (CRC). One possible mechanism of fiber is its fermentation property in the gut and ability to change microbiota composition and function. Here, we investigate the role of a dietary fiber mixture in polyposis and elucidate potential mechanisms using TS4Cre × cAPCl°x468 mice. Stool microbiota profiling was performed, while functional prediction was done using PICRUSt. Stool short-chain fatty acid (SCFA) metabolites were measured. Histone acetylation and expression of SCFA butyrate receptor were assessed. We found that SCFA-producing bacteria were lower in the polyposis mice, suggesting a decline in the fermentation product of dietary fibers with polyposis. Next, a high fiber diet was given to polyposis mice, which significantly increased SCFA-producing bacteria as well as SCFA levels. This was associated with an increase in SCFA butyrate receptor and a significant decrease in polyposis. In conclusion, we found polyposis to be associated with dysbiotic microbiota characterized by a decline in SCFA-producing bacteria, which was targetable by high fiber treatment, leading to an increase in SCFA levels and amelioration of polyposis. The prebiotic activity of fiber, promoting beneficial bacteria, could be the key mechanism for the protective effects of fiber on colon carcinogenesis. SCFA-promoting fermentable fibers are a promising dietary intervention to prevent CRC.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Nailliw Z Preite
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Yunus E Tuncil
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN USA.
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA.
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Marco Rossi
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Sherry Wilber
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA.
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA.
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN USA.
| | - Khashayarsha Khazaie
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
- Department of Physiology, Rush University Medical Center, Chicago, IL USA.
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht Netherlands.
- Department of Pharmacology, Rush University Medical Center, Chicago, IL USA.
| |
Collapse
|
22
|
Mast cells promote small bowel cancer in a tumor stage-specific and cytokine-dependent manner. Proc Natl Acad Sci U S A 2018; 115:1588-1592. [PMID: 29429965 PMCID: PMC5816178 DOI: 10.1073/pnas.1716804115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We show that distinct subsets of mast cells (MCs) expand with sequential oncogenic events in small bowel cancer. Mucosal mast cells (MMCs) previously detected early during Trichinella spiralis infection expand in adenomatous polyps in an IL-10–dependent manner. Connective tissue mast cells (CTMCs), earlier shown to expand during the resolution of inflammation following clearance of T. spiralis, are independent of IL-10 and associate with the transition of polyps to adenocarcinoma. IL-33 upregulates the CTMC lineage-specific protease murine mast cell protease 6 (mMCP6). Ablation of mMCP6 attenuates tumor growth. Thus, tissue sentinel cells respond to oncogenic events and cellular transformation in effect to help promote cancer. Delineating the types of MCs present at various stages of disease offers actionable cellular targets for therapeutic intervention in disease progression. Mast cells (MCs) are tissue resident sentinels that mature and orchestrate inflammation in response to infection and allergy. While they are also frequently observed in tumors, the contribution of MCs to carcinogenesis remains unclear. Here, we show that sequential oncogenic events in gut epithelia expand different types of MCs in a temporal-, spatial-, and cytokine-dependent manner. The first wave of MCs expands focally in benign adenomatous polyps, which have elevated levels of IL-10, IL-13, and IL-33, and are rich in type-2 innate lymphoid cells (ILC2s). These vanguard MCs adhere to the transformed epithelial cells and express murine mast cell protease 2 (mMCP2; a typical mucosal MC protease) and, to a lesser extent, the connective tissue mast cell (CTMC) protease mMCP6. Persistence of MCs is strictly dependent on T cell-derived IL-10, and their loss in the absence of IL-10–expressing T cells markedly delays small bowel (SB) polyposis. MCs expand profusely in polyposis-prone mice when T cells overexpress IL-10. The frequency of polyp-associated MCs is unaltered in response to broad-spectrum antibiotics, arguing against a microbial component driving their recruitment. Intriguingly, when polyps become invasive, a second wave of mMCP5+/mMCP6+ CTMCs expands in the tumor stroma and at invasive tumor borders. Ablation of mMCP6 expression attenuates polyposis, but invasive properties of the remaining lesions remain intact. Our findings argue for a multistep process in SB carcinogenesis in which distinct MC subsets, and their elaborated proteases, guide disease progression.
Collapse
|
23
|
mTORC1 Inactivation Promotes Colitis-Induced Colorectal Cancer but Protects from APC Loss-Dependent Tumorigenesis. Cell Metab 2018; 27:118-135.e8. [PMID: 29275959 DOI: 10.1016/j.cmet.2017.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/21/2017] [Accepted: 11/15/2017] [Indexed: 01/17/2023]
Abstract
Dietary habits that can induce inflammatory bowel disease (IBD) are major colorectal cancer (CRC) risk factors, but mechanisms linking nutrients, IBD, and CRC are unknown. Using human data and mouse models, we show that mTORC1 inactivation-induced chromosomal instability impairs intestinal crypt proliferation and regeneration, CDK4/6 dependently. This triggers interleukin (IL)-6-associated reparative inflammation, inducing crypt hyper-proliferation, wound healing, and CRC. Blocking IL-6 signaling or reactivating mTORC1 reduces inflammation-induced CRC, so mTORC1 activation suppresses tumorigenesis in IBD. Conversely, mTORC1 inactivation is beneficial in APC loss-dependent CRC. Thus, IL-6 blockers or protein-rich-diet-linked mTORC1 activation may prevent IBD-associated CRC. However, abolishing mTORC1 can mitigate CRC in predisposed patients with APC mutations. Our work reveals mTORC1 oncogenic and tumor-suppressive roles in intestinal epithelium and avenues to optimized and personalized therapeutic regimens for CRC.
Collapse
|
24
|
Du J, Wei X, Ge X, Chen Y, Li YC. Microbiota-Dependent Induction of Colonic Cyp27b1 Is Associated With Colonic Inflammation: Implications of Locally Produced 1,25-Dihydroxyvitamin D3 in Inflammatory Regulation in the Colon. Endocrinology 2017; 158:4064-4075. [PMID: 28938443 PMCID: PMC6590849 DOI: 10.1210/en.2017-00578] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023]
Abstract
Our recent studies demonstrated that intestinal epithelial vitamin D receptor (VDR) signaling plays a critical role in regulating colonic inflammation by protecting epithelial barrier integrity. Epithelial VDR is downregulated in colitis, but how mucosal inflammation affects local 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] production is unknown. Here we showed that cytochrome P450 27b1 (Cyp27b1), a cytochrome P450 enzyme necessary for 1,25(OH)2D3 biosynthesis, is highly induced in colonic mucosa in inflammatory response. Although VDR is reduced in colon biopsies from patients with ulcerative colitis, Cyp27b1 is markedly upregulated in these samples. Colon mucosal Cyp27b1 was also markedly induced in an experimental colitis mouse model, and this local Cyp27b1 induction and colonic inflammation required the presence of commensal bacteria. Vitamin D deficiency further exaggerated colonic Cyp27b1 induction and aggravated colonic inflammation in mice. In HCT116 cells, lipopolysaccharide or tumor necrosis factor-α treatment induced Cyp27b1 in time- and dose-dependent manners, and the induced Cyp27b1 was enzymatically active. The inflammation-induced upregulation of Cyp27b1 was mediated by nuclear factor κB. Collectively these data suggest that induction of colonic epithelial Cyp27b1, which is expected to increase local production of 1,25(OH)2D3, is a protective mechanism that partially compensates for the downregulation of epithelial VDR during colonic inflammation. Increased local 1,25(OH)2D3 maintains 1,25(OH)2D3-VDR signaling to protect the mucosal barrier and reduce colonic inflammation.
Collapse
Affiliation(s)
- Jie Du
- Institute of Metabolic Disease Research and Drug Development, China Medical
University, Shenyang, Liaoning 110122, China
| | - Xinzhi Wei
- Institute of Metabolic Disease Research and Drug Development, China Medical
University, Shenyang, Liaoning 110122, China
| | - Xin Ge
- Institute of Metabolic Disease Research and Drug Development, China Medical
University, Shenyang, Liaoning 110122, China
| | - Yinyin Chen
- Department of Medicine, Division of Biological Sciences, The University of
Chicago, Chicago, Illinois 60637
- Department of Nephrology, Hunan Provincial People’s Hospital,
Changsha, Hunan 410005, China
| | - Yan Chun Li
- Institute of Metabolic Disease Research and Drug Development, China Medical
University, Shenyang, Liaoning 110122, China
- Department of Medicine, Division of Biological Sciences, The University of
Chicago, Chicago, Illinois 60637
- Correspondence and Reprint Requests: Yan Chun Li, PhD, Department of Medicine, The University of Chicago, 900 E.
57th Street, KCBD 9110, Chicago, Illinois 60637. E-mail:
| |
Collapse
|
25
|
Xu J, Cortellino S, Tricarico R, Chang WC, Scher G, Devarajan K, Slifker M, Moore R, Bassi MR, Caretti E, Clapper M, Cooper H, Bellacosa A. Thymine DNA Glycosylase (TDG) is involved in the pathogenesis of intestinal tumors with reduced APC expression. Oncotarget 2017; 8:89988-89997. [PMID: 29163805 PMCID: PMC5685726 DOI: 10.18632/oncotarget.21219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
Thymine DNA Glycosylase (TDG) is a base excision repair enzyme that acts as a thymine and uracil DNA N-glycosylase on G:T and G:U mismatches, thus protecting CpG sites in the genome from mutagenesis by deamination. In addition, TDG has an epigenomic function by removing the novel cytosine derivatives 5-formylcytosine and 5-carboxylcytosine (5caC) generated by Ten-Eleven Translocation (TET) enzymes during active DNA demethylation. We and others previously reported that TDG is essential for mammalian development. However, its involvement in tumor formation is unknown. To study the role of TDG in tumorigenesis, we analyzed the effects of its inactivation in a well-characterized model of tumor predisposition, the ApcMin mouse strain. Mice bearing a conditional Tdgflox allele were crossed with Fabpl::Cre transgenic mice, in the context of the ApcMin mutation, in order to inactivate Tdg in the small intestinal and colonic epithelium. We observed an approximately 2-fold increase in the number of small intestinal adenomas in the test Tdg-mutant ApcMin mice in comparison to control genotypes (p=0.0001). This increase occurred in female mice, and is similar to the known increase in intestinal adenoma formation due to oophorectomy. In the human colorectal cancer (CRC) TCGA database, the subset of patients with TDG and APC expression in the lowest quartile exhibits an excess of female cases. We conclude that TDG inactivation plays a role in intestinal tumorigenesis initiated by mutation/underexpression of APC. Our results also indicate that TDG may be involved in sex-specific protection from CRC.
Collapse
Affiliation(s)
- Jinfei Xu
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Salvatore Cortellino
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rossella Tricarico
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wen-Chi Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Gabrielle Scher
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Karthik Devarajan
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michael Slifker
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Robert Moore
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria Rosaria Bassi
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Elena Caretti
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Margie Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Harry Cooper
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
26
|
Abstract
Background Accumulating evidence suggests that sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate pathway plays a pivotal role in colon carcinogenesis. Methods To further support the evidence, we investigated the effects of SphK1 using three separate animal models: SphK1 knockout mice, SphK1 overexpressing transgenic mice, and SphK1 overexpression in human colon cancer xenografts. Using azoxymethane (AOM, colon carcinogen), we analyzed colon tumor development in SphK1 KO and SphK1 overexpression in intestinal epithelial cells regulated by a tet-on system. Then, we analyzed subcutaneous tumor growth using xenografts of HT-29 human colon cancer cell. Finally, immunohistochemical analyses for SphK1 and COX-2 were performed on human colon cancer tissue microarray. Results SphK1 KO mice, compared to wild-type mice, demonstrated a significant inhibition in colon cancer development induced by AOM (58.6% vs. 96.4%, respectively, P < 0.005). Tumor multiplicity (1.00 vs. 1.64 per colon, respectively, P < 0.05) and tumor volume (14.82 mm3 vs. 29.10 mm3, P < 0.05) were both significantly reduced in SphK1 KO mice compared to wild-type mice. Next, SphK1 overexpression in HT-29 enhanced tumor growth as compared to GFP control in nude mice (229.5 mm3 vs. 90.9 mm3, respectively, P < 0.05). Furthermore, overexpression of SphK1 in intestinal epithelial cells significantly enhances AOM-induced colon tumor formation (P < 0.05). Lastly, SphK1 and COX-2 intensity tended to reduce overall survival of late stage colon cancer patients. Conclusions SphK1 expression regulates the early stage of colon carcinogenesis and tumor growth, thus inhibition of SphK1 may be an effective strategy for colon cancer chemoprevention. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1220-x) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
John BA, Said N. Insights from animal models of bladder cancer: recent advances, challenges, and opportunities. Oncotarget 2017; 8:57766-57781. [PMID: 28915710 PMCID: PMC5593682 DOI: 10.18632/oncotarget.17714] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer (urothelial cancer of the bladder) is the most common malignancy affecting the urinary system with increasing incidence and mortality. Treatment of bladder cancer has not advanced in the past 30 years. Therefore, there is a crucial unmet need for novel therapies, especially for high grade/stage disease that can only be achieved by preclinical model systems that faithfully recapitulate the human disease. Animal models are essential elements in bladder cancer research to comprehensively study the multistep cascades of carcinogenesis, progression and metastasis. They allow for the investigation of premalignant phases of the disease that are not clinically encountered. They can be useful for identification of diagnostic and prognostic biomarkers for disease progression and for preclinical identification and validation of therapeutic targets/candidates, advancing translation of basic research to clinic. This review summarizes the latest advances in the currently available bladder cancer animal models, their translational potential, merits and demerits, and the prevalent tumor evaluation modalities. Thereby, findings from these model systems would provide valuable information that can help researchers and clinicians utilize the model that best answers their research questions.
Collapse
Affiliation(s)
- Bincy Anu John
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Neveen Said
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
28
|
Abstract
The WNT signaling pathway is a critical mediator of tissue homeostasis and repair, and frequently co-opted during tumor development. Almost all colorectal cancers (CRC) demonstrate hyperactivation of the WNT pathway, which in many cases is believed to be the initiating and driving event. In this short review, we provide a focused overview of recent developments in our understanding of the WNT pathway in CRC, describe new research tools that are enabling a deeper understanding of WNT biology, and outline ongoing efforts to target this pathway therapeutically.
Collapse
Affiliation(s)
- Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021.,Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, 10065
| | - Benjamin I Leach
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021.,New York Presbyterian Hospital, New York, 10021
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021.,Department of Medicine, Weill Cornell Medicine, New York, 10021.,Department of Biochemistry, Weill Cornell Medicine, New York, 10021
| |
Collapse
|
29
|
Bishehsari F, Saadalla A, Khazaie K, Engen PA, Voigt RM, Shetuni BB, Forsyth C, Shaikh M, Vitaterna MH, Turek F, Keshavarzian A. Light/Dark Shifting Promotes Alcohol-Induced Colon Carcinogenesis: Possible Role of Intestinal Inflammatory Milieu and Microbiota. Int J Mol Sci 2016; 17:ijms17122017. [PMID: 27918452 PMCID: PMC5187817 DOI: 10.3390/ijms17122017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023] Open
Abstract
Background: Colorectal cancer (CRC) is associated with the modern lifestyle. Chronic alcohol consumption—a frequent habit of majority of modern societies—increases the risk of CRC. Our group showed that chronic alcohol consumption increases polyposis in a mouse mode of CRC. Here we assess the effect of circadian disruption—another modern life style habit—in promoting alcohol-associated CRC. Method: TS4Cre × adenomatous polyposis coli (APC)lox468 mice underwent (a) an alcohol-containing diet while maintained on a normal 12 h light:12 h dark cycle; or (b) an alcohol-containing diet in conjunction with circadian disruption by once-weekly 12 h phase reversals of the light:dark (LD) cycle. Mice were sacrificed after eight weeks of full alcohol and/or LD shift to collect intestine samples. Tumor number, size, and histologic grades were compared between animal groups. Mast cell protease 2 (MCP2) and 6 (MCP6) histology score were analyzed and compared. Stool collected at baseline and after four weeks of experimental manipulations was used for microbiota analysis. Results: The combination of alcohol and LD shifting accelerated intestinal polyposis, with a significant increase in polyp size, and caused advanced neoplasia. Consistent with a pathogenic role of stromal tryptase-positive mast cells in colon carcinogenesis, the ratio of mMCP6 (stromal)/mMCP2 (intraepithelial) mast cells increased upon LD shifting. Baseline microbiota was similar between groups, and experimental manipulations resulted in a significant difference in the microbiota composition between groups. Conclusions: Circadian disruption by Light:dark shifting exacerbates alcohol-induced polyposis and CRC. Effect of circadian disruption could, at least partly, be mediated by promoting a pro-tumorigenic inflammatory milieu via changes in microbiota.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Abdulrahman Saadalla
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Khashayarsha Khazaie
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Phillip A Engen
- Department of Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Robin M Voigt
- Department of Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Brandon B Shetuni
- Northwestern Medicine, Central DuPage Hospital, Winfield, IL 60190, USA.
| | - Christopher Forsyth
- Department of Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Maliha Shaikh
- Department of Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208, USA.
| | - Fred Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208, USA.
| | - Ali Keshavarzian
- Department of Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
30
|
Lo YH, Chung E, Li Z, Wan YW, Mahe MM, Chen MS, Noah TK, Bell KN, Yalamanchili HK, Klisch TJ, Liu Z, Park JS, Shroyer NF. Transcriptional Regulation by ATOH1 and its Target SPDEF in the Intestine. Cell Mol Gastroenterol Hepatol 2016; 3:51-71. [PMID: 28174757 PMCID: PMC5247424 DOI: 10.1016/j.jcmgh.2016.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS The transcription factor atonal homolog 1 (ATOH1) controls the fate of intestinal progenitors downstream of the Notch signaling pathway. Intestinal progenitors that escape Notch activation express high levels of ATOH1 and commit to a secretory lineage fate, implicating ATOH1 as a gatekeeper for differentiation of intestinal epithelial cells. Although some transcription factors downstream of ATOH1, such as SPDEF, have been identified to specify differentiation and maturation of specific cell types, the bona fide transcriptional targets of ATOH1 still largely are unknown. Here, we aimed to identify ATOH1 targets and to identify transcription factors that are likely to co-regulate gene expression with ATOH1. METHODS We used a combination of chromatin immunoprecipitation and messenger RNA-based high-throughput sequencing (ChIP-seq and RNA-seq), together with cell sorting and transgenic mice, to identify direct targets of ATOH1, and establish the epistatic relationship between ATOH1 and SPDEF. RESULTS By using unbiased genome-wide approaches, we identified more than 700 genes as ATOH1 transcriptional targets in adult small intestine and colon. Ontology analysis indicated that ATOH1 directly regulates genes involved in specification and function of secretory cells. De novo motif analysis of ATOH1 targets identified SPDEF as a putative transcriptional co-regulator of ATOH1. Functional epistasis experiments in transgenic mice show that SPDEF amplifies ATOH1-dependent transcription but cannot independently initiate transcription of ATOH1 target genes. CONCLUSIONS This study unveils the direct targets of ATOH1 in the adult intestines and illuminates the transcriptional events that initiate the specification and function of intestinal secretory lineages.
Collapse
Key Words
- ATOH1
- ATOH1, atonal homolog 1
- Atoh1Flag
- Atoh1GFP
- CRC, colorectal cancer
- ChIP, chromatin immunoprecipitation
- ChIP-seq, chromatin immunoprecipitation sequencing
- DBZ, dibenzazepine
- FACS, fluorescence-activated cell sorting
- FDR, false-discovery rate
- GFP, green fluorescent protein
- GO, gene ontology
- Gfi1, growth factor independent 1
- ISC, intestinal stem cell
- Intestinal Epithelium
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- QES, Q-enrichment-score
- RT-qPCR, reverse-transcription quantitative polymerase chain reaction
- SPDEF
- Spdef, SAM pointed domain containing ETS transcription factor
- TRE-Spdef
- TSS, transcription start site
- Transcription
- Villin-creER
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Yuan-Hung Lo
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Eunah Chung
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Zhaohui Li
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas
| | - Maxime M. Mahe
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Min-Shan Chen
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Taeko K. Noah
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kristin N. Bell
- Graduate Program in Molecular Developmental Biology, University of Cincinnati, Cincinnati, Cincinnati, Ohio
| | | | - Tiemo J. Klisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Zhandong Liu
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joo-Seop Park
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Joo-Seop Park, PhD, Divisions of Pediatric Urology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.Divisions of Pediatric Urology and Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOhio
| | - Noah F. Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
- Division of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
- Correspondence Address correspondence to: Noah F. Shroyer, PhD, Division of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.Division of MedicineSection of Gastroenterology and HepatologyBaylor College of MedicineHoustonTexas
| |
Collapse
|
31
|
Zahm CD, Szulczewski JM, Leystra AA, Paul Olson TJ, Clipson L, Albrecht DM, Middlebrooks M, Thliveris AT, Matkowskyj KA, Washington MK, Newton MA, Eliceiri KW, Halberg RB. Advanced Intestinal Cancers often Maintain a Multi-Ancestral Architecture. PLoS One 2016; 11:e0150170. [PMID: 26919712 PMCID: PMC4769224 DOI: 10.1371/journal.pone.0150170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/10/2016] [Indexed: 02/05/2023] Open
Abstract
A widely accepted paradigm in the field of cancer biology is that solid tumors are uni-ancestral being derived from a single founder and its descendants. However, data have been steadily accruing that indicate early tumors in mice and humans can have a multi-ancestral origin in which an initiated primogenitor facilitates the transformation of neighboring co-genitors. We developed a new mouse model that permits the determination of clonal architecture of intestinal tumors in vivo and ex vivo, have validated this model, and then used it to assess the clonal architecture of adenomas, intramucosal carcinomas, and invasive adenocarcinomas of the intestine. The percentage of multi-ancestral tumors did not significantly change as tumors progressed from adenomas with low-grade dysplasia [40/65 (62%)], to adenomas with high-grade dysplasia [21/37 (57%)], to intramucosal carcinomas [10/23 (43%]), to invasive adenocarcinomas [13/19 (68%)], indicating that the clone arising from the primogenitor continues to coexist with clones arising from co-genitors. Moreover, neoplastic cells from distinct clones within a multi-ancestral adenocarcinoma have even been observed to simultaneously invade into the underlying musculature [2/15 (13%)]. Thus, intratumoral heterogeneity arising early in tumor formation persists throughout tumorigenesis.
Collapse
Affiliation(s)
- Christopher D. Zahm
- Department of Oncology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Joseph M. Szulczewski
- Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Laboratory of Cell and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alyssa A. Leystra
- Department of Oncology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Terrah J. Paul Olson
- Department of Surgery, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Linda Clipson
- Department of Oncology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Dawn M. Albrecht
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Malisa Middlebrooks
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Andrew T. Thliveris
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Kristina A. Matkowskyj
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mary Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Michael A. Newton
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics and Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Laboratory of Cell and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Richard B. Halberg
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
32
|
Zhao J, Bulek K, Gulen MF, Zepp JA, Karagkounis G, Martin BN, Zhou H, Yu M, Liu X, Huang E, Fox PL, Kalady MF, Markowitz SD, Li X. Human Colon Tumors Express a Dominant-Negative Form of SIGIRR That Promotes Inflammation and Colitis-Associated Colon Cancer in Mice. Gastroenterology 2015; 149:1860-1871.e8. [PMID: 26344057 PMCID: PMC5308447 DOI: 10.1053/j.gastro.2015.08.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Single immunoglobulin and toll-interleukin 1 receptor (SIGIRR), a negative regulator of the Toll-like and interleukin-1 receptor (IL-1R) signaling pathways, controls intestinal inflammation and suppresses colon tumorigenesis in mice. However, the importance of SIGIRR in human colorectal cancer development has not been determined. We investigated the role of SIGIRR in development of human colorectal cancer. METHODS We performed RNA sequence analyses of pairs of colon tumor and nontumor tissues, each collected from 68 patients. Immunoblot and immunofluorescence analyses were used to determine levels of SIGIRR protein in primary human colonic epithelial cells, tumor tissues, and colon cancer cell lines. We expressed SIGIRR and mutant forms of the protein in Vaco cell lines. We created and analyzed mice that expressed full-length (control) or a mutant form of Sigirr (encoding SIGIRR(N86/102S), which is not glycosylated) specifically in the intestinal epithelium. Some mice were given azoxymethane (AOM) and dextran sulfate sodium to induce colitis-associated cancer. Intestinal tissues were collected and analyzed by immunohistochemical and gene expression profile analyses. RESULTS RNA sequence analyses revealed increased expression of a SIGIRR mRNA isoform, SIGIRR(ΔE8), in colorectal cancer tissues compared to paired nontumor tissues. SIGIRR(ΔE8) is not modified by complex glycans and is therefore retained in the cytoplasm-it cannot localize to the cell membrane or reduce IL1R signaling. SIGIRR(ΔE8) interacts with and has a dominant-negative effect on SIGIRR, reducing its glycosylation, localization to the cell surface, and function. Most SIGIRR detected in human colon cancer tissues was cytoplasmic, whereas in nontumor tissues it was found at the cell membrane. Mice that expressed SIGIRR(N86/102S) developed more inflammation and formed larger tumors after administration of azoxymethane and dextran sulfate sodium than control mice; colon tissues from these mutant mice expressed higher levels of the inflammatory cytokines IL-17A and IL-6 had activation of the transcription factors STAT3 and NFκB. SIGIRR(N86/102S) expressed in colons of mice did not localize to the epithelial cell surface. CONCLUSION Levels of SIGIRR are lower in human colorectal tumors, compared with nontumor tissues; tumors contain the dominant-negative isoform SIGIRR(ΔE8). This mutant protein blocks localization of full-length SIGIRR to the surface of colon epithelial cells and its ability to downregulate IL1R signaling. Expression of SIGIRR(N86/102S) in the colonic epithelium of mice increases expression of inflammatory cytokines and formation and size of colitis-associated tumors.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH, USA, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Katarzyna Bulek
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Muhammet Fatih Gulen
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jarod A. Zepp
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Georgio Karagkounis
- Department of stem cell biology and regenerative medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bradley N Martin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hao Zhou
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Minjia Yu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xiuli Liu
- Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Emina Huang
- Department of stem cell biology and regenerative medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Paul L. Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Matthew F. Kalady
- Department of stem cell biology and regenerative medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sanford D. Markowitz
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
33
|
From mice to men: Murine models of colorectal cancer for use in translational research. Crit Rev Oncol Hematol 2015; 98:94-105. [PMID: 26558688 DOI: 10.1016/j.critrevonc.2015.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/28/2015] [Accepted: 10/27/2015] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common carcinoma worldwide and despite advances in treatment, survival for patients with metastatic disease remains poor. With nearly 50% of patients developing metastases, in vivo investigation is essential to improve outcomes for these patients and numerous murine models of CRC have been developed to allow the study of chemoprevention and chemotherapy, in addition to improving our understanding of the pathogenesis of CRC. Selecting the most appropriate murine model for a specific application will maximize the conversion of potential therapies from the laboratory to clinical practice and requires an understanding of the various models available. This review will provide an overview of the murine models currently used in CRC research, discussing the limitations and merits of each and their most relevant application. It is aimed at the developing researcher, acting as a guide to prompt further reading in planning a specific study.
Collapse
|
34
|
Zhang M, Kirsch DG. The generation and characterization of novel Col1a1FRT-Cre-ER-T2-FRT and Col1a1FRT-STOP-FRT-Cre-ER-T2 mice for sequential mutagenesis. Dis Model Mech 2015; 8:1155-66. [PMID: 26183214 PMCID: PMC4582108 DOI: 10.1242/dmm.021204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/07/2015] [Indexed: 01/10/2023] Open
Abstract
Novel genetically engineered mouse models using the Cre-loxP or the Flp-FRT systems have generated useful reagents to manipulate the mouse genome in a temporally-regulated and tissue-specific manner. By incorporating a constitutive Cre driver line into a mouse model in which FRT-regulated genes in other cell types are regulated by Flp-FRT recombinase, gene expression can be manipulated simultaneously in separate tissue compartments. This application of dual recombinase technology can be used to dissect the role of stromal cells in tumor development and cancer therapy. Generating mice in which Cre-ERT2 is expressed under Flp-FRT-mediated regulation would enable step-wise manipulation of the mouse genome using dual recombinase technology. Such next-generation mouse models would enable sequential mutagenesis to better model cancer and define genes required for tumor maintenance. Here, we generated novel genetically engineered mice that activate or delete Cre-ERT2 in response to Flp recombinase. To potentially utilize the large number of Cre-loxP-regulated transgenic alleles that have already been targeted into the Rosa26 locus, such as different reporters and mutant genes, we targeted the two novel Cre-ERT2 alleles into the endogenous Col1a1 locus for ubiquitous expression. In the Col1a1FRT-Cre-ER-T2-FRT mice, Flp deletes Cre-ERT2, so that Cre-ERT2 is only expressed in cells that have never expressed Flp. In contrast, in the Col1a1FRT-STOP-FRT-Cre-ER-T2 mice, Flp removes the STOP cassette to allow Cre-ERT2 expression so that Cre-ERT2 is only expressed in cells that previously expressed Flp. These two new novel mouse strains will be complementary to each other and will enable the exploration of complex biological questions in development, normal tissue homeostasis and cancer. Summary: We generated two mouse strains expressing Cre-ERT2 under Flp-FRT regulation. These tools enable sequential mutagenesis in the same or different cells to study development, tissue homeostasis and diseases such as cancer.
Collapse
Affiliation(s)
- Minsi Zhang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA Department of Radiation Oncology, Duke University Medical Center, Box 91006, LSRC Bldg, Rm B230, Durham, NC 27708, USA
| |
Collapse
|
35
|
Blatner NR, Tsai F, Khazaie K. Methods for the study of mast cells in cancer. Methods Mol Biol 2015; 1220:443-60. [PMID: 25388267 DOI: 10.1007/978-1-4939-1568-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Tumor growth requires interactions of tumor cells with a receptive and inductive microenvironment. Two major populations of tumor-infiltrating cells are considered to be essential for producing such a microenvironment: (1) proinflammatory cells that nurture the tumor with growth factors and facilitate invasion and metastasis by secreting proteases and (2) immune suppressive leukocytes including T-regulatory cells (Treg) that hinder tumor-specific CD8 T-cell responses, which otherwise could potentially reject the tumor. Among the proinflammatory cells, accumulation of mast cells (MCs) in human tumors is frequently recorded and was recently linked with poor prognosis. Causative links between mast cell infiltration and tumor progression can be deduced from animal studies. There is an interesting link between mast cells and Treg. The adoptive transfer of Treg from healthy syngeneic mice to mice susceptible to colon cancer suppresses focal mastocytosis and hinders tumor progression. Furthermore, T-cell-deficient mice susceptible to colon cancer show enhanced focal mastocytosis and tumor invasion. Here, we describe methods to assess MCs in mouse models of cancer and to investigate how MCs affect tumor epithelium. Additionally, we will detail methods used to investigate how T cells influence MCs and how MCs influence T cells.
Collapse
Affiliation(s)
- Nichole R Blatner
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior Street, Lurie 3-250, Chicago, IL, 60611, USA
| | | | | |
Collapse
|
36
|
Lin Y, Jiang W, Ng J, Jina A, Wang RA. Endothelial ephrin-B2 is essential for arterial vasodilation in mice. Microcirculation 2015; 21:578-86. [PMID: 24673722 DOI: 10.1111/micc.12135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/24/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The cell surface protein ephrin-B2 is expressed in arterial and not venous ECs throughout development and adulthood. Endothelial ephrin-B2 is required for vascular development and angiogenesis, but its role in established arteries is currently unknown. We investigated the physiological role of ephrin-B2 signaling in adult endothelium. METHODS We generated adult conditional knockout mice lacking the Efnb2 gene specifically in ECs and evaluated the vasodilation responses to blood flow increase and ACh in the cremaster muscle preparation by intravital microscope and in carotid artery by in vivo ultrasound. RESULTS We found that the Efnb2 conditional knockout mice were defective in acute arterial dilation. Vasodilation was impaired in cremaster arterioles in response to either increased flow or ACh, and in the carotid arteries in response to increased flow. Levels of cGMP, an effector of NO, were diminished in mutant arteries following ACh stimulation. GSNO, a donor for the vasodilator NO, alleviated the vasodilatory defects in the mutants. Immunostaining showed that a subset of ephrin-B2 proteins colocalized with caveolin-1, a negative regulator of eNOS. CONCLUSIONS Our data suggest that endothelial ephrin-B2 is required for endothelial-dependent arterial dilation and NO signaling in adult endothelium.
Collapse
Affiliation(s)
- Yuankai Lin
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
37
|
Inactivation of the retinoblastoma gene yields a mouse model of malignant colorectal cancer. Oncogene 2015; 34:5890-9. [PMID: 25745996 PMCID: PMC4668801 DOI: 10.1038/onc.2015.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 02/07/2023]
Abstract
The retinoblastoma gene (Rb) is mutated at significant frequency in various human epithelial tumors, including colorectal cancer, and is strongly associated with metastatic disease. However, sole inactivation of Rb in the mouse has so far failed to yield epithelial cancers. Here, we specifically inactivate Rb and/or p53 in the urogenital epithelium and the intestine. We find that loss of both tumor suppressors is unable to yield tumors in the transitional epithelium lining the bladder, kidneys and ureters. Instead, these mice develop highly metastatic tumors of neuroendocrine, not epithelial, origin within the urogenital tract to give prostate cancer in the males and vaginal tumors in the females. Additionally, we discovered that the sole inactivation of Rb in the intestine was sufficient to induce formation of metastatic colorectal adenocarcinomas. These tumors closely mirror the human disease in regard to age of onset, histological appearance, invasiveness and metastatic potential. Like most human colorectal carcinomas, our murine Rb-deficient tumors demonstrate genomic instability and they show activation of β-catenin. Deregulation of the Wnt/β-catenin pathway is specific to the intestinal tumors, as genomic instability but not activation of β-catenin was observed in the neuroendocrine tumors. To date, attempts to generate genetically engineered mouse models of colorectal cancer tumors have yielded mostly cancer of the small intestine, which rarely occurs in humans. Our system provides the opportunity to accurately model and study colorectal cancer in the mouse via a single gene mutation.
Collapse
|
38
|
Kobayashi T, Owczarek TB, McKiernan JM, Abate-Shen C. Modelling bladder cancer in mice: opportunities and challenges. Nat Rev Cancer 2015; 15:42-54. [PMID: 25533675 PMCID: PMC4386904 DOI: 10.1038/nrc3858] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The prognosis and treatment of bladder cancer have improved little in the past 20 years. Bladder cancer remains a debilitating and often fatal disease, and is among the most costly cancers to treat. The generation of informative mouse models has the potential to improve our understanding of bladder cancer progression, as well as to affect its diagnosis and treatment. However, relatively few mouse models of bladder cancer have been described, and in particular, few that develop invasive cancer phenotypes. This Review focuses on opportunities for improving the landscape of mouse models of bladder cancer.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Tomasz B Owczarek
- 1] Department of Urology, Columbia University Medical Center. [2] Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA
| | | | - Cory Abate-Shen
- 1] Department of Urology, Columbia University Medical Center. [2] Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA. [3] Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA. [4] Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
39
|
Kim FY, Barnes EA, Ying L, Chen C, Lee L, Alvira CM, Cornfield DN. Pulmonary artery smooth muscle cell endothelin-1 expression modulates the pulmonary vascular response to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 2014; 308:L368-77. [PMID: 25399435 DOI: 10.1152/ajplung.00253.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Endothelin-1 (ET-1) increases pulmonary vascular tone through direct effects on pulmonary artery smooth muscle cells (PASMC) via membrane-bound ET-1 receptors. Circulating ET-1 contributes to vascular remodeling by promoting SMC proliferation and migration and inhibiting SMC apoptosis. Although endothelial cells (EC) are the primary source of ET-1, whether ET-1 produced by SMC modulates pulmonary vascular tone is unknown. Using transgenic mice created by crossbreeding SM22α-Cre mice with ET-1(flox/flox) mice to selectively delete ET-1 in SMC, we tested the hypothesis that PASMC ET-1 gene expression modulates the pulmonary vascular response to hypoxia. ET-1 gene deletion and selective activity of SM22α promoter-driven Cre recombinase were confirmed. Functional assays were performed under normoxic (21% O2) or hypoxic (5% O2) conditions using murine PASMC obtained from ET-1(+/+) and ET-1(-/-) mic and in human PASMC (hPASMC) after silencing of ET-1 using siRNA. Under baseline conditions, there was no difference in right ventricular systolic pressure (RVSP) between SM22α-ET-1(-/-) and SM22α-ET-1(+/+) (control) littermates. After exposure to hypoxia (10% O2, 21-24 days), RVSP was and vascular remodeling were less in SM22α-ET-1(-/-) mice compared with control littermates (P < 0.01). Loss of ET-1 decreased PASMC proliferation and migration and increased apoptosis under normoxic and hypoxic conditions. Exposure to selective ET-1 receptor antagonists had no effect on either the hypoxia-induced hPASMC proliferative or migratory response. SMC-specific ET-1 deletion attenuates hypoxia-induced increases in pulmonary vascular tone and structural remodeling. The observation that loss of ET-1 inhibited SMC proliferation, survival, and migration represents evidence that ET-1 derived from SMC plays a previously undescribed role in modulating the response of the pulmonary circulation to hypoxia. Thus PASMC ET-1 may modulate vascular tone independently of ET-1 produced by EC.
Collapse
Affiliation(s)
- Francis Y Kim
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| | - Elizabeth A Barnes
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| | - Lihua Ying
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| | - Chihhsin Chen
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| | - Lori Lee
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| | - Cristina M Alvira
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| | - David N Cornfield
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| |
Collapse
|
40
|
Phospholipid ether analogs for the detection of colorectal tumors. PLoS One 2014; 9:e109668. [PMID: 25286226 PMCID: PMC4186834 DOI: 10.1371/journal.pone.0109668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022] Open
Abstract
The treatment of localized colorectal cancer (CRC) depends on resection of the primary tumor with adequate margins and sufficient lymph node sampling. A novel imaging agent that accumulates in CRCs and the associated lymph nodes is needed. Cellectar Biosciences has developed a phospholipid ether analog platform that is both diagnostic and therapeutic. CLR1502 is a near-infrared fluorescent molecule, whereas 124/131I-CLR1404 is under clinical investigation as a PET tracer/therapeutic agent imaged by SPECT. We investigated the use of CLR1502 for the detection of intestinal cancers in a murine model and 131I-CLR1404 in a patient with metastatic CRC. Mice that develop multiple intestinal tumors ranging from adenomas to locally advanced adenocarcinomas were utilized. After 96 hours post CLR1502 injection, the intestinal tumors were analyzed using a Spectrum IVIS (Perkin Elmer) and a Fluobeam (Fluoptics). The intensity of the fluorescent signal was correlated with the histological characteristics for each tumor. Colon adenocarcinomas demonstrated increased accumulation of CLR1502 compared to non-invasive lesions (total radiant efficiency: 1.76×1010 vs 3.27×109 respectively, p = 0.006). Metastatic mesenteric tumors and uninvolved lymph nodes were detected with CLR1502. In addition, SPECT imaging with 131I-CLR1404 was performed as part of a clinical trial in patients with advanced solid tumors. 131I-CLR1404 was shown to accumulate in metastatic tumors in a patient with colorectal adenocarcinoma. Together, these compounds might enhance our ability to properly resect CRCs through better localization of the primary tumor and improved lymph node identification as well as detect distant disease.
Collapse
|
41
|
Keerthivasan S, Aghajani K, Dose M, Molinero L, Khan MW, Venkateswaran V, Weber C, Emmanuel AO, Sun T, Bentrem DJ, Mulcahy M, Keshavarzian A, Ramos EM, Blatner N, Khazaie K, Gounari F. β-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells. Sci Transl Med 2014; 6:225ra28. [PMID: 24574339 DOI: 10.1126/scitranslmed.3007607] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The density and type of lymphocytes that infiltrate colon tumors are predictive of the clinical outcome of colon cancer. High densities of T helper 17 (T(H)17) cells and inflammation predict poor outcome, whereas infiltration by T regulatory cells (Tregs) that naturally suppress inflammation is associated with longer patient survival. However, the role of Tregs in cancer remains controversial. We recently reported that Tregs in colon cancer patients can become proinflammatory and tumor-promoting. These properties were directly linked with their expression of RORγt (retinoic acid-related orphan receptor-γt), the signature transcription factor of T(H)17 cells. We report that Wnt/β-catenin signaling in T cells promotes expression of RORγt. Expression of β-catenin was elevated in T cells, including Tregs, of patients with colon cancer. Genetically engineered activation of β-catenin in mouse T cells resulted in enhanced chromatin accessibility in the proximity of T cell factor-1 (Tcf-1) binding sites genome-wide, induced expression of T(H)17 signature genes including RORγt, and promoted T(H)17-mediated inflammation. Strikingly, the mice had inflammation of small intestine and colon and developed lesions indistinguishable from colitis-induced cancer. Activation of β-catenin only in Tregs was sufficient to produce inflammation and initiate cancer. On the basis of these findings, we conclude that activation of Wnt/β-catenin signaling in effector T cells and/or Tregs is causatively linked with the imprinting of proinflammatory properties and the promotion of colon cancer.
Collapse
Affiliation(s)
- Shilpa Keerthivasan
- Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fleet JC. Animal models of gastrointestinal and liver diseases. New mouse models for studying dietary prevention of colorectal cancer. Am J Physiol Gastrointest Liver Physiol 2014; 307:G249-59. [PMID: 24875098 PMCID: PMC4121636 DOI: 10.1152/ajpgi.00019.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is a heterogeneous disease that is one of the major causes of cancer death in the U.S. There is evidence that lifestyle factors like diet can modulate the course of this disease. Demonstrating the benefit and mechanism of action of dietary interventions against colon cancer will require studies in preclinical models. Many mouse models have been developed to study colon cancer but no single model can reflect all types of colon cancer in terms of molecular etiology. In addition, many models develop only low-grade cancers and are confounded by development of the disease outside of the colon. This review will discuss how mice can be used to model human colon cancer and it will describe a variety of new mouse models that develop colon-restricted cancer as well as more advanced phenotypes for studies of late-state disease.
Collapse
Affiliation(s)
- James C. Fleet
- 1Department of Nutrition Science, Purdue University, West Lafayette, Indiana; and ,2Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
43
|
Rebel H, der Spek CDV, Salvatori D, van Leeuwen JPTM, Robanus-Maandag EC, de Gruijl FR. UV exposure inhibits intestinal tumor growth and progression to malignancy in intestine-specific Apc mutant mice kept on low vitamin D diet. Int J Cancer 2014; 136:271-7. [PMID: 24890436 DOI: 10.1002/ijc.29002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/12/2014] [Indexed: 12/31/2022]
Abstract
Mortality from colorectal cancer increases with latitude and decreases with ambient UV radiation. We investigated whether moderate UV dosages could inhibit intestinal tumor development and whether this corresponded with UV-induced vitamin D. FabplCre;Apc(15lox/+) mice, which develop intestinal tumors, and their parents were put on a vitamin D-deficient diet. Next to a control group, one group was vitamin D supplemented and another one group was daily UV irradiated from 6 weeks of age. Vitamin D statuses after 6 weeks of treatment were markedly increased: mean ± SD from 7.7 ± 1.9 in controls to 75 ± 15 nmol/l with vitamin D supplementation (no gender difference), and to 31 ± 13 nmol/l in males and 85 ± 17 nmol/l in females upon UV irradiation. The tumor load (area covered by tumors) at 7.5 months of age was significantly reduced in both the vitamin D-supplemented group (130 ± 25 mm(2), p = 0.018) and the UV-exposed group (88 ± 9 mm(2), p < 0.0005; no gender differences) compared to the control group (202 ± 23 mm(2)). No reductions in tumor numbers were found. Only UV exposure appeared to reduce progression to malignancy (p = 0.014). Our experiments clearly demonstrate for the first time an inhibitory effect of moderate UV exposure on outgrowth and malignant progression of primary intestinal tumors, which at least in part can be attributed to vitamin D.
Collapse
Affiliation(s)
- Heggert Rebel
- Department of Dermatology, Leiden University Medical Center, 2333, ZC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Weis B, Schmidt J, Maamar H, Raj A, Lin H, Tóth C, Riedmann K, Raddatz G, Seitz HK, Ho AD, Lyko F, Linhart HG. Inhibition of intestinal tumor formation by deletion of the DNA methyltransferase 3a. Oncogene 2014; 34:1822-30. [PMID: 24837369 DOI: 10.1038/onc.2014.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/13/2014] [Accepted: 03/26/2014] [Indexed: 12/31/2022]
Abstract
Aberrant de novo methylation of DNA is considered an important mediator of tumorigenesis. To investigate the role of de novo DNA methyltransferase 3a (Dnmt3a) in intestinal tumor development, we analyzed the expression of Dnmt3a in murine colon crypts, murine colon adenomas and human colorectal cancer using RNA fluorescence in situ hybridization (FISH), quantitative PCR and immunostaining. Following conditional deletion of Dnmt3a in the colon of APC((Min/+)) mice, we analyzed tumor numbers, genotype of macroadenomas and laser dissected microadenomas, global and regional DNA methylation and gene expression. Our results showed increased Dnmt3a expression in colon adenomas of APC((Min/+)) mice and human colorectal cancer samples when compared with control tissue. Interestingly, in tumor tissue, RNA FISH analysis showed highest Dnmt3a expression in Lgr5-positive stem/progenitor cells. Deletion of Dnmt3a in APC((Min/+)) mice reduced colon tumor numbers by ~40%. Remaining adenomas and microadenomas almost exclusively contained the non-recombined Dnmt3a allele; no tumors composed of the inactivated Dnmt3a allele were detected. DNA methylation was reduced at the Oct4, Nanog, Tff2 and Cdkn1c promoters and expression of the tumor-suppressor genes Tff2 and Cdkn1c was increased. In conclusion, our results show that Dnmt3a is predominantly expressed in the stem/progenitor cell compartment of tumors and that deletion of Dnmt3a inhibits the earliest stages of intestinal tumor development.
Collapse
Affiliation(s)
- B Weis
- Division of Epigenetics (A130), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Schmidt
- Division of Epigenetics (A130), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H Maamar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - A Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - H Lin
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - C Tóth
- 1] Department of Pathology, University of Heidelberg, National Center for Tumor Diseases (NCT) Tissue Bank, Heidelberg, Germany [2] Department of Pathology, Heinrich Heine University, Düsseldorf, Germany
| | - K Riedmann
- Division of Epigenetics (A130), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - G Raddatz
- Division of Epigenetics (A130), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H-K Seitz
- Department of Medicine, Salem Medical Center, Alcohol Research Center, University of Heidelberg, Heidelberg, Germany
| | - A D Ho
- Department of Hematology/Oncology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - F Lyko
- Division of Epigenetics (A130), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H G Linhart
- 1] Department of Medicine, Salem Medical Center, Alcohol Research Center, University of Heidelberg, Heidelberg, Germany [2] Department of Hematology/Oncology, University of Heidelberg Medical Center, Heidelberg, Germany [3] Division of Epigenetics (A130), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Gierut JJ, Jacks TE, Haigis KM. Strategies to achieve conditional gene mutation in mice. Cold Spring Harb Protoc 2014; 2014:339-49. [PMID: 24692485 DOI: 10.1101/pdb.top069807] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The laboratory mouse is an ideal model organism for studying disease because it is physiologically similar to human and also because its genome is readily manipulated. Genetic engineering allows researchers to introduce specific loss-of-function or gain-of-function mutations into genes and then to study the resulting phenotypes in an in vivo context. One drawback of using traditional transgenic and knockout mice to study human diseases is that many mutations passed through the germline can profoundly affect development, thus impeding the study of disease phenotypes in adults. New technology has made it possible to generate conditional mutations that can be introduced in a spatially and/or temporally restricted manner. Mouse strains carrying conditional mutations represent valuable experimental models for the study of human diseases and they can be used to develop strategies for prevention and treatment of these diseases. In this article, we will describe the most widely used DNA recombinase systems used to achieve conditional gene mutation in mouse models and discuss how these systems can be employed in vivo.
Collapse
Affiliation(s)
- Jessica J Gierut
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Charlestown, Massachusetts 02129
| | | | | |
Collapse
|
46
|
Abstract
Colorectal cancer is a heterogeneous disease that afflicts a large number of people in the USA. The use of animal models has the potential to increase our understanding of carcinogenesis, tumor biology, and the impact of specific molecular events on colon biology. In addition, animal models with features of specific human colorectal cancers can be used to test strategies for cancer prevention and treatment. In this review, we provide an overview of the mechanisms driving human cancer, we discuss the approaches one can take to model colon cancer in animals, and we describe a number of specific animal models that have been developed for the study of colon cancer. We believe that there are many valuable animal models to study various aspects of human colorectal cancer. However, opportunities for improving upon these models exist.
Collapse
|
47
|
Bamias G, Dahman MI, Arseneau KO, Guanzon M, Gruska D, Pizarro TT, Cominelli F. Intestinal-specific TNFα overexpression induces Crohn's-like ileitis in mice. PLoS One 2013; 8:e72594. [PMID: 23977323 PMCID: PMC3748077 DOI: 10.1371/journal.pone.0072594] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND AIM Human and animal studies have clearly established tumor necrosis factor (TNF)α as an important mediator of Crohn's disease pathogenesis. However, whether systemic or only local TNFα overproduction is required for the development of chronic intestinal inflammation and Crohn's disease remains unclear. The aim of this study was to assess the contribution of intestinal epithelial-derived TNFα to the development of murine Crohn's-like ileitis. METHODS We adapted the well-established TNF(∆ARE/+) mouse model of Crohn's disease (which systemically overexpresses TNFα) to generate a homozygous mutant strain that overexpress TNFα only within the intestinal epithelium. Intestinal-specific TNF(i∆ARE/i∆ARE) mice were examined for histopathological signs of gut inflammation and extraintestinal manifestations of Crohn's disease. The mucosal immune phenotype was characterized, and the contribution of specific lymphocyte populations to the pathogenesis of TNF(i∆ARE/i∆ARE) ileitis was assessed. RESULTS TNF(i∆ARE/i∆ARE) mice had increased mucosal and systemic TNFα levels compared to wild-type controls (P<0.001), as well as severe chronic ileitis with increased neutrophil infiltration and villous distortion, but no extraintestinal manifestations (P<0.001 vs. wild-type controls). The gut mucosal lymphocytic compartment was also expanded in TNF(i∆ARE/i∆ARE) mice (P<0.05), consisting of activated CD69(+) and CD4(+)CD62L(-) lymphocytes (P<0.05). FasL expression was significantly elevated in the mesenteric lymph nodes of TNF(i∆ARE/i∆ARE) mice (P<0.05). Adoptive transfer of mucosal TNF(i∆ARE/i∆ARE) lymphocytes resulted in ileitis in immunologically naïve severe combined immunodeficiency recipients (P<0.05 vs. wild-type controls), indicating an effector phenotype that was associated with increased production of both Th1 (IFNγ) and Th2 (IL-5, IL-13) cytokines. CONCLUSION Intestinal epithelial-derived TNFα is sufficient for the induction of Crohn's-like ileitis, but not for the occurrence of extraintestinal manifestations, in TNF(i∆ARE/i∆ARE) mice. These effects were associated with generation of effector lymphocytes within the intestinal mucosa and dysregulated apoptosis. Thus, targeted intestinal blockade of TNFα may provide an effective means to neutralize gut-derived TNFα with reduced side effects.
Collapse
Affiliation(s)
- Giorgos Bamias
- 1st Department of Gastroenterology, Ethnikon & Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Mohamed I. Dahman
- Department of Surgery, Mercy Health System, Fairfield, Ohio, United States of America
| | - Kristen O. Arseneau
- Departments of Medicine and Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Digestive Health Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mitchell Guanzon
- Departments of Medicine and Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Digestive Health Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dennis Gruska
- Departments of Medicine and Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Digestive Health Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Theresa T. Pizarro
- Departments of Medicine and Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Digestive Health Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fabio Cominelli
- Departments of Medicine and Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Digestive Health Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
48
|
Fiore A, Carraresi L, Morabito A, Polvani S, Fortunato A, Lastraioli E, Femia AP, De Lorenzo E, Caderni G, Arcangeli A. Characterization of hERG1 channel role in mouse colorectal carcinogenesis. Cancer Med 2013; 2:583-94. [PMID: 24403225 PMCID: PMC3892791 DOI: 10.1002/cam4.72] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/29/2013] [Accepted: 02/14/2013] [Indexed: 12/13/2022] Open
Abstract
The human ether-à-go-go-related gene (hERG)1 K+ channel is upregulated in human colorectal cancer cells and primary samples. In this study, we examined the role of hERG1 in colorectal carcinogenesis using two mouse models: adenomatous polyposis coli (Apcmin/+) and azoxymethane (AOM)-treated mice. Colonic polyps of Apcmin/+ mice overexpressed mERG1 and their formation was reverted by the hERG1 blocker E4031. AOM was applied to either hERG1-transgenic (TG) mice, which overexpress hERG1 in the mucosa of the large intestine, or wild-type mice. A significant increase of both mucin-depleted foci and polyps in the colon of hERG1-TG mice was detected. Both the intestine of TG mice and colonic polyps of Apcmin/+ showed an upregulation of phospho-Protein Kinase B (pAkt)/vascular endothelial growth factor (VEGF-A) and an increased angiogenesis, which were reverted by treatment with E4031. On the whole, this article assigns a relevant role to hERG1 in the process of in vivo colorectal carcinogenesis.
Collapse
Affiliation(s)
- Antonella Fiore
- Department of Experimental and Clinical Medicine, Section of Internal Medicine and Oncology, University of Florence, Florence, Italy; Istituto Toscano Tumori, Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Inoue K, Fry EA, Taneja P. Recent progress in mouse models for tumor suppressor genes and its implications in human cancer. Clin Med Insights Oncol 2013; 7:103-22. [PMID: 23843721 PMCID: PMC3682694 DOI: 10.4137/cmo.s10358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gain-of-function mutations in oncogenes and loss-of-function mutations in tumor suppressor genes (TSG) lead to cancer. In most human cancers, these mutations occur in somatic tissues. However, hereditary forms of cancer exist for which individuals are heterozygous for a germline mutation in a TSG locus at birth. The second allele is frequently inactivated by gene deletion, point mutation, or promoter methylation in classical TSGs that meet Knudson's two-hit hypothesis. Conversely, the second allele remains as wild-type, even in tumors in which the gene is haplo-insufficient for tumor suppression. This article highlights the importance of PTEN, APC, and other tumor suppressors for counteracting aberrant PI3K, β-catenin, and other oncogenic signaling pathways. We discuss the use of gene-engineered mouse models (GEMM) of human cancer focusing on Pten and Apc knockout mice that recapitulate key genetic events involved in initiation and progression of human neoplasia. Finally, the therapeutic potential of targeting these tumor suppressor and oncogene signaling networks is discussed.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Elizabeth A. Fry
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Pankaj Taneja
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
50
|
PIK3CA and APC mutations are synergistic in the development of intestinal cancers. Oncogene 2013; 33:2245-54. [PMID: 23708654 DOI: 10.1038/onc.2013.167] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/08/2013] [Accepted: 03/14/2013] [Indexed: 11/09/2022]
Abstract
Human colorectal cancers are known to possess multiple mutations, though how these mutations interact in tumor development and progression has not been fully investigated. We have previously described the FCPIK3ca* murine colon cancer model, which expresses a constitutively activated phosphoinositide-3 kinase (PI3K) in the intestinal epithelium. The expression of this dominantly active form of PI3K results in hyperplasia and invasive mucinous adenocarcinomas. These cancers form via a non-canonical mechanism of tumor initiation that is mediated through activation of PI3K and not through aberrations in WNT signaling. Since the Adenomatous Polyposis Coli (APC) gene is mutated in the majority of human colon cancers and often occurs simultaneously with PIK3CA mutations, we sought to better understand the interaction between APC and PIK3CA mutations in the mammalian intestine. In this study, we have generated mice in which the expression of a constitutively active PI3K and the loss of APC occur simultaneously in the distal small intestine and colon. Here, we demonstrate that expression of a dominant active PI3K synergizes with loss of APC activity resulting in a dramatic change in tumor multiplicity, size, morphology and invasiveness. Activation of the PI3K pathway is not able to directly activate WNT signaling through the nuclear localization of CTNNB1 (β-catenin) in the absence of aberrant WNT signaling. Alterations at the transcriptional level, including increased CCND1, may be the etiology of synergy between these activated pathways.
Collapse
|