1
|
Wilczyński B, Dąbrowska A, Saczko J, Kulbacka J. The Role of Chloride Channels in the Multidrug Resistance. MEMBRANES 2021; 12:38. [PMID: 35054564 PMCID: PMC8781147 DOI: 10.3390/membranes12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
Nowadays, one of medicine's main and most challenging aims is finding effective ways to treat cancer. Unfortunately, although there are numerous anti-cancerous drugs, such as cisplatin, more and more cancerous cells create drug resistance. Thus, it is equally important to find new medicines and research the drug resistance phenomenon and possibilities to avoid this mechanism. Ion channels, including chloride channels, play an important role in the drug resistance phenomenon. Our article focuses on the chloride channels, especially the volume-regulated channels (VRAC) and CLC chloride channels family. VRAC induces multidrug resistance (MDR) by causing apoptosis connected with apoptotic volume decrease (AVD) and VRAC are responsible for the transport of anti-cancerous drugs such as cisplatin. VRACs are a group of heterogenic complexes made from leucine-rich repetition with 8A (LRRC8A) and a subunit LRRC8B-E responsible for the properties. There are probably other subunits, which can create those channels, for example, TTYH1 and TTYH2. It is also known that the ClC family is involved in creating MDR in mainly two mechanisms-by changing the cell metabolism or acidification of the cell. The most researched chloride channel from this family is the CLC-3 channel. However, other channels are playing an important role in inducing MDR as well. In this paper, we review the role of chloride channels in MDR and establish the role of the channels in the MDR phenomenon.
Collapse
Affiliation(s)
- Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (B.W.); (A.D.)
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (B.W.); (A.D.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
2
|
Oxidative Damages to Eye Stem Cells, in Response to, Bright and Ultraviolet Light, Their Associated Mechanisms, and Salvage Pathways. Mol Biotechnol 2018; 61:145-152. [DOI: 10.1007/s12033-018-0136-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Glupker CD, Boersma PM, Schotanus MP, Haarsma LD, Ubels JL. Apoptosis of Corneal Epithelial Cells Caused by Ultraviolet B-induced Loss of K(+) is Inhibited by Ba(2.). Ocul Surf 2016; 14:401-9. [PMID: 27189864 DOI: 10.1016/j.jtos.2016.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/01/2016] [Indexed: 01/04/2023]
Abstract
UVB exposure at ambient outdoor levels triggers rapid K(+) loss and apoptosis in human corneal limbal epithelial (HCLE) cells cultured in medium containing 5.5 mM K(+), but considerably less apoptosis occurs when the medium contains the high K(+) concentration that is present in tears (25 mM). Since Ba(2+) blocks several K(+) channels, we tested whether Ba(2+)-sensitive K(+) channels are responsible for some or all of the UVB-activated K(+) loss and subsequent activation of the caspase cascade and apoptosis. Corneal epithelial cells in culture were exposed to UVB at 80 or 150 mJ/cm(2). Patch-clamp recording was used to measure UVB-induced K(+) currents. Caspase-activity and TUNEL assays were performed on HCLE cells exposed to UVB followed by incubation in the presence or absence of Ba(2+). K(+) currents were activated in HCLE cells following UVB-exposure. These currents were reversibly blocked by 5 mM Ba(2+). When HCLE cells were incubated with 5 mM Ba(2+) after exposure to UVB, activation of caspases-9, -8, and -3 and DNA fragmentation were significantly decreased. The data confirm that UVB-induced K(+) current activation and loss of intracellular K(+) leads to activation of the caspase cascade and apoptosis. Extracellular Ba(2+) inhibits UVB-induced apoptosis by preventing loss of intracellular K(+) when K(+) channels are activated. Ba(2+) therefore has effects similar to elevated extracellular K(+) in protecting HCLE cells from UVB-induced apoptosis. This supports our overall hypothesis that elevated K(+) in tears contributes to protection of the corneal epithelium from adverse effects of ambient outdoor UVB.
Collapse
Affiliation(s)
| | - Peter M Boersma
- Department of Biology, Calvin College, Grand Rapids, MI, USA; Department of Physics, Calvin College, Grand Rapids, MI, USA
| | | | - Loren D Haarsma
- Department of Physics, Calvin College, Grand Rapids, MI, USA
| | - John L Ubels
- Department of Biology, Calvin College, Grand Rapids, MI, USA.
| |
Collapse
|
4
|
Haghdoost-Yazdi H, Piri H, Faraji A, Fraidouni N, Dargahi T, Mahmudi M, Alipour Heidari M. Pretreatment with potassium channel blockers of 4-aminopyridine and tetraethylammonium attenuates behavioural symptoms of Parkinsonism induced by intrastriatal injection of 6-hydroxydopamine; the role of lipid peroxidation. Neurol Res 2016; 38:294-300. [DOI: 10.1080/01616412.2015.1114290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Ubels JL, Glupker CD, Schotanus MP, Haarsma LD. Involvement of the extrinsic and intrinsic pathways in ultraviolet B-induced apoptosis of corneal epithelial cells. Exp Eye Res 2015; 145:26-35. [PMID: 26559338 DOI: 10.1016/j.exer.2015.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 01/19/2023]
Abstract
The goal of this study was to elucidate the pathway by which UVB initiates efflux of K(+) and subsequently apoptosis in human corneal limbal epithelial (HCLE) cells. The initial focus of the study was on the extrinsic pathway involving Fas. HCLE cells transfected with Fas siRNA were exposed to 80-150 mJ/cm(2) UVB and incubated in culture medium with 5.5 mM K(+). Knockdown of Fas resulted in limited reduction in UVB-induced caspase-8 and -3 activity. Patch-clamp recordings showed no difference in UVB-induced normalized K(+) currents between Fas transfected and control cells. Knockdown of caspase-8 had no effect on the activation of caspase-3 following UVB exposure, while a caspase-8 inhibitor completely eliminated UVB activation of caspase-3. This suggests that caspase-8 is a robust enzyme, able to activate caspase-3 via residual caspase-8 present after knockdown, and that caspase-8 is directly involved in the UVB activation of caspase-3. Inhibition of caspase-9 significantly decreased the activation of caspases-8 and -3 in response to UVB. Knockdown of Apaf-1, required for activation of caspase-9, resulted in a significant reduction in UVB-induced activation of caspases-9, -8, and -3. Knockdown of Apaf-1 also inhibited intrinsic and UVB-induced levels of apoptosis, as determined by DNA fragmentation measured by TUNEL assay. In UVB exposed cultures treated with caspase-3 inhibitor, the percentage of apoptotic cells was reduced to control levels, confirming the necessity of caspase-3 activation in DNA fragmentation. The lack of effect of Fas knockdown on K(+) channel activation, as well as the limited effect on activation of caspases-8 and -3, strongly suggest that Fas and the extrinsic pathway is not of primary importance in the initiation of apoptosis in response to UVB in HCLE cells. Inhibition of caspase-8 and -3 activation following inhibition of caspase-9, as well as reduction in activation of caspases-9, -8, and -3 and DNA fragmentation in response to Apaf-1 knockdown support the conclusion that the intrinsic pathway is more important in UVB-induced apoptosis in HCLE cells.
Collapse
Affiliation(s)
- John L Ubels
- Department of Biology, Calvin College, Grand Rapids, MI, USA.
| | | | | | - Loren D Haarsma
- Department of Physics and Astronomy, Calvin College, Grand Rapids, MI, USA
| |
Collapse
|
6
|
Chen X, Cao Y, Zhang H, Zhu Z, Liu M, Liu H, Ding X, Hong Z, Li W, Lv D, Wang L, Zhuo X, Zhang J, Xie XQ, Chai Y. Comparative normal/failing rat myocardium cell membrane chromatographic analysis system for screening specific components that counteract doxorubicin-induced heart failure from Acontium carmichaeli. Anal Chem 2014; 86:4748-57. [PMID: 24731167 PMCID: PMC4033634 DOI: 10.1021/ac500287e] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Cell membrane chromatography (CMC)
derived from pathological tissues
is ideal for screening specific components acting on specific diseases
from complex medicines owing to the maximum simulation of in vivo drug-receptor interactions. However, there are no
pathological tissue-derived CMC models that have ever been developed,
as well as no visualized affinity comparison of potential active components
between normal and pathological CMC columns. In this study, a novel
comparative normal/failing rat myocardium CMC analysis system based
on online column selection and comprehensive two-dimensional (2D)
chromatography/monolithic column/time-of-flight mass spectrometry
was developed for parallel comparison of the chromatographic behaviors
on both normal and pathological CMC columns, as well as rapid screening
of the specific therapeutic agents that counteract doxorubicin (DOX)-induced
heart failure from Acontium carmichaeli (Fuzi). In
total, 16 potential active alkaloid components with similar structures
in Fuzi were retained on both normal and failing myocardium CMC models.
Most of them had obvious decreases of affinities on failing myocardium
CMC compared with normal CMC model except for four components, talatizamine
(TALA), 14-acetyl-TALA, hetisine, and 14-benzoylneoline. One compound
TALA with the highest affinity was isolated for further in
vitro pharmacodynamic validation and target identification
to validate the screen results. Voltage-dependent K+ channel
was confirmed as a binding target of TALA and 14-acetyl-TALA with
high affinities. The online high throughput comparative CMC analysis
method is suitable for screening specific active components from herbal
medicines by increasing the specificity of screened results and can
also be applied to other biological chromatography models.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University , No. 325 Guohe Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.
Collapse
Affiliation(s)
- Florian Lang
- Institute of Physiology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
8
|
Shah NH, Aizenman E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 2013; 5:38-58. [PMID: 24323720 DOI: 10.1007/s12975-013-0297-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K(+) efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer's disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Niyathi Hegde Shah
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, E1456 BST, Pittsburgh, PA, 15261, USA,
| | | |
Collapse
|
9
|
Chen M, Sun HY, Hu P, Wang CF, Li BX, Li SJ, Li JJ, Tan HY, Gao TM. Activation of BKCa Channels Mediates Hippocampal Neuronal Death After Reoxygenation and Reperfusion. Mol Neurobiol 2013; 48:794-807. [DOI: 10.1007/s12035-013-8467-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/26/2013] [Indexed: 11/29/2022]
|
10
|
Social networking among voltage-activated potassium channels. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:269-302. [PMID: 23663972 DOI: 10.1016/b978-0-12-386931-9.00010-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Voltage-activated potassium channels (Kv channels) are ubiquitously expressed proteins that subserve a wide range of cellular functions. From their birth in the endoplasmic reticulum, Kv channels assemble from multiple subunits in complex ways that determine where they live in the cell, their biophysical characteristics, and their role in enabling different kinds of cells to respond to specific environmental signals to generate appropriate functional responses. This chapter describes the types of protein-protein interactions among pore-forming channel subunits and their auxiliary protein partners, as well as posttranslational protein modifications that occur in various cell types. This complex oligomerization of channel subunits establishes precise cell type-specific Kv channel localization and function, which in turn drives a diverse range of cellular signal transduction mechanisms uniquely suited to the physiological contexts in which they are found.
Collapse
|
11
|
|
12
|
Börjesson SI, Englund UH, Asif MH, Willander M, Elinder F. Intracellular K+ concentration decrease is not obligatory for apoptosis. J Biol Chem 2011; 286:39823-8. [PMID: 21949184 DOI: 10.1074/jbc.m111.262725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
K(+) efflux is observed as an early event in the apoptotic process in various cell types. Loss of intracellular K(+) and subsequent reduction in ionic strength are suggested to release the inhibition of proapoptotic caspases. In this work, a new K(+)-specific microelectrode was used to study possible alterations in intracellular K(+) in Xenopus laevis oocytes during chemically induced apoptosis. The accuracy of the microelectrode to detect changes in intracellular K(+) was verified with parallel electrophysiological measurements. In concordance with previous studies on other cell types, apoptotic stimuli reduced the intracellular K(+) concentration in Xenopus oocytes and increased caspase-3 activity. The reduction in intracellular K(+) was prevented by dense expression of voltage-gated K (Kv) channels. Despite this, the caspase-3 activity was increased similarly in Kv channel-expressing oocytes as in oocytes not expressing Kv channels. Thus, in Xenopus oocytes caspase-3 activity is not dependent on the intracellular concentration of K(+).
Collapse
Affiliation(s)
- Sara I Börjesson
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Campus Norrköping, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | |
Collapse
|
13
|
Courboulin A, Paulin R, Giguère NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Côté J, Simard MJ, Bonnet S. Role for miR-204 in human pulmonary arterial hypertension. ACTA ACUST UNITED AC 2011; 208:535-48. [PMID: 21321078 PMCID: PMC3058572 DOI: 10.1084/jem.20101812] [Citation(s) in RCA: 415] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reduced miR-204 expression facilitates the excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells characteristic of human pulmonary arterial hypertension. Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs). Because microRNAs have been recently implicated in the regulation of cell proliferation and apoptosis, we hypothesized that these regulatory molecules might be implicated in the etiology of PAH. In this study, we show that miR-204 expression in PASMCs is down-regulated in both human and rodent PAH. miR-204 down-regulation correlates with PAH severity and accounts for the proliferative and antiapoptotic phenotypes of PAH-PASMCs. STAT3 activation suppresses miR-204 expression, and miR-204 directly targets SHP2 expression, thereby SHP2 up-regulation, by miR-204 down-regulation, activates the Src kinase and nuclear factor of activated T cells (NFAT). STAT3 also directly induces NFATc2 expression. NFAT and SHP2 were needed to sustain PAH-PASMC proliferation and resistance to apoptosis. Finally, delivery of synthetic miR-204 to the lungs of animals with PAH significantly reduced disease severity. This study uncovers a new regulatory pathway involving miR-204 that is critical to the etiology of PAH and indicates that reestablishing miR-204 expression should be explored as a potential new therapy for this disease.
Collapse
Affiliation(s)
- Audrey Courboulin
- Département de médecine, Faculté de médecine, Hôtel-Dieude Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chimote AA, Adragna NC, Lauf PK. Ion transport in a human lens epithelial cell line exposed to hyposmotic and apoptotic stress. J Cell Physiol 2010; 223:110-22. [PMID: 20049853 DOI: 10.1002/jcp.22015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Membrane transport changes in human lens epithelial (HLE-B3) cells under hyposmotic and apoptotic stress were compared. Cell potassium content, K(i), uptake of the K congener rubidium, Rb(i), and water content were measured after hyposmotic stress induced by hypotonicity, and apoptotic stress by the protein-kinase inhibitor staurosporine (STP). Cell water increased in hyposmotic (150 mOsm) as compared to isosmotic (300 mOsm) balanced salt solution (BSS) by >2-fold at 5 min and decreased within 15 min to baseline values accompanied by a 40% K(i) loss commensurate with cell swelling and subsequent cell shrinkage likely due to regulatory volume decrease (RVD). Loss of K(i), and accompanying water, and Rb(i) uptake in hyposmotic BSS were prevented by clotrimazole (CTZ) suggesting water shifts associated with K and Rb flux via intermediate conductance K (IK) channels, also detected at the mRNA and protein level. In contrast, 2 h after 2 microM STP exposure, the cells lost approximately 40% water and approximately 60% K(i), respectively, consistent with apoptotic volume decrease (AVD). Indeed, water and K(i) loss was at least fivefold greater after hyposmotic than after apoptotic stress. High extracellular K and 2 mM 4-aminopyridine (4-AP) but not CTZ significantly reduced apoptosis. Annexin labeling phosphatidylserine (PS) at 15 min suggested loss of lipid asymmetry. Quantitative PCR revealed significant IK channel expression during prolonged hyposmotic stress. Results suggest in HLE-B3 cells, IK channels likely partook in and were down regulated after RVD, whereas pro-apoptotic STP-activation of 4-AP-sensitive voltage-gated K channels preceded or accompanied PS externalization before subsequent apoptosis.
Collapse
Affiliation(s)
- Ameet A Chimote
- Cell Biophysics Group, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | | | |
Collapse
|
15
|
Jiang J, McDonald PR, Dixon TM, Franicola D, Zhang X, Nie S, Epperly LD, Huang Z, Kagan VE, Lazo JS, Epperly MW, Greenberger JS. Synthetic protection short interfering RNA screen reveals glyburide as a novel radioprotector. Radiat Res 2009; 172:414-22. [PMID: 19772462 DOI: 10.1667/rr1674.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To assist in screening existing drugs for use as potential radioprotectors, we used a human unbiased 16,560 short interfering RNA (siRNA) library targeting the druggable genome. We performed a synthetic protection screen that was designed to identify genes that, when silenced, protected human glioblastoma T98G cells from gamma-radiation-induced cell death. We identified 116 candidate protective genes, then identified 10 small molecule inhibitors of 13 of these candidate gene products and tested their radioprotective effects. Glyburide, a clinically used second-generation hypoglycemic drug, effectively decreased radiation-induced cell death in several cell lines including T98G, glioblastoma U-87 MG, and normal lung epithelial BEAS-2B and in primary cultures of astrocytes. Glyburide significantly increased the survival of 32D cl3 murine hematopoietic progenitor cells when administrated before irradiation. Glyburide was radioprotective in vivo (90% of C57BL/6NHsd female mice pretreated with 10 mg/kg glyburide survived 9.5 Gy total-body irradiation compared to 42% of irradiated controls, P = 0.0249). These results demonstrate the power of unbiased siRNA synthetic protection screening with a druggable genome library to identify new radioprotectors.
Collapse
Affiliation(s)
- Jianfei Jiang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Singleton KR, Will DS, Schotanus MP, Haarsma LD, Koetje LR, Bardolph SL, Ubels JL. Elevated extracellular K+ inhibits apoptosis of corneal epithelial cells exposed to UV-B radiation. Exp Eye Res 2009; 89:140-51. [PMID: 19289117 DOI: 10.1016/j.exer.2009.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/12/2009] [Accepted: 02/27/2009] [Indexed: 12/01/2022]
Abstract
The goal of this study was to determine if the high [K(+)] in tears, 20-25 mM, serves to protect corneal epithelial cells from going into apoptosis after exposure to ambient UV-B radiation. Human corneal-limbal epithelial (HCLE) cells in culture were exposed to UV-B at doses of 50-200 mJ/cm(2) followed by measurement of K(+) channel activation and activity of apoptotic pathways. Patch-clamp recording showed activation of K(+) channels after UV-B exposure at 80 mJ/cm(2) or 150 mJ/cm(2) and a decrease in UV-induced K(+) efflux with increasing [K(+)](o). The UV-activated current was partially blocked by the specific K(+) channel blocker, BDS-1. DNA fragmentation, as measured by the TUNEL assay, was induced after exposure to UV-B at 100-200 mJ/cm(2). DNA fragmentation was significantly decreased when cells were incubated in 25, 50 or 100mM K(o)(+) after exposure to UV-B. The effector caspase, caspase-3, was activated by exposure to UV-B at 50-200 mJ/cm(2), but there was a significant decrease in activation when the cells were incubated in 25, 50 or 100mM K(o)(+) following exposure to UV-B. A decrease in mitochondrial potential, a possible activator of caspase-3, occurred after exposure to UV-B at 100-200 mJ/cm(2). This decrease in mitochondrial potential was prevented by 100mM K(o)(+); however, 25 or 50mM K(o)(+) provided minimal protection. Caspase-9, which is in the pathway from mitochondrial potential change to caspase-3 activation, showed little activation by UV-B radiation. Caspase-8, an initiator caspase that activates caspase-3, was activated by exposure to UV-B at 50-200 mJ/cm(2), and this UV-activation was significantly reduced by 25-100mM K(o)(+). The data show that the physiologically relevant [K(+)](o) of 25 mM can inhibit UV-B induced activation of apoptotic pathways. This suggests that the relatively high [K(+)] in tears reduces loss of K(+) from corneal epithelial cells in response to UV exposure, thereby contributing to the protection of the ocular surface from ambient UV radiation.
Collapse
|
17
|
McMillan TJ, Leatherman E, Ridley A, Shorrocks J, Tobi SE, Whiteside JR. Cellular effects of long wavelength UV light (UVA) in mammalian cells. J Pharm Pharmacol 2008; 60:969-76. [PMID: 18644190 DOI: 10.1211/jpp.60.8.0004] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UVA should receive significant consideration as a human health risk as it is a large proportion of the solar spectrum that reaches the earth's surface and because of its ability to penetrate human skin. It is only relatively recently that this has been recognized and this previously under-researched part of the UV spectrum is becoming increasingly well characterized at doses that are quite low in relation to those experienced by humans. Absorption of UVA in a cell leads to the production of reactive oxygen and nitrogen species that can damage major biomolecules including DNA and membrane lipids. Various types of damage induced in these molecules lead to significant biological effects including cytotoxicity, mutations and alterations in cell signalling pathways. Longer-term effects such as persistent genomic instability and bystander effects have also been observed following UVA treatment of mammalian cells and, as with ionizing radiation, this changes some of the fundamental thinking around tissue effects of irradiation. Antioxidants have been assessed extensively for their ability to protect against the biological effects of UVA and a number have been shown to be successful at least in-vitro, for example vitamin E and epigallocatechin-3-gallate. Other potential targets for protection are suggested through the increased understanding of some of the signalling mechanisms activated following treatment, for example the inhibition of NADPH oxidase is seen to reduce a bystander effect. The search for appropriate and successful photoprotective agents remains an important area of research.
Collapse
Affiliation(s)
- T J McMillan
- Biomedical Sciences Unit, Department of Biological Sciences, Lancaster University Lancaster, LA1 4YQ, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Wang L, Gao J, Dai W, Lu L. Activation of Polo-like kinase 3 by hypoxic stresses. J Biol Chem 2008; 283:25928-35. [PMID: 18650425 DOI: 10.1074/jbc.m801326200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypoxia/reoxygenation stress induces the activation of specific signaling proteins and activator protein 1 (AP-1) to regulate cell cycle regression and apoptosis. In the present study, we report that hypoxia/reoxygenation stress activates AP-1 by increasing c-Jun phosphorylation and DNA binding activity through activation of Polo-like-kinase 3 (Plk3) resulting in apoptosis. The specific effect of hypoxia/reoxygenation stress on Plk3 activation resulting in c-Jun phosphorylation was the opposite of UV irradiation-induced responses that are meanly independent on activation of the stress-induced JNK signaling pathway in human corneal epithelial (HCE) cells. The effect of hypoxia/reoxygenation stress-induced Plk3 activation on increased c-Jun phosphorylation and apoptosis was also mimicked by exposure of cells to CoCl(2). Hypoxia/reoxygenation activated Plk3 in HCE cells to directly phosphorylate c-Jun proteins at phosphorylation sites Ser-63 and Ser-73, and to increase DNA binding activity of c-Jun, detected by EMSA. Further evidence demonstrated that Plk3 and phospho-c-Jun were immunocolocalized in the nuclear compartment of hypoxia/reoxygenation stress-induced cells. Increased Plk3 activity by overexpression of wild-type and dominantly positive Plk3 enhanced the effect of hypoxia/reoxygenation on c-Jun phosphorylation and cell death. In contrast, knocking-down Plk3 mRNA suppressed hypoxia-induced c-Jun phosphorylation. Our results provide a new mechanism indicating that hypoxia/reoxygenation induces Plk3 activation instead of the JNK effect to directly phosphorylate and activate c-Jun, subsequently contributing to apoptosis in HCE cells.
Collapse
Affiliation(s)
- Ling Wang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502, USA
| | | | | | | |
Collapse
|
19
|
Coulson EJ, May LM, Osborne SL, Reid K, Underwood CK, Meunier FA, Bartlett PF, Sah P. p75 neurotrophin receptor mediates neuronal cell death by activating GIRK channels through phosphatidylinositol 4,5-bisphosphate. J Neurosci 2008; 28:315-24. [PMID: 18171948 PMCID: PMC6671158 DOI: 10.1523/jneurosci.2699-07.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 11/23/2007] [Accepted: 11/27/2007] [Indexed: 11/21/2022] Open
Abstract
The pan neurotrophin receptor p75(NTR) signals programmed cell death both during nervous system development and after neural trauma and disease in the adult. However, the molecular pathways by which death is mediated remain poorly understood. Here, we show that this cell death is initiated by activation of G-protein-coupled inwardly rectifying potassium (GIRK/Kir3) channels and a consequent potassium efflux. Death signals stimulated by neurotrophin-mediated cleavage of p75(NTR) activate GIRK channels through the generation and binding of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2/PIP2] to GIRK channels. Both GIRK channel activity and p75(NTR)-mediated neuronal death are inhibited by sequestration of PtdIns(4,5)P2 and application of GIRK channel inhibitors, whereas pertussis toxin treatment has no effect. Thus, p75(NTR) activates GIRK channels without the need for G(i/o)-proteins. Our results demonstrate a novel mode of activation of GIRK channels, representing an early step in the p75(NTR)-mediated cell death pathway and suggesting a function for these channels during nervous system development.
Collapse
Affiliation(s)
- Elizabeth J Coulson
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol 2007; 153 Suppl 1:S99-S111. [PMID: 18084317 DOI: 10.1038/sj.bjp.0707635] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintaining the proper balance between cell apoptosis and proliferation is required for normal tissue homeostasis; when this balance is disrupted, disease such as pulmonary arterial hypertension (PAH) can result. Activity of K(+) channels plays a major role in regulating the pulmonary artery smooth muscle cell (PASMC) population in the pulmonary vasculature, as they are involved in cell apoptosis, survival and proliferation. PASMCs from PAH patients demonstrate many cellular abnormalities linked to K(+) channels, including decreased K(+) current, downregulated expression of various K(+) channels, and inhibited apoptosis. K(+) is the major intracellular cation, and the K(+) current is a major determinant of cell volume. Apoptotic volume decrease (AVD), an early hallmark and prerequisite of programmed cell death, is characterized by K(+) and Cl(-) efflux. In addition to its role in AVD, cytosolic K(+) can be inhibitory toward endogenous caspases and nucleases and can suppress mitochondrial cytochrome c release. In PASMC, K(+) channel activation accelerates AVD and enhances apoptosis, while K(+) channel inhibition decelerates AVD and inhibits apoptosis. Finally, inhibition of K(+) channels, by increasing cytosolic [Ca(2+)] as a result of membrane depolarization-mediated opening of voltage-dependent Ca(2+) channels, leads to PASMC contraction and proliferation. The goals of this review are twofold: (1) to elucidate the role of K(+) ions and K(+) channels in the proliferation and apoptosis of PASMC, with an emphasis on abnormal cell growth in human and animal models of PAH, and (2) to elaborate upon the targeting of K(+) flux pathways for pharmacological treatment of pulmonary vascular disease.
Collapse
|
21
|
Peters J, Chin CK. Potassium loss is involved in tobacco cell death induced by palmitoleic acid and ceramide. Arch Biochem Biophys 2007; 465:180-6. [PMID: 17662229 DOI: 10.1016/j.abb.2007.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/28/2007] [Accepted: 05/30/2007] [Indexed: 12/18/2022]
Abstract
Tobacco cell death induced by palmitoleic acid (16:1), ceramide, and KCN was found to possess features associated with program cell death (PCD), including cell volume decrease, loss of membrane integrity, DNA damage, nuclear and plastid disorganization, and chromatin condensation. Cell volume decrease was found to be caused by loss of intracellular K(+). Ba(2+) was able to prevent the K(+) loss and it also protected the cells from death induced by 16:1 and ceramide but not KCN. The results suggest that K(+) loss is a critical step in plant PCD. The inability of Ba(2+) to prevent cell death was most likely due to its other effects of KCN, i.e., inhibition of cytochrome oxidase in the respiratory chain and generation of reactive oxygen species.
Collapse
Affiliation(s)
- Jeanne Peters
- Department of Plant Biology and Pathology, School of Environmental and Biological, Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
22
|
Li T, Lu L. Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis. Exp Cell Res 2007; 313:3057-65. [PMID: 17583694 PMCID: PMC2706011 DOI: 10.1016/j.yexcr.2007.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/02/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
CTCF, a nuclear transcriptional factor, is a multifunctional protein and involves regulation of growth factor- and cytokine-induced cell proliferation/differentiation. In the present study, we investigated the role of CTCF in protecting stress-induced apoptosis in various human cell types. We found that UV irradiation and hyper-osmotic stress induced human corneal epithelial (HCE) and hematopoietic myeloid cell apoptosis detected by significantly increased caspase 3 activity and decreased cell viability. The stress-induced apoptotic response in these cells requires down-regulation of CTCF at both mRNA and protein levels, suggesting that CTCF may play an important role in downstream events of stress-induced signaling pathways. Inhibition of NFkappaB activity prevented stress-induced down-regulation of CTCF and increased cell viability against stress-induced apoptosis. The anti-apoptotic effect of CTCF was further studied by manipulating CTCF activities in HCE and hematopoietic cells. Transient transfection of cDNAs encoding full-length human CTCF markedly suppressed stress-induced apoptosis in these cells. In contrast, knocking down of CTCF mRNA using siRNA specific to CTCF significantly promoted stress-induced apoptosis. Thus, our results reveal that CTCF is a down stream target of stress-induced signaling cascades and it plays a significant anti-apoptotic role in regulation of stress-induced cellular responses in HCE and hematopoietic myeloid cells.
Collapse
Affiliation(s)
| | - Luo Lu
- Address correspondence to: Luo Lu, Division of Molecular Medicine, UCLA School of Medicine, Harbor-UCLA Medical Center, 1124 W. Carson Street, C-2, Torrance, CA 90502, Tel. 310 787-6853, Fax. 310 222-3781, E-mail:
| |
Collapse
|
23
|
Wang L, Lu L. Pathway-specific effect of caffeine on protection against UV irradiation-induced apoptosis in corneal epithelial cells. Invest Ophthalmol Vis Sci 2007; 48:652-60. [PMID: 17251462 PMCID: PMC1920500 DOI: 10.1167/iovs.06-1007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To define the role of molecular interaction between the UV-induced JNK (c-Jun N-terminal kinase) cascade and corneal epithelial cell apoptosis and protection against apoptosis by caffeine. METHODS Rabbit and human corneal epithelial cells were cultured in DMEM/F12 medium containing 10% FBS and 5 microg/mL insulin at 37 degrees C in 5% CO(2). DNA fragmentation and ethidium bromide/acridine orange (EB/AO) nuclear staining were performed to detect cell death. Western blot, immunoprecipitation, and kinase assays were used to measure UV-induced mitogen-activated protein (MAP) kinase activity. RESULTS UV irradiation-induced apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and MAKK4 (SEK1) upstream from JNK was caffeine sensitive. Caffeine (1,3,7-trimethylxanthine), an agent that is one of the most popular additions to food consumed in the world and a potential enhancer of chemotherapy, effectively protected corneal epithelial cells against apoptosis by its specific effect on the JNK cascade. Theophylline (1,3-dimethylxanthine) exhibited an effect similar to that of caffeine on prevention of UV irradiation-induced apoptosis. However, alterations of either intracellular cAMP or Ca(2+) levels did not alter the effect of caffeine on the JNK signaling pathway. In addition, the blockade of PI3K-like kinases by wortmannin had no impact on the protective effect of caffeine against UV irradiation-induced apoptosis, suggesting that the protective effect of caffeine acts through a specific mechanism involving UV irradiation-induced activation of ASK1 and SEK1. In contrast, caffeine had no effects on melphalan-, hyperosmotic stress-, or IL-1beta-induced activation of the JNK signaling pathway in these cells. CONCLUSIONS UV irradiation stress-induced activation of the ASK1-SEK1-JNK signaling pathway leading to apoptosis is a caffeine-sensitive process, and caffeine, as a multifunctional agent in cells, can specifically interact with the pathway to protect against apoptosis.
Collapse
Affiliation(s)
- Ling Wang
- Department of Medicine, HMC, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502, USA
| | | |
Collapse
|
24
|
Bortner CD, Cidlowski JA. Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys 2007; 462:176-88. [PMID: 17321483 PMCID: PMC1941616 DOI: 10.1016/j.abb.2007.01.020] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/18/2007] [Accepted: 01/23/2007] [Indexed: 12/25/2022]
Abstract
The loss of cell volume or cell shrinkage has been a morphological hallmark of the programmed cell death process known as apoptosis. This isotonic loss of cell volume has recently been term apoptotic volume decrease or AVD to distinguish it from inherent volume regulatory responses that occurs in cells under anisotonic conditions. Recent studies examining the intracellular signaling pathways that result in this unique cellular characteristic have determined that a fundamental movement of ions, particularly monovalent ions, underlie the AVD process and plays an important role on controlling the cell death process. An efflux of intracellular potassium was shown to be a critical aspect of the AVD process, as preventing this ion loss could protect cells from apoptosis. However, potassium plays a complex role as a loss of intracellular potassium has also been shown to be beneficial to the health of the cell. Additionally, the mechanisms that a cell employs to achieve this loss of intracellular potassium vary depending on the cell type and stimulus used to induce apoptosis, suggesting multiple ways exist to accomplish the same goal of AVD. Additionally, sodium and chloride have been shown to play a vital role during cell death in both the signaling and control of AVD in various apoptotic model systems. This review examines the relationship between this morphological change and intracellular monovalent ions during apoptosis.
Collapse
Affiliation(s)
- Carl D Bortner
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
25
|
Apoptosis vs. oncosis: role of cell volume and intracellular monovalent cations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 559:219-33. [PMID: 18727243 DOI: 10.1007/0-387-23752-6_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several research teams have proposed that shrinkage and swelling in cells undergoing apoptosis and oncosis are not only the earliest morphological markers of the two modes of cell death but are also obligatory steps in the development of the death machinery. We examined this hypothesis as well as the role of monovalent cations as major intracellular osmolytes using vascular smooth muscle cells (VSMC) from the rat aorta and C7-MDCK cells derived from the Madin-Darby canine kidney. 48-hr inhibition of the Na(+)-K+ pump with ouabain did not affect VSMC survival and delayed serum deprivation-induced apoptosis at a step upstream of caspase-3 via elevation of the [Na+]i/[K+]i ratio and the expression of Na+ i-sensitive antiapoptotic genes including mortalin. Transient and modest (15-20%) shrinkage observed in serum-deprived VSMC did not contribute to triggering of the apoptotic machinery. In contrast to VSMC, ouabain led to oncosis of C7-MDCK cells, indicated by swelling and resistance to the pan-caspase inhibitor z-VAD.fmk. In these cells, the death signal was mediated by interaction of ouabain with the Na(+)-K(+)-ATPase alpha-subunit but was independent of the inhibition of Na(+)-K+ pump-mediated ion fluxes and elevation of the [Na+]i/[K+]i ratio.
Collapse
|
26
|
Abstract
One of the functional roles of the corneal epithelial layer is to protect the cornea, lens and other underlying ocular structures from damages caused by environmental insults. It is important for corneal epithelial cells to maintain this function by undergoing continuous renewal through a dynamic process of wound healing. Previous studies in corneal epithelial cells have provided substantial evidence showing that environmental insults, such as ultraviolet (UV) irradiation and other biohazards, can induce stress-related cellular responses resulting in apoptosis and thus interrupt the dynamic process of wound healing. We found that UV irradiation-induced apoptotic effects in corneal epithelial cells are started by the hyperactivation of K+ channels in the cell membrane resulting in a fast loss of intracellular K+ ions. Recent studies provide further evidence indicating that these complex responses in corneal epithelial cells are resulted from the activation of stress-related signaling pathways mediated by K+ channel activity. The effect of UV irradiation on corneal epithelial cell fate shares common signaling mechanisms involving the activation of intracellular responses that are often activated by the stimulation of various cytokines. One piece of evidence for making this distinction is that at early times UV irradiation activates a Kv3.4 channel in corneal epithelial cells to elicit activation of c-Jun N-terminal kinase cascades and p53 activation leading to cell cycle arrest and apoptosis. The hypothetic model is that UV-induced potassium channel hyperactivity as an early event initiates fast cell shrinkages due to the loss of intracellular potassium, resulting in the activation of scaffolding protein kinases and cytoskeleton reorganizations. This review article presents important control mechanisms that determine Kv channel activity-mediated cellular responses in corneal epithelial cells, involving activation of stress-induced signaling pathways, arrests of cell cycle progression and/or induction of apoptosis.
Collapse
Affiliation(s)
- Luo Lu
- Department of Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Harbor-UCLA Medical Center, CA 90502, USA.
| |
Collapse
|
27
|
Pirger Z, Elekes K, Kiss T. Electrical properties and cell-to-cell communication of the salivary gland cells of the snail, Helix pomatia. Comp Biochem Physiol A Mol Integr Physiol 2006; 145:7-19. [PMID: 16872853 DOI: 10.1016/j.cbpa.2006.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 03/22/2006] [Accepted: 03/24/2006] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to assess the cellular mechanism of secretion in the salivary gland of the snail, Helix pomatia, using electrophysiological, electron microscopic and immunohistochemical techniques. A homogeneously distributed membrane potential (-56.6 +/- 9.8 mV) was determined mainly by a K+ -electrochemical gradient and partly by the contribution of the electrogenic Na+ -pump and Cl- conductance. Low resistance electrical coupling sites were identified physiologically. Transmission electron microscopy and innexin 2 antibody revealed the presence of gap-junction-like membrane structures between gland cells. It is suggested that gap-junctions are sites of electrotonic intercellular communication, which integrate the gland cells into a synchronized functional unit in the acinus. Stimulation of the salivary nerve elicited secretory potentials (depolarization) which could be mimicked by local application of acetylcholine, dopamine or serotonin. In voltage-clamp experiments four major conductances were identified: a delayed rectifier (IK), a transient (IA) and a Ca2+ -activated outward K+ current (IK(Ca)) and Ca2+ -inward currents (ICa). It is suggested that one or more of these conductances may give rise to a stimulus activated secretory potential leading to excitation-secretion coupling and subsequent the release of the mucus from the gland cells.
Collapse
Affiliation(s)
- Zsolt Pirger
- Department of Experimental Zoology, Balaton Limnological Research Institute, Hungarian Academy of Sciences, Tihany, 8237, Klebelsberg K. u. 3., Hungary
| | | | | |
Collapse
|
28
|
Abstract
A proper rate of programmed cell death or apoptosis is required to maintain normal tissue homeostasis. In disease states such as cancer and some forms of hypertension, apoptosis is blocked, resulting in hyperplasia. In neurodegenerative diseases, uncontrolled apoptosis leads to loss of brain tissue. The flow of ions in and out of the cell and its intracellular organelles is becoming increasingly linked to the generation of many of these diseased states. This review focuses on the transport of K(+) across the cell membrane and that of the mitochondria via integral K(+)-permeable channels. We describe the different types of K(+) channels that have been identified, and investigate the roles they play in controlling the different phases of apoptosis: early cell shrinkage, cytochrome c release, caspase activation, and DNA fragmentation. Attention is also given to K(+) channels on the inner mitochondrial membrane, whose activity may underlie anti- or pro-apoptotic mechanisms in neurons and cardiomyocytes.
Collapse
Affiliation(s)
- E D Burg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0725, La Jolla, 92093-0725, USA
| | | | | |
Collapse
|
29
|
Dong DL, Wang QH, Yue P, Jiao JD, Gu RM, Yang BF. Indapamide induces apoptosis of GH3 pituitary cells independently of its inhibition of voltage-dependent K+ currents. Eur J Pharmacol 2006; 536:78-84. [PMID: 16556441 DOI: 10.1016/j.ejphar.2006.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 02/21/2006] [Indexed: 11/26/2022]
Abstract
Indapamide blocks multiple voltage-dependent K+ currents (Kv) in the heart and Kv have an important role in cell proliferation and apoptosis, so the aim of this work was to study the effects of indapamide on Kv and the viability of GH3 cells. Indapamide inhibited Kv of GH3 cells and the inhibition was irreversible after a 10-min washout when more than 250 microM indapamide was used. Indapamide reduced the viability of GH3 cells in a concentration-dependent manner. The decreased cell viability was because indapamide induced cell apoptosis, or even necrosis at higher concentrations. HepG2 cells, which express no apparent Kv, were used to determine the association between inhibition of Kv and the apoptotic action of indapamide. Indapamide had a similar action on cell viability and apoptosis of HepG2 cells. 4-Aminopyridine, the voltage-dependent K+ channel blocker, inhibited Kv of GH3 cells but did not induce the cell apoptosis. We concluded that while indapamide inhibited Kv and induced apoptosis of GH3 cells, the apoptotic action of indapamide was not associated with its inhibition of Kv.
Collapse
Affiliation(s)
- De-Li Dong
- Department of Pharmacology, Harbin Medical University, PR China.
| | | | | | | | | | | |
Collapse
|
30
|
Arrebola F, Fernández-Segura E, Campos A, Crespo PV, Skepper JN, Warley A. Changes in intracellular electrolyte concentrations during apoptosis induced by UV irradiation of human myeloblastic cells. Am J Physiol Cell Physiol 2006; 290:C638-49. [PMID: 16162654 DOI: 10.1152/ajpcell.00364.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decreases in the intracellular concentrations of both K+and Cl−have been implicated in playing a major role in the progression of apoptosis, but little is known about the temporal relationship between decreases in electrolyte concentration and the key events in apoptosis, and there is no information about how such decreases affect different intracellular compartments. Electron probe X-ray microanalysis was used to determine changes in element concentrations (Na, P, Cl, and K) in nucleus, cytoplasm, and mitochondria in U937 cells undergoing UV-induced apoptosis. In all compartments, the initial stages of apoptosis were characterized by decreases in [K] and [Cl]. The largest decreases in these elements were in the mitochondria and occurred before the release of cytochrome c. Initial decreases in [K] and [Cl] also preceded apoptotic changes in the nucleus. In the later stages of apoptosis, the [K] continued to decrease, whereas that of Cl began to increase toward control levels and was accompanied by an increase in [Na]. In the nucleus, these increases coincided with poly(ADP-ribose) polymerase cleavage, chromatin condensation, and DNA laddering. The cytoplasm was the compartment least affected and the pattern of change of Cl was similar to those in other compartments, but the decrease in [K] was not significant until after active caspase-3 was detected. Our results support the concept that normotonic cell shrinkage occurs early in apoptosis, and demonstrate that changes in the intracellular concentrations of K and Cl precede apoptotic changes in the cell compartments studied.
Collapse
Affiliation(s)
- F Arrebola
- Electron Microscopy Unit, King's College London, Department of Ophthalmology, The Rayne Institute, St. Thomas' Hospital, UK
| | | | | | | | | | | |
Collapse
|
31
|
Elinder F, Akanda N, Tofighi R, Shimizu S, Tsujimoto Y, Orrenius S, Ceccatelli S. Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ 2005; 12:1134-40. [PMID: 15861186 DOI: 10.1038/sj.cdd.4401646] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Apoptotic cell death is an essential process in the development of the central nervous system and in the pathogenesis of its degenerative diseases. Efflux of K(+) and Cl(-) ions leads to the shrinkage of the apoptotic cell and facilitates the activation of caspases. Here, we present electrophysiological and immunocytochemical evidences for the activation of a voltage-dependent anion channel (VDAC) in the plasma membrane of neurons undergoing apoptosis. Anti-VDAC antibodies blocked the channel and inhibited the apoptotic process. In nonapoptotic cells, plasma membrane VDAC1 protein can function as a NADH (-ferricyanide) reductase. Opening of VDAC channels in apoptotic cells was associated with an increase in this activity, which was partly blocked by VDAC antibodies. Hence, it appears that there might be a dual role for this protein in the plasma membrane: (1) maintenance of redox homeostasis in normal cells and (2) promotion of anion efflux in apoptotic cells.
Collapse
Affiliation(s)
- F Elinder
- Department of Biomedicine and Surgery, Division of Cell Biology, Linköpings Universitet, Linköping SE-581 85, Sweden.
| | | | | | | | | | | | | |
Collapse
|
32
|
Wang L, Reinach P, Lu L. TNF-alpha promotes cell survival through stimulation of K+ channel and NFkappaB activity in corneal epithelial cells. Exp Cell Res 2005; 311:39-48. [PMID: 16216243 PMCID: PMC1920499 DOI: 10.1016/j.yexcr.2005.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 08/18/2005] [Accepted: 08/18/2005] [Indexed: 01/08/2023]
Abstract
Tumor necrosis factor (TNF-alpha) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-alpha also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-alpha stimulation induced activation of a voltage-gated K+ channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-alpha on downstream events included NFkappaB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-alpha induced increases in p21 expression resulting in partial cell cycle attenuation in the G1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-alpha-induced K+ channel activity effectively prevented NFkappaB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-alpha. In conclusion, TNF-alpha promotes survival of HCE cells through sequential stimulation of K+ channel and NFkappaB activities. This response to TNF-alpha is dependent on stimulating K+ channel activity because following suppression of K+ channel activity TNF-alpha failed to activate NFkappaB nuclear translocation and binding to nuclear DNA.
Collapse
Affiliation(s)
- Ling Wang
- Division of Molecular Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, 1124 W. Carson Street, C-2, Torrance, CA 90502, USA
| | - Peter Reinach
- Department of Biological Sciences, SUNY College of Optometry, New York, NY 10010, USA
| | - Luo Lu
- Division of Molecular Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, 1124 W. Carson Street, C-2, Torrance, CA 90502, USA
- * Corresponding author. Fax: +1 310 222 3781. E-mail address: (L. Lu)
| |
Collapse
|
33
|
Arrebola F, Cañizares J, Cubero MA, Crespo PV, Warley A, Fernández-Segura E. Biphasic behavior of changes in elemental composition during staurosporine-induced apoptosis. Apoptosis 2005; 10:1317-31. [PMID: 16215671 DOI: 10.1007/s10495-005-2718-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although the identification of events that occur during apoptosis is a fundamental goal of apoptotic cell death research, little is know about the precise sequence of changes in total elemental composition during apoptosis. We evaluated total elemental composition (Na, Mg, P, Cl, S, and K) in relation to molecular and morphological features in human U937 cells induced to undergo apoptosis with staurosporine, an intrinsic pathway activator. To evaluate total elemental content we used electron probe X-ray microanalysis to measure simultaneously all elements from single, individual cells. We observed two phases in the changes in elemental composition (mainly Na, Cl and K). The early phase was characterized by a decrease in intracellular K (P<0.001) and Cl (P<0.001) content concomitant with cell shrinkage, and preceded the increase in proteolytic activity associated with the activation of caspase-3. The later phase started with caspase-3 activation, and was characterized by a decrease in the K/Na ratio (P<0.001) as a consequence of a significant decrease in K and increase in Na content. The inversion of intracellular K and Na content was related with the inhibition of Na+/K+ ATPase. This later phase was also characterized by a significant increase (P<0.001) in intracellular Cl with respect to the early phase. In addition, we found a decrease in S content and an increase in the P/S ratio. These distinctive changes coincided with chromatin condensation and DNA fragmentation. Together, these findings support the concept that changes in total elemental composition take place in two phases related with molecular and morphological features during staurosporine-induced apoptosis.
Collapse
Affiliation(s)
- F Arrebola
- Department of Histology, Faculty of Medicine, University of Granada, E-18071 Granada, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Crane JK, Vezina CM. Externalization of host cell protein kinase C during enteropathogenic Escherichia coli infection. Cell Death Differ 2005; 12:115-27. [PMID: 15578063 DOI: 10.1038/sj.cdd.4401531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a common cause of diarrhea in children in developing countries. Protein kinase C (PKC), a serine- and threonine-directed protein kinase, is rapidly activated following EPEC infection and this is accompanied by its translocation to a membrane-bound location where it is tightly bound to phosphatidylserine (PS). EPEC infection causes host cell death, one of whose features is externalization of PS. We hypothesized that externalization of PS would be accompanied by externalization of PKC as well. We report that EPEC infection triggers the externalization of PKC to the outer surface of the host cell. Ecto-PKC remains firmly tethered to the cell but can be released by incubation with peptide or protein substrates for the enzyme. Ecto-PKC is intact and biologically active and able to phosphorylate protein substrates on the surface of the host cell. Phosphorylation of whole EPEC bacteria or EPEC-secreted proteins could not be detected. Externalization of PKC could be reproduced by the combination of an apoptotic stimulus (ultraviolet (UV) irradiation) and phorbol myristate acetate (PMA), a procedure which resulted in externalization of >25% of the total cellular content of PKC-alpha. In the presence of ATP, ecto-PKC inhibited UV-induced cell shrinkage, membrane blebbing, and propidium iodide uptake but not the activation of caspases 3 and 7. This is the first report that expression of an ecto-protein kinase is altered by a microbial pathogen and the first to note that externalization of PKC can accompany apoptosis.
Collapse
Affiliation(s)
- J K Crane
- Department of Medicine, University at Buffalo, Buffalo, NY, USA.
| | | |
Collapse
|
35
|
Wang L, Dai W, Lu L. Ultraviolet irradiation-induced K(+) channel activity involving p53 activation in corneal epithelial cells. Oncogene 2005; 24:3020-7. [PMID: 15750624 PMCID: PMC1920501 DOI: 10.1038/sj.onc.1208547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies from our lab found that ultraviolet (UV) irradiation induces a voltage-gated potassium (Kv) channel activation and subsequently activates JNK signaling pathway resulting in apoptosis. The present study in rabbit corneal epithelial (RCE) cells is to investigate mechanisms of UV irradiation-induced Kv channel activity involving p53 activation in parallel to DNA damage-induced signaling pathway. UV irradiation-induced signaling events were characterized by measurements of JNK activation and further downstream p53 phosphorylation. UV irradiation elicited an early response in the cell membrane through activation of Kv channels to activate the JNK signaling pathway and p53 phosphorylation. Exposure of RCE cells to UV irradiation within a few min resulted in JNK and p53 activations that were markedly inhibited by suppression of Kv channel activity. However, suppression of Kv channel activity failed to prevent p53 activation induced by extended DNA damages through prolonging UV exposure time (more than 15 min). In addition, caffeine inhibited UV-induced activation of SEK, an upstream MAPK kinase of JNK, resulting in suppression of both Kv channel-involved and DNA damage-induced p53 activation. Our results indicate in these cells that UV irradiation induces earlier and later intracellular events that link to activation of JNK and p53. The early event in response to UV irradiation is initiated by activating Kv channels in the cell membrane, and the later event is predominated by UV irradiation-caused DNA damage.
Collapse
Affiliation(s)
- Ling Wang
- Division of Molecular Medicine, Harbor-UCLA Medical Center, School of Medicine University of California Los Angeles, Torrance, CA 90502, USA
| | - Wei Dai
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Luo Lu
- Division of Molecular Medicine, Harbor-UCLA Medical Center, School of Medicine University of California Los Angeles, Torrance, CA 90502, USA
- *Correspondence: L Lu, Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, 1124 W Carson Street, C-2, Torrance, CA 90502, USA; E-mail:
| |
Collapse
|
36
|
Guo TB, Lu J, Li T, Lu Z, Xu G, Xu M, Lu L, Dai W. Insulin-activated, K+-channel-sensitive Akt pathway is primary mediator of ML-1 cell proliferation. Am J Physiol Cell Physiol 2005; 289:C257-63. [PMID: 15800056 DOI: 10.1152/ajpcell.00010.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-gated K(+) channel activities are involved in regulating growth factor-stimulated cell proliferation in a variety of cell types. Here we report that suppression of a voltage-gated K(+) channel with 4-aminopyridine (4-AP), barium, and tetraethylammonium inhibited both EGF- and insulin-stimulated myeloblastic leukemia ML-1 cell proliferation in a concentration-dependent manner. Both MAPK/ERK and Akt pathways are known to mediate cell proliferative signals of a variety of growth factors including insulin. In serum-starved ML-1 cells, insulin rapidly stimulated phosphorylation of ERK1/2 and Akt, and the phosphorylation levels peaked approximately 30 min after treatment. Pretreatment of ML-1 cells with 4-AP potently and dose-dependently prevented phosphorylation of ERK1/2 and Akt. However, insulin-induced activation of the Akt pathway also played a role in promoting ML-1 cell proliferation. Flow cytometry analysis revealed that although ML-1 cells were primarily arrested at G(1) phase by serum starvation for 36 h, they reentered the cell cycle after treatment with serum or insulin for 24 h. However, concomitant 4-AP treatment was able to attenuate cell cycle progression in synchronized ML-1 cells stimulated with growth factors. Our results strongly suggest that a 4-AP-sensitive K(+) channel activity plays an important role in controlling proliferation of ML-1 cells by affecting the activation of multiple signal transduction processes induced by insulin.
Collapse
Affiliation(s)
- Taylor B Guo
- Health Science Center, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai Second Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Li T, Lu L. Epidermal growth factor-induced proliferation requires down-regulation of Pax6 in corneal epithelial cells. J Biol Chem 2005; 280:12988-95. [PMID: 15659382 DOI: 10.1074/jbc.m412458200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factors play important roles in regulating corneal epithelial cell proliferation/differentiation during wound healing. It is suggested that PAX6 involves corneal epithelium lineage-specific differentiation (Liu, J. J., Kao, W. W., and Wilson, S. E. (1999) Exp. Eye Res. 68, 295-301); however, the regulatory mechanism and function of Pax6 in growth factor-induced corneal epithelial responses is still unknown. In the present study, we found that the mitogenic effect of epidermal growth factor (EGF) in corneal epithelial cells required suppression of PAX6 activity through cellular mechanisms involving Erk-signaling pathway-mediated increase in CTCF expression. EGF-induced CCCTC binding factor (CTCF) activation subsequently inhibited Pax6 expression by interacting with a CTCF-specific region upstream of the pax6 P0 promoter. Suppression of EGF-induced Erk activation by specific inhibitor or by the dominant expression of a silent Erk mutant effectively abolished the effects of EGF stimulation on regulations of CTCF and pax6. Apparently, down-regulation of Pax6 expression induced by EGF is required for corneal epithelial proliferation, because overexpression of pax6 in these cells attenuated EGF-induced proliferation. In contrast, knockdown of mRNA expression with pax6- or CTCF-specific small interfering RNA in corneal epithelial cells significantly promoted or attenuated EGF-induced proliferation, respectively. Thus, our results revealed a new regulatory mechanism that involves cellular signaling events and pax6 transcription regulation in growth factor-mediated proliferation. In corneal epithelial cells, this suggests that inhibition of pax6 expression is a prerequisite for EGF to elicit controls of cell growth and fate.
Collapse
Affiliation(s)
- Tie Li
- Division of Molecular Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California-Los Angeles, Torrance, California 90502, USA
| | | |
Collapse
|
38
|
Arrebola F, Zabiti S, Cañizares FJ, Cubero MA, Crespo PV, Fernández-Segura E. Changes in intracellular sodium, chlorine, and potassium concentrations in staurosporine-induced apoptosis. J Cell Physiol 2005; 204:500-7. [PMID: 15717314 DOI: 10.1002/jcp.20306] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ion gradients across the plasma membrane, fundamentally K(+), play a pivotal role in the execution phase of apoptosis. However, little is known about other monovalent anions (Cl(-)) or cations (Na(+)) in apoptosis. In addition, the relationship between changes in total ion composition and morphological and biochemical events are poorly understood. We investigated simultaneous changes in sodium (Na), chlorine (Cl), and potassium (K) concentrations in stauroporine-induced apoptosis by quantitative electron probe X-ray microanalysis (EPXMA) in single cells. Apoptotic cells identified unequivocally from the presence of chromatin condensation in backscattered electron images were characterized by an increase in intracellular Na, a decrease in intracellular Cl and K concentrations, and a decrease in K/Na ratio. The ouabain-sensitive Rb-uptake assay demonstrated a net decrease in Na(+)/K(+)-ATPase activity, suggesting that increases in Na and decreases in K and the K/Na ratio in apoptotic cells were related with inhibition of the Na(+)/K(+)-ATPase pump. These changes in diffusible elements were associated with externalization of phosphatidyl serine and oligonucleosomal fragmentation of DNA. This alteration in ion homeostasis and morphological hallmarks of apoptosis occur in cells that have lost their inner mitochondrial transmembrane potential and before the plasma membrane becomes permeable.
Collapse
Affiliation(s)
- Francisco Arrebola
- Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Scoltock AB, Cidlowski JA. Activation of intrinsic and extrinsic pathways in apoptotic signaling during UV-C-induced death of Jurkat cells: the role of caspase inhibition. Exp Cell Res 2004; 297:212-23. [PMID: 15194437 DOI: 10.1016/j.yexcr.2004.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 01/08/2004] [Indexed: 11/17/2022]
Abstract
We have examined UV irradiation-induced cell death in Jurkat cells and evaluated the relationships that exist between inhibition of caspase activity and the signaling mechanisms and pathways of apoptosis. Jurkat cells were irradiated with UV-C light, either with or without pretreatment with the pan-caspase inhibitor, z-VAD-fmk (ZVAD), or the more selective caspase inhibitors z-IETD-fmk (IETD), z-LEHD-fmk (LEHD), and z-DEVD-fmk (DEVD). Flow cytometry was used to examine alterations in viability, cell size, plasma membrane potential (PMP), mitochondrial membrane potential (DeltaPsi(mito)), intracellular Na(+) and K(+) concentrations, and DNA degradation. Processing of pro-caspases 3, 8, and 9 and the pro-apoptotic protein Bid was determined by Western blotting. UV-C irradiation of Jurkat cells resulted in characteristic apoptosis within 6 h after treatment and pretreatment of cells with ZVAD blocked these features. In contrast, pretreatment of the cells with the more selective caspase inhibitors under conditions that effectively blocked DNA degradation and inhibited caspase 3 and 8 processing as well as Bid cleavage had little protective effect on the other apoptotic characteristics examined. Thus, both intrinsic and extrinsic pathways are activated during UV-induced apoptosis in Jurkat cells and this redundancy appears to assure cell death during selective caspase inhibition.
Collapse
Affiliation(s)
- Alyson B Scoltock
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, NC 27709, USA
| | | |
Collapse
|
40
|
Brevnova EE, Platoshyn O, Zhang S, Yuan JXJ. Overexpression of human KCNA5 increases IK V and enhances apoptosis. Am J Physiol Cell Physiol 2004; 287:C715-22. [PMID: 15140747 DOI: 10.1152/ajpcell.00050.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptotic cell shrinkage, an early hallmark of apoptosis, is regulated by K+ efflux and K+ channel activity. Inhibited apoptosis and downregulated K+ channels in pulmonary artery smooth muscle cells (PASMC) have been implicated in development of pulmonary vascular medial hypertrophy and pulmonary hypertension. The objective of this study was to test the hypothesis that overexpression of KCNA5, which encodes a delayed-rectifier voltage-gated K+ (Kv) channel, increases K+ currents and enhances apoptosis. Transient transfection of KCNA5 caused 25- to 34-fold increase in KCNA5 channel protein level and 24- to 29-fold increase in Kv channel current (I(K(V))) at +60 mV in COS-7 and rat PASMC, respectively. In KCNA5-transfected COS-7 cells, staurosporine (ST)-mediated increases in caspase-3 activity and the percentage of cells undergoing apoptosis were both enhanced, whereas basal apoptosis (without ST stimulation) was unchanged compared with cells transfected with an empty vector. In rat PASMC, however, transfection of KCNA5 alone caused marked increase in basal apoptosis, in addition to enhancing ST-mediated apoptosis. Furthermore, ST-induced apoptotic cell shrinkage was significantly accelerated in COS-7 cells and rat PASMC transfected with KCNA5, and blockade of KCNA5 channels with 4-aminopyridine (4-AP) reduced K+ currents through KCNA5 channels and inhibited ST-induced apoptosis in KCNA5-transfected COS-7 cells. Overexpression of the human KCNA5 gene increases K+ currents (i.e., K+ efflux or loss), accelerates apoptotic volume decrease (AVD), increases caspase-3 activity, and induces apoptosis. Induction of apoptosis in PASMC by KCNA5 gene transfer may serve as an important strategy for preventing the progression of pulmonary vascular wall thickening and for treating patients with idiopathic pulmonary arterial hypertension (IPAH).
Collapse
MESH Headings
- 4-Aminopyridine/pharmacology
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Blotting, Western
- COS Cells
- Caspase 3
- Caspases/drug effects
- Caspases/metabolism
- Cells, Cultured
- Chlorocebus aethiops
- Electrophysiology
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Enzyme Inhibitors/pharmacology
- Humans
- Hypertension, Pulmonary/physiopathology
- Image Processing, Computer-Assisted
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Patch-Clamp Techniques
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Voltage-Gated/drug effects
- Potassium Channels, Voltage-Gated/physiology
- Rats
- Staurosporine/pharmacology
- Transfection
Collapse
Affiliation(s)
- Elena E Brevnova
- Division of Pulmonary and Critical Care Medicine, Dept. of Medicine, Medical Teaching Facility, University of California-San Diego, #0725, 9500 Gilman Drive, La Jolla, CA 92093-0725, USA
| | | | | | | |
Collapse
|
41
|
Okada Y, Maeno E, Shimizu T, Manabe K, Mori SI, Nabekura T. Dual roles of plasmalemmal chloride channels in induction of cell death. Pflugers Arch 2004; 448:287-95. [PMID: 15103464 DOI: 10.1007/s00424-004-1276-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 03/04/2004] [Indexed: 10/26/2022]
Abstract
Even under anisotonic conditions, most cells can regulate their volume by mechanisms called regulatory volume decrease (RVD) and increase (RVI) after osmotic swelling or shrinkage, respectively. In contrast, the initial processes of necrosis and apoptosis are associated with persistent swelling and shrinkage. Necrotic volume increase (NVI) is initiated by uptake of osmolytes, such as Na+, Cl- and lactate, under conditions of injury, hypoxia, ischaemia, acidosis or lactacidosis. Persistence of NVI is caused by dysfunction of RVD due to impairment of volume-sensitive Cl- channels under conditions of ATP deficiency or lactacidosis. Both lactacidosis-induced RVD dysfunction and necrotic cell death are prevented by pretreatment of cells with the vacuolating cytotoxin-A (VacA) toxin protein purified from Helicobacter pylori, which forms a lactacidosis-resistant anion channel. Apoptotic volume decrease (AVD) is triggered by activation of K+ and Cl- conductances following stimulation with a mitochondrion-mediated or death receptor-mediated apoptosis inducer. Apoptotic cell death can be prevented by blocking the Cl- channels but not the K+-Cl- cotransporters. Thus, the volume regulatory anion channel plays, unless impaired, a cell-rescuing role in the necrotic process by ensuring RVD after swelling induced by necrotic insults, whereas normotonic activation of the anion channel plays a cell-killing role in the apoptotic process by triggering AVD following stimulation with apoptosis inducers.
Collapse
Affiliation(s)
- Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, 444-8585 Okazaki, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Li T, Lu Z, Lu L. Regulation of eye development by transcription control of CCCTC binding factor (CTCF). J Biol Chem 2004; 279:27575-83. [PMID: 15096508 DOI: 10.1074/jbc.m313942200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
CCCTC binding factor (CTCF), a transcriptional regulator, plays important roles in epigenetics and development. In the present study, we report that overexpression of CTCF in transgenic mice during embryonic development suppresses Pax6 gene expression. This effect causes defects in ocular development that result in microophthalmia. In eye-derived cells transfected with a tetracycline turn-on CTCF system, up-regulation of CTCF expression significantly suppressed Pax6 expression. In contrast, the knockdown of CTCF mRNA resulted in the down-regulation of CTCF protein expression, which in turn enhanced the Pax6 expression. CTCF controls Pax6 transcription by interacting with a repressor element located in the 5'-flanking region upstream of the Pax6 P0 promoter. This interaction suppressed Pax6 gene transcription by blocking the effect of an ectoderm enhancer located 3.5 kb upstream from the P0 promoter. We also found an 80-bp sequence in a region -1.2 kbp upstream from the P0 promoter that contained multiple CTCF binding sites and interacted with nuclear proteins obtained from eye-derived cells forming electrophoretic mobility shift assay complexes with CTCF. We conclude that a novel function of CTCF is to regulate Pax6 transcription by binding to the repressor element, which in turn blocks the effect of the ectoderm enhancer resulting in the inhibition of P0 promoter activity.
Collapse
Affiliation(s)
- Tie Li
- Division of Molecular Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California-Los Angeles, Torrance, California 90502-2006, USA
| | | | | |
Collapse
|
43
|
Jablonski EM, Webb AN, McConnell NA, Riley MC, Hughes FM. Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease. Am J Physiol Cell Physiol 2004; 286:C975-85. [PMID: 14644770 DOI: 10.1152/ajpcell.00180.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis is characterized by a conserved series of morphological events beginning with the apoptotic volume decrease (AVD). This study investigated a role for aquaporins (AQPs) during the AVD. Inhibition of AQPs blocked the AVD in ovarian granulosa cells undergoing growth factor withdrawal and blocked downstream apoptotic events such as cell shrinkage, changes in the mitochondrial membrane potential, DNA degradation, and caspase-3 activation. The effects of AQP inhibition on the AVD and DNA degradation were consistent in thymocytes and with two additional apoptotic signals, thapsigargin and C6-ceramide. Overexpression of AQP-1 in Chinese hamster ovary (CHO-AQP-1) cells enhanced their rate of apoptosis. The AVD is driven by loss of K+from the cell, and we hypothesize that after the AVD, AQPs become inactive, which halts further water loss and allows K+concentrations to decrease to levels necessary for apoptotic enzyme activation. Swelling assays on granulosa cells, thymocytes, and CHO-AQP-1 cells revealed that indeed, the shrunken (apoptotic) subpopulation has very low water permeability compared with the normal-sized (nonapoptotic) subpopulation. In thymocytes, AQP-1 is present and was shown to colocalize with the plasma membrane receptor tumor necrosis factor receptor-1 (TNF-R1) both before and after the AVD, which suggests that this protein is not proteolytically cleaved and remains on the cell membrane. Overall, these data indicate that AQP-mediated water loss is important for the AVD and downstream apoptotic events, that the water permeability of the plasma membrane can control the rate of apoptosis, and that inactivation after the AVD may help create the low K+concentration that is essential in apoptotic cells. Furthermore, inactivation of AQPs after the AVD does not appear to be through degradation or removal from the cell membrane.
Collapse
|
44
|
Remillard CV, Yuan JXJ. Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 2004; 286:L49-67. [PMID: 14656699 DOI: 10.1152/ajplung.00041.2003] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell apoptosis and proliferation are two counterparts in sharing the responsibility for maintaining normal tissue homeostasis. In recent years, the process of the programmed cell death has gained much interest because of its influence on malignant cell growth and other pathological states. Apoptosis is characterized by a distinct series of morphological and biochemical changes that result in cell shrinkage, DNA breakdown, and, ultimately, phagocytic death. Diverse external and internal stimuli trigger apoptosis, and enhanced K+ efflux has been shown to be an essential mediator of not only early apoptotic cell shrinkage, but also of downstream caspase activation and DNA fragmentation. The goal of this review is to discuss the role(s) played by K+ transport or flux across the plasma membrane in the regulation of the apoptotic volume decrease and apoptosis. Attention has also been paid to the role of inner mitochondrial membrane ion transport in the regulation of mitochondrial permeability and apoptosis. We provide specific examples of how deregulation of the apoptotic process contributes to pulmonary arterial medial hypertrophy, a major pathological feature in patients with pulmonary arterial hypertension. Finally, we discuss the targeting of K+ channels as a potential therapeutic tool in modulating apoptosis to maintain the balance between cell proliferation and cell death that is essential to the normal development and function of an organism.
Collapse
Affiliation(s)
- Carmelle V Remillard
- Division of Pulmonary and Critical Care Medicine, Dep[artment of Medicine, School of Medicine, University of California, San Diego, 92103-8382, USA
| | | |
Collapse
|
45
|
Coulson EJ, Reid K, Shipham KM, Morley S, Kilpatrick TJ, Bartlett PF. The role of neurotransmission and the Chopper domain in p75 neurotrophin receptor death signaling. PROGRESS IN BRAIN RESEARCH 2004; 146:41-62. [PMID: 14699955 DOI: 10.1016/s0079-6123(03)46003-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The role of p75 neurotrophin receptor (p75NTR) in mediating cell death is now well characterized, however, it is only recently that details of the death signaling pathway have become clearer. This review focuses on the importance of the juxtamembrane Chopper domain region of p75NTR in this process. Evidence supporting the involvement of K+ efflux, the apoptosome (caspase-9, apoptosis activating factor-1, APAF-1, and Bcl-xL), caspase-3, c-jun kinase, and p53 in the p75NTR cell death pathway is discussed and regulatory roles for the p75NTR ectodomain and death domain are proposed. The role of synaptic activity is also discussed, in particular the importance of neutrotransmitter-activated K+ channels acting as the gatekeepers of cell survival decisions during development and in neurodegenerative conditions.
Collapse
Affiliation(s)
- E J Coulson
- Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Abe T, Oue N, Yasui W, Ryoji M. Rapid and preferential induction of ATF3 transcription in response to low doses of UVA light. Biochem Biophys Res Commun 2003; 310:1168-74. [PMID: 14559238 DOI: 10.1016/j.bbrc.2003.09.143] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Long-wavelength UV light (UVA) is known to induce transcription of various genes in the cell and to cause a variety of pathological or protective responses in the skin. To find additional UVA-responsive genes, human skin-derived fibroblasts were exposed to UVA under non- or partially lethal conditions, and the effects of UVA on the transcriptional profile were examined by using DNA microarray and RT-PCR. Transcription of several genes including those already known to be UVA-responsive was induced to a significant extent under 50% lethal conditions of exposure. Among those, ATF3 was the most sensitive and its transcription was increased 10-fold within 1h. Even at a non-lethal dose of UVA (8J/cm(2)), it was increased 8-fold, if cells were cultured for 3h post-exposure. Typical immediate-early genes such as c-fos and c-jun were not affected at this dose. We thus suggest that ATF3 could be a key regulator for a variety of cellular responses in the skin, particularly to low doses of UVA.
Collapse
Affiliation(s)
- Takaya Abe
- Laboratory of Molecular Biology, Department of Bioresources, Hiroshima Prefectural University, 562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| | | | | | | |
Collapse
|
47
|
Yu SP. Na+, K+-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 2003; 66:1601-9. [PMID: 14555240 DOI: 10.1016/s0006-2952(03)00531-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Na(+), K(+)-ATPase is a ubiquitous membrane transport protein in mammalian cells, responsible for establishing and maintaining high K(+) and low Na(+) in the cytoplasm required for normal resting membrane potentials and various cellular activities. The ionic homeostasis maintained by the Na(+), K(+)-ATPase is also critical for cell growth, differentiation, and cell survival. Although the toxic effects of blocking the Na(+), K(+)-ATPase by ouabain and other selective inhibitors have been known for years, the mechanism of action remained unclear. Recent progress in two areas has significantly advanced our understanding of the role and mechanism of Na(+), K(+)-ATPase in cell death. Along with increased recognition of apoptosis in a wide range of disease states, Na(+), K(+)-ATPase deficiency has been identified as a contributor to apoptosis and pathogenesis. More importantly, accumulating evidence now endorses a close relationship between ionic homeostasis and apoptosis, namely the regulation of apoptosis by K(+) homeostasis. Since Na(+), K(+)-ATPase is the primary system for K(+) uptake, dysfunction of the transport enzyme and resultant disruption of ionic homeostasis have been re-evaluated for their critical roles in apoptosis and apoptosis-related diseases. In this review, instead of giving a detailed description of the structure and regulation of Na(+), K(+)-ATPase, the author will focus on the most recent evidence indicating the unique role of Na(+), K(+)-ATPase in cell death, including apoptosis and the newly recognized "hybrid death" of concurrent apoptosis and necrosis in the same cells. It is also hoped that discussion of some seemingly conflicting reports will inspire further debate and benefit future investigation in this important research field.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
48
|
Storey NM, Gómez-Angelats M, Bortner CD, Armstrong DL, Cidlowski JA. Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J Biol Chem 2003; 278:33319-26. [PMID: 12807917 DOI: 10.1074/jbc.m300443200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The loss of intracellular potassium is a pivotal step in the induction of apoptosis but the mechanisms underlying this response are poorly understood. Here we report caspase-dependent stimulation of potassium channels by the Fas receptor in a human Jurkat T cell line. Receptor activation with Fas ligand for 30 min increased the amplitude of voltage-activated potassium currents 2-fold on average. This produces a sustained outward current, approximately 10 pA, at physiological membrane potentials during Fas ligand-induced apoptosis. Both basal and Fas ligand-induced currents were blocked completely by toxins that selectively inhibit Kv1.3 potassium channels. Kv1.3 stimulation required the expression of Fas-associated death domain protein and activation of caspase 8, but did not require activation of caspase 3 or protein synthesis. Furthermore, Kv1.3 stimulation by Fas ligand was prevented by chronic stimulation of protein kinase C with 20 nm phorbol 12-myristate 13-acetate during Fas ligand treatment, which also blocks apoptosis. Thus, Fas ligand increases Kv1.3 channel activity through the same canonical apoptotic signaling cascade that is required for potassium efflux, cell shrinkage, and apoptosis.
Collapse
Affiliation(s)
- Nina M Storey
- Membrane Signaling Group, Laboratory of Signal Transduction, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Programmed cell death or apoptosis is broadly responsible for the normal homeostatic removal of cells and has been increasingly implicated in mediating pathological cell loss in many disease states. As the molecular mechanisms of apoptosis have been extensively investigated a critical role for ionic homeostasis in apoptosis has been recently endorsed. In contrast to the ionic mechanism of necrosis that involves Ca(2+) influx and intracellular Ca(2+) accumulation, compelling evidence now indicates that excessive K(+) efflux and intracellular K(+) depletion are key early steps in apoptosis. Physiological concentration of intracellular K(+) acts as a repressor of apoptotic effectors. A huge loss of cellular K(+), likely a common event in apoptosis of many cell types, may serve as a disaster signal allowing the execution of the suicide program by activating key events in the apoptotic cascade including caspase cleavage, cytochrome c release, and endonuclease activation. The pro-apoptotic disruption of K(+) homeostasis can be mediated by over-activated K(+) channels or ionotropic glutamate receptor channels, and most likely, accompanied by reduced K(+) uptake due to dysfunction of Na(+), K(+)-ATPase. Recent studies indicate that, in addition to the K(+) channels in the plasma membrane, mitochondrial K(+) channels and K(+) homeostasis also play important roles in apoptosis. Investigations on the K(+) regulation of apoptosis have provided a more comprehensive understanding of the apoptotic mechanism and may afford novel therapeutic strategies for apoptosis-related diseases.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, Medical University of South Carolina, 280 Calhoun Street, PO Box 250140, Charleston, SC 29425, USA.
| |
Collapse
|
50
|
Debska G, Kicinska A, Dobrucki J, Dworakowska B, Nurowska E, Skalska J, Dolowy K, Szewczyk A. Large-conductance K+ channel openers NS1619 and NS004 as inhibitors of mitochondrial function in glioma cells. Biochem Pharmacol 2003; 65:1827-34. [PMID: 12781334 DOI: 10.1016/s0006-2952(03)00180-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recently, it has been reported that large-conductance Ca(2+)-activated potassium channels, also known as BK(Ca)-type potassium channels, are present in the inner mitochondrial membrane of the human glioma LN229 cell line. Hence, in the present study, we have investigated whether BK(Ca)-channel openers (BK(Ca)COs), such as the benzimidazolone derivatives NS004 (5-trifluoromethyl-1-(5-chloro-2-hydroxyphenyl)-1,3-dihydro-2H-benzimidazole-2-one) and NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one), affect the functioning of LN229 glioma cell mitochondria in situ. We examined the effect of BK(Ca)COs on mitochondrial membrane potential, mitochondrial respiration and plasma membrane potassium current in human glioma cell line LN229. We found that BK(Ca)COs decrease the mitochondrial membrane potential with an EC(50) value of 3.6+/-0.4 microM for NS1619 and 5.4+/-0.8 microM for NS004. This mitochondrial depolarization was accompanied by an inhibition of the mitochondrial respiratory chain. Both BK(Ca)COs induced whole-cell potassium current blocked by charybdotoxin, as measured by the patch-clamp technique. The BK(Ca)COs had no effect on membrane bilayer conductance. Moreover, the inhibition of mitochondrial function by NS004 and NS1619 was without effect on cell survival, as measured by lactate dehydrogenase release from the cells.
Collapse
Affiliation(s)
- Grazyna Debska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-096 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|