1
|
Mukhopadhyay A, Li Y, Cliff MJ, Golovanov AP, Dalby PA. Enzyme stabilisation due to incorporation of a fluorinated non-natural amino acid at the protein surface. Sci Rep 2024; 14:28080. [PMID: 39543195 PMCID: PMC11564776 DOI: 10.1038/s41598-024-79711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
We have previously engineered E. coli transketolase (TK) enzyme variants that accept new substrates such as aliphatic or aromatic aldehydes, and also with improved thermal stability. Irreversible aggregation is the primary mechanism of deactivation for TK in the buffers used for biocatalysis, and so we were interested in determining the extent to which this remains true in more complex media, crude cell lysates or even in vivo. Such understanding would better guide future protein engineering efforts. NMR offers a potential approach to probe protein structure changes, aggregation, and diffusion, and19F-labelled amino acids are a useful NMR probe for complex systems with little or no background signal from the rest of the protein or their environment. Here we labelled E. coli TK with two different19F probes, trifluoromethyl-L-phenylalanine (tfm-Phe), and 4-fluoro phenylalanine (4 F-Phe), through site specific non-natural amino acid incorporation. We targeted them to residue K316, a highly solvent exposed site located at the furthest point from the enzyme active sites. Characterisation of the19F-labelled TK variants revealed surprising effects of these mutations on stability, and to some extent on activity. While variant TK-tfm-Phe led to a 7.5 °C increase in the thermal transition midpoint (Tm) for denaturation, the TK-4 F-Phe variant largely abolished the aggregation of the enzyme when incubated at 50 °C19. F-NMR revealed different behaviours in response to temperature increases for the two TK variants, displaying opposite temperature gradient chemical shifts, and diverging motion regimes, suggesting that the mutations affected differently both the local environment at this site, and its temperature-induced dynamics. A similar incubation of TK at 40-55 °C is also known to induce higher cofactor-binding affinities, leading to an apparent heat activation under low cofactor concentration conditions. We have hypothesised previously that a heat-inducible conformational change in TK leads to this effect1. H-NMR revealed a temperature-dependent re-structuring of methyl groups, also at 30-50 °C, which may be linked to the heat activation. While our kinetic studies were not expected to observe the heat activation event due to the high cofactor concentrations used, this was not the case for TK-4 F-Phe, which did appear to heat activate slightly at 45 °C. This implied that the mutations at K316 could influence cofactor-binding, despite their location at 47 Å from either active site. Such long-distance effects of mutations are not unprecedented, and indeed we have previously shown how distant mutations can influence active-site loop stability and function in TK, mediated via dynamically coupled networks of residues. Molecular dynamics simulations of the two19F containing variants similarly revealed networks of residues that could couple the changes in dynamics at residue K316, through to changes in active site dynamics. These results independently highlight the sensitivity of active-site function to distant mutations coupled through correlated dynamic networks of residues. They also highlight the potential influence of surface-incorporated probes on protein stability and function, and the need to characterise them well prior to further studies.
Collapse
Affiliation(s)
- Arka Mukhopadhyay
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Yiwen Li
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, 131 Princess St, Manchester, M1 7DN, UK
| | - Alexander P Golovanov
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, M1 7DN, Manchester, UK
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK.
| |
Collapse
|
2
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
3
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Buchholz CR, Pomerantz WCK. 19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery. RSC Chem Biol 2021; 2:1312-1330. [PMID: 34704040 PMCID: PMC8496043 DOI: 10.1039/d1cb00085c] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
19F NMR has emerged as a powerful tool in drug discovery, particularly in fragment-based screens. The favorable magnetic resonance properties of the fluorine-19 nucleus, the general absence of fluorine in biological settings, and its ready incorporation into both small molecules and biopolymers, has enabled multiple applications of 19F NMR using labeled small molecules and proteins in biophysical, biochemical, and cellular experiments. This review will cover developments in ligand-observed and protein-observed 19F NMR experiments tailored towards drug discovery with a focus on fragment screening. We also cover the key advances that have furthered the field in recent years, including quantitative, structural, and in-cell methodologies. Several case studies are described for each application to highlight areas for innovation and to further catalyze new NMR developments for using this versatile nucleus.
Collapse
Affiliation(s)
- Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
| | - William C K Pomerantz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis Minnesota 55455 USA
| |
Collapse
|
6
|
Chen E, Kliger DS. Time-Resolved Linear Dichroism Measurements of Carbonmonoxy Myoglobin as a Probe of the Microviscosity in Crowded Environments. J Phys Chem B 2017; 121:7064-7074. [PMID: 28703591 DOI: 10.1021/acs.jpcb.7b04107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distribution of viscosities in living cells is heterogeneous because of the different sizes and natures of macromolecular components. When thinking about protein folding/function processes in such an environment, the relevant (micro)viscosity at the micrometer length scale is necessarily distinguished from the bulk (macro)viscosity. The concentration dependencies of microviscosities are determined by a number of factors, such as electrostatic interactions, van der Waals forces, and excluded volume effects. To explore such factors, the rotational diffusion time of myoglobin in the presence of varying concentrations of macromolecules that differ in molecular weight (dextran 6000, 10 000, and 70 000), shape (dextran versus Ficoll), size, and surface charge is measured with time-resolved linear dichroism spectroscopy. The results of these studies offer simple empirically determined linear and exponential functions useful for predicting microviscosities as a function of concentration for these macromolecular crowders that are typically used to study crowding effects on protein folding. To understand how relevant these microviscosity measurements are to intracellular environments, the TRLD results are discussed in the context of studies that measure viscosity in cells.
Collapse
Affiliation(s)
- Eefei Chen
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - David S Kliger
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| |
Collapse
|
7
|
Cohen RD, Pielak GJ. A cell is more than the sum of its (dilute) parts: A brief history of quinary structure. Protein Sci 2017; 26:403-413. [PMID: 27977883 PMCID: PMC5326556 DOI: 10.1002/pro.3092] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023]
Abstract
Most knowledge of protein structure and function is derived from experiments performed with purified protein resuspended in dilute, buffered solutions. However, proteins function in the crowded, complex cellular environment. Although the first four levels of protein structure provide important information, a complete understanding requires consideration of quinary structure. Quinary structure comprises the transient interactions between macromolecules that provides organization and compartmentalization inside cells. We review the history of quinary structure in the context of several metabolic pathways, and the technological advances that have yielded recent insight into protein behavior in living cells. The evidence demonstrates that protein behavior in isolated solutions deviates from behavior in the physiological environment.
Collapse
Affiliation(s)
- Rachel D. Cohen
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599
| | - Gary J. Pielak
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599
- Department of Biochemistry and BiophysicsUniversity of North CarolinaChapel HillNorth Carolina27599
- Lineberger Comprehensive Cancer Center, University of North CarolinaChapel HillNorth Carolina27599
| |
Collapse
|
8
|
Abstract
Transient multienzyme and/or multiprotein complexes (metabolons) direct substrates toward specific pathways and can significantly influence the metabolism of glutamate and glutamine in the brain. Glutamate is the primary excitatory neurotransmitter in brain. This neurotransmitter has essential roles in normal brain function including learning and memory. Metabolism of glutamate involves the coordinated activity of astrocytes and neurons and high affinity transporter proteins that are selectively distributed on these cells. This chapter describes known and possible metabolons that affect the metabolism of glutamate and related compounds in the brain, as well as some factors that can modulate the association and dissociation of such complexes, including protein modifications by acylation reactions (e.g., acetylation, palmitoylation, succinylation, SUMOylation, etc.) of specific residues. Development of strategies to modulate transient multienzyme and/or enzyme-protein interactions may represent a novel and promising therapeutic approach for treatment of diseases involving dysregulation of glutamate metabolism.
Collapse
|
9
|
Ye Y, Liu X, Zhang Z, Wu Q, Jiang B, Jiang L, Zhang X, Liu M, Pielak GJ, Li C. 19F NMR Spectroscopy as a Probe of Cytoplasmic Viscosity and Weak Protein Interactions in Living Cells. Chemistry 2013; 19:12705-10. [DOI: 10.1002/chem.201301657] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 01/01/2023]
|
10
|
Merkel L, Budisa N. Organic fluorine as a polypeptide building element: in vivo expression of fluorinated peptides, proteins and proteomes. Org Biomol Chem 2012; 10:7241-61. [DOI: 10.1039/c2ob06922a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
McKenna MC. Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 2011; 59:525-33. [PMID: 21771624 DOI: 10.1016/j.neuint.2011.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/30/2011] [Accepted: 07/03/2011] [Indexed: 11/17/2022]
Abstract
Metabolism of glutamate, the primary excitatory neurotransmitter in brain, is complex and of paramount importance to overall brain function. Thus, understanding the regulation of enzymes involved in formation and disposal of glutamate and related metabolites is crucial to understanding glutamate metabolism. Glutamate dehydrogenase (GDH) is a pivotal enzyme that links amino acid metabolism and TCA cycle activity in brain and other tissues. The allosteric regulation of GDH has been extensively studied and characterized. Less is known about the influence of lipid modifications on GDH activity, and the participation of GDH in transient heteroenzyme complexes (metabolons) that can greatly influence metabolism by altering kinetic parameters and lead to channeling of metabolites. This review summarizes evidence for palmitoylation and acylation of GDH, information on protein binding, and information regarding the participation of GDH in transient heteroenzyme complexes. Recent studies suggest that a number of other proteins can bind to GDH altering activity and overall metabolism. It is likely that these modifications and interactions contribute additional levels of regulation of GDH activity and glutamate metabolism.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
12
|
Shi P, Wang H, Xi Z, Shi C, Xiong Y, Tian C. Site-specific ¹⁹F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid. Protein Sci 2011; 20:224-8. [PMID: 21080424 DOI: 10.1002/pro.545] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Site-specific ¹⁹F chemical shift and side chain relaxation analysis can be applied on large size proteins. Here, one-dimensional ¹⁹F spectra and T₁, T₂ relaxation data were acquired on a SH3 domain in aqueous buffer containing 60% glycerol, and a nine-transmembrane helices membrane protein diacyl-glycerol kinase (DAGK) in dodecyl phosphochoine (DPC) micelles. The high quality of the data indicates that this method can be applied to site-specifically analyze side chain internal mobility of membrane proteins or large size proteins.
Collapse
Affiliation(s)
- Pan Shi
- National Laboratory for Physical Science at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Adamczyk M, van Eunen K, Bakker BM, Westerhoff HV. Enzyme Kinetics for Systems Biology. Methods Enzymol 2011; 500:233-57. [DOI: 10.1016/b978-0-12-385118-5.00013-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Bothwell JHF, Griffin JL. An introduction to biological nuclear magnetic resonance spectroscopy. Biol Rev Camb Philos Soc 2010; 86:493-510. [PMID: 20969720 DOI: 10.1111/j.1469-185x.2010.00157.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful analytical techniques available to biology. This review is an introduction to the potential of this method and is aimed at readers who have little or no experience in acquiring or analyzing NMR spectra. We focus on spectroscopic applications of the magnetic resonance effect, rather than imaging ones, and explain how various aspects of the NMR phenomenon make it a versatile tool with which to address a number of biological problems. Using detailed examples, we discuss the use of (1) H NMR spectroscopy in mixture analysis and metabolomics, the use of (13) C NMR spectroscopy in tracking isotopomers and determining the flux through metabolic pathways ('fluxomics') and the use of (31) P NMR spectroscopy in monitoring ATP generation and intracellular pH homeotasis in vivo. Further examples demonstrate how NMR spectroscopy can be used to probe the physical environment of a cell by measuring diffusion and the tumbling rates of individual metabolites and how it can determine macromolecular structures by measuring the bonds and distances which separate individual atoms. We finish by outlining some of the key challenges which remain in NMR spectroscopy and we highlight how recent advances-such as increased magnet field strengths, cryogenic cooling, microprobes and hyperpolarisation-are opening new avenues for today's biological NMR spectroscopists.
Collapse
Affiliation(s)
- John H F Bothwell
- Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, UK.
| | | |
Collapse
|
15
|
Li C, Wang GF, Wang Y, Creager-Allen R, Lutz EA, Scronce H, Slade KM, Ruf RAS, Mehl RA, Pielak GJ. Protein (19)F NMR in Escherichia coli. J Am Chem Soc 2010; 132:321-7. [PMID: 20050707 DOI: 10.1021/ja907966n] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although overexpression and (15)N enrichment facilitate the observation of resonances from disordered proteins in Escherichia coli, (15)N enrichment alone is insufficient for detecting most globular proteins. Here, we explain this dichotomy and overcome the problem while extending the capability of in-cell NMR by using (19)F-labeled proteins. Resonances from small (approximately 10 kDa) globular proteins containing the amino acid analogue 3-fluoro-tyrosine can be observed in cells, but for larger proteins the (19)F resonances are broadened beyond detection. Incorporating the amino acid analogue trifluoromethyl-L-phenylalanine allows larger proteins (up to 100 kDa) to be observed in cells. We also show that site-specific structural and dynamic information about both globular and disordered proteins can be obtained inside cells by using (19)F NMR.
Collapse
Affiliation(s)
- Conggang Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pielak GJ, Li C, Miklos AC, Schlesinger AP, Slade KM, Wang GF, Zigoneanu IG. Protein nuclear magnetic resonance under physiological conditions. Biochemistry 2009; 48:226-34. [PMID: 19113834 DOI: 10.1021/bi8018948] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Almost everything we know about protein biophysics comes from studies on purified proteins in dilute solution. Most proteins, however, operate inside cells where the concentration of macromolecules can be >300 mg/mL. Although reductionism-based approaches have served protein science well for more than a century, biochemists now have the tools to study proteins under these more physiologically relevant conditions. We review a part of this burgeoning postreductionist landscape by focusing on high-resolution protein nuclear magnetic resonance (NMR) spectroscopy, the only method that provides atomic-level information over an entire protein under the crowded conditions found in cells.
Collapse
Affiliation(s)
- Gary J Pielak
- Department of Chemistry, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Botchway S, Barba I, Jordan R, Harmston R, Haggie P, Williams SP, Fulton A, Parker A, Brindle K. A novel method for observing proteins in vivo using a small fluorescent label and multiphoton imaging. Biochem J 2006; 390:787-90. [PMID: 15946123 PMCID: PMC1199672 DOI: 10.1042/bj20050648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel method for the fluorescence detection of proteins in cells is described in the present study. Proteins are labelled by the selective biosynthetic incorporation of 5-hydroxytryptophan and the label is detected via selective two-photon excitation of the hydroxyindole and detection of its fluorescence emission at 340 nm. The method is demonstrated in this paper with images of a labelled protein in yeast cells.
Collapse
Affiliation(s)
- Stanley W. Botchway
- *Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, U.K
| | - Ignasi Barba
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Randolf Jordan
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Rebecca Harmston
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Peter M. Haggie
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Simon-Peter Williams
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alexandra M. Fulton
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Anthony W. Parker
- *Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, U.K
| | - Kevin M. Brindle
- †Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Shearer G, Lee JC, Koo JA, Kohl DH. Quantitative estimation of channeling from early glycolytic intermediates to CO2 in intact Escherichia coli. FEBS J 2005; 272:3260-9. [PMID: 15978033 DOI: 10.1111/j.1742-4658.2005.04712.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A pathway intermediate is said to be 'channeled' when an intermediate just made in a pathway has a higher probability of being a substrate for the next pathway enzyme compared with a molecule of the same species from the aqueous cytoplasm. Channeling is an important phenomenon because it might play a significant role in the regulation of metabolism. Whereas the usual mechanism proposed for channeling is the (often) transient interaction of sequential pathway enzymes, many of the supporting data come from results with pure enzymes and dilute cell extracts. Even when isotope dilution techniques have utilized whole-cell systems, most often only a qualitative assessment of channeling has been reported. Here we develop a method for making a quantitative calculation of the fraction channeled in glycolysis from in vivo isotope dilution experiments. We show that fructose-1,6-bisphosphate, in whole cells of Escherichia coli, was strongly channeled all the way to CO2, whereas fructose-6-phosphate was not. Because the signature of channeling is lost if any downstream intermediate prior to CO2 equilibrates with molecules in the aqueous cytosol, it was not possible to evaluate whether glucose-6-phosphate was channeled in its transformation to fructose-6-phosphate. The data also suggest that, in addition to pathway enzymes being associated with one another, some are free in the aqueous cytosol. How sensitive the degree of channeling is to growth or experimental conditions remains to be determined.
Collapse
Affiliation(s)
- Georgia Shearer
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
19
|
Rigoulet M, Aguilaniu H, Avéret N, Bunoust O, Camougrand N, Grandier-Vazeille X, Larsson C, Pahlman IL, Manon S, Gustafsson L. Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem 2004; 256-257:73-81. [PMID: 14977171 DOI: 10.1023/b:mcbi.0000009888.79484.fd] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Keeping a cytosolic redox balance is a prerequisite for living cells in order to maintain a metabolic activity and enable growth. During growth of Saccharomyces cerevisiae, an excess of NADH is generated in the cytosol. Aerobically, it has been shown that the external NADH dehydrogenase, Nde1p and Nde2p, as well as the glycerol-3-phosphate dehydrogenase shuttle, comprising the cytoplasmic glycerol-3-phosphate dehydrogenase, Gpdlp, and the mitochondrial glycerol-3-phosphate dehydrogenase, Gut2p, are the most important mechanisms for mitochondrial oxidation of cytosolic NADH. In this review we summarize the recent results showing (i) the contribution of each of the mechanisms involved in mitochondrial oxidation of the cytosolic NADH, under different physiological situations; (ii) the kinetic and structural properties of these metabolic pathways in order to channel NADH from cytosolic dehydrogenases to the inner mitochondrial membrane and (iii) the organization in supramolecular complexes and, the peculiar ensuing kinetic regulation of some of the enzymes (i.e. Gut2p inhibition by external NADH dehydrogenase activity) leading to a highly integrated functioning of enzymes having a similar physiological function. The cell physiological consequences of such an organized and regulated network are discussed.
Collapse
Affiliation(s)
- Michel Rigoulet
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen-CNRS, Bordeaux cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bollard ME, Murray AJ, Clarke K, Nicholson JK, Griffin JL. A study of metabolic compartmentation in the rat heart and cardiac mitochondria using high-resolution magic angle spinning 1H NMR spectroscopy. FEBS Lett 2003; 553:73-8. [PMID: 14550549 DOI: 10.1016/s0014-5793(03)00969-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High-resolution magic angle spinning (MAS) (1)H nuclear magnetic resonance (NMR) spectroscopy is increasingly being used to monitor metabolic abnormalities within cells and intact tissues. Many toxicological insults and metabolic diseases affect subcellular organelles, particularly mitochondria. In this study high-resolution (1)H NMR spectroscopy was used to examine metabolic compartmentation between the cytosol and mitochondria in the rat heart to investigate whether biomarkers of mitochondrial dysfunction could be identified and further define the mitochondrial environment. High-resolution MAS spectra of mitochondria revealed NMR signals from lactate, alanine, taurine, choline, phosphocholine, creatine, glycine and lipids. However, spectra from mitochondrial extracts contained additional well-resolved resonances from valine, methionine, glutamine, acetoacetate, succinate, and aspartate, suggesting that a number of metabolites bound within the mitochondrial membranes occur in 'NMR invisible' environments. This effect was further investigated using diffusion-weighted measurements of water and NMR spectroscopy during state 2 and state 3 respiration. State 3 respiration caused a decrease in the resonance intensity of endogenous succinate compared with state 2 respiration, suggesting that coupled respiration may also modulate the NMR detection of metabolites within mitochondria.
Collapse
Affiliation(s)
- M E Bollard
- Biological Chemistry, Biomedical Sciences Division, Imperial College, Sir Alexander Fleming Building, South Kensington, London, UK
| | | | | | | | | |
Collapse
|
21
|
Haggie PM, Verkman AS. Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex. J Biol Chem 2002; 277:40782-8. [PMID: 12198136 DOI: 10.1074/jbc.m207456200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been proposed that enzymes in many metabolic pathways, including the tricarboxylic acid cycle in the mitochondrial matrix, are physically associated to facilitate substrate channeling and overcome diffusive barriers. We have used fluorescence recovery after photobleaching to measure the diffusional mobilities of chimeras consisting of green fluorescent protein (GFP) fused to the C terminus of four tricarboxylic acid cycle enzymes: malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinyl-CoA synthetase. The GFP-enzyme chimeras were localized selectively in the mitochondrial matrix in transfected Chinese hamster ovary (CHO) and COS7 cells. Laser photobleaching using a 0.7-microm diameter spot demonstrated restricted diffusion of the GFP-enzyme chimeras. Interestingly, all four chimeras had similar diffusional characteristics, approximately 45% of each chimera was mobile and had a diffusion coefficient of 4 x 10(-8) cm(2)/s. In contrast, unconjugated GFP in the mitochondrial matrix (targeted using COX8 leader sequence) diffused freely (nearly 100% mobility) with a greater diffusion coefficient of 20 x 10(-8) cm(2)/s. The mobility of the GFP-enzyme chimeras was insensitive to substrate source, ATP depletion, or inhibition of the adenine nucleotide translocase. These results indicate similar mobility characteristics of unrelated tricarboxylic acid cycle enzymes having different sizes and physical properties, providing biophysical evidence for a diffusible multienzyme complex in the mitochondrial matrix.
Collapse
Affiliation(s)
- Peter M Haggie
- Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California-San Francisco, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA.
| | | |
Collapse
|
22
|
Duewel HS, Daub E, Robinson V, Honek JF. Elucidation of solvent exposure, side-chain reactivity, and steric demands of the trifluoromethionine residue in a recombinant protein. Biochemistry 2001; 40:13167-76. [PMID: 11683625 DOI: 10.1021/bi011381b] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When incorporated into proteins, fluorinated amino acids have been utilized as 19F NMR probes of protein structure and protein-ligand interactions, and as subtle structural replacements for their parent amino acids which is not possible using the standard 20-amino acid repertoire. Recent investigations have shown the ability of various fluorinated methionines, such as difluoromethionine (DFM) and trifluoromethionine (TFM), to be bioincorporated into recombinant proteins and to be extremely useful as 19F NMR biophysical probes. Interestingly, in the case of the bacteriophage lambda lysozyme (LaL) which contains only three Met residues (at positions 1, 14, and 107), four 19F NMR resonances are observed when TFM is incorporated into LaL. To elucidate the underlying structural reasons for this anomalous observation and to more fully explore the effect of TFM on protein structure, site-directed mutagenesis was used to assign each 19F NMR resonance. Incorporation of TFM into the M14L mutant resulted in the collapse of the two 19F resonances associated with TFM at position 107 into a single resonance, suggesting that when position 14 in wild-type protein contains TFM, a subtle but different environment exists for the methionine at position 107. In addition, 19F and [1H-13C]-HMQC NMR experiments have been utilized with paramagnetic line broadening and K2PtCl4 reactivity experiments to obtain information about the probable spatial position of each Met in the protein. These results are compared with the recently determined crystal structure of LaL and allow for a more detailed structural explanation for the effect of fluorination on protein structure.
Collapse
Affiliation(s)
- H S Duewel
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
23
|
Grandier-Vazeille X, Bathany K, Chaignepain S, Camougrand N, Manon S, Schmitter JM. Yeast mitochondrial dehydrogenases are associated in a supramolecular complex. Biochemistry 2001; 40:9758-69. [PMID: 11502169 DOI: 10.1021/bi010277r] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Separation of yeast mitochondrial complexes by colorless native polyacrylamide gel electrophoresis led to the identification of a supramolecular structure exhibiting NADH-dehydrogenase activity. Components of this complex were identified by N-terminal Edman degradation and matrix-assisted laser desorption ionization mass spectrometry. The complex was found to contain the five known intermembrane space-facing dehydrogenases, namely two external NADH-dehydrogenases Nde1p and Nde2p, glycerol-3-phosphate dehydrogenase Gut2p, D- and L-lactate-dehydrogenases Dld1p and Cyb2p, the matrix-facing NADH-dehydrogenase Ndi1p, two probable flavoproteins YOR356Wp and YPR004Cp, four tricarboxylic acids cycle enzymes (malate dehydrogenase Mdh1p, citrate synthase Cit1p, succinate dehydrogenase Sdh1p, and fumarate hydratase Fum1p), and the acetaldehyde dehydrogenase Ald4p. The association of these proteins is discussed in terms of NADH-channeling.
Collapse
Affiliation(s)
- X Grandier-Vazeille
- UMR5095 C.N.R.S./Université de Bordeaux 2, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France.
| | | | | | | | | | | |
Collapse
|
24
|
van Winden W, Verheijen P, Heijnen S. Possible pitfalls of flux calculations based on (13)C-labeling. Metab Eng 2001; 3:151-62. [PMID: 11289791 DOI: 10.1006/mben.2000.0174] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic engineers have enthusiastically adopted the (13)C-labeling technique as a powerful tool for elucidating fluxes in metabolic networks. This tracer technique makes it possible to determine fluxes that are unobservable using only metabolite balances and allows the elimination of doubtful cofactor balances that are indispensable in flux analysis based on metabolite balancing alone. The (13)C-labeling technique, however, relies on a number of assumptions that are not free from uncertainties. Two possible errors in the models that are needed to determine the metabolic fluxes from labeling data are omitted reactions and ignored occurrence of channeling. By means of two representative examples it is shown that these modeling errors may lead to serious errors in the calculated flux distributions despite the use of labeling data. A complicating fact is that the model errors are not always easily detected as poor models may still yield good fits of experimental data. Results of (13)C-labeling experiments should therefore be interpreted with appropriate caution.
Collapse
Affiliation(s)
- W van Winden
- Bioprocestechnology Group, Faculty of Applied Sciences, Delft University of Technology, The Netherlands.
| | | | | |
Collapse
|
25
|
Metzler DE, Metzler CM, Sauke DJ. Electron Transport, Oxidative Phosphorylation, and Hydroxylation. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Krause‐Buchholz U, Tzschoppe K, Paret C, Ostermann K, Rödel G. Identification of functionally important regions of the
Saccharomyces cerevisiae
mitochondrial translational activator Cbs1p. Yeast 2000. [DOI: 10.1002/1097-0061(20000315)16:4<353::aid-yea539>3.0.co;2-#] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Udo Krause‐Buchholz
- Institute of Genetics, Dresden University of Technology, D‐01062 Dresden, Germany
| | - Kathrin Tzschoppe
- Institute of Genetics, Dresden University of Technology, D‐01062 Dresden, Germany
| | - Claudia Paret
- Institute of Genetics, Dresden University of Technology, D‐01062 Dresden, Germany
| | - Kai Ostermann
- Institute of Genetics, Dresden University of Technology, D‐01062 Dresden, Germany
| | - Gerhard Rödel
- Institute of Genetics, Dresden University of Technology, D‐01062 Dresden, Germany
| |
Collapse
|
27
|
Vélot C, Srere PA. Reversible transdominant inhibition of a metabolic pathway. In vivo evidence of interaction between two sequential tricarboxylic acid cycle enzymes in yeast. J Biol Chem 2000; 275:12926-33. [PMID: 10777592 DOI: 10.1074/jbc.275.17.12926] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzymes of the Krebs tricarboxylic acid cycle in mitochondria are proposed to form a supramolecular complex, in which there is channeling of intermediates between enzyme active sites. While interactions have been demonstrated in vitro between most of the sequential tricarboxylic acid cycle enzymes, no direct evidence has been obtained in vivo for such interactions. We have isolated, in the Saccharomyces cerevisiae gene encoding the tricarboxylic acid cycle enzyme citrate synthase Cit1p, an "assembly mutation," i.e. a mutation that causes a tricarboxylic acid cycle deficiency without affecting the citrate synthase activity. We have shown that a 15-amino acid peptide from wild type Cit1p encompassing the mutation point inhibits the tricarboxylic acid cycle in a dominant manner, and that the inhibitory phenotype is overcome by a co-overexpression of Mdh1p, the mitochondrial malate dehydrogenase. These data provide the first direct in vivo evidence of interaction between two sequential tricarboxylic acid cycle enzymes, Cit1p and Mdh1p, and indicate that the characterization of assembly mutations by the reversible transdominant inhibition method may be a powerful way to study multienzyme complexes in their physiological context.
Collapse
Affiliation(s)
- C Vélot
- Research Service of the Department of Veterans Affairs Medical Center, Dallas, Texas 75216, USA.
| | | |
Collapse
|
28
|
Vélot C, Lebreton S, Morgunov I, Usher KC, Srere PA. Metabolic effects of mislocalized mitochondrial and peroxisomal citrate synthases in yeast Saccharomyces cerevisiae. Biochemistry 1999; 38:16195-204. [PMID: 10587442 DOI: 10.1021/bi991695n] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genes CIT1 and CIT2 from Saccharomyces cerevisiae encode mitochondrial and peroxisomal citrate synthases involved in the Krebs tricarboxylic acid (TCA) cycle and glyoxylate pathway, respectively. A Deltacit1 mutant does not grow on acetate, despite the presence of Cit2p that could, in principle, bypass the resulting block in the TCA cycle. To elucidate this absence of cross-complementation, we have examined the ability of Cit1p to function in the cytosol, and that of Cit2p to function in mitochondria. A cytosolically localized form of Cit1p was also incompetent for restoration of growth of a Deltacit1 strain on acetate, suggesting that mitochondrial localization of Cit1p is essential for its function in the TCA cycle. Cit2p was able, when mislocalized in mitochondria, to restore a wild-type phenotype in a strain lacking Cit1p. We have purified these two isoenzymes as well as mitochondrial malate dehydrogenase, Mdh1p, and have shown that Cit2p was also able to mimic Cit1p in its in vitro interaction with Mdh1p. Models of Cit1p and Cit2p structures generated on the basis of that of pig citrate synthase indicate very high structural and electrostatic surface potential similarities between the two yeast isozymes. Altogether, these data indicate that metabolic functions may require structural as well as catalytic roles for the enzymes.
Collapse
Affiliation(s)
- C Vélot
- The Research Service of the Department of Veterans Affairs Medical Center, Dallas, Texas 75216, USA.
| | | | | | | | | |
Collapse
|