1
|
Krishnan SN, Thanasupawat T, Arreza L, Wong GW, Sfanos K, Trock B, Arock M, Shah GG, Glogowska A, Ghavami S, Hombach-Klonisch S, Klonisch T. Human C1q Tumor Necrosis Factor 8 (CTRP8) defines a novel tryptase+ mast cell subpopulation in the prostate cancer microenvironment. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166681. [PMID: 36921737 DOI: 10.1016/j.bbadis.2023.166681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
The adipokine C1q Tumor Necrosis Factor 8 (CTRP8) is the least known member of the 15 CTRP proteins and a ligand of the relaxin receptor RXFP1. We previously demonstrated the ability of the CTRP8-RXFP1 interaction to promote motility, matrix invasion, and drug resistance. The lack of specific tools to detect CTRP8 protein severely limits our knowledge on CTRP8 biological functions in normal and tumor tissues. Here, we have generated and characterized the first specific antiserum to human CTRP8 which identified CTRP8 as a novel marker of tryptase+ mast cells (MCT) in normal human tissues and in the prostate cancer (PC) microenvironment. Using human PC tissue microarrays composed of neoplastic and corresponding tumor-adjacent prostate tissues, we have identified a significantly higher number of CTRP8+ MCT in the peritumor versus intratumor compartment of PC tissues of Gleason scores 6 and 7. Higher numbers of CTRP8+ MCT correlated with the clinical parameter of biochemical recurrence. We showed that the human MC line ROSAKIT WT expressed RXFP1 transcripts and responded to CTRP8 treatment with a small but significant increase in cell proliferation. Like the cognate RXFP1 ligand RLN-2 and the small molecule RXFP1 agonist ML-290, CTRP8 reduced degranulation of ROSAKIT WT MC stimulated by the Ca2+-ionophore A14187. In conclusion, this is the first report to identify the RXFP1 agonist CTRP8 as a novel marker of MCT and autocrine/paracrine oncogenic factor within the PC microenvironment.
Collapse
Affiliation(s)
- Sai Nivedita Krishnan
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Thatchawan Thanasupawat
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Leanne Arreza
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - G William Wong
- Dept. of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Sfanos
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bruce Trock
- Dept. of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Arock
- Laboratoire d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Paris, France
| | - G Girish Shah
- Dept. of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, CHU de Quebec-Laval, Quebec, Canada
| | - Aleksandra Glogowska
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Saeid Ghavami
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| | - Thomas Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Dept. of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada.
| |
Collapse
|
2
|
Le QT, Lyons JJ, Naranjo AN, Olivera A, Lazarus RA, Metcalfe DD, Milner JD, Schwartz LB. Impact of naturally forming human α/β-tryptase heterotetramers in the pathogenesis of hereditary α-tryptasemia. J Exp Med 2019; 216:2348-2361. [PMID: 31337736 PMCID: PMC6780998 DOI: 10.1084/jem.20190701] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022] Open
Abstract
Human α/β-tryptase heterotetramer, a previously hidden form of tryptase, explains some of the unusual clinical features of hereditary α-tryptasemia. α/β-Tryptase forms naturally in mast cells and, when secreted, activates clinically relevant proteins, likely impacting a variety of mast cell disorders. Both α-tryptase and β-tryptase are preferentially expressed by human mast cells, but the purpose of α-tryptase is enigmatic, because its tetramers lack protease activity, whereas β-tryptase tetramers are active proteases. The monogenic disorder called hereditary α-tryptasemia, due to increased α-tryptase gene copies and protein expression, presents with clinical features such as vibratory urticaria and dysautonomia. We show that heterotetramers composed of 2α- and 2β-tryptase protomers (α/β-tryptase) form naturally in individuals who express α-tryptase. α/β-Tryptase, but not homotetramer, activates protease-activated receptor-2 (PAR2), which is expressed on cell types such as smooth muscle, neurons, and endothelium. Also, only α/β-tryptase makes mast cells susceptible to vibration-triggered degranulation by cleaving the α subunit of the EGF-like module–containing mucin-like hormone receptor-like 2 (EMR2) mechanosensory receptor. Allosteric effects of α-tryptase protomers on neighboring β-tryptase protomers likely result in the novel substrate repertoire of α/β-tryptase tetramers that in turn cause some of the clinical features of hereditary α-tryptasemia and of other disorders involving mast cells.
Collapse
Affiliation(s)
- Quang T Le
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Andrea N Naranjo
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Robert A Lazarus
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Lawrence B Schwartz
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
3
|
The Role of Mast Cell Specific Chymases and Tryptases in Tumor Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:142359. [PMID: 26146612 PMCID: PMC4471246 DOI: 10.1155/2015/142359] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/13/2015] [Indexed: 01/24/2023]
Abstract
An association between mast cells and tumor angiogenesis is known to exist, but the exact role that mast cells play in this process is still unclear. It is thought that the mediators released by mast cells are important in neovascularization. However, it is not known how individual mediators are involved in this process. The major constituents of mast cell secretory granules are the mast cell specific proteases chymase, tryptase, and carboxypeptidase A3. Several previous studies aimed to understand the way in which specific mast cell granule constituents act to induce tumor angiogenesis. A body of evidence indicates that mast cell proteases are the pivotal players in inducing tumor angiogenesis. In this review, the likely mechanisms by which tryptase and chymase can act directly or indirectly to induce tumor angiogenesis are discussed. Finally, information presented here in this review indicates that mast cell proteases significantly influence angiogenesis thus affecting tumor growth and progression. This also suggests that these proteases could serve as novel therapeutic targets for the treatment of various types of cancer.
Collapse
|
4
|
da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014; 62:698-738. [PMID: 25062998 PMCID: PMC4230976 DOI: 10.1369/0022155414545334] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| |
Collapse
|
5
|
Prieto-García A, Castells MC, Hansbro PM, Stevens RL. Mast cell-restricted tetramer-forming tryptases and their beneficial roles in hemostasis and blood coagulation. Immunol Allergy Clin North Am 2014; 34:263-81. [PMID: 24745673 DOI: 10.1016/j.iac.2014.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tetramer-forming tryptase (hTryptase-β) was recently discovered to have a prominent role in preventing the internal accumulation of life-threatening fibrin deposits and fibrin-platelet clots. The anticoagulant activity of hTryptase-β is an explanation for the presence of hemorrhagic disorders in some patients with anaphylaxis or mastocytosis. The fragments of hFibrinogen formed by the proteolysis of this prominent protein by hTryptase-β could be used as biomarkers in the blood and/or urine for the identification and monitoring of patients with mast cell-dependent disorders. Recombinant hTryptase-β has potential to be used in clinical settings where it is desirable to inhibit blood coagulation.
Collapse
Affiliation(s)
- Alicia Prieto-García
- Allergy Service, Hospital Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Dr Esquerdo 46, Madrid 28007, Spain.
| | - Mariana C Castells
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Smith Building, Boston, MA 02115, USA
| | - Philip M Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute and University of Newcastle, 1 Kookaburra Circuit, Newcastle, NSW 2300, Australia
| | - Richard L Stevens
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Smith Building, Boston, MA 02115, USA
| |
Collapse
|
6
|
Le QT, Min HK, Xia HZ, Fukuoka Y, Katunuma N, Schwartz LB. Promiscuous processing of human alphabeta-protryptases by cathepsins L, B, and C. THE JOURNAL OF IMMUNOLOGY 2011; 186:7136-43. [PMID: 21562164 DOI: 10.4049/jimmunol.1001804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human α- and β-protryptase zymogens are abundantly and selectively produced by mast cells, but the mechanism(s) by which they are processed is uncertain. β-Protryptase is sequentially processed in vitro by autocatalysis at R(-3) followed by cathepsin (CTS) C proteolysis to the mature enzyme. However, mast cells from CTSC-deficient mice successfully convert protryptase (pro-murine mast cell protease-6) to mature murine mast cell protease-6. α-Protryptase processing cannot occur by trypsin-like enzymes due to an R(-3)Q substitution. Thus, biological mechanisms for processing these zymogens are uncertain. β-Tryptase processing activity(ies) distinct from CTSC were partially purified from human HMC-1 cells and identified by mass spectroscopy to include CTSB and CTSL. Importantly, CTSB and CTSL also directly process α-protryptase (Q(-3)) and mutated β-protryptase (R(-3)Q) as well as wild-type β-protryptase to maturity, indicating no need for autocatalysis, unlike the CTSC pathway. Heparin promoted tryptase tetramer formation and protected tryptase from degradation by CTSB and CTSL. Thus, CTSL and CTSB are capable of directly processing both α- and β-protryptases from human mast cells to their mature enzymatically active products.
Collapse
Affiliation(s)
- Quang T Le
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
7
|
Human embryonic stem cells: a source of mast cells for the study of allergic and inflammatory diseases. Blood 2010; 115:3695-703. [PMID: 20200352 DOI: 10.1182/blood-2009-08-237206] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human mast cells are tissue resident cells with a principal role in allergic disorders. Cross-linking of the high-affinity receptor for immunoglobulin E (FcepsilonRI) results in release of inflammatory mediators initiating the clinical symptoms of allergy and anaphylaxis. Much of our knowledge regarding the mechanisms of mast cell activation comes from studies of mouse bone marrow-derived mast cells. However, clear differences have been identified between human and mouse mast cells. Studies of human mast cells are hampered by the limited sources available for their isolation, the resistance of these cells to genetic manipulation, and differences between cultures established from different persons. To address this limitation, we developed a simple coculture-free method for obtaining mast cells from human embryonic stem cells (hES). These hES-derived mast cells respond to antigen by releasing mast cell mediators. Moreover, the cells can be generated in numbers sufficient for studies of the pathways involved in their effector functions. Genetically modified mast cells, such as GFP-expressing cells, can be obtained by introduction and selection for modification in hES cells before differentiation. This direct coculture-free differentiation of hES cells represents a new and unique model to analyze the function and development of human mast cells.
Collapse
|
8
|
Shin K, Nigrovic PA, Crish J, Boilard E, McNeil HP, Larabee KS, Adachi R, Gurish MF, Gobezie R, Stevens RL, Lee DM. Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. THE JOURNAL OF IMMUNOLOGY 2009; 182:647-56. [PMID: 19109198 DOI: 10.4049/jimmunol.182.1.647] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although mast cells (MCs) often are abundant in the synovial tissues of patients with rheumatoid arthritis, the contribution of MCs to joint inflammation and cartilage loss remains poorly understood. MC-restricted tryptase/heparin complexes have proinflammatory activity, and significant amounts of human tryptase beta (hTryptase-beta) are present in rheumatoid arthritis synovial fluid. Mouse MC protease-6 (mMCP-6) is the ortholog of hTryptase-beta, and this serine protease is abundant in the synovium of arthritic mice. We now report that C57BL/6 (B6) mice lacking their tryptase/heparin complexes have attenuated arthritic responses, with mMCP-6 as the dominant tryptase responsible for augmenting neutrophil infiltration in the K/BxN mouse serum-transfer arthritis model. While inflammation in this experimental arthritis model was not dependent on protease-activated receptor-2, it was dependent on the chemokine receptor CXCR2. In support of the latter data, exposure of synovial fibroblasts to hTryptase-beta/heparin or mMCP-6/heparin complexes resulted in expression of the neutrophil chemotactic factors CXCL1/KC, CXCL5/LIX, and CXCL8/IL-8. Our proteomics, histochemistry, and immunohistochemistry data also revealed substantial loss of cartilage-derived aggrecan proteoglycans in the arthritic joints of wild-type B6 mice but not mMCP-6-null B6 mice. These observations demonstrate the functional contribution of MC-restricted tryptase/heparin complexes in the K/BxN mouse arthritis model and connect our mouse findings with rheumatoid arthritis pathophysiology.
Collapse
Affiliation(s)
- Kichul Shin
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stevens RL, Adachi R. Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity. Immunol Rev 2007; 217:155-67. [PMID: 17498058 DOI: 10.1111/j.1600-065x.2007.00525.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Approximately 50% of the weight of a mature mast cell (MC) consists of varied neutral proteases stored in the cell's secretory granules ionically bound to serglycin proteoglycans that contain heparin and/or chondroitin sulfate E/diB chains. Mouse MCs express the exopeptidase carboxypeptidase A3 and at least 15 serine proteases [designated as mouse MC protease (mMCP) 1-11, transmembrane tryptase/tryptase gamma/protease serine member S (Prss) 31, cathepsin G, granzyme B, and neuropsin/Prss19]. mMCP-6, mMCP-7, mMCP-11/Prss34, and Prss31 are the four members of the chromosome 17A3.3 family of tryptases that are preferentially expressed in MCs. One of the challenges ahead is to understand why MCs express so many different protease-proteoglycan macromolecular complexes. MC-like cells that contain tryptase-heparin complexes in their secretory granules have been identified in the Ciona intestinalis and Styela plicata urochordates that appeared approximately 500 million years ago. Because sea squirts lack B cells and T cells, it is likely that MCs and their tryptase-proteoglycan granule mediators initially appeared in lower organisms as part of their innate immune system. The conservation of MCs throughout evolution suggests that some of these protease-proteoglycan complexes are essential to our survival. In support of this conclusion, no human has been identified that lacks MCs. Moreover, transgenic mice lacking the beta-tryptase mMCP-6 are unable to combat a Klebsiella pneumoniae infection effectively. Here we summarize the nature and function of some of the tryptase-serglycin proteoglycan complexes found in mouse and human MCs.
Collapse
Affiliation(s)
- Richard L Stevens
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| | | |
Collapse
|
10
|
Abstract
Tryptases and chymases are the major proteins stored and secreted by mast cells. The types, amounts, and properties of these serine peptidases vary by mast cell subtype, tissue, and mammal of origin. Membrane-anchored gamma-tryptases are tryptic, prostasin-like, type I peptidases that remain membrane attached on release and act locally. Soluble tryptases, including their close relatives, mastins, form inhibitor-resistant oligomers that act more remotely. Befitting their greater destructive potential, chymases are quickly inhibited after release, although some gain protection by associating with proteoglycans. Most chymase-like enzymes, including mast cell cathepsin G, hydrolyze chymotryptic substrates, an uncommon capability in the proteome. Some rodent chymases, however, have mutations resulting in elastolytic activity. Secreted tryptases and chymases promote inflammation, matrix destruction, and tissue remodeling by several mechanisms, including destroying procoagulant, matrix, growth, and differentiation factors and activating proteinase-activated receptors, urokinase, metalloproteinases, and angiotensin. They also modulate immune responses by hydrolyzing chemokines and cytokines. At least one chymase protects mice from intestinal worms. Tryptases and chymases can also oppose inflammation by inactivating allergens and neuropeptides causing inflammation and bronchoconstriction. Thus, like mast cells themselves, mast cell serine peptidases play multiple roles in host defense, and any accounting of benefit versus harm is necessarily context specific.
Collapse
Affiliation(s)
- George H Caughey
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
McNeil HP, Adachi R, Stevens RL. Mast cell-restricted tryptases: structure and function in inflammation and pathogen defense. J Biol Chem 2007; 282:20785-9. [PMID: 17504754 DOI: 10.1074/jbc.r700017200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cells (MCs) are highly specialized immune cells present in mammals and in lower organisms that predate the development of adaptive immunity. The strong evolutionary pressure to retain MCs for >500 million years suggests critical roles for these cells in our survival. In support of this conclusion, no human has been identified to date that lacks MCs, despite the adverse roles of MCs in systemic anaphylaxis and varied inflammatory disorders. MCs express numerous lineage-restricted neutral proteases, and four members of the chromosome 17A3.3 family of tryptases are preferentially expressed in mouse MCs. The anatomical location of MCs at host-environment interfaces has raised the possibility that some of these enzymes are evolutionally conserved because they are needed for combating infectious organisms. Here we review recent insights into the structure and function of MC tryptases in inflammation and host defense against bacteria and other infectious organisms.
Collapse
Affiliation(s)
- H Patrick McNeil
- Department of Rheumatology, Liverpool Hospital and South Western Sydney Clinical School, University of New South Wales, Sydney, Australia, 2052.
| | | | | |
Collapse
|
12
|
Paesen GC, Siebold C, Harlos K, Peacey MF, Nuttall PA, Stuart DI. A tick protein with a modified Kunitz fold inhibits human tryptase. J Mol Biol 2007; 368:1172-86. [PMID: 17391695 DOI: 10.1016/j.jmb.2007.03.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 03/03/2007] [Accepted: 03/07/2007] [Indexed: 11/24/2022]
Abstract
TdPI, a tick salivary gland product related to Kunitz/BPTI proteins is a potent inhibitor of human beta-tryptase. Kinetic assays suggest that three of the four catalytic sites of tryptase are blocked by TdPI, and that the inhibition of one of these involves a peptide flanking the Kunitz head. In the course of the inhibition, tryptase cleaves TdPI at several positions. Crystal structures of the TdPI head, on its own and in complex with trypsin, reveal features that are not found in classical Kunitz/BPTI proteins and suggest the mode of interaction with tryptase. The loop of TdPI connecting the beta-sheet with the C-terminal alpha-helix is shortened, the disulphide-bridge pattern altered and N and C termini separated to produce a highly pointed molecule capable of penetrating the cramped active sites of tryptase. TdPI accumulates in the cytosolic granules of mast cells, presumably suppressing inflammation in the host animal's skin by tryptase inhibition.
Collapse
|
13
|
Implantation Serine Proteinases heterodimerize and are critical in hatching and implantation. BMC DEVELOPMENTAL BIOLOGY 2006; 6:61. [PMID: 17156484 PMCID: PMC1713233 DOI: 10.1186/1471-213x-6-61] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 12/11/2006] [Indexed: 11/13/2022]
Abstract
Background We have recently reported the expression of murine Implantation Serine Proteinase genes in pre-implantation embryos (ISP1) and uterus (ISP1 and ISP2). These proteinases belong to the S1 proteinase family and are similar to mast cell tryptases, which function as multimers. Results Here, we report the purification and initial characterization of ISP1 and 2 with respect to their physico-chemical properties and physiological function. In addition to being co-expressed in uterus, we show that ISP1 and ISP2 are also co-expressed in the pre-implantation embryo. Together, they form a heterodimer with an approximate molecular weight of 63 kD. This complex is the active form of the enzyme, which we have further characterized as being trypsin-like, based on substrate and inhibitor specificities. In addition to having a role in embryo hatching and outgrowth, we demonstrate that ISP enzyme is localized to the site of embryo invasion during implantation and that its activity is important for successful implantation in vivo. Conclusion On the basis of similarities in structural, chemical, and functional properties, we suggest that this ISP enzyme complex represents the classical hatching enzyme, strypsin. Our results demonstrate a critical role for ISP in embryo hatching and implantation.
Collapse
|
14
|
Abstract
In 1960, a trypsin-like activity was found in mast cells [Glenner GG & Cohen LA (1960) Nature 185, 846-847] and this activity is now commonly referred to as 'tryptase'. Over the years, much knowledge about mast cell tryptase has been gathered, and a recent (18 January 2006) PubMed search for the keywords 'tryptase + mast cell*' retrieved 1661 articles. However, still very little is known about its true biological function. For example, the true physiological substrate(s) for mast cell tryptase has not been identified, and the potential role of tryptase in mast cell-related disease is not understood. Mast cell tryptase has several unique features, with perhaps the most remarkable being its organization into a tetrameric state with all of the active sites oriented towards a narrow central pore and its consequent complete resistance towards endogenous macromolecular protease inhibitors. Much effort has been invested to elucidate these properties of tryptase. In this review we summarize the current knowledge of mast cell tryptase, including novel insights into its possible biological functions and mechanisms of regulation.
Collapse
Affiliation(s)
- Jenny Hallgren
- Department of Molecular Biosciences, The Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | |
Collapse
|
15
|
Cal S, Peinado JR, Llamazares M, Quesada V, Moncada-Pazos A, Garabaya C, López-Otín C. Identification and characterization of human polyserase-3, a novel protein with tandem serine-protease domains in the same polypeptide chain. BMC BIOCHEMISTRY 2006; 7:9. [PMID: 16566820 PMCID: PMC1435904 DOI: 10.1186/1471-2091-7-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 03/27/2006] [Indexed: 11/10/2022]
Abstract
Background We have previously described the identification and characterization of polyserase-1 and polyserase-2, two human serine proteases containing three different catalytic domains within the same polypeptide chain. Polyserase-1 shows a complex organization and it is synthesized as a membrane-bound protein which can generate three independent serine protease domains as a consequence of post-translational processing events. The two first domains are enzymatically active. By contrast, polyserase-2 is an extracellular glycosylated protein whose three protease domains remain embedded in the same chain, and only the first domain possesses catalytic activity. Results Following our interest in the study of the human degradome, we have cloned a human liver cDNA encoding polyserase-3, a new protease with tandem serine protease domains in the same polypeptide chain. Comparative analysis of polyserase-3 with the two human polyserases described to date, revealed that this novel polyprotein is more closely related to polyserase-2 than to polyserase-1. Thus, polyserase-3 is a secreted protein such as polyserase-2, but lacks additional domains like the type II transmembrane motif and the low-density lipoprotein receptor module present in the membrane-anchored polyserase-1. Moreover, analysis of post-translational mechanisms operating in polyserase-3 maturation showed that its two protease domains remain as integral parts of the same polypeptide chain. This situation is similar to that observed in polyserase-2, but distinct from polyserase-1 whose protease domains are proteolytically released from the original chain to generate independent units. Immunolocalization studies indicated that polyserase-3 is secreted as a non-glycosylated protein, thus being also distinct from polyserase-2, which is a heavily glycosylated protein. Enzymatic assays indicated that recombinant polyserase-3 degrades the α-chain of fibrinogen as well as pro-urokinase-type plasminogen activator (pro-uPA). Northern blot analysis showed that polyserase-3 exhibits a unique expression pattern among human polyserases, being predominantly detected in testis, liver, heart and ovary, as well as in several tumor cell lines. Conclusion These findings contribute to define the growing group of human polyserine proteases composed at present by three different proteins. All of them share a complex structural design with several catalytic units in a single polypeptide but also show specific features in terms of enzymatic properties, expression patterns and post-translational maturation mechanisms.
Collapse
Affiliation(s)
- Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | - Juan R Peinado
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | - María Llamazares
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | - Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | - Angela Moncada-Pazos
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | - Cecilia Garabaya
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| |
Collapse
|
16
|
Ehrlich KC, Montalbano B, Boué SM, Bhatnagar D. An aflatoxin biosynthesis cluster gene encodes a novel oxidase required for conversion of versicolorin a to sterigmatocystin. Appl Environ Microbiol 2006; 71:8963-5. [PMID: 16332900 PMCID: PMC1317430 DOI: 10.1128/aem.71.12.8963-8965.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of the aflatoxin biosynthesis cluster gene aflY (hypA) gave Aspergillus parasiticus transformants that accumulated versicolorin A. This gene is predicted to encode the Baeyer-Villiger oxidase necessary for formation of the xanthone ring of the aflatoxin precursor demethylsterigmatocystin.
Collapse
Affiliation(s)
- Kenneth C Ehrlich
- SRRC/ARS/USDA, 1100 R. E. Lee Blvd., P.O. Box 19687, New Orleans, LA 70179, USA.
| | | | | | | |
Collapse
|
17
|
Tang L, Rancourt DE. Murine implantation serine proteinases 1 and 2: Structure, function and evolution. Gene 2005; 364:30-6. [PMID: 16257142 DOI: 10.1016/j.gene.2005.07.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 06/27/2005] [Accepted: 07/18/2005] [Indexed: 10/25/2022]
Abstract
Implantation is a vital phase in pregnancy whereupon the hatched embryo invades into the uterine wall to establish intimate contacts with the mother for further development. Although it is generally believed that proteinases are major factors that confer the embryo its invasive character, the nature of proteinases involved in implantation remain mostly elusive. In this article, we review the organization, structure and postulated function of the implantation serine proteinase (ISP1 and 2) genes. The ISPs are embedded within a cluster of tryptase genes on mouse chromosome 17. They are most closely related to members of the mast cell tryptase family, indicating that they may possess some properties characteristic of tryptases including multimerization-dependent activation. The significant similarities found in regulatory regions of ISP genes, together with the observation that ISP proteins are co-expressed and heterodimerize in the embryo and uterus suggests that they are intimately co-regulated during implantation. Inhibition of ISP proteolytic function has implicated this enzyme in the processes of embryo hatching and implantation.
Collapse
Affiliation(s)
- Lin Tang
- Department of Oncology, University of Calgary, Calgary, Canada
| | | |
Collapse
|
18
|
Raymond WW, Sommerhoff CP, Caughey GH. Mastin is a gelatinolytic mast cell peptidase resembling a mini-proteasome. Arch Biochem Biophys 2005; 435:311-22. [PMID: 15708374 DOI: 10.1016/j.abb.2004.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/23/2004] [Indexed: 11/28/2022]
Abstract
Mastin is a tryptic peptidase secreted by canine mast cells. This work reveals that mastin is composed of catalytic domain singlets and disulfide-linked dimers. Monomers unite non-covalently to form tryptase-like tetramers, whereas dimers aggregate with monomers into larger clusters stabilized by hydrophobic contacts. Unlike tryptases, mastin resists inactivation by leech-derived tryptase inhibitor, indicating a smaller central cavity, as confirmed by structural models. Nonetheless, mastin is strongly gelatinolytic while not cleaving native collagen or casein, suggesting a preference for denatured proteins threaded into its central cavity. Phylogenetic analysis suggests that mammalian mastins shared more recent ancestors with soluble alpha/beta/delta tryptases than with membrane-anchored gamma-tryptases, and diverged more rapidly. We hypothesize that gelatinase activity and formation of inhibitor-resistant oligomers are ancestral characteristics shared by soluble tryptases and mastins, and that secreted mastin is a mini-proteasome-like complex that breaks down partially degraded proteins without causing bystander damage to intact, native proteins.
Collapse
Affiliation(s)
- Wilfred W Raymond
- Department of Medicine, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94143-0911, USA
| | | | | |
Collapse
|
19
|
Wong GW, Yasuda S, Morokawa N, Li L, Stevens RL. Mouse chromosome 17A3.3 contains 13 genes that encode functional tryptic-like serine proteases with distinct tissue and cell expression patterns. J Biol Chem 2003; 279:2438-52. [PMID: 14583634 DOI: 10.1074/jbc.m308209200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Probing of the mouse EST data base at GenBank trade mark with known tryptase cDNAs resulted in the identification of undiscovered serine protease transcripts whose genes reside at a 1.5-Mb complex on mouse chromosome 17A3.3. Mouse tryptase-5 (mT5), tryptase-6 (mT6), and mast cell protease-11 (mMCP-11) are new members of this serine protease superfamily whose amino acid sequences are 36-54% identical to each other and to their other 10 family members. The 13 functional mouse proteases can be subdivided into two subgroups based on conserved features in their propeptides. Of the three new serine proteases, mT6 is most widely expressed in tissues. mT5 is preferentially expressed in smooth muscle, whereas mMCP-11 is preferentially expressed in the spleen and bone marrow. In contrast to mT5 and mT6, mMCP-11 is also expressed in mast cells. Although mT6 and mMCP-11 are constitutively secreted when expressed in mammalian and insect cells, mT5 remains membrane-associated. The fact that recombinant mT5, mT6, and mMCP-11 possess non-identical expression patterns and substrate specificities suggests that each protease has a unique function in vivo. Of the 13 functional mouse tryptase genes identified at the complex, 12 have orthologs that reside in the syntenic region of human chromosome 16p13.3. The establishment of these ortholog pairs helps clarify the evolutionary relationship of the serine protease locus in the two species. This information provides a useful framework for the functional analysis of each protease using gene targeting and other molecular approaches.
Collapse
Affiliation(s)
- Guang W Wong
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
20
|
Lan RS, Stewart GA, Henry PJ. Role of protease-activated receptors in airway function: a target for therapeutic intervention? Pharmacol Ther 2003; 95:239-57. [PMID: 12243797 DOI: 10.1016/s0163-7258(02)00237-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protease-activated receptors (PARs) are G-protein-coupled, seven transmembrane domain receptors that act as cellular enzyme sensors. These receptors are activated by the proteolytic cleavage at the amino terminus, enabling interaction between the newly formed "tethered ligand" and the second extracellular loop of the receptor to confer cellular signalling. PARs can also be activated by small peptides that mimic the tethered ligand. In the respiratory tract, PARs may be regulated by endogenous proteases, such as airway trypsin and mast cell tryptase, as well as exogenous proteases, including inhaled aeroallergens such as those from house dust mite faecal pellets. Immunoreactive PARs have been identified in multiple cell types of the respiratory tract, and PAR activation has been reported to stimulate cellular mitogenesis and to promote tissue inflammation. Activation of PARs concurrently stimulates the release of bronchorelaxant and anti-inflammatory mediators, which may serve to induce cytoprotection and to minimise tissue trauma associated with severe chronic airways inflammation. Furthermore, airway inflammatory responses are associated with increased epithelial PAR expression and elevated concentrations of PAR-activating, and PAR-inactivating, proteases in the extracellular space. On this basis, PARs are likely to play a regulatory role in airway homeostasis, and may participate in respiratory inflammatory disorders, such as asthma and chronic obstructive pulmonary disease. Further studies focussing on the effects of newly developed PAR agonists and antagonists in appropriate models of airway inflammation will permit better insight into the role of PARs in respiratory pathophysiology and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rommel S Lan
- Department of Pharmacology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Perth, Australia
| | | | | |
Collapse
|
21
|
Wang HW, McNeil HP, Husain A, Liu K, Tedla N, Thomas PS, Raftery M, King GC, Cai ZY, Hunt JE. Delta tryptase is expressed in multiple human tissues, and a recombinant form has proteolytic activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5145-52. [PMID: 12391231 DOI: 10.4049/jimmunol.169.9.5145] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tryptases are neutral serine proteases selectively expressed in mast cells and have been implicated in the development of a number of inflammatory diseases including asthma. It has recently been established that the number of genes encoding human mast cell tryptases is much larger than originally believed, but it is not clear how many of these genes are expressed. A recent report suggested that the transcript for at least one of these genes, originally named mMCP-7-like tryptase, is not expressed. To further address this question, we screened tissue-specific RNA samples by RT-PCR, using primers designed to match the putative exonic sequence of this gene. We successfully generated and cloned the correctly sized RT-PCR product from mRNA isolated from the human mast cell-I cell line. Two distinct clones were identified whose nucleotide sequence matched the published sequence of the mMCP-7-like I and mMCP-7-like II genes. Transcripts were detected in a wide variety of human tissues including lung, heart, stomach, spleen, skin, and colon. A polyclonal antipeptide Ab that specifically recognizes the translated product of this transcript was used to demonstrate its expression in mast cells that reside in the colon, lung, and inflamed synovium. A recombinant form of this protein expressed in bacterial cells was able to cleave a synthetic trypsin-sensitive substrate, D-Ile-Phe-Lys pNA. These results suggest that the range of functional tryptases is larger than previously recognized. For simplicity, we suggest that the gene, transcripts, and corresponding protein product be named delta tryptase.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Inflammation Research Units, Department of Pathology, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Marquardt U, Zettl F, Huber R, Bode W, Sommerhoff C. The crystal structure of human alpha1-tryptase reveals a blocked substrate-binding region. J Mol Biol 2002; 321:491-502. [PMID: 12162961 DOI: 10.1016/s0022-2836(02)00625-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human mast cell tryptases represent a subfamily of trypsin-like serine proteinases implicated in asthma. Unlike beta-tryptases, alpha-tryptases apparently are proteolytically inactive. We have solved the 2.2A crystal structure of mature human alpha1-tryptase. It reveals a frame-like tetrameric architecture that, surprisingly, does not require heparin-binding for stability. In marked contrast to beta2-tryptase, the Ser214-Gly219 segment, which normally provides the template for substrate binding, is kinked in alpha-tryptase, thereby blocking its non-primed subsites. This so far unobserved subsite distortion is incompatible with productive substrate binding and processing. alpha-Tryptase apparently is trapped in this off-conformation by repulsions and attractions of the Asp216 side-chain. However, proteolytic activity could be generated by an induced-fit mechanism.
Collapse
Affiliation(s)
- Ulf Marquardt
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried bei, München, Germany
| | | | | | | | | |
Collapse
|
23
|
Lawson C, Walker C, Awford J, Biffen M, Mallinder P, Jackson A. Purification and characterization of recombinant rat mast cell protease 7 expressed in Pichia pastoris. Protein Expr Purif 2002; 25:256-62. [PMID: 12135558 DOI: 10.1016/s1046-5928(02)00007-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rat mast cell protease 7 (rMCP7) is a neutral serine protease and a component of mast cells, where it is stored in secretory granules. Mast cells express numerous proteases so in order to characterize rMCP7, it was cloned and expressed as a recombinant protein in Pichia pastoris. During expression, rMCP7 protein was cleaved from the alpha-mating factor signal at the engineered KEX2 cleavage site to produce active rMCP7. The protein produced was stable at pH 5.5 and active in the absence of heparin. The rMCP7 was glycosylated and treatment with N-glycosidase F resulted in a protein of the predicted molecular mass of 30 kDa. The rMCP7 was purified via an ammonium sulfate precipitation, using casein as a carrier protein, followed by cation exchange chromatography. The purified protein was assayed using a range of substrates and where possible, k(m) and k(cat) values were determined. The substrate profile displayed by the recombinant rMCP7 was consistent with that of tryptase isolated from rat skin. The expression and purification of recombinant rMCP7 offer an efficient, low-cost method of producing large amounts of protein. It also offers the opportunity of easy manipulation and mutagenesis of rMCP7 for further biochemical, structural, and physiological studies.
Collapse
Affiliation(s)
- Carolyn Lawson
- Department of Molecular Biology, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, UK
| | | | | | | | | | | |
Collapse
|
24
|
Wong GW, Yasuda S, Madhusudhan MS, Li L, Yang Y, Krilis SA, Sali A, Stevens RL. Human tryptase epsilon (PRSS22), a new member of the chromosome 16p13.3 family of human serine proteases expressed in airway epithelial cells. J Biol Chem 2001; 276:49169-82. [PMID: 11602603 DOI: 10.1074/jbc.m108677200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Probing of the GenBank expressed sequence tag (EST) data base with varied human tryptase cDNAs identified two truncated ESTs that subsequently were found to encode overlapping portions of a novel human serine protease (designated tryptase epsilon or protease, serine S1 family member 22 (PRSS22)). The tryptase epsilon gene resides on chromosome 16p13.3 within a 2.5-Mb complex of serine protease genes. Although at least 7 of the 14 genes in this complex encode enzymatically active proteases, only one tryptase epsilon-like gene was identified. The trachea and esophagus were found to contain the highest steady-state levels of the tryptase epsilon transcript in adult humans. Although the tryptase epsilon transcript was scarce in adult human lung, it was present in abundance in fetal lung. Thus, the tryptase epsilon gene is expressed in the airways in a developmentally regulated manner that is different from that of other human tryptase genes. At the cellular level, tryptase epsilon is a major product of normal pulmonary epithelial cells, as well as varied transformed epithelial cell lines. Enzymatically active tryptase epsilon is also constitutively secreted from these cells. The amino acid sequence of human tryptase epsilon is 38-44% identical to those of human tryptase alpha, tryptase beta I, tryptase beta II, tryptase beta III, transmembrane tryptase/tryptase gamma, marapsin, and Esp-1/testisin. Nevertheless, comparative protein structure modeling and functional studies using recombinant material revealed that tryptase epsilon has a substrate preference distinct from that of its other family members. These data indicate that the products of the chromosome 16p13.3 complex of tryptase genes evolved to carry out varied functions in humans.
Collapse
Affiliation(s)
- G W Wong
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang C, De Sanctis GT, O'Brien PJ, Mizgerd JP, Friend DS, Drazen JM, Brass LF, Stevens RL. Evaluation of the substrate specificity of human mast cell tryptase beta I and demonstration of its importance in bacterial infections of the lung. J Biol Chem 2001; 276:26276-84. [PMID: 11335723 DOI: 10.1074/jbc.m102356200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human pulmonary mast cells (MCs) express tryptases alpha and beta I, and both granule serine proteases are exocytosed during inflammatory events. Recombinant forms of these tryptases were generated for the first time to evaluate their substrate specificities at the biochemical level and then to address their physiologic roles in pulmonary inflammation. Analysis of a tryptase-specific, phage display peptide library revealed that tryptase beta I prefers to cleave peptides with 1 or more Pro residues flanked by 2 positively charged residues. Although recombinant tryptase beta I was unable to activate cultured cells that express different types of protease-activated receptors, the numbers of neutrophils increased >100-fold when enzymatically active tryptase beta I was instilled into the lungs of mice. In contrast, the numbers of lymphocytes and eosinophils in the airspaces did not change significantly. More important, the tryptase beta I-treated mice exhibited normal airway responsiveness. Neutrophils did not extravasate into the lungs of tryptase alpha-treated mice. Thus, this is the first study to demonstrate that the two nearly identical human MC tryptases are functionally distinct in vivo. When MC-deficient W/W(v) mice were given enzymatically active tryptase beta I or its inactive zymogen before pulmonary infection with Klebsiella pneumoniae, tryptase beta I-treated W/W(v) mice had fewer viable bacteria in their lungs relative to zymogen-treated W/W(v) mice. Because neutrophils are required to combat bacterial infections, human tryptase beta I plays a critical role in the antibacterial host defenses of the lung by recruiting neutrophils in a manner that does not alter airway reactivity.
Collapse
Affiliation(s)
- C Huang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wong GW, Li L, Madhusudhan MS, Krilis SA, Gurish MF, Rothenberg ME, Sali A, Stevens RL. Tryptase 4, a new member of the chromosome 17 family of mouse serine proteases. J Biol Chem 2001; 276:20648-58. [PMID: 11259427 DOI: 10.1074/jbc.m010422200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomic blot analysis raised the possibility that uncharacterized tryptase genes reside on chromosome 17 at the complex containing the three genes that encode mouse mast cell protease (mMCP) 6, mMCP-7, and transmembrane tryptase (mTMT). Probing of GenBank's expressed sequence tag data base with these three tryptase cDNAs resulted in the identification of an expressed sequence tag that encodes a portion of a novel mouse serine protease (now designated mouse tryptase 4 (mT4) because it is the fourth member of this family). 5'- and 3'-rapid amplification of cDNA ends approaches were carried out to deduce the nucleotide sequence of the full-length mT4 transcript. This information was then used to clone its approximately 5.0-kilobase pair gene. Chromosome mapping analysis of its gene, sequence analysis of its transcript, and comparative protein structure modeling of its translated product revealed that mT4 is a new member of the chromosome 17 family of mouse tryptases. mT4 is 40-44% identical to mMCP-6, mMCP-7, and mTMT, and this new serine protease has all of the structural features of a functional tryptase. Moreover, mT4 is enzymatically active when expressed in insect cells. Due to its 17-mer hydrophobic domain at its C terminus, mT4 is a membrane-anchored tryptase more analogous to mTMT than the other members of its family. As assessed by RNA blot, reverse transcriptase-polymerase chain reaction, and/or in situ hybridization analysis, mT4 is expressed in interleukin-5-dependent mouse eosinophils, as well as in ovaries and testes. The observation that recombinant mT4 is preferentially retained in the endoplasmic reticulum of transiently transfected COS-7 cells suggests a convertase-like role for this integral membrane serine protease.
Collapse
Affiliation(s)
- G W Wong
- Department of Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|