1
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Fukuyama K, Okada M. Brivaracetam and Levetiracetam Suppress Astroglial L-Glutamate Release through Hemichannel via Inhibition of Synaptic Vesicle Protein. Int J Mol Sci 2022; 23:ijms23094473. [PMID: 35562864 PMCID: PMC9101419 DOI: 10.3390/ijms23094473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
To explore the pathophysiological mechanisms of antiseizure and adverse behavioural/psychiatric effects of brivaracetam and levetiracetam, in the present study, we determined the effects of brivaracetam and levetiracetam on astroglial L-glutamate release induced by artificial high-frequency oscillation (HFO) bursts using ultra-high-performance liquid chromatography. Additionally, the effects of brivaracetam and levetiracetam on protein expressions of connexin43 (Cx43) and synaptic vesicle protein 2A (SV2A) in the plasma membrane of primary cultured rat astrocytes were determined using a capillary immunoblotting system. Acutely artificial fast-ripple HFO (500 Hz) burst stimulation use-dependently increased L-glutamate release through Cx43-containing hemichannels without affecting the expression of Cx43 or SV2A in the plasma membrane, whereas acute physiological ripple HFO (200 Hz) stimulation did not affect astroglial L-glutamate release or expression of Cx43 or SV2A. Contrarily, subchronic ripple HFO and acute pathological fast-ripple HFO (500 Hz) stimulations use-dependently increased L-glutamate release through Cx43-containing hemichannels and Cx43 expression in the plasma membrane. Subchronic fast-ripple HFO-evoked stimulation produced ectopic expression of SV2A in the plasma membrane, but subchronic ripple HFO stimulation did not generate ectopic SV2A. Subchronic administration of brivaracetam and levetiracetam concentration-dependently suppressed fast-ripple HFO-induced astroglial L-glutamate release and expression of Cx43 and SV2A in the plasma membrane. In contrast, subchronic ripple HFO-evoked stimulation induced astroglial L-glutamate release, and Cx43 expression in the plasma membrane was inhibited by subchronic levetiracetam administration, but was not affected by brivaracetam. These results suggest that brivaracetam and levetiracetam inhibit epileptogenic fast-ripple HFO-induced activated astroglial transmission associated with hemichannels. In contrast, the inhibitory effect of therapeutic-relevant concentrations of levetiracetam on physiological ripple HFO-induced astroglial responses probably contributes to the adverse behavioural/psychiatric effects of levetiracetam.
Collapse
|
4
|
Dankovich TM, Rizzoli SO. The Synaptic Extracellular Matrix: Long-Lived, Stable, and Still Remarkably Dynamic. Front Synaptic Neurosci 2022; 14:854956. [PMID: 35350469 PMCID: PMC8957932 DOI: 10.3389/fnsyn.2022.854956] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 01/09/2023] Open
Abstract
In the adult brain, synapses are tightly enwrapped by lattices of the extracellular matrix that consist of extremely long-lived molecules. These lattices are deemed to stabilize synapses, restrict the reorganization of their transmission machinery, and prevent them from undergoing structural or morphological changes. At the same time, they are expected to retain some degree of flexibility to permit occasional events of synaptic plasticity. The recent understanding that structural changes to synapses are significantly more frequent than previously assumed (occurring even on a timescale of minutes) has called for a mechanism that allows continual and energy-efficient remodeling of the extracellular matrix (ECM) at synapses. Here, we review recent evidence for such a process based on the constitutive recycling of synaptic ECM molecules. We discuss the key characteristics of this mechanism, focusing on its roles in mediating synaptic transmission and plasticity, and speculate on additional potential functions in neuronal signaling.
Collapse
Affiliation(s)
- Tal M. Dankovich
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen, Germany
- International Max Planck Research School for Neuroscience, Göttingen, Germany
- *Correspondence: Tal M. Dankovich Silvio O. Rizzoli
| | - Silvio O. Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen, Germany
- *Correspondence: Tal M. Dankovich Silvio O. Rizzoli
| |
Collapse
|
5
|
Dankovich TM, Kaushik R, Olsthoorn LHM, Petersen GC, Giro PE, Kluever V, Agüi-Gonzalez P, Grewe K, Bao G, Beuermann S, Hadi HA, Doeren J, Klöppner S, Cooper BH, Dityatev A, Rizzoli SO. Extracellular matrix remodeling through endocytosis and resurfacing of Tenascin-R. Nat Commun 2021; 12:7129. [PMID: 34880248 PMCID: PMC8654841 DOI: 10.1038/s41467-021-27462-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
The brain extracellular matrix (ECM) consists of extremely long-lived proteins that assemble around neurons and synapses, to stabilize them. The ECM is thought to change only rarely, in relation to neuronal plasticity, through ECM proteolysis and renewed protein synthesis. We report here an alternative ECM remodeling mechanism, based on the recycling of ECM molecules. Using multiple ECM labeling and imaging assays, from super-resolution optical imaging to nanoscale secondary ion mass spectrometry, both in culture and in brain slices, we find that a key ECM protein, Tenascin-R, is frequently endocytosed, and later resurfaces, preferentially near synapses. The TNR molecules complete this cycle within ~3 days, in an activity-dependent fashion. Interfering with the recycling process perturbs severely neuronal function, strongly reducing synaptic vesicle exo- and endocytosis. We conclude that the neuronal ECM can be remodeled frequently through mechanisms that involve endocytosis and recycling of ECM proteins.
Collapse
Affiliation(s)
- Tal M. Dankovich
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany ,grid.4372.20000 0001 2105 1091International Max Planck Research School for Neuroscience, Göttingen, Germany
| | - Rahul Kaushik
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Linda H. M. Olsthoorn
- grid.4372.20000 0001 2105 1091International Max Planck Research School for Neuroscience, Göttingen, Germany ,grid.418140.80000 0001 2104 4211Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gabriel Cassinelli Petersen
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Philipp Emanuel Giro
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Verena Kluever
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Katharina Grewe
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Guobin Bao
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany ,grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute of Pharmacology and Toxicology, Göttingen, Germany
| | - Sabine Beuermann
- grid.419522.90000 0001 0668 6902Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Hannah Abdul Hadi
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Jose Doeren
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Simon Klöppner
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Benjamin H. Cooper
- grid.419522.90000 0001 0668 6902Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Alexander Dityatev
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Silvio O. Rizzoli
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany ,Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany
| |
Collapse
|
6
|
Okada M, Fukuyama K, Shiroyama T, Ueda Y. Brivaracetam prevents astroglial l-glutamate release associated with hemichannel through modulation of synaptic vesicle protein. Biomed Pharmacother 2021; 138:111462. [PMID: 33706129 DOI: 10.1016/j.biopha.2021.111462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The antiepileptic/anticonvulsive action of brivaracetam is considered to occur via modulation of synaptic vesicle protein 2A (SV2A); however, the pharmacological mechanisms of action have not been fully characterised. To explore the antiepileptic/anticonvulsive mechanism of brivaracetam associated with SV2A modulation, this study determined concentration-dependent effects of brivaracetam on astroglial L-glutamate release associated with connexin43 (Cx43), tumour-necrosis factor-α (TNFα) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/glutamate receptor of rat primary cultured astrocytes using ultra-high-performance liquid chromatography. Furthermore, interaction among TNFα, elevated extracellular K+ and brivaracetam on expression of SV2A and Cx43 was determined using capillary immunoblotting. TNFα and elevated extracellular K+ predominantly enhanced astroglial L-glutamate release associated with respective AMPA/glutamate receptor and hemichannel. These effects were enhanced by a synergistic effect of TNFα and elevated extracellular K+ in combination. The activation of astroglial L-glutamate release, and expression of SV2A and Cx43 in the plasma membrane was suppressed by subchronic brivaracetam administration but were unaffected by acute administration. These results suggest that migration of SV2A to the astroglial plasma membrane by hyperexcitability activates astroglial glutamatergic transmission, perhaps via hemichannel activation. Subchronic brivaracetam administration suppressed TNFα-induced activation of AMPA/glutamate receptor and hemichannel via inhibition of ectopic SV2A. These findings suggest that combined inhibition of vesicular and ectopic SV2A functions contribute to the antiepileptic/anticonvulsive mechanism of brivaracetam action.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Yuto Ueda
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
7
|
Jensen BK, Schuldi MH, McAvoy K, Russell KA, Boehringer A, Curran BM, Krishnamurthy K, Wen X, Westergard T, Ma L, Haeusler AR, Edbauer D, Pasinelli P, Trotti D. Synaptic dysfunction induced by glycine-alanine dipeptides in C9orf72-ALS/FTD is rescued by SV2 replenishment. EMBO Mol Med 2020; 12:e10722. [PMID: 32347002 PMCID: PMC7207170 DOI: 10.15252/emmm.201910722] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
The most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an intronic hexanucleotide repeat expansion in the C9orf72 gene. In disease, RNA transcripts containing this expanded region undergo repeat-associated non-AUG translation to produce dipeptide repeat proteins (DPRs), which are detected in brain and spinal cord of patients and are neurotoxic both in vitro and in vivo paradigms. We reveal here a novel pathogenic mechanism for the most abundantly detected DPR in ALS/FTD autopsy tissues, poly-glycine-alanine (GA). Previously, we showed motor dysfunction in a GA mouse model without loss of motor neurons. Here, we demonstrate that mobile GA aggregates are present within neurites, evoke a reduction in synaptic vesicle-associated protein 2 (SV2), and alter Ca2+ influx and synaptic vesicle release. These phenotypes could be corrected by restoring SV2 levels. In GA mice, loss of SV2 was observed without reduction of motor neuron number. Notably, reduction in SV2 was seen in cortical and motor neurons derived from patient induced pluripotent stem cell lines, suggesting synaptic alterations also occur in patients.
Collapse
Affiliation(s)
- Brigid K Jensen
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Martin H Schuldi
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Kevin McAvoy
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Katelyn A Russell
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Ashley Boehringer
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Bridget M Curran
- Department of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Karthik Krishnamurthy
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Xinmei Wen
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Thomas Westergard
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Le Ma
- Department of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Aaron R Haeusler
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Piera Pasinelli
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Davide Trotti
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
8
|
Stout KA, Dunn AR, Hoffman C, Miller GW. The Synaptic Vesicle Glycoprotein 2: Structure, Function, and Disease Relevance. ACS Chem Neurosci 2019; 10:3927-3938. [PMID: 31394034 DOI: 10.1021/acschemneuro.9b00351] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The synaptic vesicle glycoprotein 2 (SV2) family is comprised of three paralogues: SV2A, SV2B, and SV2C. In vertebrates, SV2s are 12-transmembrane proteins present on every secretory vesicle, including synaptic vesicles, and are critical to neurotransmission. Structural and functional studies suggest that SV2 proteins may play several roles to promote proper vesicular function. Among these roles are their potential to stabilize the transmitter content of vesicles, to maintain and orient the releasable pool of vesicles, and to regulate vesicular calcium sensitivity to ensure efficient, coordinated release of the transmitter. The SV2 family is highly relevant to human health in a number of ways. First, SV2A plays a role in neuronal excitability and as such is the specific target for the antiepileptic drug levetiracetam. SV2 proteins also act as the target by which potent neurotoxins, particularly botulinum, gain access to neurons and exert their toxicity. Both SV2B and SV2C are increasingly implicated in diseases such as Alzheimer's disease and Parkinson's disease. Interestingly, despite decades of intensive research, their exact function remains elusive. Thus, SV2 proteins are intriguing in their potentially diverse roles within the presynaptic terminal, and several recent developments have enhanced our understanding and appreciation of the protein family. Here, we review the structure and function of SV2 proteins as well as their relevance to disease and therapeutic development.
Collapse
Affiliation(s)
- Kristen A Stout
- Department of Physiology , Northwestern University, Feinberg School of Medicine , Chicago , Illinois , United States
| | - Amy R Dunn
- The Jackson Laboratory , Bar Harbor , Maine , United States
| | - Carlie Hoffman
- Department of Environmental Health, Rollins School of Public Health , Emory University , Atlanta , Georgia , United States
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health , Columbia University , New York , New York , United States
| |
Collapse
|
9
|
Lorenzoni PJ, Scola RH, Kay CSK, Werneck LC, Horvath R, Lochmüller H. How to Spot Congenital Myasthenic Syndromes Resembling the Lambert–Eaton Myasthenic Syndrome? A Brief Review of Clinical, Electrophysiological, and Genetics Features. Neuromolecular Med 2018; 20:205-214. [DOI: 10.1007/s12017-018-8490-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/16/2018] [Indexed: 01/26/2023]
|
10
|
Hunter DD, Manglapus MK, Bachay G, Claudepierre T, Dolan MW, Gesuelli KA, Brunken WJ. CNS synapses are stabilized trans-synaptically by laminins and laminin-interacting proteins. J Comp Neurol 2017; 527:67-86. [PMID: 29023785 DOI: 10.1002/cne.24338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023]
Abstract
The retina expresses several laminins in the outer plexiform layer (OPL), where they may provide an extracellular scaffold for synapse stabilization. Mice with a targeted deletion of the laminin β2 gene (Lamb2) exhibit retinal disruptions: photoreceptor synapses in the OPL are disorganized and the retinal physiological response is attenuated. We hypothesize that laminins are required for proper trans-synaptic alignment. To test this, we compared the distribution, expression, association and modification of several pre- and post-synaptic elements in wild-type and Lamb2-null retinae. A potential laminin receptor, integrin α3, is at the presynaptic side of the wild-type OPL. Another potential laminin receptor, dystroglycan, is at the post-synaptic side of the wild-type OPL. Integrin α3 and dystroglycan can be co-immunoprecipitated with the laminin β2 chain, demonstrating that they may bind laminins. In the absence of the laminin β2 chain, the expression of many pre-synaptic components (bassoon, kinesin, among others) is relatively undisturbed although their spatial organization and anchoring to the membrane is disrupted. In contrast, in the Lamb2-null, β-dystroglycan (β-DG) expression is altered, co-localization of β-DG with dystrophin and the glutamate receptor mGluR6 is disrupted, and the post-synaptic bipolar cell components mGluR6 and GPR179 become dissociated, suggesting that laminins mediate scaffolding of post-synaptic components. In addition, although pikachurin remains associated with β-DG, pikachurin is no longer closely associated with mGluR6 or α-DG in the Lamb2-null. These data suggest that laminins act as links among pre- and post-synaptic laminin receptors and α-DG and pikachurin in the synaptic space to maintain proper trans-synaptic alignment.
Collapse
Affiliation(s)
- Dale D Hunter
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts.,Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - Mary K Manglapus
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts
| | - Galina Bachay
- Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - Thomas Claudepierre
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts
| | - Michael W Dolan
- Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - Kelly-Ann Gesuelli
- Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - William J Brunken
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts.,Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| |
Collapse
|
11
|
Maselli RA, Arredondo J, Vázquez J, Chong JX, Bamshad MJ, Nickerson DA, Lara M, Ng F, Lo VL, Pytel P, McDonald CM. Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. Am J Med Genet A 2017; 173:2240-2245. [PMID: 28544784 DOI: 10.1002/ajmg.a.38291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/03/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022]
Abstract
Defects in genes encoding the isoforms of the laminin alpha subunit have been linked to various phenotypic manifestations, including brain malformations, muscular dystrophy, ocular defects, cardiomyopathy, and skin abnormalities. We report here a severe defect of neuromuscular transmission in a consanguineous patient with a homozygous variant in the laminin alpha-5 subunit gene (LAMA5). The variant c.8046C>T (p.Arg2659Trp) is rare and has a predicted deleterious effect. The affected individual, who also carries a rare homozygous sequence variant in LAMA1, had muscle weakness, myopia, and facial tics. Magnetic resonance imaging of brain showed mild volume loss and periventricular T2 prolongation. Repetitive nerve stimulation revealed 50% decrement of compound muscle action potential amplitudes and 250% facilitation immediately after exercise, Endplate studies identified a profound reduction of the endplate potential quantal content and endplates with normal postsynaptic folding that were denuded or partially occupied by small nerve terminals. Expression studies revealed that p.Arg2659Trp caused decreased binding of laminin alpha-5 to SV2A and impaired laminin-521 cell-adhesion and cell projection support in primary neuronal cultures. In summary, this report describing severe neuromuscular transmission failure in a patient with a LAMA5 mutation expands the list of phenotypes associated with defects in genes encoding alpha-laminins.
Collapse
Affiliation(s)
- Ricardo A Maselli
- Department of Neurology, University of California Davis, Sacramento, California
| | - Juan Arredondo
- Department of Neurology, University of California Davis, Sacramento, California
| | - Jessica Vázquez
- Department of Neurology, University of California Davis, Sacramento, California
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, Washington
| | | | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington.,Department of Genome Sciences, University of Washington, Seattle, Washington.,Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Marian Lara
- Department of Neurology, University of California Davis, Sacramento, California
| | - Fiona Ng
- Department of Neurology, University of California Davis, Sacramento, California
| | - Victoria L Lo
- Department of Neurology, University of California Davis, Sacramento, California
| | - Peter Pytel
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Craig M McDonald
- Department of Medicine and Rehabilitation, University of California Davis, Sacramento, California
| |
Collapse
|
12
|
Du X, Hao H, Yang Y, Huang S, Wang C, Gigout S, Ramli R, Li X, Jaworska E, Edwards I, Deuchars J, Yanagawa Y, Qi J, Guan B, Jaffe DB, Zhang H, Gamper N. Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission. J Clin Invest 2017; 127:1741-1756. [PMID: 28375159 PMCID: PMC5409786 DOI: 10.1172/jci86812] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/02/2017] [Indexed: 01/05/2023] Open
Abstract
The integration of somatosensory information is generally assumed to be a function of the central nervous system (CNS). Here we describe fully functional GABAergic communication within rodent peripheral sensory ganglia and show that it can modulate transmission of pain-related signals from the peripheral sensory nerves to the CNS. We found that sensory neurons express major proteins necessary for GABA synthesis and release and that sensory neurons released GABA in response to depolarization. In vivo focal infusion of GABA or GABA reuptake inhibitor to sensory ganglia dramatically reduced acute peripherally induced nociception and alleviated neuropathic and inflammatory pain. In addition, focal application of GABA receptor antagonists to sensory ganglia triggered or exacerbated peripherally induced nociception. We also demonstrated that chemogenetic or optogenetic depolarization of GABAergic dorsal root ganglion neurons in vivo reduced acute and chronic peripherally induced nociception. Mechanistically, GABA depolarized the majority of sensory neuron somata, yet produced a net inhibitory effect on the nociceptive transmission due to the filtering effect at nociceptive fiber T-junctions. Our findings indicate that peripheral somatosensory ganglia represent a hitherto underappreciated site of somatosensory signal integration and offer a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Han Hao
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Yuehui Yang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Sha Huang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Caixue Wang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Sylvain Gigout
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Rosmaliza Ramli
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Xinmeng Li
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Ewa Jaworska
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ian Edwards
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jim Deuchars
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine and Japan Science and Technology Agency, CREST, Maebashi, Japan
| | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Bingcai Guan
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - David B. Jaffe
- Department of Biology, UTSA Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
13
|
Liu YB, Tewari A, Salameh J, Arystarkhova E, Hampton TG, Brashear A, Ozelius LJ, Khodakhah K, Sweadner KJ. A dystonia-like movement disorder with brain and spinal neuronal defects is caused by mutation of the mouse laminin β1 subunit, Lamb1. eLife 2015; 4. [PMID: 26705335 PMCID: PMC4749547 DOI: 10.7554/elife.11102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022] Open
Abstract
A new mutant mouse (lamb1t) exhibits intermittent dystonic hindlimb movements and postures when awake, and hyperextension when asleep. Experiments showed co-contraction of opposing muscle groups, and indicated that symptoms depended on the interaction of brain and spinal cord. SNP mapping and exome sequencing identified the dominant causative mutation in the Lamb1 gene. Laminins are extracellular matrix proteins, widely expressed but also known to be important in synapse structure and plasticity. In accordance, awake recording in the cerebellum detected abnormal output from a circuit of two Lamb1-expressing neurons, Purkinje cells and their deep cerebellar nucleus targets, during abnormal postures. We propose that dystonia-like symptoms result from lapses in descending inhibition, exposing excess activity in intrinsic spinal circuits that coordinate muscles. The mouse is a new model for testing how dysfunction in the CNS causes specific abnormal movements and postures.
Collapse
Affiliation(s)
- Yi Bessie Liu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Ambika Tewari
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Johnny Salameh
- Department of Neurology, University of Massachusetts Medical School, Worcester, United States
| | - Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Thomas G Hampton
- Neuroscience Discovery Core, Mouse Specifics Inc., Framingham, United States
| | - Allison Brashear
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, United States
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Kathleen J Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
14
|
Rafiquzzaman S, Kim EY, Lee JM, Mohibbullah M, Alam MB, Soo Moon I, Kim JM, Kong IS. Anti-Alzheimers and anti-inflammatory activities of a glycoprotein purified from the edible brown alga Undaria pinnatifida. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Synaptic vesicle protein2A decreases in amygdaloid-kindling pharmcoresistant epileptic rats. ACTA ACUST UNITED AC 2015; 35:716-722. [PMID: 26489628 DOI: 10.1007/s11596-015-1496-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 07/01/2015] [Indexed: 10/22/2022]
Abstract
Synaptic vesicle protein 2A (SV2A) involvement has been reported in the animal models of epilepsy and in human intractable epilepsy. The difference between pharmacosensitive epilepsy and pharmacoresistant epilepsy remains poorly understood. The present study aimed to observe the hippocampus SV2A protein expression in amygdale-kindling pharmacoresistant epileptic rats. The pharmacosensitive epileptic rats served as control. Amygdaloid-kindling model of epilepsy was established in 100 healthy adult male Sprague-Dawley rats. The kindled rat model of epilepsy was used to select pharmacoresistance by testing their seizure response to phenytoin and phenobarbital. The selected pharmacoresistant rats were assigned to a pharmacoresistant epileptic group (PRE group). Another 12 pharmacosensitive epileptic rats (PSE group) served as control. Immunohistochemistry, real-time PCR and Western blotting were used to determine SV2A expression in the hippocampus tissue samples from both the PRE and the PSE rats. Immunohistochemistry staining showed that SV2A was mainly accumulated in the cytoplasm of the neurons, as well as along their dendrites throughout all subfields of the hippocampus. Immunoreactive staining level of SV2A-positive cells was 0.483 ± 0.304 in the PRE group and 0.866 ± 0.090 in the PSE group (P < 0.05). Real-time PCR analysis demonstrated that 2(-ΔΔCt) value of SV2A mRNA was 0.30 ± 0.43 in the PRE group and 0.76 ± 0.18 in the PSE group (P < 0.05). Western blotting analysis obtained the similar findings (0.27 ± 0.21 versus 1.12 ± 0.21, P < 0.05). PRE rats displayed a significant decrease of SV2A in the brain. SV2A may be associated with the pathogenesis of intractable epilepsy of the amygdaloid-kindling rats.
Collapse
|
16
|
Darabid H, Perez-Gonzalez AP, Robitaille R. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Rev Neurosci 2014; 15:630-1. [DOI: 10.1038/nrn3821] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Yang SY, Jeon SK, Kang JH, Yoo HI, Kim YS, Moon JS, Kim MS, Koh JT, Oh WM, Kim SH. Synaptic vesicle protein 2b is expressed temporospatially in (pre)odontoblasts in developing molars. Eur J Oral Sci 2012; 120:505-12. [PMID: 23167466 DOI: 10.1111/j.1600-0722.2012.01001.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 12/17/2022]
Abstract
The formation of dentin and enamel is initiated by the differentiation of odontogenic precursor cells into odontoblasts and ameloblasts, respectively. This study was performed to identify new molecules involved in the differentiation of odontogenic cells. The genes expressed differentially between the root stage (after the differentiation of odontogenic cells and dental hard-tissue formation) and the cap stage (before the differentiation of odontogenic cells and dental hard-tissue formation) were searched using differential display PCR. For the first time, synaptic vesicle protein (SV) 2b, an important transmembrane transporter of Ca(2+) -stimulated vesicle exocytosis, was identified as a differentially expressed molecule. Real-time PCR and western blotting revealed an increase in the transcriptional and translational levels of SV2b during or after the differentiation of odontogenic cells. Immunofluorescence revealed this molecule to be localized in not only fully differentiated odontoblasts but also in pre-odontoblasts before dentin matrix secretion. The expression pattern of the SV2a isoform was similar to that of the SV2b isoform, whereas the SV2c isoform showed a contrasting pattern of expression. After treatment with alendronate, an inhibitor of protein isoprenylation for the transport of secretory vesicles, the expression of SV2a and SV2b decreased, whereas that of SV2c increased. These results suggest that the SV2 isoforms are functional molecules of (pre)odontoblasts which may be involved in vesicle transport.
Collapse
Affiliation(s)
- So-Young Yang
- Dental Science Research Institute, 2nd stage Brain Korea, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 2012; 71:982-1005. [PMID: 21766463 DOI: 10.1002/dneu.20953] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate neuromuscular junction (NMJ) remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning, and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the NMJ, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic, and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan, and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins have been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic ECM proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability, and transmission.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | |
Collapse
|
19
|
Katagiri F, Sudo M, Hamakubo T, Hozumi K, Nomizu M, Kikkawa Y. Identification of active sequences in the L4a domain of laminin α5 promoting neurite elongation. Biochemistry 2012; 51:4950-8. [PMID: 22621685 DOI: 10.1021/bi300214g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Laminin α5 is an extracellular matrix protein containing multiple domains implicated in various biological processes, such as embryogenesis and renal function. In this study, we used recombinant proteins and synthetic peptides to identify amino acid residues within the short arm region of α5 that were critical for neurite outgrowth activity. The short arm of α5 contains three globular domains (LN, L4a, and L4b) and three rodlike elements (LEa, LEb, and LEc). Recombinant proteins comprised of the α5 short arm fused with a Fc tag produced in 293 cells were assayed for PC12 (pheochromocytoma) cell adhesion and neurite outgrowth activities. Although it did not have cell attachment activity, neurite outgrowth was promoted by the recombinant protein. To narrow the region involved in neurite outgrowth activity, two truncated recombinant proteins were produced in 293 cells. A recombinant protein lacking L4a and LEb lost activity. Furthermore, we synthesized 78 partially overlapping peptides representing most of the amino acid sequences of L4a and LEb. Of the peptides, A5-76 [mouse laminin α5 928-939 (TSPDLFRLVFRY) in L4a] exhibited neurite outgrowth activity. Mutagenesis studies showed that Phe(933) and Arg(934) were involved in neurite outgrowth activity. Moreover, inhibition assays using anti-integrin monoclonal antibodies showed that neurite outgrowth on the α5 short arm was partially mediated by integrin α1β1. However, the antibodies to integrin α1 and β1 did not inhibit neurite elongation on the A5-76 peptide. These results suggest that in addition to cellular interactions with the active site in the L4a domain, the binding of integrin α1β1 seems to modulate neurite elongation on the short arm of α5.
Collapse
Affiliation(s)
- Fumihiko Katagiri
- Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Kaiser A, Alexandrova O, Grothe B. Urocortin-expressing olivocochlear neurons exhibit tonotopic and developmental changes in the auditory brainstem and in the innervation of the cochlea. J Comp Neurol 2011; 519:2758-78. [DOI: 10.1002/cne.22650] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Carlson SS, Valdez G, Sanes JR. Presynaptic calcium channels and α3-integrins are complexed with synaptic cleft laminins, cytoskeletal elements and active zone components. J Neurochem 2010; 115:654-66. [PMID: 20731762 DOI: 10.1111/j.1471-4159.2010.06965.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
At chemical synapses, synaptic cleft components interact with elements of the nerve terminal membrane to promote differentiation and regulate function. Laminins containing the β2 subunit are key cleft components, and they act in part by binding the pore-forming subunit of a pre-synaptic voltage-gated calcium channel (Ca(v)α) (Nishimune et al. 2004). In this study, we identify Ca(v)α-associated intracellular proteins that may couple channel-anchoring to assembly or stabilization of neurotransmitter release sites called active zones. Using Ca(v)α-antibodies, we isolated a protein complex from Torpedo electric organ synapses, which resemble neuromuscular junctions but are easier to isolate in bulk. We identified 10 components of the complex: six cytoskeletal proteins (α2/β2 spectrins, plectin 1, AHNAK/desmoyokin, dystrophin, and myosin 1), two active zone components (bassoon and piccolo), synaptic laminin, and a calcium channel β subunit. Immunocytochemistry confirmed these proteins in electric organ synapses, and PCR analysis revealed their expression by developing mammalian motor neurons. Finally, we show that synaptic laminins also interact with pre-synaptic integrins containing the α3 subunit. Together with our previous finding that a distinct synaptic laminin interacts with SV2 on nerve terminals (Son et al. 2000), our results identify three paths by which synaptic cleft laminins can send developmentally important signals to nerve terminals.
Collapse
Affiliation(s)
- Steven S Carlson
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
22
|
Distinct muscarinic acetylcholine receptor subtypes contribute to stability and growth, but not compensatory plasticity, of neuromuscular synapses. J Neurosci 2010; 29:14942-55. [PMID: 19940190 DOI: 10.1523/jneurosci.2276-09.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) modulate synaptic function, but whether they influence synaptic structure remains unknown. At neuromuscular junctions (NMJs), mAChRs have been implicated in compensatory sprouting of axon terminals in paralyzed or denervated muscles. Here we used pharmacological and genetic inhibition and localization studies of mAChR subtypes at mouse NMJs to demonstrate their roles in synaptic stability and growth but not in compensatory sprouting. M(2) mAChRs were present solely in motor neurons, whereas M(1), M(3), and M(5) mAChRs were associated with Schwann cells and/or muscle fibers. Blockade of all five mAChR subtypes with atropine evoked pronounced effects, including terminal sprouting, terminal withdrawal, and muscle fiber atrophy. In contrast, methoctramine, an M(2/4)-preferring antagonist, induced terminal sprouting and terminal withdrawal, but no muscle fiber atrophy. Consistent with this observation, M(2)(-/-) but no other mAChR mutant mice exhibited spontaneous sprouting accompanied by extensive loss of parental terminal arbors. Terminal sprouting, however, seemed not to be the causative defect because partial loss of terminal branches was common even in the M(2)(-/-) NMJs without sprouting. Moreover, compensatory sprouting after paralysis or partial denervation was normal in mice deficient in M(2) or other mAChR subtypes. We also found that many NMJs of M(5)(-/-) mice were exceptionally small and reduced in proportion to the size of parental muscle fibers. These findings show that axon terminals are unstable without M(2) and that muscle fiber growth is defective without M(5). Subtype-specific muscarinic signaling provides a novel means for coordinating activity-dependent development and maintenance of the tripartite synapse.
Collapse
|
23
|
Boon KL, Xiao S, McWhorter ML, Donn T, Wolf-Saxon E, Bohnsack MT, Moens CB, Beattie CE. Zebrafish survival motor neuron mutants exhibit presynaptic neuromuscular junction defects. Hum Mol Genet 2009; 18:3615-25. [PMID: 19592581 DOI: 10.1093/hmg/ddp310] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA), a recessive genetic disease, affects lower motoneurons leading to denervation, atrophy, paralysis and in severe cases death. Reduced levels of survival motor neuron (SMN) protein cause SMA. As a first step towards generating a genetic model of SMA in zebrafish, we identified three smn mutations. Two of these alleles, smnY262stop and smnL265stop, were stop mutations that resulted in exon 7 truncation, whereas the third, smnG264D, was a missense mutation corresponding to an amino acid altered in human SMA patients. Smn protein levels were low/undetectable in homozygous mutants consistent with unstable protein products. Homozygous mutants from all three alleles were smaller and survived on the basis of maternal Smn dying during the second week of larval development. Analysis of the neuromuscular system in these mutants revealed a decrease in the synaptic vesicle protein, SV2. However, two other synaptic vesicle proteins, synaptotagmin and synaptophysin were unaffected. To address whether the SV2 decrease was due specifically to Smn in motoneurons, we tested whether expressing human SMN protein exclusively in motoneurons in smn mutants could rescue the phenotype. For this, we generated a transgenic zebrafish line with human SMN driven by the motoneuron-specific zebrafish hb9 promoter and then generated smn mutant lines carrying this transgene. We found that introducing human SMN specifically into motoneurons rescued the SV2 decrease observed in smn mutants. Our analysis indicates the requirement for Smn in motoneurons to maintain SV2 in presynaptic terminals indicating that Smn, either directly or indirectly, plays a role in presynaptic integrity.
Collapse
Affiliation(s)
- Kum-Loong Boon
- Center for Molecular Neurobiology, Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Bogdanik L, Framery B, Frölich A, Franco B, Mornet D, Bockaert J, Sigrist SJ, Grau Y, Parmentier ML. Muscle dystroglycan organizes the postsynapse and regulates presynaptic neurotransmitter release at the Drosophila neuromuscular junction. PLoS One 2008; 3:e2084. [PMID: 18446215 PMCID: PMC2323113 DOI: 10.1371/journal.pone.0002084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 03/17/2008] [Indexed: 12/21/2022] Open
Abstract
Background The Dystrophin-glycoprotein complex (DGC) comprises dystrophin, dystroglycan, sarcoglycan, dystrobrevin and syntrophin subunits. In muscle fibers, it is thought to provide an essential mechanical link between the intracellular cytoskeleton and the extracellular matrix and to protect the sarcolemma during muscle contraction. Mutations affecting the DGC cause muscular dystrophies. Most members of the DGC are also concentrated at the neuromuscular junction (NMJ), where their deficiency is often associated with NMJ structural defects. Hence, synaptic dysfunction may also intervene in the pathology of dystrophic muscles. Dystroglycan is a central component of the DGC because it establishes a link between the extracellular matrix and Dystrophin. In this study, we focused on the synaptic role of Dystroglycan (Dg) in Drosophila. Methodology/Principal Findings We show that Dg was concentrated postsynaptically at the glutamatergic NMJ, where, like in vertebrates, it controls the concentration of synaptic Laminin and Dystrophin homologues. We also found that synaptic Dg controlled the amount of postsynaptic 4.1 protein Coracle and alpha-Spectrin, as well as the relative subunit composition of glutamate receptors. In addition, both Dystrophin and Coracle were required for normal Dg concentration at the synapse. In electrophysiological recordings, loss of postsynaptic Dg did not affect postsynaptic response, but, surprisingly, led to a decrease in glutamate release from the presynaptic site. Conclusion/Significance Altogether, our study illustrates a conservation of DGC composition and interactions between Drosophila and vertebrates at the synapse, highlights new proteins associated with this complex and suggests an unsuspected trans-synaptic function of Dg.
Collapse
Affiliation(s)
- Laurent Bogdanik
- CNRS, UMR 5203, Institut de Génomique fonctionnelle, Montpellier, France
- INSERM, U661, Montpellier, France
- Université Montpellier,1,2, Montpellier, France
| | - Bérénice Framery
- CNRS, UMR 5203, Institut de Génomique fonctionnelle, Montpellier, France
- INSERM, U661, Montpellier, France
- Université Montpellier,1,2, Montpellier, France
| | - Andreas Frölich
- European Neuroscience Institute Göttingen, Göttingen, Germany
| | - Bénédicte Franco
- CNRS, UMR 5203, Institut de Génomique fonctionnelle, Montpellier, France
- INSERM, U661, Montpellier, France
- Université Montpellier,1,2, Montpellier, France
| | - Dominique Mornet
- INSERM, ERI 25, Muscle and Pathologies, Université de Montpellier1, EA 4202, 34295 Montpellier, France
| | - Joël Bockaert
- CNRS, UMR 5203, Institut de Génomique fonctionnelle, Montpellier, France
- INSERM, U661, Montpellier, France
- Université Montpellier,1,2, Montpellier, France
| | - Stephan J. Sigrist
- European Neuroscience Institute Göttingen, Göttingen, Germany
- Institut für Klinische Neurobiologie, Rudolf-Virchow Zentrum, Universität Würzburg, Würzburg, Germany
| | - Yves Grau
- CNRS, UMR 5203, Institut de Génomique fonctionnelle, Montpellier, France
- INSERM, U661, Montpellier, France
- Université Montpellier,1,2, Montpellier, France
| | - Marie-Laure Parmentier
- CNRS, UMR 5203, Institut de Génomique fonctionnelle, Montpellier, France
- INSERM, U661, Montpellier, France
- Université Montpellier,1,2, Montpellier, France
- * E-mail:
| |
Collapse
|
26
|
Dityatev A, Frischknecht R, Seidenbecher CI. Extracellular matrix and synaptic functions. Results Probl Cell Differ 2006; 43:69-97. [PMID: 17068968 DOI: 10.1007/400_025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Comprehensive analysis of neuromuscular junction formation and recent data on synaptogenesis and long-term potentiation in the central nervous system revealed a number of extracellular matrix (ECM) molecules regulating different aspects of synaptic differentiation and function. The emerging mechanisms comprise interactions of ECM components with their cell surface receptors coupled to tyrosine kinase activities (agrin, integrin ligands, and reelin) and interactions with ion channels and transmitter receptors (Narp, tenascin-R and tenascin-C). These interactions may shape synaptic transmission and plasticity of excitatory synapses either via regulation of Ca2+ entry and postsynaptic expression of transmitter receptors or via control of GABAergic inhibition. The ECM molecules, derived from both neurons and glial cells and secreted into the extracellular space in an activity-dependent manner, may also shape synaptic plasticity through setting diffusion constraints for neurotransmitters, trophic factors and ions.
Collapse
Affiliation(s)
- Alexander Dityatev
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Germany.
| | | | | |
Collapse
|
27
|
Dityatev A, Schachner M. The extracellular matrix and synapses. Cell Tissue Res 2006; 326:647-54. [PMID: 16767406 DOI: 10.1007/s00441-006-0217-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 04/20/2006] [Indexed: 11/27/2022]
Abstract
Extracellular matrix (ECM) molecules, derived from both neurons and glial cells, are secreted and accumulate in the extracellular space to regulate various aspects of pre- and postsynaptic differentiation, the maturation of synapses, and their plasticity. The emerging mechanisms comprise interactions of agrin, integrin ligands, and reelin, with their cognate cell-surface receptors being coupled to tyrosine kinase activities. These may induce the clustering of postsynaptic receptors and changes in their composition and function. Furthermore, direct interactions of laminins, neuronal pentraxins, and tenascin-R with voltage-gated Ca(2+) channels, alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA), and gamma-aminobutyric acid(B) (GABA(B)) receptors, respectively, shape the organization and function of different subsets of synapses. Some of these mechanisms significantly contribute to the induction of long-term potentiation in excitatory synapses, either by the regulation of Ca(2+) entry via N-methyl-D-aspartate receptors or L-type Ca(2+) channels, or by the control of GABAergic inhibition.
Collapse
Affiliation(s)
- Alexander Dityatev
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
28
|
Custer KL, Austin NS, Sullivan JM, Bajjalieh SM. Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci 2006; 26:1303-13. [PMID: 16436618 PMCID: PMC6674579 DOI: 10.1523/jneurosci.2699-05.2006] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a thorough analysis of neurotransmission in cultured hippocampal neurons lacking synaptic vesicle protein 2 (SV2), a membrane glycoprotein present in all vesicles that undergo regulated secretion. We found that SV2 selectively enhances low-frequency neurotransmission by priming morphologically docked vesicles. Loss of SV2 reduced initial release probability during a train of action potentials but had no effect on steady-state responses. The amount and decay rate of asynchronous release, two measures sensitive to presynaptic calcium concentrations, are not altered in SV2 knock-outs, suggesting that SV2 does not act by modulating presynaptic calcium. Normal neurotransmission could be temporarily recovered by delivering an exhaustive stimulus train. Our results indicate that SV2 primes vesicles in quiescent neurons and that SV2 function can be bypassed by an activity-dependent priming mechanism. We propose that SV2 action modulates synaptic networks by ensuring that low-frequency neurotransmission is faithfully conveyed.
Collapse
Affiliation(s)
- Kenneth L Custer
- Department of Pharmacology, University of Washington, Seattle, Washington 98103, USA
| | | | | | | |
Collapse
|
29
|
Lambeng N, Grossmann M, Chatelain P, Fuks B. Solubilization and immunopurification of rat brain synaptic vesicle protein 2A with maintained binding properties. Neurosci Lett 2006; 398:107-12. [PMID: 16434140 DOI: 10.1016/j.neulet.2005.12.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 10/28/2005] [Accepted: 12/22/2005] [Indexed: 11/19/2022]
Abstract
This study reports the solubilization of the rat synaptic vesicle protein SV2A, the brain binding site for the antiepileptic drug levetiracetam (LEV), and its characterization. N-dodecyl-beta-D-maltoside (DDM) was the best detergent at achieving a high percentage of SV2A solubilization and at maintaining the binding characteristics of a tritiated form of a more potent analogue of LEV, [3H]ucb 30889 ((2S)-2-[4-(3-azidophenyl)-2-oxopyrrolidin-1-yl]butanamide). Scatchard analysis revealed that approximately 25% of SV2A proteins from brain membranes are solubilized by DDM under optimal conditions. Competition binding experiments with a variety of LEV analogues indicated that [3H]ucb 30889 labels the same binding site in both crude homogenates and soluble extracts, with still high stereoselectivity. After immunoprecipitation of SV2A from solubilized rat brain membranes, binding properties of [3H]ucb 30889 to SV2A and association with synaptotagmin I were maintained. The two other isoforms SV2B and SV2C were found to be co-immunoprecipitated with SV2A. The solubilization and immunopurification of SV2A with unmodified ligand affinities and synaptotagmin I interaction provides the starting point for future protein-protein interactions and structural studies.
Collapse
Affiliation(s)
- N Lambeng
- UCB S.A., CNS In Vitro Pharmacology, Building R4, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium.
| | | | | | | |
Collapse
|
30
|
Schwander M, Shirasaki R, Pfaff SL, Müller U. Beta1 integrins in muscle, but not in motor neurons, are required for skeletal muscle innervation. J Neurosci 2005; 24:8181-91. [PMID: 15371519 PMCID: PMC6729792 DOI: 10.1523/jneurosci.1345-04.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In vitro studies have provided evidence that beta1 integrins in motor neurons promote neurite outgrowth, whereas beta1 integrins in myotubes regulate acetylcholine receptor (AChR) clustering. Surprisingly, using genetic studies in mice, we show here that motor axon outgrowth and neuromuscular junction (NMJ) formation in large part are unaffected when the integrin beta1 gene (Itgb1) is inactivated in motor neurons. In the absence of Itgb1 expression in skeletal muscle, interactions between motor neurons and muscle are defective, preventing normal presynaptic differentiation. Motor neurons fail to terminate their growth at the muscle midline, branch excessively, and develop abnormal nerve terminals. These defects resemble the phenotype of agrin-null mice, suggesting that signaling molecules such as agrin, which coordinate presynaptic and postsynaptic differentiation, are not presented properly to nerve terminals. We conclude that Itgb1 expression in muscle, but not in motor neurons, is critical for NMJ development.
Collapse
Affiliation(s)
- Martin Schwander
- Department of Cell Biology and Institute for Childhood and Neglected Disease, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
31
|
Nealen PM. An interspecific comparison using immunofluorescence reveals that synapse density in the avian song system is related to sex but not to male song repertoire size. Brain Res 2005; 1032:50-62. [PMID: 15680941 DOI: 10.1016/j.brainres.2004.10.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2004] [Indexed: 11/28/2022]
Abstract
Immunofluorescent labeling of synaptic vesicle protein 2 (SV2) and confocal microscopy were employed to assess the role of synapse density in the functioning of the avian song system. Synapse density in premotor nuclei HVC and RA was measured, in both sexes of two species characterized by male-only singing behavior: the zebra finch Taeniopygia guttata, which sings a single, stereotyped song, and the Carolina wren Thryothorus ludovicianus, which sings a large repertoire of different songs. Multiple levels of analyses demonstrate overall similarity of synapse density between nuclei HVC and RA, suggesting that synapse density is regulated uniformly across these regions within individuals. Male zebra finches and male Carolina wrens have equivalent synapse densities, suggesting a common pattern of masculinized development despite dramatic behavioral differences. Female Carolina wrens have synaptic density similar to that of males of both species, while female zebra finches exhibit greater synaptic densities in both regions than do male zebra finches or both sexes of wrens. Prior reports implicate testosterone as a regulator of synapse density in this system; sex differences in circulating or neural testosterone may contribute to the sexual dimorphism of synapse density observed here. Interspecific comparison of song system synapse density in nonsinging females suggests that synapse density in female songbirds may be a particularly labile trait.
Collapse
Affiliation(s)
- Paul M Nealen
- Biology Department, University of Pennsylvania, 415 South University Avenue, 312 Lady Labs, Philadelphia, PA, 19104-6018, USA.
| |
Collapse
|
32
|
Walmsley SJ, Gaines PJ. Identification of two cDNAs encoding synaptic vesicle protein 2 (SV2)-like proteins from epithelial tissues in the cat flea, Ctenocephalides felis. INSECT MOLECULAR BIOLOGY 2004; 13:225-230. [PMID: 15157223 DOI: 10.1111/j.0962-1075.2004.00478.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two distinct cDNAs that appear to encode proteins in the synaptic vesicle-2 (SV2) family were identified as expressed sequence tags from a Ctenocephalides felis hindgut and Malpighian tubule (HMT) cDNA library. To date, SV2 proteins have been described only in vertebrates, and have been detected only in synaptic vesicles in neuronal and endocrine tissues, where they are thought to regulate synaptic vesicle exocytosis. The cDNAs for the C. felis SV2-like proteins SVLP-1 and SVLP-2 encode predicted full-length proteins of 530 and 726 amino acids, respectively. Of characterized proteins, the SVLP protein sequences were most similar to rat SV2B. Northern blot analysis revealed that both mRNAs were up-regulated in larval stages that feed and in adults after feeding, and were expressed primarily or exclusively in the HMT tissues in adult fleas. These results suggest that the flea SVLP-1 and SVLP-2 gene products may have roles that are specific for the HMT tissues, and may differ in function from vertebrate SV2 proteins.
Collapse
|
33
|
Abstract
When cooled below approximately 7 degrees C, recently endocytosed vesicles in the motor terminals of the garter snake fail to shed their clathrin coats. Perhaps as a result, the terminals complete only about one-half of the compensatory endocytosis expected after a given period of stimulation. Upon return to room temperature (RT), endocytosis resumes immediately and is complete within minutes. This "delayed" endocytosis following release from cold block provides an opportunity to study clathrin-dependent endocytotic mechanisms in temporal isolation from those events, such as Ca2+ entry and consequent exocytosis, that are normally associated with the activation of nerve terminals. We have taken advantage of clathrin decoating blockade to examine the rate, temperature dependence and extracellular Ca2+ dependence of endocytosis at the snake nerve-muscle synapse. Endocytosis was fast at RT (complete in < 1 min) and markedly faster still at 35 degrees C. Moreover, the rate of endocytosis varied significantly with change in [Ca2+]o; the rate at 7.2 mM (single exponential time constant, approximately 3 s) was approximately double that at 0 mM (single exponential time constant, approximately 7 s). Thus, membrane retrieval via clathrin is rapid and, due to its dependence on [Ca2+]o, potentially regulated by changes in the milieu of the synaptic cleft during neural activity.
Collapse
Affiliation(s)
- Haibing Teng
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
34
|
Affiliation(s)
- Alexander Dityatev
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Martinistr. 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
35
|
Affiliation(s)
- Joshua R Sanes
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri 63110, USA.
| |
Collapse
|
36
|
Abstract
Changes in the amplitudes of signals conveyed at synaptic contacts between neurons underlie many brain functions and pathologies. Here we review the possible determinants of the amplitude and plasticity of the elementary postsynaptic signal, the miniature. In the absence of a definite understanding of the molecular mechanism releasing transmitters, we investigated a possible alternative interpretation. Classically, both the quantal theory and the vesicle theory predict that the amount of transmitter producing a miniature is determined presynaptically prior to release and that rapid changes in miniature amplitude reflect essentially postsynaptic alterations. However, recent data indicates that short-term and long-lasting changes in miniature amplitude are in large part due to changes in the amount of transmitter in individual released packets that show no evidence of preformation. Current representations of transmitter release derive from basic properties of neuromuscular transmission and endocrine secretion. Reexamination of overlooked properties of these two systems indicate that the amplitude of miniatures may depend as much, if not more, on the Ca(2+) signals in the presynaptic terminal than on the number of postsynaptic receptors available or on vesicle's contents. Rapid recycling of transmitter and its possible adsorption at plasma and vesicle lumenal membrane surfaces suggest that exocytosis may reflect membrane traffic rather than actual transmitter release. This led us to reconsider the disregarded hypothesis introduced by Fatt and Katz (1952; J Physiol 117:109-128) that the excitability of the release site may account for the "quantal effect" in fast synaptic transmission. In this case, changes in excitability of release sites would contribute to the presynaptic quantal plasticity that is often recorded.
Collapse
Affiliation(s)
- Jean Vautrin
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
37
|
Zamurs L, Pouliot N, Gibson P, Hocking G, Nice E. Strategies for the purification of laminin-10 for studies on colon cancer metastasis. Biomed Chromatogr 2003; 17:201-11. [PMID: 12717810 DOI: 10.1002/bmc.248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Signals from the epidermal growth factor (EGF) receptor family are thought to combine with integrin-dependent adhesion to laminins to contribute to disease progression and metastasis in cancer. To date, little is known about the mechanisms by which these signals interact. Recently, we have shown that the colon cancer cell line LIM1215 secretes and adheres to laminin-10 through multiple integrin receptors, and that EGF stimulates spreading and migration of these cells on the same substrate. Additionally laminin-10/11 has been shown by immunohistochemistry to be present at the invasive edge of moderately differentiated colon cancers. To enable detailed structure-function studies to be undertaken, it is important to be able to rapidly obtain highly purified native laminin-10 from bulk biological samples in reasonable yield. The development of a multidimensional micropurification scheme to achieve this is presented and compared with other reported methods for the purification of laminins.
Collapse
Affiliation(s)
- Laura Zamurs
- The Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
38
|
Patton BL, Cunningham JM, Thyboll J, Kortesmaa J, Westerblad H, Edström L, Tryggvason K, Sanes JR. Properly formed but improperly localized synaptic specializations in the absence of laminin alpha4. Nat Neurosci 2001; 4:597-604. [PMID: 11369940 DOI: 10.1038/88414] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Precise apposition of pre- to postsynaptic specializations is required for optimal function of chemical synapses, but little is known about how it is achieved. At the skeletal neuromuscular junction, active zones (transmitter release sites) in the nerve terminal lie directly opposite junctional folds in the postsynaptic membrane. Few active zones or junctional folds form in mice lacking the laminin beta2 chain, which is normally concentrated in the synaptic cleft. beta2 and the broadly expressed gamma1 chain form heterotrimers with alpha chains, three of which, alpha2, alpha4 and alpha5, are present in the synaptic cleft. Thus, alpha2beta2gamma1, alpha4beta2gamma1 and alpha5beta2gamma1 heterotrimers are all lost in beta2 mutants. In mice lacking laminin alpha4, active zones and junctional folds form in normal numbers, but are not precisely apposed to each other. Thus, formation and localization of synaptic specializations are regulated separately, and alpha4beta2gamma1 (called laminin-9) is critical in the latter process.
Collapse
MESH Headings
- Animals
- Crosses, Genetic
- Exons
- Heterozygote
- Homozygote
- Laminin/analysis
- Lamins
- Macromolecular Substances
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Contraction/physiology
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/cytology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/pathology
- Necrosis
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Protein Subunits
- Recombination, Genetic
- Stem Cells
- Synapses/pathology
- Synapses/physiology
- Synapses/ultrastructure
Collapse
Affiliation(s)
- B L Patton
- Department of Anatomy and Neurobiology, Washington University Medical Center, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Nielsen PK, Yamada Y. Identification of cell-binding sites on the Laminin alpha 5 N-terminal domain by site-directed mutagenesis. J Biol Chem 2001; 276:10906-12. [PMID: 11098055 DOI: 10.1074/jbc.m008743200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The newly discovered laminin alpha(5) chain is a multidomain, extracellular matrix protein implicated in various biological functions such as the development of blood vessels and nerves. The N-terminal globular domain of the laminin alpha chains has an important role for biological activities through interactions with cell surface receptors. In this study, we identified residues that are critical for cell binding within the laminin alpha(5) N-terminal globular domain VI (approximately 270 residues) using site-directed mutagenesis and synthetic peptides. A recombinant protein of domain VI and the first four epidermal growth factor-like repeats of domain V, generated in a mammalian expression system, was highly active for HT-1080 cell binding, while a recombinant protein consisting of only the epidermal growth factor-like repeats showed no cell binding. By competition analysis with synthetic peptides for cell binding, we identified two sequences: S2, (123)GQVFHVAYVLIKF(135) and S6, (225)RDFTKATNIRLRFLR(239), within domain VI that inhibited cell binding to domain VI. Alanine substitution mutagenesis indicated that four residues (Tyr(130), Arg(225), Lys(229), and Arg(239)) within these two sequences are crucial for cell binding. Real-time heparin-binding kinetics of the domain VI mutants analyzed by surface plasmon resonance indicated that Arg(239) of S6 was critical for both heparin and cell binding. In addition, cell binding to domain VI was inhibited by heparin/heparan sulfate, which suggests an overlap of cell and heparin-binding sites. Furthermore, inhibition studies using integrin subunit monoclonal antibodies showed that integrin alpha(3)beta(1) was a major receptor for domain VI binding. Our results provide evidence that two sites spaced about 90 residues apart within the laminin alpha(5) chain N-terminal globular domain VI are critical for cell surface receptor binding.
Collapse
Affiliation(s)
- P K Nielsen
- Molecular Biology Section, Craniofacial Developmental Biology and Regeneration Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA
| | | |
Collapse
|
40
|
Lichtlen P, Wang Y, Belser T, Georgiev O, Certa U, Sack R, Schaffner W. Target gene search for the metal-responsive transcription factor MTF-1. Nucleic Acids Res 2001; 29:1514-23. [PMID: 11266553 PMCID: PMC31279 DOI: 10.1093/nar/29.7.1514] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2000] [Revised: 02/07/2001] [Accepted: 02/07/2001] [Indexed: 11/13/2022] Open
Abstract
Activation of genes by heavy metals, notably zinc, cadmium and copper, depends on MTF-1, a unique zinc finger transcription factor conserved from insects to human. Knockout of MTF-1 in the mouse results in embryonic lethality due to liver decay, while knockout of its best characterized target genes, the stress-inducible metallothionein genes I and II, is viable, suggesting additional target genes of MTF-1. Here we report on a multi-pronged search for potential target genes of MTF-1, including microarray screening, SABRE selective amplification, a computer search for MREs (DNA-binding sites of MTF-1) and transfection of reporter genes driven by candidate gene promoters. Some new candidate target genes emerged, including those encoding alpha-fetoprotein, the liver-enriched transcription factor C/EBPalpha and tear lipocalin/von Ebner's gland protein, all of which have a role in toxicity/the cell stress response. In contrast, expression of other cell stress-associated genes, such as those for superoxide dismutases, thioredoxin and heat shock proteins, do not appear to be affected by loss of MTF-1. Our experiments have also exposed some problems with target gene searches. First, finding the optimal time window for detecting MTF-1 target genes in a lethal phenotype of rapid liver decay proved problematical: 12.5-day-old mouse embryos (stage E12.5) yielded hardly any differentially expressed genes, whereas at stage 13.0 reduced expression of secretory liver proteins probably reflected the onset of liver decay, i.e. a secondary effect. Likewise, up-regulation of some proliferation-associated genes may also just reflect responses to the concomitant loss of hepatocytes. Another sobering finding concerns gamma-glutamylcysteine synthetase(hc) (gamma-GCS(hc)), which controls synthesis of the antioxidant glutathione and which was previously suggested to be a target gene contributing to the lethal phenotype in MTF-1 knockout mice. gamma-GCS(hc) mRNA is reduced at the onset of liver decay but MTF-1 null mutant embryos manage to maintain a very high glutathione level until shortly before that stage, perhaps in an attempt to compensate for low expression of metallothioneins, which also have a role as antioxidants.
Collapse
Affiliation(s)
- P Lichtlen
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
The presynaptic calcium channel is part of a transmembrane complex linking a synaptic laminin (alpha4beta2gamma1) with non-erythroid spectrin. J Neurosci 2000. [PMID: 10648706 DOI: 10.1523/jneurosci.20-03-01009.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nerve regeneration studies at the neuromuscular junction (NMJ) suggest that synaptic basal lamina components tell the returning axon where to locate neurotransmitter release machinery, including synaptic vesicle clusters and active zones. Good candidates for these components are the synaptic laminins (LNs) containing alpha4, alpha5, or beta2 chains. Results from a beta2 laminin knockout mouse have suggested a linkage of this extracellular laminin to cytosolic synaptic vesicle clusters. Here we report such a transmembrane link at the electric organ synapse, which is homologous to the NMJ. We immunopurified electric organ synaptosomes and found on their surface two laminins of 740 and 900 kDa. The 740 kDa laminin has a composition of alpha4beta2gamma1 (laminin-9). Immunostaining reveals that as in the NMJ, alpha4 and beta2 chains are concentrated at the electric organ synapse. Using detergent-solubilized synaptosomes, we immunoprecipitated a complex containing alpha4beta2gamma1 laminin, the voltage-gated calcium channel, and the cytoskeletal protein spectrin. Other presynaptic proteins such as 900 kDa laminin are not found in this complex. We hypothesize that alpha4beta2gamma1 laminin in the synaptic basal lamina attaches to calcium channel, which in turn is attached to cytosolic spectrin. Spectrin could then organize synaptic vesicle clusters by binding vesicle-associated proteins.
Collapse
|