1
|
Martín JF. Interaction of calcium responsive proteins and transcriptional factors with the PHO regulon in yeasts and fungi. Front Cell Dev Biol 2023; 11:1225774. [PMID: 37601111 PMCID: PMC10437122 DOI: 10.3389/fcell.2023.1225774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Phosphate and calcium ions are nutrients that play key roles in growth, differentiation and the production of bioactive secondary metabolites in filamentous fungi. Phosphate concentration regulates the biosynthesis of hundreds of fungal metabolites. The central mechanisms of phosphate transport and regulation, mediated by the master Pho4 transcriptional factor are known, but many aspects of the control of gene expression need further research. High ATP concentration in the cells leads to inositol pyrophosphate molecules formation, such as IP3 and IP7, that act as phosphorylation status reporters. Calcium ions are intracellular messengers in eukaryotic organisms and calcium homeostasis follows elaborated patterns in response to different nutritional and environmental factors, including cross-talking with phosphate concentrations. A large part of the intracellular calcium is stored in vacuoles and other organelles forming complexes with polyphosphate. The free cytosolic calcium concentration is maintained by transport from the external medium or by release from the store organelles through calcium permeable transient receptor potential (TRP) ion channels. Calcium ions, particularly the free cytosolic calcium levels, control the biosynthesis of fungal metabolites by two mechanisms, 1) direct interaction of calcium-bound calmodulin with antibiotic synthesizing enzymes, and 2) by the calmodulin-calcineurin signaling cascade. Control of very different secondary metabolites, including pathogenicity determinants, are mediated by calcium through the Crz1 factor. Several interactions between calcium homeostasis and phosphate have been demonstrated in the last decade: 1) The inositol pyrophosphate IP3 triggers the release of calcium ions from internal stores into the cytosol, 2) Expression of the high affinity phosphate transporter Pho89, a Na+/phosphate symporter, is controlled by Crz1. Also, mutants defective in the calcium permeable TRPCa7-like of Saccharomyces cerevisiae shown impaired expression of Pho89. This information suggests that CrzA and Pho89 play key roles in the interaction of phosphate and calcium regulatory pathways, 3) Finally, acidocalcisomes organelles have been found in mycorrhiza and in some melanin producing fungi that show similar characteristics as protozoa calcisomes. In these organelles there is a close interaction between orthophosphate, pyrophosphate and polyphosphate and calcium ions that are absorbed in the polyanionic polyphosphate matrix. These advances open new perspectives for the control of fungal metabolism.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, León, Spain
| |
Collapse
|
2
|
Li G, Liu S, Wu L, Wang X, Cuan R, Zheng Y, Liu D, Yuan Y. Characterization and Functional Analysis of a New Calcium/Calmodulin-Dependent Protein Kinase (CaMK1) in the Citrus Pathogenic Fungus Penicillium italicum. J Fungi (Basel) 2022; 8:667. [PMID: 35887424 PMCID: PMC9323541 DOI: 10.3390/jof8070667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/30/2022] Open
Abstract
Calcium (Ca2+)/calmodulin-dependent protein kinases (CaMKs) act as a class of crucial elements in Ca2+-signal transduction pathways that regulate fungal growth, sporulation, virulence, and environmental stress tolerance. However, little is known about the function of such protein kinase in phytopathogenic Penicillium species. In the present study, a new CaMK gene from the citrus pathogenic fungus P. italicum, designated PiCaMK1, was cloned and functionally characterized by gene knockout and transcriptome analysis. The open reading frame of PiCaMK1 is 1209 bp in full length, which encodes 402 amino acid residues (putative molecular weight ~45.2 KD) with the highest homologous (~96.3%) to the P. expansum CaMK. The knockout mutant ΔPiCaMK1 showed a significant reduction in vegetative growth, conidiation, and virulence (i.e., to induce blue mold decay on citrus fruit). ΔPiCaMK1 was less sensitive to NaCl- or KCl-induced salinity stress and less resistant to mannitol-induced osmotic stress, indicating the functional involvement of PiCaMK1 in such environmental stress tolerance. In contrast, the PiCaMK1-complemented strain ΔPiCaMK1COM can restore all the defective phenotypes. Transcriptome analysis revealed that knockout of PiCaMK1 down-regulated expression of the genes involved in DNA replication and repair, cell cycle, meiosis, pyrimidine and purine metabolisms, and MAPK signaling pathway. Our results suggested the critical role of PiCaMK1 in regulating multiple physical and cellular processes of citrus postharvest pathogen P. italicum, including growth, conidiation, virulence, and environmental stress tolerance.
Collapse
Affiliation(s)
- Guoqi Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Shaoting Liu
- School of Public Administration, Central China Normal University, Wuhan 430079, China;
| | - Lijuan Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Xiao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Rongrong Cuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Yongliang Zheng
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China;
| | - Deli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| |
Collapse
|
3
|
Jin Q, Zhao J, Zhao Z, Zhang S, Sun Z, Shi Y, Yan H, Wang Y, Liu L, Zhao Z. CAMK1D Inhibits Glioma Through the PI3K/AKT/mTOR Signaling Pathway. Front Oncol 2022; 12:845036. [PMID: 35494053 PMCID: PMC9043760 DOI: 10.3389/fonc.2022.845036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium/calmodulin-dependent protein ID (CAMK1D) is widely expressed in many tissues and involved in tumor cell growth. However, its role in gliomas has not yet been elucidated. This study aimed to investigate the roles of CAMK1D in the proliferation, migration, and invasion of glioma. Through online datasets, Western blot, and immunohistochemical analysis, glioma tissue has significantly lower CAMK1D expression levels than normal brain (NB) tissues, and CAMK1D expression was positively correlated with the WHO classification. Kaplan-Meier survival analysis shows that CAMK1D can be used as a potential prognostic indicator to predict the overall survival of glioma patients. In addition, colony formation assay, cell counting Kit-8, and xenograft experiment identified that knockdown of CAMK1D promotes the proliferation of glioma cells. Transwell and wound healing assays identified that knockdown of CAMK1D promoted the invasion and migration of glioma cells. In the above experiments, the results of overexpression of CAMK1D were all contrary to those of knockdown. In terms of mechanism, this study found that CAMK1D regulates the function of glioma cells by the PI3K/AKT/mTOR pathway. In conclusion, these findings suggest that CAMK1D serves as a prognostic predictor and a new target for developing therapeutics to treat glioma.
Collapse
Affiliation(s)
- Qianxu Jin
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiahui Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zijun Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shiyang Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhimin Sun
- Department of Neurosurgery, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Yunpeng Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongshan Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yizheng Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Regulation of Multifunctional Calcium/Calmodulin Stimulated Protein Kinases by Molecular Targeting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:649-679. [PMID: 31646529 DOI: 10.1007/978-3-030-12457-1_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multifunctional calcium/calmodulin-stimulated protein kinases control a broad range of cellular functions in a multitude of cell types. This family of kinases contain several structural similarities and all are regulated by phosphorylation, which either activates, inhibits or modulates their kinase activity. As these protein kinases are widely or ubiquitously expressed, and yet regulate a broad range of different cellular functions, additional levels of regulation exist that control these cell-specific functions. Of particular importance for this specificity of function for multifunctional kinases is the expression of specific binding proteins that mediate molecular targeting. These molecular targeting mechanisms allow pools of kinase in different cells, or parts of a cell, to respond differently to activation and produce different functional outcomes.
Collapse
|
5
|
Gómez-Hierro A, Lambea E, Giménez-Zaragoza D, López-Avilés S, Yance-Chávez T, Montserrat M, Pujol MJ, Bachs O, Aligue R. Ssp1 CaMKK: A Sensor of Actin Polarization That Controls Mitotic Commitment through Srk1 in Schizosaccharomyces pombe. PLoS One 2015; 10:e0143037. [PMID: 26575035 PMCID: PMC4648557 DOI: 10.1371/journal.pone.0143037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/29/2015] [Indexed: 11/18/2022] Open
Abstract
Background Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is required for diverse cellular functions. Mammalian CaMKK activates CaMKs and also the evolutionarily-conserved AMP-activated protein kinase (AMPK). The fission yeast Schizosaccharomyces pombe CaMKK, Ssp1, is required for tolerance to limited glucose through the AMPK, Ssp2, and for the integration of cell growth and division through the SAD kinase Cdr2. Results Here we report that Ssp1 controls the G2/M transition by regulating the activity of the CaMK Srk1. We show that inhibition of Cdc25 by Srk1 is regulated by Ssp1; and also that restoring growth polarity and actin localization of ssp1-deleted cells by removing the actin-monomer-binding protein, twinfilin, is sufficient to suppress the ssp1 phenotype. Conclusions These findings demonstrate that entry into mitosis is mediated by a network of proteins, including the Ssp1 and Srk1 kinases. Ssp1 connects the network of components that ensures proper polarity and cell size with the network of proteins that regulates Cdk1-cyclin B activity, in which Srk1 plays an inhibitory role.
Collapse
Affiliation(s)
- Alba Gómez-Hierro
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain
| | - Eva Lambea
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain
| | - David Giménez-Zaragoza
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain
| | | | - Tula Yance-Chávez
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain
| | - Marta Montserrat
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain
| | - M. Jesús Pujol
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain
| | - Oriol Bachs
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain
| | - Rosa Aligue
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain
- * E-mail:
| |
Collapse
|
6
|
Cisneros-Barroso E, Yance-Chávez T, Kito A, Sugiura R, Gómez-Hierro A, Giménez-Zaragoza D, Aligue R. Negative feedback regulation of calcineurin-dependent Prz1 transcription factor by the CaMKK-CaMK1 axis in fission yeast. Nucleic Acids Res 2014; 42:9573-87. [PMID: 25081204 PMCID: PMC4150787 DOI: 10.1093/nar/gku684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcium signals trigger the translocation of the Prz1 transcription factor from the cytoplasm to the nucleus. The process is regulated by the calcium-activated phosphatase calcineurin, which activates Prz1 thereby maintaining active transcription during calcium signalling. When calcium signalling ceases, Prz1 is inactivated by phosphorylation and exported to the cytoplasm. In budding yeast and mammalian cells, different kinases have been reported to counter calcineurin activity and regulate nuclear export. Here, we show that the Ca(2+)/calmodulin-dependent kinase Cmk1 is first phosphorylated and activated by the newly identified kinase CaMKK2 homologue, Ckk2, in response to Ca(2+). Then, active Cmk1 binds, phosphorylates and inactivates Prz1 transcription activity whilst at the same time cmk1 expression is enhanced by Prz1 in response to Ca(2+). Furthermore, Cdc25 phosphatase is also phosphorylated by Cmk1, inducing cell cycle arrest in response to an increase in Ca(2+). Moreover, cmk1 deletion shows a high tolerance to chronic exposure to Ca(2+), due to the lack of cell cycle inhibition and elevated Prz1 activity. This work reveals that Cmk1 kinase activated by the newly identified Ckk2 counteracts calcineurin function by negatively regulating Prz1 activity which in turn is involved in activating cmk1 gene transcription. These results are the first insights into Cmk1 and Ckk2 function in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Eugenia Cisneros-Barroso
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| | - Tula Yance-Chávez
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| | - Ayako Kito
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Alba Gómez-Hierro
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| | - David Giménez-Zaragoza
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| | - Rosa Aligue
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| |
Collapse
|
7
|
Kaneko K, Tabuchi M, Sueyoshi N, Ishida A, Utsumi T, Kameshita I. Cellular localization of CoPK12, a Ca(2+)/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea, is regulated by N-myristoylation. J Biochem 2014; 156:51-61. [PMID: 24659342 DOI: 10.1093/jb/mvu018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) have been extensively studied in mammals, whereas fungus CaMKs still remain largely uncharacterized. We previously obtained CaMK homolog in Coprinopsis cinerea, designated CoPK12, and revealed its unique catalytic properties in comparison with the mammalian CaMKs. To further clarify the regulatory mechanisms of CoPK12, we investigated post-translational modification and subcellular localization of CoPK12 in this study. In C. cinerea, full-length CoPK12 (65 kDa) was fractionated in the membrane fraction, while the catalytically active fragment (46 kDa) of CoPK12 was solely detected in the soluble fraction by differential centrifugation. Expressed CoPK12-GFP was localized on the cytoplasmic and vacuolar membranes as visualized by green fluorescence in yeast cells. In vitro N-myristoylation assay revealed that CoPK12 is N-myristoylated at Gly-2 in the N-terminal position. Furthermore, calmodulin could bind not only to CaM-binding domain but also to the N-terminal myristoyl moiety of CoPK12. These results, taken together, suggest that the cellular localization and function of CoPK12 are regulated by protein N-myristoylation and limited proteolysis.
Collapse
Affiliation(s)
- Keisuke Kaneko
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Mitsuaki Tabuchi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Atsuhiko Ishida
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Toshihiko Utsumi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
8
|
Kumar R, Tamuli R. Calcium/calmodulin-dependent kinases are involved in growth, thermotolerance, oxidative stress survival, and fertility in Neurospora crassa. Arch Microbiol 2014; 196:295-305. [PMID: 24570326 DOI: 10.1007/s00203-014-0966-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
Calcium/calmodulin-dependent kinases (Ca(2+)/CaMKs) are Ser/Thr protein kinases that respond to change in cytosolic free Ca(2+) ([Ca(2+)]c) and play multiple cellular roles in organisms ranging from fungi to humans. In the filamentous fungus Neurospora crassa, four Ca(2+)/CaM-dependent kinases, Ca(2+)/CaMK-1 to 4, are encoded by the genes NCU09123, NCU02283, NCU06177, and NCU09212, respectively. We found that camk-1 and camk-2 are essential for full fertility in N. crassa. The survival of ∆camk-2 mutant was increased in induced thermotolerance and oxidative stress conditions. In addition, the ∆camk-1 ∆camk-2, ∆camk-4 ∆camk-2, and ∆camk-3 ∆camk-2 double mutants display slow growth phenotype, reduced aerial hyphae, decreased thermotolerance, and increased sensitivity to oxidative stress, revealing the genetic interactions among these kinases. Therefore, Ca(2+)/CaMKs are involved in growth, thermotolerance, oxidative stress tolerance, and fertility in N. crassa.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, 781 039, India
| | | |
Collapse
|
9
|
Skelding KA, Rostas JAP. The role of molecular regulation and targeting in regulating calcium/calmodulin stimulated protein kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:703-30. [PMID: 22453966 DOI: 10.1007/978-94-007-2888-2_31] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calcium/calmodulin-stimulated protein kinases can be classified as one of two types - restricted or multifunctional. This family of kinases contains several structural similarities: all possess a calmodulin binding motif and an autoinhibitory region. In addition, all of the calcium/calmodulin-stimulated protein kinases examined in this chapter are regulated by phosphorylation, which either activates or inhibits their kinase activity. However, as the multifunctional calcium/calmodulin-stimulated protein kinases are ubiquitously expressed, yet regulate a broad range of cellular functions, additional levels of regulation that control these cell-specific functions must exist. These additional layers of control include gene expression, signaling pathways, and expression of binding proteins and molecular targeting. All of the multifunctional calcium/calmodulin-stimulated protein kinases examined in this chapter appear to be regulated by these additional layers of control, however, this does not appear to be the case for the restricted kinases.
Collapse
Affiliation(s)
- Kathryn A Skelding
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
10
|
Rodriguez-Caban J, Gonzalez-Velazquez W, Perez-Sanchez L, Gonzalez-Mendez R, Rodriguez-del Valle N. Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 in Sporothrix schenckii: an RNAi and yeast two-hybrid study. BMC Microbiol 2011; 11:162. [PMID: 21745372 PMCID: PMC3146815 DOI: 10.1186/1471-2180-11-162] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background Sporothrix schenckii is a pathogenic dimorphic fungus of worldwide distribution. It grows in the saprophytic form with hyaline, regularly septated hyphae and pyriform conidia at 25°C and as the yeast or parasitic form at 35°C. Previously, we characterized a calcium/calmodulin kinase in this fungus. Inhibitors of this kinase were observed to inhibit the yeast cell cycle in S. schenckii. Results The presence of RNA interference (RNAi) mechanism in this fungus was confirmed by the identification of a Dicer-1 homologue in S. schenckii DNA. RNAi technology was used to corroborate the role of calcium/calmodulin kinase I in S. schenckii dimorphism. Yeast cells were transformed with the pSilent-Dual2G (pSD2G) plasmid w/wo inserts of the coding region of the calcium/calmodulin kinase I (sscmk1) gene. Transformants were selected at 35°C using resistance to geneticin. Following transfer to liquid medium at 35°C, RNAi transformants developed as abnormal mycelium clumps and not as yeast cells as would be expected. The level of sscmk1 gene expression in RNAi transformants at 35°C was less than that of cells transformed with the empty pSD2G at this same temperature. Yeast two-hybrid analysis of proteins that interact with SSCMK1 identified a homologue of heat shock protein 90 (HSP90) as interacting with this kinase. Growth of the fungus similar to that of the RNAi transformants was observed in medium with geldanamycin (GdA, 10 μM), an inhibitor of HSP90. Conclusions Using the RNAi technology we silenced the expression of sscmk1 gene in this fungus. RNAi transformants were unable to grow as yeast cells at 35°C showing decreased tolerance to this temperature. The interaction of SSCMK1 with HSP90, observed using the yeast two-hybrid assay suggests that this kinase is involved in thermotolerance through its interaction with HSP90. SSCMK1 interacted with the C terminal domain of HSP90 where effector proteins and co-chaperones interact. These results confirmed SSCMK1 as an important enzyme involved in the dimorphism of S. schenckii, necessary for the development of the yeast phase of this fungus. Also this study constitutes the first report of the transformation of S. schenckii and the use of RNAi to study gene function in this fungus.
Collapse
Affiliation(s)
- Jorge Rodriguez-Caban
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan, PR 00936-5067.
| | | | | | | | | |
Collapse
|
11
|
Tamuli R, Kumar R, Deka R. Cellular roles of neuronal calcium sensor-1 and calcium/calmodulin-dependent kinases in fungi. J Basic Microbiol 2010; 51:120-8. [PMID: 21077122 DOI: 10.1002/jobm.201000184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 08/03/2010] [Indexed: 11/07/2022]
Abstract
The neuronal calcium sensor-1 (NCS-1) possesses a consensus signal for N-terminal myristoylation and four EF-hand Ca(2+)-binding sites, and mediates the effects of cytosolic Ca(2+). Minute changes in free intracellular Ca(2+) are quickly transformed into changes in the activity of several kinases including calcium/calmodulin-dependent protein kinases (Ca(2+)/CaMKs) that are involved in regulating many eukaryotic cell functions. However, our current knowledge of NCS-1 and Ca(2+)/CaMKs comes mostly from studies of the mammalian enzymes. Thus far very few fungal homologues of NCS-1 and Ca(2+)/CaMKs have been characterized and little is known about their cellular roles. In this minireview, we describe the known sequences, interactions with target proteins and cellular roles of NCS-1 and Ca(2+)/CaMKs in fungi.
Collapse
Affiliation(s)
- Ranjan Tamuli
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, India.
| | | | | |
Collapse
|
12
|
Hanyu Y, Imai KK, Kawasaki Y, Nakamura T, Nakaseko Y, Nagao K, Kokubu A, Ebe M, Fujisawa A, Hayashi T, Obuse C, Yanagida M. Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMKK, and Sds23, a PP2A-related phosphatase inhibitor. Genes Cells 2009; 14:539-54. [PMID: 19371376 DOI: 10.1111/j.1365-2443.2009.01290.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium/calmodulin-dependent protein kinase (CaMK) is required for diverse cellular functions, and similar kinases exist in fungi. Although mammalian CaMK kinase (CaMKK) activates CaMK and also evolutionarily-conserved AMP-activated protein kinase (AMPK), CaMKK is yet to be established in yeast. We here report that the fission yeast Schizosaccharomyces pombe Ssp1 kinase, which controls G2/M transition and response to stress, is the putative CaMKK. Ssp1 has a CaM binding domain (CBD) and associates with 14-3-3 proteins as mammalian CaMKK does. Temperature-sensitive ssp1 mutants isolated are defective in the tolerance to limited glucose, and this tolerance requires the conserved stretch present between the kinase domain and CBD. Sds23, multi-copy suppressor for mutants defective in type 1 phosphatase and APC/cyclosome, also suppresses the ssp1 phenotype, and is required for the tolerance to limited glucose. We demonstrate that Sds23 binds to type 2A protein phosphatases (PP2A) and PP2A-related phosphatase Ppe1, and that Sds23 inhibits Ppe1 phosphatase activity. Ssp1 and Ppe1 thus seem to antagonize in utilizing limited glucose. We also show that Ppk9 and Ssp2 are the catalytic subunits of AMPK and AMPK-related kinases, respectively, which bind to common beta-(Amk2) and gamma-(Cbs2) subunits.
Collapse
Affiliation(s)
- Yuichiro Hanyu
- CREST Research Project, Japan Science Technology Corporation, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kaneko K, Yamada Y, Sueyoshi N, Watanabe A, Asada Y, Kameshita I. Novel Ca2+/calmodulin-dependent protein kinase expressed in actively growing mycelia of the basidiomycetous mushroom Coprinus cinereus. Biochim Biophys Acta Gen Subj 2008; 1790:71-9. [PMID: 18786613 DOI: 10.1016/j.bbagen.2008.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 07/18/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
We isolated cDNA clones for novel protein kinases by expression screening of a cDNA library from the basidiomycetous mushroom Coprinus cinereus. One of the isolated clones was found to encode a calmodulin (CaM)-binding protein consisting of 488 amino acid residues with a predicted molecular weight of 53,906, which we designated CoPK12. The amino acid sequence of the catalytic domain of CoPK12 showed 46% identity with those of rat Ca2+/CaM-dependent protein kinase (CaMK) I and CaMKIV. However, a striking difference between these kinases is that the critical Thr residue in the activating phosphorylation site of CaMKI/IV is replaced by a Glu residue at the identical position in CoPK12. As predicted from its primary sequence, CoPK12 was found to behave like an activated form of CaMKI phosphorylated by an upstream CaMK kinase, indicating that CoPK12 is a unique CaMK with different properties from those of the well-characterized CaMKI, II, and IV. CoPK12 was abundantly expressed in actively growing mycelia and phosphorylated various proteins, including endogenous substrates, in the presence of Ca2+/CaM. Treatment of mycelia of C. cinereus with KN-93, which was found to inhibit CoPK12, resulted in a significant reduction in growth rate of mycelia. These results suggest that CoPK12 is a new type of multifunctional CaMK expressed in C. cinereus, and that it may play an important role in the mycelial growth.
Collapse
Affiliation(s)
- Keisuke Kaneko
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Colomer J, Means AR. Physiological roles of the Ca2+/CaM-dependent protein kinase cascade in health and disease. Subcell Biochem 2008; 45:169-214. [PMID: 18193638 DOI: 10.1007/978-1-4020-6191-2_7] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous hormones, growth factors and physiological processes cause a rise in cytosolic Ca2+, which is translated into meaningful cellular responses by interacting with a large number of Ca2(+)-binding proteins. The Ca2(+)-binding protein that is most pervasive in mediating these responses is calmodulin (CaM), which acts as a primary receptor for Ca2+ in all eukaryotic cells. In turn, Ca2+/CaM functions as an allosteric activator of a host of enzymatic proteins including a considerable number of protein kinases. The topic of this review is to discuss the physiological roles of a sub-set of these protein kinases which can function in cells as a Ca2+/CaM-dependent kinase signaling cascade. The cascade was originally believed to consist of a CaM kinase kinase that phosphorylates and activates one of two CaM kinases, CaMKI or CaMKIV. The unusual aspect of this cascade is that both the kinase kinase and the kinase require the binding of Ca2+/CaM for activation. More recently, one of the CaM kinase kinases has been found to activate another important enzyme, the AMP-dependent protein kinase so the concept of the CaM kinase cascade must be expanded. A CaM kinase cascade is important for many normal physiological processes that when misregulated can lead to a variety of disease states. These processes include: cell proliferation and apoptosis that may conspire in the genesis of cancer; neuronal growth and function related to brain development, synaptic plasticity as well as memory formation and maintenance; proper function of the immune system including the inflammatory response, activation of T lymphocytes and hematopoietic stem cell maintenance; and the central control of energy balance that, when altered, can lead to obesity and diabetes. Although the study of the CaM-dependent kinase cascades is still in its infancy continued analysis of the pathways regulated by these Ca2(+)-initiated signaling cascades holds considerable promise for the future of disease-related research.
Collapse
Affiliation(s)
- J Colomer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center USA
| | | |
Collapse
|
15
|
Valle-Aviles L, Valentin-Berrios S, Gonzalez-Mendez RR, Rodriguez-Del Valle N. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii. BMC Microbiol 2007; 7:107. [PMID: 18047672 PMCID: PMC2242797 DOI: 10.1186/1471-2180-7-107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 11/29/2007] [Indexed: 11/17/2022] Open
Abstract
Background Sporothrix schenckii is a pathogenic, dimorphic fungus, the etiological agent of sporotrichosis, a subcutaneous lymphatic mycosis. Dimorphism in S. schenckii responds to second messengers such as cAMP and calcium, suggesting the possible involvement of a calcium/calmodulin kinase in its regulation. In this study we describe a novel calcium/calmodulin-dependent protein kinase gene in S. schenckii, sscmk1, and the effects of inhibitors of calmodulin and calcium/calmodulin kinases on the yeast to mycelium transition and the yeast cell cycle. Results Using the PCR homology approach a new member of the calcium/calmodulin kinase family, SSCMK1, was identified in this fungus. The cDNA sequence of sscmk1 revealed an open reading frame of 1,221 nucleotides encoding a 407 amino acid protein with a predicted molecular weight of 45.6 kDa. The genomic sequence of sscmk1 revealed the same ORF interrupted by five introns. Bioinformatic analyses of SSCMK1 showed that this protein had the distinctive features that characterize a calcium/calmodulin protein kinase: a serine/threonine protein kinase domain and a calmodulin-binding domain. When compared to homologues from seven species of filamentous fungi, SSCMK1 showed substantial similarities, except for a large and highly variable region that encompasses positions 330 – 380 of the multiple sequence alignment. Inhibition studies using calmodulin inhibitor W-7, and calcium/calmodulin kinase inhibitors, KN-62 and lavendustin C, were found to inhibit budding by cells induced to re-enter the yeast cell cycle and to favor the yeast to mycelium transition. Conclusion This study constitutes the first evidence of the presence of a calcium/calmodulin kinase-encoding gene in S. schenckii and its possible involvement as an effector of dimorphism in this fungus. These results suggest that a calcium/calmodulin dependent signaling pathway could be involved in the regulation of dimorphism in this fungus. The results suggest that the calcium/calmodulin kinases of yeasts are evolutionarily distinct from those in filamentous fungi.
Collapse
Affiliation(s)
- Liz Valle-Aviles
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan, PR 00936-5067, USA.
| | | | | | | |
Collapse
|
16
|
Uboha NV, Flajolet M, Nairn AC, Picciotto MR. A calcium- and calmodulin-dependent kinase Ialpha/microtubule affinity regulating kinase 2 signaling cascade mediates calcium-dependent neurite outgrowth. J Neurosci 2007; 27:4413-23. [PMID: 17442826 PMCID: PMC6672303 DOI: 10.1523/jneurosci.0725-07.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Calcium is a critical regulator of neuronal differentiation and neurite outgrowth during development, as well as synaptic plasticity in adulthood. Calcium- and calmodulin-dependent kinase I (CaMKI) can regulate neurite outgrowth; however, the signal transduction cascades that lead to its physiological effects have not yet been elucidated. CaMKIalpha was therefore used as bait in a yeast two-hybrid assay and microtubule affinity regulating kinase 2 (MARK2)/Par-1b was identified as an interacting partner of CaMKI in three independent screens. The interaction between CaMKI and MARK2 was confirmed in vitro and in vivo by coimmunoprecipitation. CaMKI binds MARK2 within its kinase domain, but only if it is activated by calcium and calmodulin. Expression of CaMKI and MARK2 in Neuro-2A (N2a) cells and in primary hippocampal neurons promotes neurite outgrowth, an effect dependent on the catalytic activities of these enzymes. In addition, decreasing MARK2 activity blocks the ability of the calcium ionophore ionomycin to promote neurite outgrowth. Finally, CaMKI phosphorylates MARK2 on novel sites within its kinase domain. Mutation of these phosphorylation sites decreases both MARK2 kinase activity and its ability to promote neurite outgrowth. Interaction of MARK2 with CaMKI results in a novel, calcium-dependent pathway that plays an important role in neuronal differentiation.
Collapse
Affiliation(s)
- Nataliya V. Uboha
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, and
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021
| | - Angus C. Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, and
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, and
| |
Collapse
|
17
|
Tokumitsu H, Hatano N, Inuzuka H, Sueyoshi Y, Yokokura S, Ichimura T, Nozaki N, Kobayashi R. Phosphorylation of Numb Family Proteins. J Biol Chem 2005; 280:35108-18. [PMID: 16105844 DOI: 10.1074/jbc.m503912200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To search for the substrates of Ca2+/calmodulin-dependent protein kinase I (CaM-KI), we performed affinity chromatography purification using either the unphosphorylated or phosphorylated (at Thr177) GST-fused CaM-KI catalytic domain (residues 1-293, K49E) as the affinity ligand. Proteomic analysis was then carried out to identify the interacting proteins. In addition to the detection of two known CaM-KI substrates (CREB and synapsin I), we identified two Numb family proteins (Numb and Numbl) from rat tissues. These proteins were unphosphorylated and were bound only to the Thr177-phosphorylated CaM-KI catalytic domain. This finding is consistent with the results demonstrating that Numb and Numbl were efficiently and stoichiometrically phosphorylated in vitro at equivalent Ser residues (Ser264 in Numb and Ser304 in Numbl) by activated CaM-KI and also by two other CaM-Ks (CaM-KII and CaM-KIV). Using anti-phospho-Numb/Numbl antibody, we observed the phosphorylation of Numb family proteins in various rat tissue extracts, and we also detected the ionomycin-induced phosphorylation of endogenous Numb at Ser264 in COS-7 cells. The present results revealed that the Numb family proteins are phosphorylated in vivo as well as in vitro. Furthermore, we found that the recruitment of 14-3-3 proteins was the functional consequence of the phosphorylation of the Numb family proteins. Interaction of 14-3-3 protein with phosphorylated Numbl-blocked dephosphorylation of Ser304. Taken together, these results indicate that the Numb family proteins may be intracellular targets for CaM-Ks, and they may also be regulated by phosphorylation-dependent interaction with 14-3-3 protein.
Collapse
Affiliation(s)
- Hiroshi Tokumitsu
- Department of Signal Transduction Sciences, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Peng X, Karuturi RKM, Miller LD, Lin K, Jia Y, Kondu P, Wang L, Wong LS, Liu ET, Balasubramanian MK, Liu J. Identification of cell cycle-regulated genes in fission yeast. Mol Biol Cell 2004; 16:1026-42. [PMID: 15616197 PMCID: PMC551471 DOI: 10.1091/mbc.e04-04-0299] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we identified 747 genes that met the criteria for cell cycle-regulated expression. Peaks of gene expression were found to be distributed throughout the entire cell cycle. Furthermore, we found that four promoter motifs exhibited strong association with cell cycle phase-specific expression. Examination of the regulation of MCB motif-containing genes through the perturbation of DNA synthesis control/MCB-binding factor (DSC/MBF)-mediated transcription in arrested synchronous cdc10 mutant cell cultures revealed a subset of functional targets of the DSC/MBF transcription factor complex, as well as certain gene promoter requirements. Finally, we compared our data with those for the budding yeast Saccharomyces cerevisiae and found approximately 140 genes that are cell cycle regulated in both yeasts, suggesting that these genes may play an evolutionarily conserved role in regulation of cell cycle-specific processes. Our complete data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/CDC.
Collapse
Affiliation(s)
- Xu Peng
- Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Stedman DR, Uboha NV, Stedman TT, Nairn AC, Picciotto MR. Cytoplasmic localization of calcium/calmodulin-dependent protein kinase I-alpha depends on a nuclear export signal in its regulatory domain. FEBS Lett 2004; 566:275-80. [PMID: 15147908 DOI: 10.1016/j.febslet.2004.04.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 04/15/2004] [Accepted: 04/19/2004] [Indexed: 12/01/2022]
Abstract
Calcium/calmodulin-dependent protein kinase I-alpha (CaMKI-alpha) is a ubiquitous cytosolic enzyme that phosphorylates a number of nuclear proteins in vitro and has been implicated in transcriptional regulation. We report that cytoplasmic localization of CaMKI-alpha depends on CRM1-mediated nuclear export mediated through a Rev-like nuclear export signal in the CaMKI-alpha regulatory domain. Interaction of CaMKI-alpha with a CRM1 complex in vitro is enhanced by incubation with calcium/calmodulin. Translocation of CaMKI-alpha into the nucleus involves a conserved sequence located within the catalytic core. Mutation of this sequence partially blocks nuclear entry of an export-impaired mutant of CaMKI-alpha.
Collapse
Affiliation(s)
- Diann R Stedman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street - 3rd Floor Research, New Haven, CT 05608, USA
| | | | | | | | | |
Collapse
|
20
|
Adamíková L, Straube A, Schulz I, Steinberg G. Calcium signaling is involved in dynein-dependent microtubule organization. Mol Biol Cell 2004; 15:1969-80. [PMID: 14742707 PMCID: PMC379291 DOI: 10.1091/mbc.e03-09-0675] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule cytoskeleton supports cellular morphogenesis and polar growth, but the underlying mechanisms are not understood. In a screen for morphology mutants defective in microtubule organization in the fungus Ustilago maydis, we identified eca1 that encodes a sarcoplasmic/endoplasmic calcium ATPase. Eca1 resides in the endoplasmic reticulum and restores growth of a yeast mutant defective in calcium homeostasis. Deletion of eca1 resulted in elevated cytosolic calcium levels and a severe growth and morphology defect. While F-actin and myosin V distribution is unaffected, Deltaeca1 mutants contain longer and disorganized microtubules that show increased rescue and reduced catastrophe frequencies. Morphology can be restored by inhibition of Ca(2+)/calmodulin-dependent kinases or destabilizing microtubules, indicating that calcium-dependent alterations in dynamic instability are a major cause of the growth defect. Interestingly, dynein mutants show virtually identical changes in microtubule dynamics and dynein-dependent ER motility was drastically decreased in Deltaeca1. This indicates a connection between calcium signaling, dynein, and microtubule organization in morphogenesis of U. maydis.
Collapse
Affiliation(s)
- L'ubica Adamíková
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strabetae, D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
21
|
Qin H, Raught B, Sonenberg N, Goldstein EG, Edelman AM. Phosphorylation screening identifies translational initiation factor 4GII as an intracellular target of Ca(2+)/calmodulin-dependent protein kinase I. J Biol Chem 2003; 278:48570-9. [PMID: 14507913 DOI: 10.1074/jbc.m308781200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CaMKI is a Ca2+/calmodulin-dependent protein kinase that is widely expressed in eukaryotic cells and tissues but for which few, if any, physiological substrates are known. We screened a human lung cDNA expression library for potential CaMKI substrates by solid phase in situ phosphorylation ("phosphorylation screening"). Multiple overlapping partial length cDNAs encoding three proteins were detected. Two of these proteins are known: 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase and eukaryotic translation initiation factor (eIF) 4GII. To determine whether CaMKI substrates identified by phosphorylation screening represent authentic physiological targets, we examined the potential for [Ca2+]i- and CaMKI-dependent phosphorylation of eIF4GII in vitro and in vivo. Endogenous eIF4GII immunoprecipitated from HEK293T cells was phosphorylated by CaMKI, in vitro as was a recombinant fragment of eIF4GII encompassing the central and C-terminal regions. The latter phosphorylation occurred with favorable kinetics (Km = 1 microm; kcat = 1.8 s-1) at a single site, Ser1156, located in a segment of eIF4GII aligning with the phosphoregion of eIF4GI. Phosphopeptide mapping and back phosphorylation experiments revealed [Ca2+]i-dependent, CaMKI site-specific, eIF4GII phosphorylation in vivo. This phosphorylation was blocked by kinase-negative CaMKI consistent with a requirement for endogenous CaMKI for in vivo eIF4GII phosphorylation. We conclude that phosphorylation screening is an effective method for searching for intracellular targets of CaMKI and may have identified a new role of Ca2+ signaling to the translation apparatus.
Collapse
Affiliation(s)
- Hui Qin
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
22
|
Asp E, Sunnerhagen P. Mkp1 and Mkp2, two MAPKAP-kinase homologues in Schizosaccharomyces pombe, interact with the MAP kinase Sty1. Mol Genet Genomics 2003; 268:585-97. [PMID: 12589433 DOI: 10.1007/s00438-002-0786-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2002] [Accepted: 11/08/2002] [Indexed: 11/29/2022]
Abstract
Mkp1 ( MAPKAP kinase Schizosaccharomyces pombe 1) and Mkp2 are two members from fission yeast of the sub-class of putative MAPK-activated protein kinases in yeasts, the other known members being Rck1 and Rck2 from Saccharomyces cerevisiae. The Mkp1 protein is readily co-immunoprecipitated with Sty1 from S. pombe extracts; Mkp2 shows a weaker interaction with Sty1. In mkp1 mutants, conjugation and meiosis proceed more readily and rapidly than in wild-type cells, in analogy to what was previously found for S. cerevisiae rck1 mutants. Conversely, overexpression of mkp1(+) delays meiosis. Mkp1 is phosphorylated in vivo in a sty1(+)-dependent manner; this modification is removed when cells are starved for nitrogen, a condition that is conducive to entry into stationary phase and meiosis. Overexpression of mkp1(+), like a sty1 mutation, also causes vegetative cells to elongate. The level of Mkp1 phosphorylation drops as cells enter mitosis. We have localised Mkp1 to the cytoplasm, excluded from the nucleus, in vegetative cells. The Mkp1 protein accumulates in zygotic asci and is concentrated within spores. The mkp2(+) gene has no noticeable impact on meiosis. Mkp2 is excluded from the nucleus in vegetative cells, and is concentrated at the septa of dividing cells. Mkp2 does not accumulate in meiotic cells.
Collapse
Affiliation(s)
- E Asp
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, P.O. Box 462, 405 30, Göteborg, Sweden
| | | |
Collapse
|
23
|
Abstract
The cmk2 gene of Schizosaccharomyces pombe encodes a 504 amino acid protein kinase with sequence homology with the calmodulin-dependent protein kinase family. The cmk2(+) gene is not essential for cell viability but overexpression of cmk2(+) blocks the cell cycle at G2 phase and this inhibition is cdc2-dependent. The Cmk2 is a cytoplasmic protein expressed in a cell cycle-dependent manner, peaking at the G1/S boundary. Overexpression of Cmk2 suppresses fission yeast DNA replication checkpoint defects but not DNA damage checkpoint defects, suggesting that the G2 cell cycle arrest mediated by high levels of Cmk2 provides sufficient time to correct DNA replication alterations.
Collapse
Affiliation(s)
- Vicenç Alemany
- Departament de Biologia Cellular, Institut de Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona, Spain
| | | | | | | |
Collapse
|
24
|
Tsai PJ, Tu J, Chen TH. Cloning of a Ca(2+)/calmodulin-dependent protein kinase gene from the filamentous fungus Arthrobotrys dactyloides. FEMS Microbiol Lett 2002; 212:7-13. [PMID: 12076780 DOI: 10.1111/j.1574-6968.2002.tb11237.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A Ca(2+)/calmodulin-dependent protein kinase (CaMK) gene was cloned and characterized from Arthrobotrys dactyloides, a nematode-trapping fungus. The resulting 373-amino-acid protein, FCaMK, has significant homology to mammalian CaMKs. FCaMK contains a serine/threonine kinase domain followed by a calmodulin-binding domain. The activation loop in FCaMK (amino acids 184-199) contains a phosphorylation site at threonine-188, which could be the target of a kinase activator. Truncated FCaMK mutants revealed that amino acids 296-324 are essential for calmodulin binding. An oligopeptide designed from residues 297-324 formed a stable peptide-calmodulin complex of 1:1 stoichiometry. Southern blot analysis detected a single copy of the fcamk gene, suggesting that FCaMK plays an important role in Ca(2+)/calmodulin signaling in A. dactyloides.
Collapse
Affiliation(s)
- Pui-Jen Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 107, Republic of China.
| | | | | |
Collapse
|
25
|
Abstract
Calmodulin (CaM) is an essential protein that serves as a ubiquitous intracellular receptor for Ca(2+). The Ca(2+)/CaM complex initiates a plethora of signaling cascades that culminate in alteration of cellular functions. Among the many Ca(2+)/CaM-binding proteins to be discovered, the multifunctional protein kinases CaMKI, II, and IV play pivotal roles. Our review focuses on this class of CaM kinases to illustrate the structural and biochemical basis for Ca(2+)/CaM interaction with and regulation of its target enzymes. Gene transcription has been chosen as the functional endpoint to illustrate the recent advances in Ca(2+)/CaM-mediated signal transduction mechanisms.
Collapse
Affiliation(s)
- S S Hook
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | |
Collapse
|
26
|
Corcoran EE, Means AR. Defining Ca2+/calmodulin-dependent protein kinase cascades in transcriptional regulation. J Biol Chem 2001; 276:2975-8. [PMID: 11096122 DOI: 10.1074/jbc.r000027200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- E E Corcoran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
27
|
Joseph JD, Means AR. Identification and characterization of two Ca2+/CaM-dependent protein kinases required for normal nuclear division in Aspergillus nidulans. J Biol Chem 2000; 275:38230-8. [PMID: 10988293 DOI: 10.1074/jbc.m006422200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We utilized an expression screen to identify two novel Ca(2+)/calmodulin (CaM)-regulated protein kinases in Aspergillus nidulans. The two kinases, CMKB and CMKC, possess high sequence identity with mammalian CaM kinases (CaMKs) I/IV and CaMKKalpha/beta, respectively. In vitro CMKC phosphorylates and increases the activity of CMKB, indicating they are biochemical homologues of CaMKKalpha/beta and CaMKI/IV. The disruption of CMKB is lethal; however, when protein expression is postponed, the spores germinate with delayed kinetics. The observed lag corresponds to a delay in the G(1)-phase activation of the cyclin-dependent kinase NIMX(cdc2). Disruption of cmkC is not lethal, but spores lacking CMKC also germinate with delayed kinetics and a lag in the activation of NIMX(cdc2). Analysis of DeltacmkC suggests a role for CMKC in regulating the first and subsequent nuclear division cycles. We conclude that both CMKB and CMKC are required for the proper temporal activation of NIMX(cdc2) as spores enter the cell cycle from quiescence and suggest that this relationship exists during the G(1)/S transition of subsequent cell divisions.
Collapse
Affiliation(s)
- J D Joseph
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|