1
|
Cross-Regulation of the Cellular Redox System, Oxygen, and Sphingolipid Signalling. Metabolites 2023; 13:metabo13030426. [PMID: 36984866 PMCID: PMC10054022 DOI: 10.3390/metabo13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Redox-active mediators are now appreciated as powerful molecules to regulate cellular dynamics such as viability, proliferation, migration, cell contraction, and relaxation, as well as gene expression under physiological and pathophysiological conditions. These molecules include the various reactive oxygen species (ROS), and the gasotransmitters nitric oxide (NO∙), carbon monoxide (CO), and hydrogen sulfide (H2S). For each of these molecules, direct targets have been identified which transmit the signal from the cellular redox state to a cellular response. Besides these redox mediators, various sphingolipid species have turned out as highly bioactive with strong signalling potential. Recent data suggest that there is a cross-regulation existing between the redox mediators and sphingolipid molecules that have a fundamental impact on a cell’s fate and organ function. This review will summarize the effects of the different redox-active mediators on sphingolipid signalling and metabolism, and the impact of this cross-talk on pathophysiological processes. The relevance of therapeutic approaches will be highlighted.
Collapse
|
2
|
Ishii T, Warabi E, Mann GE. Stress Activated MAP Kinases and Cyclin-Dependent Kinase 5 Mediate Nuclear Translocation of Nrf2 via Hsp90α-Pin1-Dynein Motor Transport Machinery. Antioxidants (Basel) 2023; 12:antiox12020274. [PMID: 36829834 PMCID: PMC9952688 DOI: 10.3390/antiox12020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Non-lethal low levels of oxidative stress leads to rapid activation of the transcription factor nuclear factor-E2-related factor 2 (Nrf2), which upregulates the expression of genes important for detoxification, glutathione synthesis, and defense against oxidative damage. Stress-activated MAP kinases p38, ERK, and JNK cooperate in the efficient nuclear accumulation of Nrf2 in a cell-type-dependent manner. Activation of p38 induces membrane trafficking of a glutathione sensor neutral sphingomyelinase 2, which generates ceramide upon depletion of cellular glutathione. We previously proposed that caveolin-1 in lipid rafts provides a signaling hub for the phosphorylation of Nrf2 by ceramide-activated PKCζ and casein kinase 2 to stabilize Nrf2 and mask a nuclear export signal. We further propose a mechanism of facilitated Nrf2 nuclear translocation by ERK and JNK. ERK and JNK phosphorylation of Nrf2 induces the association of prolyl cis/trans isomerase Pin1, which specifically recognizes phosphorylated serine or threonine immediately preceding a proline residue. Pin1-induced structural changes allow importin-α5 to associate with Nrf2. Pin1 is a co-chaperone of Hsp90α and mediates the association of the Nrf2-Pin1-Hsp90α complex with the dynein motor complex, which is involved in transporting the signaling complex to the nucleus along microtubules. In addition to ERK and JNK, cyclin-dependent kinase 5 could phosphorylate Nrf2 and mediate the transport of Nrf2 to the nucleus via the Pin1-Hsp90α system. Some other ERK target proteins, such as pyruvate kinase M2 and hypoxia-inducible transcription factor-1, are also transported to the nucleus via the Pin1-Hsp90α system to modulate gene expression and energy metabolism. Notably, as malignant tumors often express enhanced Pin1-Hsp90α signaling pathways, this provides a potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence:
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Giovanni E. Mann
- King’s British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
3
|
Sindhu S, Leung YH, Arefanian H, Madiraju SRM, Al‐Mulla F, Ahmad R, Prentki M. Neutral sphingomyelinase-2 and cardiometabolic diseases. Obes Rev 2021; 22:e13248. [PMID: 33738905 PMCID: PMC8365731 DOI: 10.1111/obr.13248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Sphingolipids, in particular ceramides, play vital role in pathophysiological processes linked to metabolic syndrome, with implications in the development of insulin resistance, pancreatic ß-cell dysfunction, type 2 diabetes, atherosclerosis, inflammation, nonalcoholic steatohepatitis, and cancer. Ceramides are produced by the hydrolysis of sphingomyelin, catalyzed by different sphingomyelinases, including neutral sphingomyelinase 2 (nSMase2), whose dysregulation appears to underlie many of the inflammation-related pathologies. In this review, we discuss the current knowledge on the biochemistry of nSMase2 and ceramide production and its regulation by inflammatory cytokines, with particular reference to cardiometabolic diseases. nSMase2 contribution to pathogenic processes appears to involve cyclical feed-forward interaction with proinflammatory cytokines, such as TNF-α and IL-1ß, which activate nSMase2 and the production of ceramides, that in turn triggers the synthesis and release of inflammatory cytokines. We elaborate these pathogenic interactions at the molecular level and discuss the potential therapeutic benefits of inhibiting nSMase2 against inflammation-driven cardiometabolic diseases.
Collapse
Affiliation(s)
- Sardar Sindhu
- Animal and Imaging core facilityDasman Diabetes InstituteDasmanKuwait
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Hossein Arefanian
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - S. R. Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Fahd Al‐Mulla
- Department of Genetics and BioinformaticsDasman Diabetes InstituteDasmanKuwait
| | - Rasheed Ahmad
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| |
Collapse
|
4
|
Zhou Y, Lin XW, Begum MA, Zhang CH, Shi XX, Jiao WJ, Zhang YR, Yuan JQ, Li HY, Yang Q, Mao C, Zhu ZR. Identification and characterization of Laodelphax striatellus (Insecta: Hemiptera: Delphacidae) neutral sphingomyelinase. INSECT MOLECULAR BIOLOGY 2017; 26:392-402. [PMID: 28374513 DOI: 10.1111/imb.12302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The neutral sphingomyelinase (nSMase) 1 homologue gene LsSMase was cloned from Laodelphax striatellus, a direct sap-sucker and virus vector of gramineous plants, and expressed via a Bac to Bac baculovirus expression system. The LsSMase-enhanced green fluorescent protein fusion protein was located in the endoplasmic reticulum in a similar manner to mammalian nSMase 1. The biochemical properties of LsSMase were determined in detail. The optimal pH and temperature for recombinant LsSMase were 8 and 37 °C, respectively. LsSMase was an Mg2+ or Mn2+ dependent enzyme, but different concentration of each were needed. The activity of LsSMase was significantly stimulated by Ethylene glycol bis(2-aminoethyl ether)tetraacetic acid (EGTA), whereas it was inhibited by ethylenediaminetetraacetic acid. Millimolar concentrations of Zn2+ completely inhibited LsSMase. The reducing agents dithiothreitol and β-mercaptoethanol varied in their effects on activity. Phospholipids were not found to stimulate LsSMase.
Collapse
Affiliation(s)
- Y Zhou
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - X-W Lin
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - M-A Begum
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - C-H Zhang
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - X-X Shi
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - W-J Jiao
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Y-R Zhang
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - J-Q Yuan
- Center for Chemical Analysis and Detection, Zhejiang University, Hangzhou, Zhejiang, China
| | - H-Y Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Q Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - C Mao
- Department of Medicine, State University of New York at Stony Brook. Stony Brook, NY, USA
| | - Z-R Zhu
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
El Ridi R, Tallima H, Migliardo F. Biochemical and biophysical methodologies open the road for effective schistosomiasis therapy and vaccination. Biochim Biophys Acta Gen Subj 2016; 1861:3613-3620. [PMID: 27062905 DOI: 10.1016/j.bbagen.2016.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Schistosomiasis caused by blood-dwelling flukes, namely Schistosoma mansoni and Schistosoma haematobium is a severe debilitating disease, widespread in sub-Saharan Africa, the Middle East, and South America. Developing and adult worms are unscathed by the surrounding immune effectors and antibodies because the parasite is protected by a double lipid bilayer armor which allows access of nutrients, while binding of specific antibodies is denied. SCOPE OF REVIEW Fluorescence recovery after bleaching, extraction of surface membrane cholesterol by methyl-β-cyclodextrin, inhibition and activation of sphingomyelin biosynthesis and hydrolysis, and elastic incoherent and quasi-elastic neutron scattering approaches have helped to clarify the basic mechanism of this immune evasion, and showed that sphingomyelin (SM) molecules in the worm apical lipid bilayer form with surrounding water molecules a tight hydrogen bond barrier. Viability of the parasite and permeability of the outer shield are controlled by equilibrium between SM biosynthesis and activity of a tegument-associated neutral sphingomyelinase (nSMase). MAJOR CONCLUSIONS Excessive nSMase activation by polyunsaturated fatty acids (PUFA), such as arachidonic acid (ARA) leads to disruption of the SM molecules and associated hydrogen bond network, with subsequent access of host antibodies and immune effectors to the outer membrane and eventual parasite death. GENERAL SIGNIFICANCE ARA was predicted and shown to be a potent schistosomicide in vitro and in vivo in experimental animals and in children. Additionally, it was advocated that schistosomiasis vaccine candidates should be selected uniquely among excretory-secretory products of developing worms, as contrary to cytosolic and surface membrane antigens, they are able to activate the effector functions of the host antibodies and toxic molecules. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo".
Collapse
Affiliation(s)
- Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt; Department of Chemistry, School of Science and Engineering, American University in Cairo, New Cairo, 11835 Cairo, Egypt
| | - Federica Migliardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
6
|
Bienias K, Fiedorowicz A, Sadowska A, Prokopiuk S, Car H. Regulation of sphingomyelin metabolism. Pharmacol Rep 2016; 68:570-81. [PMID: 26940196 DOI: 10.1016/j.pharep.2015.12.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/24/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022]
Abstract
Sphingolipids (SFs) represent a large class of lipids playing diverse functions in a vast number of physiological and pathological processes. Sphingomyelin (SM) is the most abundant SF in the cell, with ubiquitous distribution within mammalian tissues, and particularly high levels in the Central Nervous System (CNS). SM is an essential element of plasma membrane (PM) and its levels are crucial for the cell function. SM content in a cell is strictly regulated by the enzymes of SM metabolic pathways, which activities create a balance between SM synthesis and degradation. The de novo synthesis via SM synthases (SMSs) in the last step of the multi-stage process is the most important pathway of SM formation in a cell. The SM hydrolysis by sphingomyelinases (SMases) increases the concentration of ceramide (Cer), a bioactive molecule, which is involved in cellular proliferation, growth and apoptosis. By controlling the levels of SM and Cer, SMSs and SMases maintain cellular homeostasis. Enzymes of SM cycle exhibit unique properties and diverse tissue distribution. Disturbances in their activities were observed in many CNS pathologies. This review characterizes the physiological roles of SM and enzymes controlling SM levels as well as their involvement in selected pathologies of the Central Nervous System, such as ischemia/hypoxia, Alzheimer disease (AD), Parkinson disease (PD), depression, schizophrenia and Niemann Pick disease (NPD).
Collapse
Affiliation(s)
- Kamil Bienias
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Anna Fiedorowicz
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland; Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Sławomir Prokopiuk
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland.
| |
Collapse
|
7
|
Ong WY, Herr DR, Farooqui T, Ling EA, Farooqui AA. Role of sphingomyelinases in neurological disorders. Expert Opin Ther Targets 2015; 19:1725-42. [DOI: 10.1517/14728222.2015.1071794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Ahn KH, Kim SK, Choi JM, Jung SY, Won JH, Back MJ, Fu Z, Jang JM, Ha HC, Kim DK. Identification of Heat Shock Protein 60 as a Regulator of Neutral Sphingomyelinase 2 and Its Role in Dopamine Uptake. PLoS One 2013; 8:e67216. [PMID: 23840630 PMCID: PMC3686747 DOI: 10.1371/journal.pone.0067216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 05/21/2013] [Indexed: 11/18/2022] Open
Abstract
Activation of sphingomyelinase (SMase) by extracellular stimuli is the major pathway for cellular production of ceramide, a bioactive lipid mediator acting through sphingomyelin (SM) hydrolysis. Previously, we reported the existence of six forms of neutral pH–optimum and Mg2+-dependent SMase (N-SMase) in the membrane fractions of bovine brain. Here, we focus on N-SMase ε from salt-extracted membranes. After extensive purification by 12,780-fold with a yield of 1.3%, this enzyme was eventually characterized as N-SMase2. The major single band of 60-kDa molecular mass in the active fractions of the final purification step was identified as heat shock protein 60 (Hsp60) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Proximity ligation assay and immunoprecipitation study showed that Hsp60 interacted with N-SMase2, prompting us to examine the effect of Hsp60 on N-SMase2 and ceramide production. Interestingly, Hsp60 siRNA treatment significantly increased the protein level of N-SMase2 in N-SMase2-overexpressed HEK293 cells. Furthermore, transfection of Hsp60 siRNA into PC12 cells effectively increased both N-SMase activity and ceramide production and increased dopamine re-uptake with paralleled increase. Taken together, these results show that Hsp60 may serve as a negative regulator in N-SMase2-induced dopamine re-uptake by decreasing the protein level of N-SMase2.
Collapse
Affiliation(s)
- Kyong-Hoon Ahn
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul, South Korea
| | - Seok-Kyun Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul, South Korea
| | - Jong-Min Choi
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul, South Korea
| | - Sung-Yun Jung
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul, South Korea
| | - Jong-Hoon Won
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul, South Korea
| | - Moon-Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul, South Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul, South Korea
| | - Ji-Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul, South Korea
| | - Hae-Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul, South Korea
| | - Dae-Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul, South Korea
- * E-mail:
| |
Collapse
|
9
|
Abstract
Sphingolipids are an important class of lipid molecules that play fundamental roles in our cells and body. Beyond a structural role, it is now clearly established that sphingolipids serve as bioactive signaling molecules to regulate diverse processes including inflammatory signaling, cell death, proliferation, and pain sensing. Sphingolipid metabolites have been implicated in the onset and progression of various diseases including cancer, lung disease, diabetes, and lysosomal storage disorders. Here we review sphingolipid metabolism to introduce basic concepts as well as emerging complexities in sphingolipid function gained from modern technological advances and detailed cell and animal studies. Furthermore, we discuss the family of neutral sphingomyelinases (N-SMases), which generate ceramide through the hydrolysis of sphingomyelin and are key enzymes in sphingolipid metabolism. Four mammalian N-SMase enzymes have now been identified. Most prominent is nSMase2 with established roles in bone mineralization, exosome formation, and cellular stress responses. Function for the other N-SMases has been more enigmatic and is an area of active investigation. The known properties and potential role(s) of each enzyme are discussed to help guide future studies.
Collapse
|
10
|
Abstract
Acid sphingomyelinase (ASM) is a lipid hydrolase that cleaves the sphingolipid, sphingomyelin, into ceramide. Mutations in the ASM gene (SMPD1) result in the rare lysosomal storage disorder, Niemann-Pick disease (NPD). In addition to its role in NPD, over the past two decades, the importance of sphingolipids, and ASM in particular, in normal physiology and the pathophysiology of numerous common diseases also has become known. For example, altered sphingolipid metabolism occurs in many cancers, generally reducing the levels of the pro-apoptotic lipid, ceramide, and/or elevating the levels of the proliferative lipid, sphingosine-1-phosphate (S1P). These changes likely contribute to the tumorigenicity and/or metastatic capacity of the cancer. In addition, many cancer therapies induce ceramide-mediated death, and cancer cells have evolved novel mechanisms to overcome this effect. In the present review, we discuss sphingolipid metabolism in cancer, and specifically the potential for pharmacological modulation using ASM. Of note, recombinant human ASM (rhASM) has been produced for human use and is being evaluated as a treatment for NPD. Thus, its use for cancer therapy could be rapidly evaluated in the clinic after appropriate animal model studies have been completed. As this enzyme was initially studied in the context of NPD, we start with a brief overview of the history of ASM and NPD, followed by a discussion of the role of ASM in cancer biology, and then summarize emerging preclinical efficacy studies using rhASM as an adjunct in the treatment of solid tumors.
Collapse
Affiliation(s)
- Radoslav Savić
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
11
|
Perrotta C, Clementi E. Biological roles of Acid and neutral sphingomyelinases and their regulation by nitric oxide. Physiology (Bethesda) 2010; 25:64-71. [PMID: 20430951 DOI: 10.1152/physiol.00048.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Generation of the pleiotropic sphingolipid mediator ceramide by acid and neutral sphingomyelinases is a key event in many cellular pathophysiological processes including survival, death, proliferation, and differentiation, in which also the short-lived gaseous messenger nitric oxide plays a crucial role. This review describes how the outcome of these key cellular processes is finely tuned by surprising and complex interplays among nitric oxide, ceramide, and their effectors.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Preclinical Sciences, University Hospital Luigi Sacco, Università di Milano, Milano, Italy
| | | |
Collapse
|
12
|
Wu BX, Clarke CJ, Hannun YA. Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromolecular Med 2010; 12:320-30. [PMID: 20552297 DOI: 10.1007/s12017-010-8120-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 06/02/2010] [Indexed: 12/22/2022]
Abstract
Ceramide, a bioactive lipid, has been extensively studied and identified as an essential bioactive molecule in mediating cellular signaling pathways. Sphingomyelinase (SMase), (EC 3.1.4.12) catalyzes the cleavage of the phosphodiester bond in sphingomyelin (SM) to form ceramide and phosphocholine. In mammals, three Mg(2+)-dependent neutral SMases termed nSMase1, nSMase2 and nSMase3 have been identified. Among the three enzymes, nSMase2 is the most studied and has been implicated in multiple physiological responses including cell growth arrest, apoptosis, development and inflammation. In this review, we summarize recent findings for the cloned nSMases and discuss the insights for their roles in regulation ceramide metabolism and cellular signaling pathway.
Collapse
Affiliation(s)
- Bill X Wu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | | | | |
Collapse
|
13
|
Young SA, Smith TK. The essential neutral sphingomyelinase is involved in the trafficking of the variant surface glycoprotein in the bloodstream form of Trypanosoma brucei. Mol Microbiol 2010; 76:1461-82. [PMID: 20398210 PMCID: PMC2904498 DOI: 10.1111/j.1365-2958.2010.07151.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2010] [Indexed: 12/26/2022]
Abstract
Sphingomyelin is the main sphingolipid in Trypanosoma brucei, the causative agent of African sleeping sickness. In vitro and in vivo characterization of the T. brucei neutral sphingomyelinase demonstrates that it is directly involved in sphingomyelin catabolism. Gene knockout studies in the bloodstream form of the parasite indicate that the neutral sphingomyelinase is essential for growth and survival, thus highlighting that the de novo biosynthesis of ceramide is unable to compensate for the loss of sphingomyelin catabolism. The phenotype of the conditional knockout has given new insights into the highly active endocytic and exocytic pathways in the bloodstream form of T. brucei. Hence, the formation of ceramide in the endoplasmic reticulum affects post-Golgi sorting and rate of deposition of newly synthesized GPI-anchored variant surface glycoprotein on the cell surface. This directly influences the corresponding rate of endocytosis, via the recycling endosomes, of pre-existing cell surface variant surface glycoprotein. The trypanosomes use this coupled endocytic and exocytic mechanism to maintain the cell density of its crucial variant surface glycoprotein protective coat. TbnSMase is therefore genetically validated as a drug target against African trypanosomes, and suggests that interfering with the endocytic transport of variant surface glycoprotein is a highly desirable strategy for drug development against African trypanosomasis.
Collapse
Affiliation(s)
- Simon A Young
- Biomolecular Science, The North Haugh, The University, St. AndrewsFife Scotland KY16 9ST, UK
| | - Terry K Smith
- Biomolecular Science, The North Haugh, The University, St. AndrewsFife Scotland KY16 9ST, UK
| |
Collapse
|
14
|
Kim SK, Ahn KH, Ji JE, Choi JM, Jeon HJ, Jung SY, Jung KM, Kim DK. Neutral sphingomyelinase 2 induces dopamine uptake through regulation of intracellular calcium. Cell Signal 2010; 22:865-70. [DOI: 10.1016/j.cellsig.2010.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/11/2010] [Accepted: 01/13/2010] [Indexed: 11/25/2022]
|
15
|
Sandbhor MS, Key JA, Strelkov IS, Cairo CW. A modular synthesis of alkynyl-phosphocholine headgroups for labeling sphingomyelin and phosphatidylcholine. J Org Chem 2010; 74:8669-74. [PMID: 19860392 DOI: 10.1021/jo901824h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A general route to phospho- and sphingolipids that incorporate an alkyne in the phosphocholine headgroup is described. The strategy preserves the ammonium functionality of the phosphocholine and can be easily modified to introduce desired functional groups at the N-acyl chain. The targets accessible with this strategy provide a bioorthogonal handle for postsynthetic introduction of fluorophores or other labeling agents with aqueous phase chemistry. We report the synthesis of sphingomyelin derivatives that incorporate a fluorophore and an alkyne. The modified sphingolipids retain activity as substrates for sphingomyelinase, making these compounds viable probes of enzymatic activity. Importantly, the strategy allows modification of the lipid across the phosphodiester, making the alkyne a potential probe of sphingomyelinase activity.
Collapse
Affiliation(s)
- Mahendra S Sandbhor
- Alberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | | | | |
Collapse
|
16
|
Kim SK, Ahn KH, Jeon HJ, Lee DH, Jung SY, Jung KM, Kim DK. Purification of neutral sphingomyelinase 2 from bovine brain and its calcium-dependent activation. J Neurochem 2009; 112:1088-97. [PMID: 19968763 DOI: 10.1111/j.1471-4159.2009.06527.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ceramide is produced by sphingomyelinase (SMase) and it plays a key role in cellular responses such as apoptosis. In this study, we report the purification and characterization of neutral SMase2 (nSMase2) from bovine brain tissue. Triton X-100 extracts of bovine brain membranes were purified in nine steps, including sequential chromatography. The specific activity of purified nSMase increased 8183-fold over the brain membrane fraction. Purified nSMase showed similarities to nSMase2, which had been purified and cloned previously. Interestingly, purified nSMase2 was Ca2+-dependent and could be activated by micromolar concentrations of Ca2+ under Mg2+-free conditions. Ceramide generation was dependent upon the calcium ionophore A23187 and was observed in nSMase2-over-expressing COS-7 cells. This generation was suppressed by GW4869, an nSMase2 inhibitor, but not to fumonisin B(1), an inhibitor of the de novo ceramide synthesis pathway. The present study demonstrates the Ca2+-dependent activation of nSMase2.
Collapse
Affiliation(s)
- Seok Kyun Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-ku, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Yabu T, Shimuzu A, Yamashita M. A novel mitochondrial sphingomyelinase in zebrafish cells. J Biol Chem 2009; 284:20349-63. [PMID: 19429680 DOI: 10.1074/jbc.m109.004580] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids are important signaling molecules in many biological processes, but little is known regarding their physiological roles in the mitochondrion. We focused on the biochemical characters of a novel sphingomyelinase (SMase) and its function in mitochondrial ceramide generation in zebrafish embryonic cells. The cloned SMase cDNA encoded a polypeptide of 545 amino acid residues (putative molecular weight, 61,300) containing a mitochondrial localization signal (MLS) and a predicted transmembrane domain. The mature endogenous enzyme was predicted to have a molecular weight of 57,000, and matrix-assisted laser de sorption ionization time-of-flight mass spectrometry analysis indicated that the N-terminal amino acid residue of the mature enzyme was Ala-36. The purified enzyme optimally hydrolyzed [(14)C]sphingomyelin in the presence of 10 mm Mg(2+) at pH 7.5. In HEK293 cells that overexpressed SMase cDNA, the enzyme was localized to the mitochondrial fraction, whereas mutant proteins lacking MLS or both the MLS and the transmembrane domain were absent from the mitochondrial fraction. Endogenous SMase protein co-localized with a mitochondrial cytostaining marker. Using a protease protection assay, we found that SMase was distributed throughout the intermembrane space and/or the inner membrane of the mitochondrion. Furthermore, the overexpression of SMase in HEK293 cells induced ceramide generation and sphingomyelin hydrolysis in the mitochondrial fraction. Antisense phosphorothioate oligonucleotide-induced knockdown repressed ceramide generation and sphingomyelin hydrolysis in the mitochondrial fraction in zebrafish embryonic cells. These observations indicate that SMase catalyzes the hydrolysis of sphingomyelin and generates ceramide in mitochondria in fish cells.
Collapse
Affiliation(s)
- Takeshi Yabu
- From the National Research Institute of Fisheries Science, Yokohama, Kanagawa 236-8648, Japan
| | | | | |
Collapse
|
18
|
Jana A, Hogan EL, Pahan K. Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J Neurol Sci 2009; 278:5-15. [PMID: 19147160 DOI: 10.1016/j.jns.2008.12.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/03/2008] [Accepted: 12/09/2008] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders are marked by extensive neuronal apoptosis and gliosis. Although several apoptosis-inducing agents have been described, understanding of the regulatory mechanisms underlying modes of cell death is incomplete. A major breakthrough in delineation of the mechanism of cell death came from elucidation of the sphingomyelin (SM)-ceramide pathway that has received worldwide attention in recent years. The SM pathway induces apoptosis, differentiation, proliferation, and growth arrest depending upon cell and receptor types, and on downstream targets. Sphingomyelin, a plasma membrane constituent, is abundant in mammalian nervous system, and ceramide, its primary catabolic product released by activation of either neutral or acidic sphingomyelinase, serves as a potential lipid second messenger or mediator molecule modulating diverse cellular signaling pathways. Neutral sphingomyelinase (NSMase) is a key enzyme in the regulated activation of the SM cycle and is particularly sensitive to oxidative stress. In a context of increasing clarification of the mechanisms of neurodegeneration, we thought that it would be useful to review details of recent findings that we and others have made concerning different pro-apoptotic neurotoxins including proinflammatory cytokines, hypoxia-induced SM hydrolysis and ceramide production that induce cell death in human primary neurons and primary oligodendrocytes: redox sensitive events. What has and is emerging is a vista of therapeutically important ceramide regulation affecting a variety of different neurodegenerative and neuroinflammatory disorders.
Collapse
Affiliation(s)
- Arundhati Jana
- Department of Neurological sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | |
Collapse
|
19
|
Delgado A, Casas J, Llebaria A, Abad JL, Fabriás G. Chemical tools to investigate sphingolipid metabolism and functions. ChemMedChem 2008; 2:580-606. [PMID: 17252619 DOI: 10.1002/cmdc.200600195] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sphingolipids comprise an important group of biomolecules, some of which have been shown to play important roles in the regulation of many cell functions. From a structural standpoint, they all share a long 2-amino-1,3-diol chain, which can be either saturated (sphinganine), hydroxylated at C4 (phytosphingosine), or unsaturated at C4 (sphingosine) as in most mammalian cells. N-acylation of sphingosine leads to ceramide, a key intermediate in sphingolipid metabolism that can be enzymatically modified at the C1-OH position to other biologically important sphingolipids, such as sphingomyelin or glycosphingolipids. In addition, both ceramide and sphingosine can be phosphorylated at C1-OH to give ceramide-1-phosphate and sphingosine-1-phosphate, respectively. To better understand the biological and biophysical roles of sphingolipids, many efforts have been made to design synthetic analogues as chemical tools able to unravel their structure-activity relationships, and to alter their cellular levels. This last approach has been thoroughly studied by the development of specific inhibitors of some key enzymes that play an important role in biosynthesis or metabolism of these intriguing lipids. With the above premises in mind, the aim of this review is to collect, in a systematic way, the recent efforts described in the literature leading to the development of new chemical entities specifically designed to achieve the above goals.
Collapse
Affiliation(s)
- Antonio Delgado
- Research Unit on Bioactive Molecules, Departament de Química Orgànica Biològica, Institut d'Investigacions Químiques i Ambientals de Barcelona (C.S.I.C); Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
20
|
Won JS, Singh AK, Singh I. Lactosylceramide: a lipid second messenger in neuroinflammatory disease. J Neurochem 2007; 103 Suppl 1:180-91. [DOI: 10.1111/j.1471-4159.2007.04822.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Rutkute K, Karakashian AA, Giltiay NV, Dobierzewska A, Nikolova-Karakashian MN. Aging in rat causes hepatic hyperresposiveness to interleukin-1beta which is mediated by neutral sphingomyelinase-2. Hepatology 2007; 46:1166-76. [PMID: 17668873 DOI: 10.1002/hep.21777] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED The process of aging has recently been shown to substantially affect the ability of cells to respond to inflammatory challenges. We demonstrate that aging leads to hepatic hyperresponsiveness to interleukin 1beta (IL-1beta), and we examine the factors that could be responsible for this phenomenon. IL-1beta-induced phosphorylation of c-jun N-terminal kinase (JNK) in hepatocytes isolated from aged rats was 3 times more potent than that in hepatocytes from young rats. Moreover, JNK was activated by substantially lower doses of IL-1beta. These age-related changes in JNK phosphorylation correlated with diminished IL-1beta-induced degradation of interleukin-1 receptor-associated kinase-1 (IRAK-1). Expression levels of IL1beta receptor I, total JNK, IRAK-1, and transforming growth factor-beta-activated kinase-1 (TAK-1) were not affected by aging. However, increased neutral sphingomyelinase activity was observed in hepatocytes from old animals, which we show is caused by induction of the plasma membrane localized neutral sphingomyelinase-2 (NSMase-2). We provide evidence that NSMase-2 is both required and sufficient for the onset of IL-1beta hyperresponsiveness during aging. Overexpression of NSMase-2 in hepatocytes from young rats leads both to a reduction in IRAK-1 degradation and potentiation of JNK phosphorylation, mimicking that seen in hepatocytes from old animals. More importantly, inhibition of NSMase activity in hepatocytes from aged rats using either scyphostatin or short interfering ribonucleic acid (siRNA) leads to reversion to the "young" phenotype of IL-1beta response. CONCLUSION These results show that the process of aging causes increased basal NSMase-2 activity in hepatocytes, which in turn leads to IRAK-1 stabilization, JNK potentiation, and ultimately IL-1beta hyperresponsiveness.
Collapse
Affiliation(s)
- Kristina Rutkute
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
22
|
Rutkute K, Asmis RH, Nikolova-Karakashian MN. Regulation of neutral sphingomyelinase-2 by GSH: a new insight to the role of oxidative stress in aging-associated inflammation. J Lipid Res 2007; 48:2443-52. [PMID: 17693623 PMCID: PMC3010975 DOI: 10.1194/jlr.m700227-jlr200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress and inflammation are fundamental for the onset of aging and appear to be causatively linked. Previously, we reported that hepatocytes from aged rats, compared with young rats, are hyperresponsive to interleukin-1beta (IL-1beta) stimulation and exhibit more potent c-Jun N-terminal kinase (JNK) activation and attenuated interleukin-1 receptor-associated kinase-1 (IRAK-1) degradation. An age-related increase in the activity of neutral sphingomyelinase-2 (NSMase-2), a plasma membrane enzyme, was found to be responsible for the IL-1beta hyperresponsiveness. The results reported here show that increased NSMase activity during aging is caused by a 60-70% decrease in hepatocyte GSH levels. GSH, at concentrations typically found in hepatocytes from young animals, inhibits NSMase activity in a biphasic dose-dependent manner. Inhibition of GSH synthesis in young hepatocytes activates NSMase, causing increased JNK activation and IRAK-1 stabilization in response to IL-1beta, mimicking the hyperresponsiveness typical for aged hepatocytes. Vice versa, increased GSH content in hepatocytes from aged animals by treatment with N-acetylcysteine inhibits NSMase activity and restores normal IL-1beta response. Importantly, the GSH decline, NSMase activation, and IL-1beta hyperresponsiveness are not observed in aged, calorie-restricted rats. In summary, this report demonstrates that depletion of cellular GSH during aging plays an important role in regulating the hepatic response to IL-1beta by inducing NSMase-2 activity.
Collapse
Affiliation(s)
- Kristina Rutkute
- Department of Physiology, University of Kentucky, A. B. Chandler Medical Center, Lexington, KY 40536
| | - Reto H. Asmis
- Division of Nephrology, University of Texas Health Science Center at San Antonio and Audie Murphy Veterans Hospital, San Antonio, TX 78284
| | - Mariana N. Nikolova-Karakashian
- Department of Physiology, University of Kentucky, A. B. Chandler Medical Center, Lexington, KY 40536
- To whom correspondence should be addressed.
| |
Collapse
|
23
|
Sakata A, Yasuda K, Ochiai T, Shimeno H, Hikishima S, Yokomatsu T, Shibuya S, Soeda S. Inhibition of lipopolysaccharide-induced release of interleukin-8 from intestinal epithelial cells by SMA, a novel inhibitor of sphingomyelinase and its therapeutic effect on dextran sulphate sodium-induced colitis in mice. Cell Immunol 2007; 245:24-31. [PMID: 17466962 DOI: 10.1016/j.cellimm.2007.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 01/28/2023]
Abstract
Lipopolysaccharide (LPS) and inflammatory cytokines cause activation of sphingomyelinases (SMases) and subsequent hydrolysis of sphingomyelin (SM) to produce a lipid messenger ceramide. The use of SMase inhibitors may offer new therapies for the treatment of the LPS- and cytokines-related inflammatory bowel disease (IBD). We synthesized a series of difluoromethylene analogues of SM (SMAs). Here, we show that LPS efficiently increases the release of IL-8 from HT-29 intestinal epithelial cells by activating both neutral SMase and nuclear factor (NF)-kappaB in the cells. The addition of SMA-7 suppressed neutral SMase-catalyzed ceramide production, NF-kappaB activation, and IL-8 release from HT-29 cells caused by LPS. The results suggest that activation of neutral SMase is an underlying mechanism of LPS-induced release of IL-8 from the intestinal epithelial cells. Ceramide production following LPS-induced SM hydrolysis may trigger the activation of NF-kappaB in nuclei. Oral administration of SMA-7 (60 mg/kg) to mice with 2% dextran sulfate sodium (DSS) in their drinking water, for 21 consecutive days, reduced significantly the severity of colonic injury. This finding suggests a central role for SMase/ceramide signaling in the pathology of DSS-induced colitis in mice. The therapeutic effect of SMA-7 observed in mice may involve the suppression of IL-8 production from intestinal epithelial cells by LPS or other inflammatory cytokines.
Collapse
Affiliation(s)
- Akira Sakata
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Clarke CJ, Hannun YA. Neutral sphingomyelinases and nSMase2: Bridging the gaps. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1893-901. [PMID: 16938269 DOI: 10.1016/j.bbamem.2006.06.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 11/30/2022]
Abstract
There is strong evidence indicating a role for ceramide as a second messenger in processes such as apoptosis, cell growth and differentiation, and cellular responses to stress. Ceramide formation from the hydrolysis of sphingomyelin is considered to be a major pathway of stress-induced ceramide production with magnesium-dependent neutral sphingomyelinase (N-SMase) identified as a prime candidate in this pathway. The recent cloning of a mammalian N-SMase-nSMase2- and generation of nSMase2 knockout/mutant mice have now provided vital tools with which to further study the regulation and roles of this enzyme in both a physiological and pathological context. In the present review, we summarize current knowledge on N-SMase relating this to what is known about nSMase2. We also discuss the future areas of nSMase2 research important for molecular understanding of this enzyme and its physiological roles.
Collapse
Affiliation(s)
- Christopher J Clarke
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|
25
|
Won JS, Singh I. Sphingolipid signaling and redox regulation. Free Radic Biol Med 2006; 40:1875-88. [PMID: 16716889 DOI: 10.1016/j.freeradbiomed.2006.01.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/25/2006] [Accepted: 01/28/2006] [Indexed: 01/09/2023]
Abstract
Sphingolipids including ceramide and its derivatives such as ceramide-1-phosphate, glycosyl-ceramide, and sphinogosine (-1-phosphate) are now recognized as novel intracellular signal mediators for regulation of inflammation, apoptosis, proliferation, and differentiation. One of the important and regulated steps in these events is the generation of these sphingolipids via hydrolysis of sphingomyelin through the action of sphingomyelinases (SMase). Several lines of evidence suggest that reactive oxygen species (ROS; O2-, H2O2, and OH-,) and reactive nitrogen species (RNS; NO, and ONOO-) and cellular redox potential, which is mainly regulated by cellular glutathione (GSH), are tightly linked to the regulation of SMase activation. On the other hand, sphingolipids are also known to play an important role in maintaining cellular redox homeostasis through regulation of NADPH oxidase, mitochondrial integrity, and antioxidant enzymes. Therefore, this paper reviews the relationship between cellular redox and sphingolipid metabolism and its biological significance.
Collapse
Affiliation(s)
- Je-Seong Won
- Division of Developmental Neurological Disorder in Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Room 505, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|
26
|
Hakogi T, Yamamoto T, Fujii S, Ikeda K, Katsumura S. Synthesis of sphingomyelin difluoromethylene analogue. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Krönke M. Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 2006; 281:13784-13793. [PMID: 16517606 DOI: 10.1074/jbc.m511306200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two genes encoding neutral sphingomyelinases-1 and -2 (sphingomyelin phosphodiesterases-2 and -3) have been recently identified that hydrolyze sphingomyelin to phosphorylcholine and ceramide. Data bank searches using a peptide sequence derived from a previously purified bovine neutral sphingomyelinase (nSMase) allowed us to identify a cDNA encoding a novel human sphingomyelinase, nSMase3, that shows only a little homology to nSMase1 and -2. nSMase3 was biochemically characterized by overexpression in a yeast strain, JK9-3ddeltaIsc1p, lacking endogenous SMase activity. Similar to nSMase2, nSMase3 is Mg2+-dependent and shows optimal activity at pH 7, which is enhanced in the presence of phosphatidylserine and inhibited by scyphostatin. nSMase3 is ubiquitously expressed as a 4.6-kb mRNA species. nSMase3 lacks an N-terminal signal peptide, yet contains a 23-amino-acid transmembrane domain close to the C terminus, which is indicative for the family of C-tail-anchored integral membrane proteins. Cellular localization studies with hemagglutinin-tagged nSMase3 demonstrated colocalization with markers of the endoplasmic reticulum as well as with Golgi markers. Tumor necrosis factor stimulates rapid activation of nSMase3 in MCF7 cells with peak activity at 1.5 min, which was impaired by expression of dominant negative FAN.
Collapse
Affiliation(s)
- Oleg Krut
- Institute for Medical Microbiology, Immunology, and Hygiene, Center for Molecular Medicine-Cologne, University of Cologne, 50935 Köln, Germany
| | - Katja Wiegmann
- Institute for Medical Microbiology, Immunology, and Hygiene, Center for Molecular Medicine-Cologne, University of Cologne, 50935 Köln, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology, and Hygiene, Center for Molecular Medicine-Cologne, University of Cologne, 50935 Köln, Germany
| | - Benjamin Yazdanpanah
- Institute for Medical Microbiology, Immunology, and Hygiene, Center for Molecular Medicine-Cologne, University of Cologne, 50935 Köln, Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology, and Hygiene, Center for Molecular Medicine-Cologne, University of Cologne, 50935 Köln, Germany.
| |
Collapse
|
28
|
Jeon HJ, Lee DH, Kang MS, Lee MO, Jung KM, Jung SY, Kim DK. Dopamine release in PC12 cells is mediated by Ca2+-dependent production of ceramide via sphingomyelin pathway. J Neurochem 2005; 95:811-20. [PMID: 16135082 DOI: 10.1111/j.1471-4159.2005.03403.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A presynaptic membrane disturbance is an essential process for the release of various neurotransmitters. Ceramide, which is a tumor suppressive lipid, has been shown to act as a channel-forming molecule and serve as a precursor of ceramide-1-phosphate, which can disturb the cellular membrane. This study found that while permeable ceramide increases the rate of dopamine release in the presence of a Ca(2+)-ionophore, A23187, permeable ceramide-1-phosphate provoked its release even without the ionophore. The treatment of PC12 cells with the ionophore at concentrations < 2 microM produced ceramide via the sphingomyelin (SM) pathway with a concomitant release of dopamine, and no cell damage was observed. The addition of a Ca(2+) chelator, EGTA, to the medium inhibited the increase in the release of both the ceramide and dopamine. This suggests that ceramide might be produced by Ca(2+) and is implicated in the membrane disturbance associated with the release of dopamine as a result of its conversion to ceramide-1-phosphate. Consistent with these results, this study detected a membrane-associated and neutral pH optimum sphingomyelinase (SMase) whose activity was increased by Ca(2+). Together, these results demonstrate that ceramide can be produced via the activation of a neutral form of SMase through Ca(2+), and is involved in the dopamine release in concert with Ca(2+).
Collapse
Affiliation(s)
- Hyung Jun Jeon
- Department of Environmental and Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjakgu, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Barrier L, Ingrand S, Piriou A, Touzalin A, Fauconneau B. Lactic acidosis stimulates ganglioside and ceramide generation without sphingomyelin hydrolysis in rat cortical astrocytes. Neurosci Lett 2005; 385:224-9. [PMID: 15964679 DOI: 10.1016/j.neulet.2005.05.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 11/18/2022]
Abstract
Acidosis is a ubiquitous feature of cerebral ischemia, and triggers a cascade of biochemical events that results in neuronal injury. The purpose of this study was to evaluate the effects of lactic acidosis on the ganglioside composition, the ceramide and sphingomyelin (SM) levels in rat cortical astrocytes. Primary astrocyte cultures were exposed to lactic acid (pH 5.5) for 2, 5 and 17 h, and cell death was evaluated at each time point. Gangliosides, ceramides and SM were analyzed by high-performance thin layer chromatography. Lactic acidosis caused a progressive increase of both GM3 and GD3 gangliosides up to 5 h of treatment. However, at 17 h of acidosis, GM3 tented to return to the normal level whereas GD3 accumulated. Additionally, ceramides were gradually generated, whereas no significant decrease of SM occured for 17 h of acidosis. These results suggest that ceramides were not produced by the breakdown of SM and may be served as metabolic precursor for the biosynthesis of GM3 and GD3. Since these lipids are important messengers of the adaptative responses to stress, accumulation of sphingolipids triggered by lactic acid exposure of astrocytes might play an important role in determining the outcomes of injurious processes.
Collapse
Affiliation(s)
- Laurence Barrier
- Groupe de Recherche sur le Vieillissement Cérébral, GReViC EA 3808, Faculté de Médecine et de Pharmacie, 34, rue du Jardin des Plantes, BP 199, 86005 Poitiers Cedex, France.
| | | | | | | | | |
Collapse
|
30
|
Kim SK, Jung SM, Ahn KH, Jeon HJ, Lee DH, Jung KM, Jung SY, Kim DK. Identification of three competitive inhibitors for membrane-associated, Mg2+-dependent and neutral 60 kDa sphingomyelinase activity. Arch Pharm Res 2005; 28:923-9. [PMID: 16178418 DOI: 10.1007/bf02973878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Methanol extracts of domestic plants of Korea were evaluated as a potential inhibitor of neutral pH optimum and membrane-associated 60 kDa sphingomyelinase (N-SMase) activity. In this study, we partially purified N-SMase from bovine brain membranes using ammonium sulfate. It was purified approximately 163-fold by the sequential use of DE52, Butyl-Toyopearl, DEAE-Cellulose, and Phenyl-5PW column chromatographies. The purified N-SMase activity was assayed in the presence of the plant extracts of three hundreds species. Based on the in vitro assay, three plant extracts significantly inhibited the N-SMase activity in a time- and concentration-dependent manner. To further examine the inhibitory pattern, a Dixon plot was constructed for each of the plant extracts. The extracts of Abies nephrolepis, Acer tegmentosum, and Ginkgo biloba revealed a competitive inhibition with the inhibition constant (Ki) of 11.9 microg/ mL, 9.4 microg/mL, and 12.9 microg/mL, respectively. These extracts also inhibited in a dose-dependent manner the production of ceramide induced by serum deprivation in human neuroblastoma cell line SH-SY5Y.
Collapse
Affiliation(s)
- Seok Kyun Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul 156-756, Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
De Luca T, Morré DM, Zhao H, Morré DJ. NAD+/NADH and/or CoQ/CoQH2 ratios from plasma membrane electron transport may determine ceramide and sphingosine-1-phosphate levels accompanying G1 arrest and apoptosis. Biofactors 2005; 25:43-60. [PMID: 16873929 DOI: 10.1002/biof.5520250106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To elucidate possible biochemical links between growth arrest from antiproliferative chemotherapeutic agents and apoptosis, our work has focused on agents (EGCg, capsaicin, cis platinum, adriamycin, anti-tumor sulfonylureas, phenoxodiol) that target tNOX. tNOX is a cancer-specific cell surface NADH oxidase (ECTO-NOX protein), that functions in cancer cells as the terminal oxidase for plasma membrane electron transport. When tNOX is active, coenzyme Q(10) (ubiquinone) of the plasma membrane is oxidized and NADH is oxidized at the cytosolic surface of the plasma membrane. However, when tNOX is inhibited and plasma membrane electron transport is diminished, both reduced coenzyme Q(10) (ubiquinol) and NADH would be expected to accumulate. To relate inhibition of plasma membrane redox to increased ceramide levels and arrest of cell proliferation in G(1) and apoptosis, we show that neutral sphingomyelinase, a major contributor to plasma membrane ceramide, is inhibited by reduced glutathione and ubiquinone. Ubiquinol is without effect or stimulates. In contrast, sphingosine kinase, which generates anti-apoptotic sphingosine-1-phosphate, is stimulated by ubiquinone but inhibited by ubiquinol and NADH. Thus, the quinone and pyridine nucleotide products of plasma membrane redox, ubiquinone and ubiquinol, as well as NAD(+) and NADH, may directly modulate in a reciprocal manner two key plasma membrane enzymes, sphingomyelinase and sphingosine kinase, potentially leading to G(1) arrest (increase in ceramide) and apoptosis (loss of sphingosine-1-phosphate). As such, the findings provide potential links between coenzyme Q(10)-mediated plasma membrane electron transport and the anticancer action of several clinically-relevant anticancer agents.
Collapse
Affiliation(s)
- Thomas De Luca
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
32
|
10 Free-flow isoelectric focusing. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0149-6395(05)80013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 2004; 82:27-44. [PMID: 15052326 DOI: 10.1139/o03-091] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ceramide, an emerging bioactive lipid and second messenger, is mainly generated by hydrolysis of sphingomyelin through the action of sphingomyelinases. At least two sphingomyelinases, neutral and acid sphingomyelinases, are activated in response to many extracellular stimuli. Despite extensive studies, the precise cellular function of each of these sphingomyelinases in sphingomyelin turnover and in the regulation of ceramide-mediated responses is not well understood. Therefore, it is essential to elucidate the factors and mechanisms that control the activation of acid and neutral sphingomyelinases to understand their the roles in cell regulation. This review will focus on the molecular mechanisms that regulate these enzymes in vivo and in vitro, especially the roles of oxidants (glutathione, peroxide, nitric oxide), proteins (saposin, caveolin 1, caspases), and lipids (diacylglycerol, arachidonic acid, and ceramide).
Collapse
Affiliation(s)
- Norma Marchesini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, 29425, USA
| | | |
Collapse
|
34
|
Czarny M, Schnitzer JE. Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol 2004; 287:H1344-52. [PMID: 15142848 DOI: 10.1152/ajpheart.00222.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, we showed that neutral sphingomyelinase (N-SMase) is concentrated at the endothelial cell surface in caveolae and is activated to produce ceramide in an acute and transient manner by increase in flow rate and pressure in rat lung vasculature (Czarny M, Liu J, Oh P, and Schnitzer JE, J Biol Chem 278: 4424-4430, 2003). Here, we report further on our investigations of this new acute mechanotransduction pathway. We employed three experimental models to explore the role of N-SMase and ceramides in mechanosignaling: 1) a cell-free, in vitro model using isolated luminal plasma membranes of rat lung endothelium; 2) a fluid shear stress model using monolayers of intact bovine aorta endothelial cell in culture; and 3) an in situ model using controlled perfusion of the rat lung vasculature. Scyphostatin, which specifically inhibited N-SMase but not acid SMase activity, prevented mechanoactivation of N-SMase as well as downstream tyrosine and mitogen-activated protein kinases. Cell-permeable ceramide analogs (N-acetylsphingosine, C2-ceramide, and N-hexanoylsphingosine, C6-ceramide) but not the inactive dihydroderivatives D2-ceramide and D6-ceramide (N-acetylsphinganine and N-hexanoylsphinganine, respectively) mimic rapid mechano-induced tyrosine phosphorylation of cell surface proteins as well as mechanoactivation of Src-like kinases and the extracellular regulated kinase pathway. The responses common to ceramide and mechanical stress were inhibited by genistein, herbamycin A, and PP2, but not PP3, which suggests an obligate role of Src-like kinases in ceramide-mediated mechanotransduction. Ceramides also induced serine/threonine phosphorylation to activate the Akt/endothelial nitric oxide synthase pathway. Thus N-SMase at the plasma membrane in caveolae may be an upstream initiating mechanosensor, which acutely triggers mechanotransduction by generation of the lipid second messenger ceramide.
Collapse
Affiliation(s)
- Malgorzata Czarny
- Division of Vascular Biology and Angiogenesis, Sidney Kimmel Cancer Center, San Diego, California 92121, USA
| | | |
Collapse
|
35
|
Reynolds CP, Maurer BJ, Kolesnick RN. Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett 2004; 206:169-80. [PMID: 15013522 DOI: 10.1016/j.canlet.2003.08.034] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 08/14/2003] [Indexed: 12/29/2022]
Abstract
Sphingolipids, which include ceramides and sphingosine, are essential structural components of cell membranes that also have messenger functions that regulate the proliferation, survival, and death of cells. Exogenous application of ceramide is cytotoxic, and exposure of cells to radiation or chemotherapy is associated with increased ceramide levels due to enhanced de novo synthesis, catabolism of sphingomyelin, or both. Ceramide can be metabolized to less toxic forms by glycosylation, acylation, or by catabolism to sphingosine, which is then phosphorylated to the anti-apoptotic sphingosine 1-phosphate. Glucosylceramide synthase overexpression has been shown to enhance resistance to doxorubicin, suggesting that inhibition of ceramide metabolism or catabolism might enhance cancer chemotherapy. Several anticancer agents, including the cytotoxic retinoid, fenretinide (4-HPR), have been shown to act, at least in part, by increasing tumor cell ceramide via de novo synthesis. Combinations of 4-HPR and modulators of ceramide action and/or metabolism demonstrated increased anti-tumor activity in pre-clinical models with minimal toxicity for non-malignant cells, and were effective in a p53-independent manner against tumor cell lines resistant to standard cytotoxic agents. Phase I trials of ceramide metabolism inhibitors in combination with 4-HPR and with other cytotoxic agents are in development. Thus, pharmacological manipulation of sphingolipid metabolism to enhance tumor cell ceramide is being realized and offers a novel approach to cancer chemotherapy.
Collapse
Affiliation(s)
- C Patrick Reynolds
- Division of Hematology-Oncology MS 57, Children's Hospital of Los Angeles, The University of Southern California Keck School of Medicine, 4650 Sunset Blvd., Los Angeles, CA 90054-0700, USA.
| | | | | |
Collapse
|
36
|
Testai FD, Landek MA, Dawson G. Regulation of sphingomyelinases in cells of the oligodendrocyte lineage. J Neurosci Res 2004; 75:66-74. [PMID: 14689449 DOI: 10.1002/jnr.10816] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Controversy exists regarding the nature of the "executioner" sphingomyelinase (SMase) in cells and its subcellular localization. A new fluorescence-based assay with the substrate 6-hexadecanoylamino-4-methylumbelliferyl-phosphorylcholine allowed rapid and reliable microassays of neutral (N) and acid (A) SMase activity in cell extracts from primary cultures of neonatal rat oligodendrocytes (OPC) and a human oligodendroglioma cell line (HOG). Total SMase activity was much higher in OPC than in HOG cells. Both staurosporine and tumor necrosis factor-alpha (TNF-alpha) induced apoptosis and activated NSMase in a multiphasic manner in both OPC and HOG cells. The increase in caspase 8 activity preceded the 1 hr peak of NSMase activation, which was followed by caspase 3 activation. In contrast, ASMase activity, which constituted >90% of the total SMase activity, was unresponsive to proapoptotic drugs. Neither reducing ASMase levels by 50% by pretreatment with desipramine nor inhibiting sphingolipid synthesis by 50% with fumonisin B1 had any effect on cell death. Isolation of sphingolipid-rich plasma membrane microdomains (rafts) from the cells by sucrose density gradient ultracentrifugation revealed an enrichment of sphingomyelin, ceramide, and caspase 8. Proapoptotic drugs such as staurosporine promoted the translocation of NSMase to the raft fraction. In contrast, ASMase, other lysosomal hydrolases, and caspase 3 remained absent from rafts even after staurosporine treatment. The staurosporine-induced concomitant increase of ceramide in the raft fraction and caspase 3 in the cytosol could be mimicked by the addition of exogenous bacterial SMase. We conclude that caspase 8 activates NSMase in rafts in oligodendrocytes and that the downstream apoptotic signal is via caspase 3.
Collapse
Affiliation(s)
- F D Testai
- Departments of Pediatrics, Biochemistry, and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
37
|
Weber PJA, Weber G, Eckerskorn C. Isolation of Organelles and Prefractionation of Protein Extracts Using Free‐Flow Electrophoresis. ACTA ACUST UNITED AC 2003; Chapter 22:22.5.1-22.5.21. [DOI: 10.1002/0471140864.ps2205s32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Marchesini N, Luberto C, Hannun YA. Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. J Biol Chem 2003; 278:13775-83. [PMID: 12566438 DOI: 10.1074/jbc.m212262200] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neutral sphingomyelinase (N-SMase) is one of the key enzymes involved in the generation of ceramide; however, the gene(s) encoding for the mammalian N-SMase is still not well defined. Previous studies on the cloned nSMase1 had shown that the protein acts primarily as lyso-platelet-activating factor-phospholipase C. Recently the cloning of another putative N-SMase, nSMase2, was reported. In this study, biochemical characterization of the mouse nSMase2 was carried out using the overexpressed protein in yeast cells in which the inositol phosphosphingolipid phospholipase C (Isc1p) was deleted. N-SMase activity was dependent on Mg(2+) and was activated by phosphatidylserine and inhibited by GW4869. The ability of nSMase2 to recognize endogenous sphingomyelin (SM) as substrate was investigated by overexpressing nSMase2 in MCF7 cells. Mass measurements showed a 40% decrease in the SM levels in the overexpressor cells, and labeling studies demonstrated that nSMase2 accelerated SM catabolism. Accordingly, ceramide measurement showed a 60 +/- 15% increase in nSMase2-overexpressing cells compared with the vector-transfected MCF7. The role of nSMase2 in cell growth was next investigated. Stable overexpression of nSMase2 resulted in a 30-40% decrease in the rate of growth at the late exponential phase. Moreover, tumor necrosis factor induced approximately 50% activation of nSMase2 in MCF7 cells overexpressing the enzyme, demonstrating that nSMase2 is a tumor necrosis factor-responsive enzyme. In conclusion, these results 1) show that nSMase2 is a structural gene for nSMase, 2) suggest that nSMase2 acts as a bona fide N-SMase in cells, and 3) implicate nSMase2 in the regulation of cell growth and cell signaling.
Collapse
Affiliation(s)
- Norma Marchesini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston 29425, USA
| | | | | |
Collapse
|
39
|
He X, Chen F, Dagan A, Gatt S, Schuchman EH. A fluorescence-based, high-performance liquid chromatographic assay to determine acid sphingomyelinase activity and diagnose types A and B Niemann-Pick disease. Anal Biochem 2003; 314:116-20. [PMID: 12633609 DOI: 10.1016/s0003-2697(02)00629-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acid sphingomyelinase (ASM; sphingomyelin phosphodiesterase, EC 3.1.4.12) is the lysosomal enzyme that hydrolyzes sphingomyelin (SPM) to phosphorylcholine and ceramide. An inherited deficiency of ASM activity results in Types A and B Niemann-Pick disease (NPD). In this study we report a new assay method to detect ASM activity and diagnose NPD using the fluorescent substrate BODIPY C12-SPM and reverse-phase high-performance liquid chromatography (HPLC). The reaction product, BODIPY C12-ceramide (B12Cer), could be clearly and efficiently separated from the substrate within 4 min using a reverse-phase column (Aquasil C18, Keystone Scientific). Femtomole quantities of B12Cer could be detected in as little as 1.0 micro l of human plasma, providing a sensitive measure of ASM activity. The mean ASM activity in human plasma from NPD patients (36 pmol/ml/h) was only 2.7% of that in normal plasma (1334 pmol/ml/h), confirming the specificity and diagnostic value of this new assay method. Importantly, the mean ASM activity in human plasma from NPD carriers (258.3 pmol/ml/h) also was significantly reduced (19.5% of normal). The ranges of ASM plasma activities in NPD patients (N=19), NPD carriers (N=11), and normal subjects (N=15) were 2.5-97.3, 108-551, and 1030-2124 pmol/ml/h, respectively. Based on these results, we suggest that this fluorescence-based HPLC assay method is a reliable, rapid, and highly sensitive technique to determine ASM activity and that plasma is a very reliable and simple source for the accurate diagnosis of NPD patients and carriers based on ASM activity.
Collapse
Affiliation(s)
- Xingxuan He
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
40
|
Czarny M, Liu J, Oh P, Schnitzer JE. Transient mechanoactivation of neutral sphingomyelinase in caveolae to generate ceramide. J Biol Chem 2003; 278:4424-30. [PMID: 12473648 DOI: 10.1074/jbc.m210375200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vascular endothelium acutely autoregulates blood flow in vivo in part through unknown mechanosensing mechanisms. Here, we report the discovery of a new acute mechanotransduction pathway. Hemodynamic stressors from increased vascular flow and pressure in situ rapidly and transiently induce the activity of neutral sphingomyelinase but not that acid sphingomyelinase in a time- and flow rate-dependent manner, followed by the generation of ceramides. This acute mechanoactivation occurs directly at the luminal endothelial cell surface primarily in caveolae enriched in sphingomyelin and neutral sphingomyelinase, but not acid sphingomyelinase. Scyphostatin, which specifically blocks neutral but not acid sphingomyelinase, inhibits mechano-induced neutral sphingomyelinase activity as well as downstream activation of extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK2) by increased flow in situ. We postulate a novel physiological function for neutral sphingomyelinase as a new mechanosensor initiating the ERK cascade and possibly other mechanotransduction pathways.
Collapse
Affiliation(s)
- Malgorzata Czarny
- Sidney Kimmel Cancer Center, Division of Vascular Biology and Angiogenesis, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
41
|
Andrieu-Abadie N, Levade T. Sphingomyelin hydrolysis during apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1585:126-34. [PMID: 12531545 DOI: 10.1016/s1388-1981(02)00332-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sphingolipid breakdown products are now being recognized as important players in apoptosis. Ceramide, which is considered to serve as second messenger, is mainly generated by hydrolysis of the membrane sphingophospholipid sphingomyelin (SM) through the action of a sphingomyelinase (SMase). However, little is known about the localization and regulation of this phenomenon. Here, we summarize the current knowledge on the function of SM hydrolysis in apoptosis signaling. In particular, the present review focuses on the role of neutral sphingomyelinase (N-SMase) in the generation of the proapoptotic ceramide. This enzyme is regulated by several mechanisms, including the tumor necrosis factor (TNF) receptor-associated protein FAN (for factor associated with N-SMase activation) and oxidative stress. These observations place SMase activation and SM hydrolysis as early events in the apoptosis signaling cascade.
Collapse
Affiliation(s)
- Nathalie Andrieu-Abadie
- INSERM Unit 466, Laboratoire de Biochimie Médicale, Institut Louis Bugnard, Centre Hospitalier Universitaire de Rangueil, TSA 50032 31059 Toulouse Cedex 9, France.
| | | |
Collapse
|
42
|
Stonehouse MJ, Cota-Gomez A, Parker SK, Martin WE, Hankin JA, Murphy RC, Chen W, Lim KB, Hackett M, Vasil AI, Vasil ML. A novel class of microbial phosphocholine-specific phospholipases C. Mol Microbiol 2002; 46:661-76. [PMID: 12410824 DOI: 10.1046/j.1365-2958.2002.03194.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this report we describe the 1,500-fold purification and characterization of the haemolytic phospholipase C (PLC) of Pseudomonas aeruginosa, the paradigm member of a novel PLC/phosphatase superfamily. Members include proteins from Mycobacterium tuberculosis, Bordetella spp., Francisella tularensis and Burkholderia pseudomallei. Purification involved overexpression of the plcHR1,2 operon, ion exchange chromatography and native preparative polyacrylamide gel electrophoresis. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry confirmed the presence of two proteins in the purified sample with sizes of 17,117.2 Da (PlcR2) and 78,417 Da (PlcH). Additionally, liquid chromatography electrospray mass spectrometry (LCMS) revealed that PlcH and PlcR2 are at a stoichiometry of 1 : 1. Western blot analysis demonstrated that the enzyme purifies as a heterodimeric complex, PlcHR2. PlcHR2 is only active on choline-containing phospholipids. It is equally active on phosphatidylcholine (PC) and sphingomyelin (SM) and is able to hydrolyse plasmenylcholine phospholipids (plasmalogens). Neither PlcHR2 nor the M. tuberculosis homologues are inhibited by D609 a widely used, competitive inhibitor of the Bacillus cereus PLC. PlcH, PlcR2, and the PlcHR2 complex bind calcium. While calcium has no detectable effect on enzymatic activity, it inhibits the haemolytic activity of PlcHR2. In addition to being required for the secretion of PlcH, the chaperone PlcR2 affects both the enzymatic and haemolytic properties of PlcH. Inclusive in these data is the conclusion that the members of this PC-PLC and phosphatase family possess a novel mechanism for the recognition and hydrolysis of their respective substrates.
Collapse
Affiliation(s)
- Martin J Stonehouse
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 E. Ninth Ave., Box B-175, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
This paper reviews our present knowledge of sphingomyelinases as enzymes, and as enzymes acting on a membrane constituent lipid, sphingomyelin. Six types of sphingomyelinases are considered, namely acidic, secretory, Mg(2+)-dependent neutral, Mg(2+)-independent neutral, alkaline, and bacterial enzymes with both phospholipase C and sphingomyelinase activity. Sphingomyelinase assay methods and specific inhibitors are reviewed. Kinetic and mechanistic studies are summarized, a kinetic model and a general-base catalytic mechanism are proposed. Sphingomyelinase-membrane interactions are considered from the point of view of the influence of lipids on the enzyme activity. Moreover, effects of sphingomyelinase activity on membrane architecture (increased membrane permeability, membrane aggregation and fusion) are described. Finally, a number of open questions on the above topics are enunciated.
Collapse
Affiliation(s)
- Félix M Goñi
- Unidad de Biofísica (CSIC-UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080, Bilbao, Spain.
| | | |
Collapse
|
44
|
Luberto C, Hassler DF, Signorelli P, Okamoto Y, Sawai H, Boros E, Hazen-Martin DJ, Obeid LM, Hannun YA, Smith GK. Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem 2002; 277:41128-39. [PMID: 12154098 DOI: 10.1074/jbc.m206747200] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A high throughput screen for neutral, magnesium-dependent sphingomyelinase (SMase) was performed. One inhibitor discovered in the screen, GW4869, functioned as a noncompetitive inhibitor of the enzyme in vitro with an IC(50) of 1 microm. It did not inhibit acid SMase at up to at least 150 microm. The compound was then evaluated for its ability to inhibit tumor necrosis factor (TNF)-induced activation of neutral SMase (N-SMase) in MCF7 cells. GW4869 (10 microm) partially inhibited TNF-induced sphingomyelin (SM) hydrolysis, and 20 microm of the compound was protected completely from the loss of SM. The addition of 10-20 microm GW4869 completely inhibited the initial accumulation of ceramide, whereas this effect was partially lost at later time points (24 h). These data therefore support the inhibitory action of GW4869 on N-SMase not only in vitro but also in a cellular model. The addition of GW4869 at both 10 and 20 microm did not modify cellular glutathione levels in response to TNF, suggesting that the action of GW4869 occurred downstream of the drop in glutathione, which was shown previously to occur upstream of the activation of N-SMase. Further, whereas TNF treatment also caused a 75% increase of de novo synthesized ceramide after 20 h of incubation, GW4869, at either 10 or 20 microm, had no effect on this pathway of ceramide generation. In addition, GW4869 did not significantly impair TNF-induced NF-kappaB translocation to nuclei. Therefore, GW4869 does not interfere with other key TNF-mediated signaling effects. GW4869 was able, in a dose-dependent manner, to significantly protect from cell death as measured by nuclear condensation, caspase activation, PARP degradation, and trypan blue uptake. These protective effects were accompanied by significant inhibition of cytochrome c release from mitochondria and caspase 9 activation, therefore localizing N-SMase activation upstream of mitochondrial dysfunction. In conclusion, our results indicate that N-SMase activation is a necessary step for the full development of the cytotoxic program induced by TNF.
Collapse
Affiliation(s)
- Chiara Luberto
- Department of Biochemistry, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Martín SF, Gómez-Díaz C, Navas P, Villalba JM. Ubiquinol inhibition of neutral sphingomyelinase in liver plasma membrane: specific inhibition of the Mg2+-dependent enzyme and role of isoprenoid chain. Biochem Biophys Res Commun 2002; 297:581-6. [PMID: 12270134 DOI: 10.1016/s0006-291x(02)02222-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, the specificity of ubiquinol as inhibitor of the neutral sphingomyelinases present at the plasma membrane (Mg(2+)-dependent and -independent) and structural requirements for such inhibition have been studied. Our results have shown that ubiquinol specifically inhibits Mg(2+)-dependent neutral sphingomyelinase activity in isolated liver plasma membranes, but no significant participation of the Mg(2+)-independent enzyme was observed. Both the reduction state of the (hydro)quinone ring and the length of the hydrophobic side chain were important determinants in neutral sphingomyelinase inhibition. Ubiquinols inhibited the nSMase more efficiently than ubiquinones, and hydrophobic homologs with six or nine isoprene units were the most effective inhibitors. Inhibition of nSMase by ubiquinols displayed similarities with inhibition by manumycin and the hydroquinones F11334's, suggesting that these compounds could act as structural analogs of ubiquinol. Beyond its participation in mitochondrial energy metabolism, and as antioxidant, this novel role for ubiquinol as a neutral sphingomyelinase inhibitor should be considered an important factor to regulate lipid signaling at the plasma membrane that could be related to its beneficial effects on cells, tissues, and organisms.
Collapse
Affiliation(s)
- Sergio F Martín
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Universidad de Córdoba, Córdoba 14014, Spain
| | | | | | | |
Collapse
|
46
|
Fensome AC, Josephs M, Katan M, Rodrigues-Lima F. Biochemical identification of a neutral sphingomyelinase 1 (NSM1)-like enzyme as the major NSM activity in the DT40 B-cell line: absence of a role in the apoptotic response to endoplasmic reticulum stress. Biochem J 2002; 365:69-77. [PMID: 12071841 PMCID: PMC1222658 DOI: 10.1042/bj20020120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DT40 cells have approx. 10-fold higher Mg2+-dependent neutral sphingomyelinase (NSM) activity in comparison with other B-cell lines and contain very low acidic sphingomyelinase activity. Purification of this activity from DT40 cell membranes suggested the presence of one major NSM isoform. Although complete purification of this isoform could not be achieved, partially purified fractions were examined further with regard to the known characteristics of previously partially purified NSMs and the two cloned enzymes exhibiting in vitro NSM activity (NSM1 and NSM2). For a direct comparative study, highly purified brain preparations, purified NSM1 protein and Bacillus cereus enzyme were used. Analysis of the enzymic properties of the partially purified DT40 NSM, such as cation dependence, substrate specificity, redox regulation and stimulation by phosphatidylserine, together with the localization of this enzyme to the endoplasmic reticulum (ER), suggested that this NSM from DT40 cells corresponds to NSM1. Further studies aimed to correlate presence of the high levels of this NSM1-like activity in DT40 cells with the ability of these cells to accumulate ceramide and undergo apoptosis. When DT40 cells were stimulated to apoptose by a variety of agents, including the ER stress, an increase in endogenous ceramide levels was observed. However, these responses were not enhanced compared with another B-cell line (Nalm-6), characterized by low sphingomyelinase activity. In addition, DT40 cells were not more susceptible to ceramide accumulation and apoptosis when exposed to the ER stress compared with other apoptotic agents. Inhibition of de novo synthesis of ceramide partially inhibited its accumulation, indicating that the ceramide production in DT40 cells could be complex and, under some conditions, could involve both sphingomyelin hydrolysis and ceramide synthesis.
Collapse
Affiliation(s)
- Amanda C Fensome
- Cancer Research UK Centre for Cell and Molecular Biology, The Institute of Cancer Research, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | | | | | | |
Collapse
|
47
|
Brann AB, Tcherpakov M, Williams IM, Futerman AH, Fainzilber M. Nerve growth factor-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. J Biol Chem 2002; 277:9812-8. [PMID: 11777929 DOI: 10.1074/jbc.m109862200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Binding of nerve growth factor (NGF) to the p75 neurotrophin receptor (p75) in cultured hippocampal neurons has been reported to cause seemingly contrasting effects, namely ceramide-dependent axonal outgrowth of freshly plated neurons, versus Jun kinase (Jnk)-dependent cell death in older neurons. We now show that the apoptotic effects of NGF in hippocampal neurons are observed only from the 2nd day of culture onward. This switch in the effect of NGF is correlated with an increase in p75 expression levels and increasing levels of ceramide generation as the cultures mature. NGF application to neuronal cultures from p75(exonIII-/-) mice had no effect on ceramide levels and did not affect neuronal viability. The neutral sphingomyelinase inhibitor, scyphostatin, inhibited NGF-induced ceramide generation and neuronal death, whereas hippocampal neurons cultured from acid sphingomyelinase(-/-) mice were as susceptible to NGF-induced death as wild type neurons. The acid ceramidase inhibitor, (1S,2R)-d-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol, enhanced cell death, supporting a role for ceramide itself and not a downstream lipid metabolite. Finally, scyphostatin inhibited NGF-induced Jnk phosphorylation in hippocampal neurons. These data indicate an initiating role of ceramide generated by neutral sphingomyelinase in the diverse neuronal responses induced by binding of neurotrophins to p75.
Collapse
Affiliation(s)
- Adi B Brann
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | |
Collapse
|
48
|
Arenz C, Gartner M, Wascholowski V, Giannis A. Synthesis and biochemical investigation of scyphostatin analogues as inhibitors of neutral sphingomyelinase. Bioorg Med Chem 2001; 9:2901-4. [PMID: 11597471 DOI: 10.1016/s0968-0896(01)00165-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The sphingolipid ceramide is considered to be an important intracellular mediator. However, many aspects of its action and the role of several different ceramide generating sphingomyelinases are still unclear. Recently, we reported on the synthesis of the first selective irreversible inhibitor of the neutral sphingomyelinase (N-SMase), as well as the identification of Manumycin A and some of its analogues as irreversible inhibitors of N-SMase. For the development of pharmacologically interesting competitive inhibitors of N-SMase, structure-activity studies are essential. Herein we show the synthesis and enzymatic investigation of two scyphostatin analogues 3a and 3b, revealing the importance of the primary hydroxy group in compound 2 for N-SMase inhibition.
Collapse
Affiliation(s)
- C Arenz
- Institut für Organische Chemie, Universität Karlsruhe, Richard-Willstätter Allee 2, 76128, Karlsruhe, Germany
| | | | | | | |
Collapse
|
49
|
de Chaves EP, Bussiere M, MacInnis B, Vance DE, Campenot RB, Vance JE. Ceramide inhibits axonal growth and nerve growth factor uptake without compromising the viability of sympathetic neurons. J Biol Chem 2001; 276:36207-14. [PMID: 11454862 DOI: 10.1074/jbc.m104282200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceramide inhibits axonal growth of cultured rat sympathetic neurons when the ceramide content of distal axons, but not cell bodies, is increased (Posse de Chaves, E. I., Bussiere, M. Vance, D. E., Campenot, R. B., and Vance, J.E. (1997) J. Biol. Chem. 272, 3028-3035). We now report that inhibition of growth does not result from cell death since although ceramide is a known apoptotic agent, C(6)-ceramide given to the neurons for 24 h did not cause cell death but instead protected the neurons from death induced by deprivation of nerve growth factor (NGF). We also find that a pool of ceramide generated from sphingomyelin in distal axons, but not cell bodies, inhibits axonal growth. Analysis of endogenous sphingomyelinase activities demonstrated that distal axons are rich in neutral sphingomyelinase activity but contain almost no acidic sphingomyelinase, which is concentrated in cell bodies/proximal axons. Together, these observations are consistent with the idea that generation of ceramide from sphingomyelin by a neutral sphingomyelinase in axons inhibits axonal growth. Furthermore, we demonstrate that treatment of distal axons with ceramide inhibits the uptake of NGF and low density lipoproteins by distal axons by approximately 70 and 40%, respectively, suggesting that the inhibition of axonal growth by ceramide might be due, at least in part, to impaired endocytosis of NGF. However, inhibition of endocytosis of NGF by ceramide could not be ascribed to decreased phosphorylation of TrkA.
Collapse
Affiliation(s)
- E P de Chaves
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Huwiler A, Böddinghaus B, Pautz A, Dorsch S, Franzen R, Briner VA, Brade V, Pfeilschifter J. Superoxide potently induces ceramide formation in glomerular endothelial cells. Biochem Biophys Res Commun 2001; 284:404-10. [PMID: 11394893 DOI: 10.1006/bbrc.2001.4941] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recent evidence suggests that the sphingolipid-derived second messenger ceramide and oxidative stress are intimately involved in apoptosis induction. Here we report that exposure of microcapillary glomerular endothelial cells to superoxide-generating substances, including hypoxanthine/xanthine oxidase and the redox cyclers DMNQ and menadione results in a dose-dependent and delayed increase in the lipid signaling molecule ceramide. Long-term incubation of endothelial cells for 2-30 h with either DMNQ or hypoxanthine/xanthine oxidase leads to a continuous increase in ceramide levels. In contrast, short-term stimulation for 1 min up to 1 h had no effect on ceramide formation. The DMNQ-induced delayed ceramide formation is dose-dependently inhibited by reduced glutathione, whereas oxidized glutathione was without effect. Furthermore, N-acetylcysteine completely blocks DMNQ-induced ceramide formation. All superoxide-generating substances were found to dose-dependently trigger endothelial cell apoptosis. In addition, glutathione and N-acetylcysteine also prevented superoxide-induced apoptosis and implied that ceramide represents an important mediator of superoxide-triggered cell responses like apoptosis.
Collapse
Affiliation(s)
- A Huwiler
- Pharmazentrum Frankfurt, Institute of Medical Microbiology, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany
| | | | | | | | | | | | | | | |
Collapse
|