1
|
Sivaraman K, Wrenger S, Liu B, Schaudien D, Hesse C, Gomez-Mariano G, Perez-Luz S, Sewald K, DeLuca D, Wurm MJ, Pino P, Welte T, Martinez-Delgado B, Janciauskiene S. Mice inflammatory responses to inhaled aerosolized LPS: effects of various forms of human alpha1-antitrypsin. J Leukoc Biol 2023; 113:58-70. [PMID: 36822165 DOI: 10.1093/jleuko/qiac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
Rodent models of lipopolysaccharide (LPS)-induced pulmonary inflammation are used for anti-inflammatory drug testing. We aimed to characterize mice responses to aerosolized LPS alone or with intraperitoneal (i.p.) delivery of alpha1-antitrypsin (AAT). Balb/c mice were exposed to clean air or aerosolized LPS (0.21 mg/mL) for 10 min per day, for 3 d. One hour after each challenge, animals were treated i.p. with saline or with (4 mg/kg body weight) one of the AAT preparations: native (AAT), oxidized (oxAAT), recombinant (recAAT), or peptide of AAT (C-36). Experiments were terminated 6 h after the last dose of AATs. Transcriptome data of mice lungs exposed to clean air versus LPS revealed 656 differentially expressed genes and 155 significant gene ontology terms, including neutrophil migration and toll-like receptor signaling pathways. Concordantly, mice inhaling LPS showed higher bronchoalveolar lavage fluid neutrophil counts and levels of myeloperoxidase, inducible nitric oxide synthase, IL-1β, TNFα, KC, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Plasma inflammatory markers did not increase. After i.p. application of AATs, about 1% to 2% of proteins reached the lungs but, except for GM-CSF, none of the proteins significantly influenced inflammatory markers. All AATs and C-36 significantly inhibited LPS-induced GM-CSF release. Surprisingly, only oxAAT decreased the expression of several LPS-induced inflammatory genes, such as Cxcl3, Cd14, Il1b, Nfkb1, and Nfkb2, in lung tissues. According to lung transcriptome data, oxAAT mostly affected genes related to transcriptional regulation while native AAT or recAAT affected genes of inflammatory pathways. Hence, we present a feasible mice model of local lung inflammation induced via aerosolized LPS that can be useful for systemic drug testing.
Collapse
Affiliation(s)
- Kokilavani Sivaraman
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Sabine Wrenger
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Bin Liu
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christina Hesse
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Gema Gomez-Mariano
- Molecular Genetics, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Centro de Investigacion Biomedica en red de Enfermedades Raras, U758 (CIBERER), Majadahonda, Spain
| | - Sara Perez-Luz
- Molecular Genetics, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Centro de Investigacion Biomedica en red de Enfermedades Raras, U758 (CIBERER), Majadahonda, Spain
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - David DeLuca
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | | | | | - Tobias Welte
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Beatriz Martinez-Delgado
- Molecular Genetics, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Centro de Investigacion Biomedica en red de Enfermedades Raras, U758 (CIBERER), Majadahonda, Spain
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.,Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
2
|
Recombinant Alpha-1 Antitrypsin as Dry Powder for Pulmonary Administration: A Formulative Proof of Concept. Pharmaceutics 2022; 14:pharmaceutics14122754. [PMID: 36559248 PMCID: PMC9784676 DOI: 10.3390/pharmaceutics14122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency is a genetic disorder associated with pulmonary emphysema and bronchiectasis. Its management currently consists of weekly infusions of plasma-purified human AAT, which poses several issues regarding plasma supplies, possible pathogen transmission, purification costs, and parenteral administration. Here, we investigated an alternative administration strategy for augmentation therapy by combining recombinant expression of AAT in bacteria and the production of a respirable powder by spray drying. The same formulation approach was then applied to plasma-derived AAT for comparison. Purified, active, and endotoxin-free recombinant AAT was produced at high yields and formulated using L-leucine and mannitol as excipients after identifying compromise conditions for protein activity and good aerodynamic performances. An oxygen-free atmosphere, both during formulation and powder storage, slowed down methionine-specific oxidation and AAT inactivation. This work is the first peer-reviewed report of AAT formulated as a dry powder, which could represent an alternative to current treatments.
Collapse
|
3
|
Akbasheva OE, Spirina LV, Dyakov DA, Masunova NV. Proteolysis and Deficiency of α1-Proteinase Inhibitor in SARS-CoV-2 Infection. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2022; 16:271-291. [PMID: 36407837 PMCID: PMC9668222 DOI: 10.1134/s1990750822040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
The SARS-CoV-2 pandemic had stimulated the emergence of numerous publications on the α1-proteinase inhibitor (α1-PI, α1-antitrypsin), especially when it was found that the regions of high mortality corresponded to the regions with deficient α1-PI alleles. By analogy with the data obtained in the last century, when the first cause of the genetic deficiency of α1-antitrypsin leading to elastase activation in pulmonary emphysema was proven, it can be supposed that proteolysis hyperactivation in COVID-19 may be associated with the impaired functions of α1-PI. The purpose of this review was to systematize the scientific data and critical directions for translational studies on the role of α1-PI in SARS-CoV-2-induced proteolysis hyperactivation as a diagnostic marker and a therapeutic target. This review describes the proteinase-dependent stages of viral infection: the reception and penetration of the virus into a cell and the imbalance of the plasma aldosterone-angiotensin-renin, kinin, and blood clotting systems. The role of ACE2, TMPRSS, ADAM17, furin, cathepsins, trypsin- and elastase-like serine proteinases in the virus tropism, the activation of proteolytic cascades in blood, and the COVID-19-dependent complications is considered. The scientific reports on α1-PI involvement in the SARS-CoV-2-induced inflammation, the relationship with the severity of infection and comorbidities were analyzed. Particular attention is paid to the acquired α1-PI deficiency in assessing the state of patients with proteolysis overactivation and chronic non-inflammatory diseases, which are accompanied by the risk factors for comorbidity progression and the long-term consequences of COVID-19. Essential data on the search and application of protease inhibitor drugs in the therapy for bronchopulmonary and cardiovascular pathologies were analyzed. The evidence of antiviral, anti-inflammatory, anticoagulant, and anti-apoptotic effects of α1-PI, as well as the prominent data and prospects for its application as a targeted drug in the SARS-CoV-2 acquired pneumonia and related disorders, are presented.
Collapse
Affiliation(s)
| | - L. V. Spirina
- Siberian State Medical University, 634050 Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
| | - D. A. Dyakov
- Siberian State Medical University, 634050 Tomsk, Russia
| | | |
Collapse
|
4
|
Janciauskiene S, Tumpara S, Schebb NH, Buettner FFR, Mainka M, Sivaraman K, Immenschuh S, Grau V, Welte T, Olejnicka B. Indirect effect of alpha-1-antitrypsin on endotoxin-induced IL-1β secretion from human PBMCs. Front Pharmacol 2022; 13:995869. [PMID: 36249781 PMCID: PMC9564231 DOI: 10.3389/fphar.2022.995869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Human alpha-1-antitrypsin (AAT) encoded by the SERPINA1 gene, is an acute phase glycoprotein that regulates inflammatory responses via both protease inhibitory and non-inhibitory activities. We previously reported that AAT controls ATP-induced IL-1β release from human mononuclear cells by stimulating the release of small bioactive molecules. In the current study, we aimed to elucidate the identity of these putative effectors released from human PBMCs in response to AAT, which may inhibit the LPS-induced release of IL-1β. We pre-incubated human PBMCs alone or with different preparations of AAT (4 mg/ml) for 30 min at 37°C, 5% CO2, and collected cell supernatants filtered through centrifugal filters (cutoff 3 kDa) to eliminate AAT and other high molecular weight substances. Supernatants passed through the filters were used to culture PBMCs isolated from the autologous or a heterologous donors with or without adding LPS (1 μg/ml) for 6 h. Unexpectedly, supernatants from PBMCs pre-incubated with AAT (Zemaira®), but not with other AAT preparations tested or with oxidized AAT (Zemaira®), lowered the LPS-induced release of IL-1β by about 25%–60% without affecting IL1B mRNA. The reversed-phase liquid chromatography coupled with mass spectrometry did not confirm the hypothesis that small pro-resolving lipid mediators released from PBMCs after exposure to AAT (Zemaira®) are responsible for lowering the LPS-induced IL-1β release. Distinctively from other AAT preparations, AAT (Zemaira®) and supernatants from PBMCs pre-treated with this protein contained high levels of total thiols. In line, mass spectrometry analysis revealed that AAT (Zemaira®) protein contains freer Cys232 than AAT (Prolastin®). Our data show that a free Cys232 in AAT is required for controlling LPS-induced IL-1β release from human PBMCs. Further studies characterizing AAT preparations used to treat patients with inherited AAT deficiency remains of clinical importance.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Experimental Medicine, Lund University, Lund, Sweden
- *Correspondence: Sabina Janciauskiene,
| | - Srinu Tumpara
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Falk F. R. Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Kokilavani Sivaraman
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Center for Lung Research, Giessen, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Beata Olejnicka
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Experimental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Akbasheva OE, Spirina LV, Dyakov DA, Masunova NV. [Proteolysis and deficiency of α1-proteinase inhibitor in SARS-CoV-2 infection]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:157-176. [PMID: 35717581 DOI: 10.18097/pbmc20226803157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The SARS-CoV-2 pandemia had stimulated the numerous publications emergence on the α1-proteinase inhibitor (α1-PI, α1-antitrypsin), primarily when it was found that high mortality in some regions corresponded to the regions with deficient α1-PI alleles. By analogy with the last century's data, when the root cause of the α1-antitrypsin, genetic deficiency leading to the elastase activation in pulmonary emphysema, was proven. It is evident that proteolysis hyperactivation in COVID-19 may be associated with α1-PI impaired functions. The purpose of this review is to systematize scientific data, critical directions for translational studies on the role of α1-PI in SARS-CoV-2-induced proteolysis hyperactivation as a diagnostic marker and a target in therapy. This review describes the proteinase-dependent stages of a viral infection: the reception and virus penetration into the cell, the plasma aldosterone-angiotensin-renin, kinins, blood clotting systems imbalance. The ACE2, TMPRSS, ADAM17, furin, cathepsins, trypsin- and elastase-like serine proteinases role in the virus tropism, proteolytic cascades activation in blood, and the COVID-19-dependent complications is presented. The analysis of scientific reports on the α1-PI implementation in the SARS-CoV-2-induced inflammation, the links with the infection severity, and comorbidities were carried out. Particular attention is paid to the acquired α1-PI deficiency in assessing the patients with the proteolysis overactivation and chronic non-inflammatory diseases that are accompanied by the risk factors for the comorbidities progression, and the long-term consequences of COVID-19 initiation. Analyzed data on the search and proteases inhibitory drugs usage in the bronchopulmonary cardiovascular pathologies therapy are essential. It becomes evident the antiviral, anti-inflammatory, anticoagulant, anti-apoptotic effect of α1-PI. The prominent data and prospects for its application as a targeted drug in the SARS-CoV-2 acquired pneumonia and related disorders are presented.
Collapse
Affiliation(s)
| | - L V Spirina
- Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - D A Dyakov
- Siberian State Medical University, Tomsk, Russia
| | - N V Masunova
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
6
|
Segal L, Lewis EC. The Lipid Ties of α1-antitrypsin: Structural and Functional Aspects. Cell Immunol 2022; 375:104528. [DOI: 10.1016/j.cellimm.2022.104528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/01/2023]
|
7
|
Xu X, Li H, Wei Q, Li X, Shen Y, Guo G, Chen Y, He K, Liu C. Novel Targets in a High-Altitude Pulmonary Hypertension Rat Model Based on RNA-seq and Proteomics. Front Med (Lausanne) 2021; 8:742436. [PMID: 34805208 PMCID: PMC8595261 DOI: 10.3389/fmed.2021.742436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
High-altitude pulmonary hypertension (HAPH) is a complication arising from an inability to acclimatize to high altitude and is associated with high morbidity and mortality. We aimed to analyze the effects of macitentan, selexipag, riociguat, and reoxygenation on HAPH, and to screen possible targets of these treatments for future drug screening. Rats were subjected to hypobaric hypoxia for 35 days to induce HAPH, and treated with vehicle or selexipag, macitentan, riociguat, or with reoxygenation, from days 21 to 35. Selexipag, macitentan, and reoxygenation prevented an increase in mean pulmonary artery pressure and hypoxia-induced right ventricular hypertrophy, compared to the vehicle. Riociguat had little effect. RNA-seq and proteomics revealed strong correlations between responses to the three drugs, which had almost identical effects. GO-enrichment revealed that the differentially expressed genes included those involved in metabolic regulation, transcription, and translation. Various molecular pathways were annotated. Selexipag, macitentan, and reoxygenation ameliorated HAPH. Serpina1, Cryz, and Cmc1 were identified, via multi-omics screening, as key genes involved in HAPH. These findings provide new insights into the targeted drug mechanisms in HAPH.
Collapse
Affiliation(s)
- Xiang Xu
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Hanlu Li
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Qingxia Wei
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yanying Shen
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Ge Guo
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yibing Chen
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Chunlei Liu
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Edinger F, Schmitt C, Koch C, McIntosh JM, Janciauskiene S, Markmann M, Sander M, Padberg W, Grau V. Application of alpha1-antitrypsin in a rat model of veno-arterial extracorporeal membrane oxygenation. Sci Rep 2021; 11:15849. [PMID: 34349162 PMCID: PMC8339069 DOI: 10.1038/s41598-021-95119-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-saving intervention for patients suffering from respiratory or cardiac failure. The ECMO-associated morbidity and mortality depends to a large extent on the underlying disease and is often related to systemic inflammation, consecutive immune paralysis and sepsis. Here we tested the hypothesis that human α1-antitrypsin (SERPINA1) due to its anti-protease and anti-inflammatory functions may attenuate ECMO-induced inflammation. We specifically aimed to test whether intravenous treatment with α1-antitrypsin reduces the release of cytokines in response to 2 h of experimental ECMO. Adult rats were intravenously infused with α1-antitrypsin immediately before starting veno-arterial ECMO. We measured selected pro- and anti-inflammatory cytokines and found, that systemic levels of tumor necrosis factor-α, interleukin-6 and interleukin-10 increase during experimental ECMO. As tachycardia and hypertension developed in response to α1-antitrypsin, a single additional bolus of fentanyl and midazolam was given. Treatment with α1-antitrypsin and higher sedative doses reduced all cytokine levels investigated. We suggest that α1-antitrypsin might have the potential to protect against both ECMO-induced systemic inflammation and immune paralysis. More studies are needed to corroborate our findings, to clarify the mechanisms by which α1-antitrypsin inhibits cytokine release in vivo and to explore the potential application of α1-antitrypsin in clinical ECMO.
Collapse
Affiliation(s)
- Fabian Edinger
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Christoph Schmitt
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - Christian Koch
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, German Centre for Lung Research (DZL), Hannover, Germany
| | - Melanie Markmann
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - Michael Sander
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research (DZL), Justus-Liebig-University of Giessen, Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research (DZL), Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
9
|
McNulty MJ, Silberstein DZ, Kuhn BT, Padgett HS, Nandi S, McDonald KA, Cross CE. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radic Biol Med 2021; 163:10-30. [PMID: 33279618 DOI: 10.1016/j.freeradbiomed.2020.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Alpha-1 antitrypsin deficiency (A1ATD) is an autosomal recessive disease characterized by low plasma levels of A1AT, a serine protease inhibitor representing the most abundant circulating antiprotease normally present at plasma levels of 1-2 g/L. The dominant clinical manifestations include predispositions to early onset emphysema due to protease/antiprotease imbalance in distal lung parenchyma and liver disease largely due to unsecreted polymerized accumulations of misfolded mutant A1AT within the endoplasmic reticulum of hepatocytes. Since 1987, the only FDA licensed specific therapy for the emphysema component has been infusions of A1AT purified from pooled human plasma at the 2020 cost of up to US $200,000/year with the risk of intermittent shortages. In the past three decades various, potentially less expensive, recombinant forms of human A1AT have reached early stages of development, one of which is just reaching the stage of human clinical trials. The focus of this review is to update strategies for the treatment of the pulmonary component of A1ATD with some focus on perspectives for therapeutic production and regulatory approval of a recombinant product from plants. We review other competitive technologies for treating the lung disease manifestations of A1ATD, highlight strategies for the generation of data potentially helpful for securing FDA Investigational New Drug (IND) approval and present challenges in the selection of clinical trial strategies required for FDA licensing of a New Drug Approval (NDA) for this disease.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - David Z Silberstein
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Brooks T Kuhn
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Carroll E Cross
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
10
|
Agné A, Richter K, Tumpara S, Sauer AL, Beckert F, Wrenger S, Zakrzewicz A, Hecker A, Markmann M, Koch C, Zajonz T, Sander M, Böning A, Padberg W, Janciauskiene S, Grau V. Does heart surgery change the capacity of α1-antitrypsin to inhibit the ATP-induced release of monocytic interleukin-1β? A preliminary study. Int Immunopharmacol 2020; 81:106297. [PMID: 32062078 DOI: 10.1016/j.intimp.2020.106297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
Abstract
Heart surgery involving cardiopulmonary bypass induces systemic inflammation that is, at least in part, caused by extracellular ATP originating from damaged cells and by proteases secreted by activated neutrophils. The anti-protease α1-antitrypsin (AAT) forms complexes with several proteases including neutrophil elastase, resulting in a mutual loss of activity. We demonstrated recently that AAT inhibits the ATP-induced release of the pro-inflammatory cytokine interleukin-1β by human monocytes by a mechanism involving activation of metabotropic functions at nicotinic acetylcholine receptors. Interleukin-1β importantly contributes to the pathogenesis of sterile inflammatory response syndrome. Thus, AAT might function as an endogenous safeguard against life-threatening systemic inflammation. In this preliminary study, we test the hypothesis that during cardiopulmonary bypass, AAT is inactivated as an anti- protease and as an inhibitor of ATP-induced interleukin-1β release. AAT was affinity-purified from the blood plasma of patients before, during and after surgery. Lipopolysaccharide-primed human monocytic U937 cells were stimulated with ATP in the presence or absence of patient AAT to test for its inhibitory effect on interleukin-1β release. Anti-protease activity was investigated via complex formation with neutrophil elastase. The capacity of patient AAT to inhibit the ATP-induced release of interleukin-1β might be slightly reduced in response to heart surgery and complex formation of patient AAT with neutrophil elastase was unimpaired. We conclude that surgery involving cardiopulmonary bypass does not markedly reduce the anti-inflammatory and the anti-protease activity of AAT. The question if AAT augmentation therapy during heart surgery is suited to attenuate postoperative inflammation warrants further studies in vivo.
Collapse
Affiliation(s)
- A Agné
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University of Giessen, Giessen, Germany.
| | - K Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University of Giessen, Giessen, Germany
| | - S Tumpara
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - A-L Sauer
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - F Beckert
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - S Wrenger
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - A Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University of Giessen, Giessen, Germany
| | - A Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University of Giessen, Giessen, Germany
| | - M Markmann
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - C Koch
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - T Zajonz
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - M Sander
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - A Böning
- Department of Heart and Vascular Surgery, Justus-Liebig University of Giessen, Giessen, Germany
| | - W Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University of Giessen, Giessen, Germany
| | - S Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Member of the German Centre for Lung Research (DZL), Germany
| | - V Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University of Giessen, Giessen, Germany; Member of the German Centre for Lung Research (DZL), Germany
| |
Collapse
|
11
|
Janciauskiene S. The Beneficial Effects of Antioxidants in Health And Diseases. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:182-202. [PMID: 32558487 DOI: 10.15326/jcopdf.7.3.2019.0152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen and nitrogen species can be generated endogenously (by mitochondria, peroxisomes, and phagocytic cells) and exogenously (by pollutions, UV exposure, xenobiotic compounds, and cigarette smoke). The negative effects of free radicals are neutralized by antioxidant molecules synthesized in our body, like glutathione, uric acid, or ubiquinone, and those obtained from the diet, such as vitamins C, E, and A, and flavonoids. Different microelements like selenium and zinc have no antioxidant action themselves but are required for the activity of many antioxidant enzymes. Furthermore, circulating blood proteins are suggested to account for more than 50% of the combined antioxidant effects of urate, ascorbate, and vitamin E. Antioxidants together constitute a mutually supportive defense against reactive oxygen and nitrogen species to maintain the oxidant/antioxidant balance. This article outlines the oxidative and anti-oxidative molecules involved in the pathogenesis of chronic obstructive lung disease. The role of albumin and alpha-1 antitrypsin in antioxidant defense is also discussed.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Member of German Centre for Lung Research (DZL), Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
12
|
Topic A, Milovanovic V, Lazic Z, Ivosevic A, Radojkovic D. Oxidized Alpha-1-Antitrypsin as a Potential Biomarker Associated with Onset and Severity of Chronic Obstructive Pulmonary Disease in Adult Population. COPD 2019; 15:472-478. [PMID: 30822244 DOI: 10.1080/15412555.2018.1541448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress could reduce inhibitor activity of the alpha-1-antitrypsin (A1AT). Oxidative-modified A1AT (oxidized alpha-1-antitrypsin, OxyA1AT) significantly loses ability to protect the lungs from neutrophil elastase. We aimed to investigate OxyA1AT as a potential biomarker associated with onset and severity of chronic obstructive pulmonary disease (COPD) in adult population. The study included 65 patients with COPD (33 smokers and 32 no-smokers) and 46 healthy participants (17 smokers and 29 no-smokers). Determination of OxyA1AT in serum was based on the difference between the inhibitory activities of normal and oxidized A1AT against trypsin and elastase. The level of OxyA1AT was significantly increased in the group of COPD smokers compared to healthy no-smokers (p = 0.030) and COPD no-smokers (p = 0.009). The highest level of OxyA1AT was found in group of smokers with severe and very severe COPD in comparison to the following: no-smokers with the same stage of disease (p = 0.038), smokers with moderate COPD (p = 0.022), and the healthy control group, regardless of the smoking status (control no-smokers p = 0.001 and control smokers p = 0.034). In conclusion, serum level of OxyA1AT would be potentially good biomarker for the assessment of harmful effect of smoking to the onset and severity of COPD. Also, clinical significance of OxyA1AT as prognostic biomarker could be useful in assessing the effectiveness of antioxidant therapy for COPD and emphysema. Suitable and inexpensive laboratory method for determination of OxyA1AT is additional benefit for the introduction of OxyA1AT into routine clinical practice for diagnosis and monitoring of COPD.
Collapse
Affiliation(s)
- A Topic
- a Department of Medical Biochemistry , University of Belgrade-Faculty of Pharmacy , Belgrade , Serbia
| | - V Milovanovic
- a Department of Medical Biochemistry , University of Belgrade-Faculty of Pharmacy , Belgrade , Serbia
| | - Z Lazic
- b Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - A Ivosevic
- b Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - D Radojkovic
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| |
Collapse
|
13
|
Kaner Z, Engelman R, Schuster R, Rider P, Greenberg D, Av-Gay Y, Benhar M, Lewis EC. S-Nitrosylation of α1-Antitrypsin Triggers Macrophages Toward Inflammatory Phenotype and Enhances Intra-Cellular Bacteria Elimination. Front Immunol 2019; 10:590. [PMID: 31001247 PMCID: PMC6454134 DOI: 10.3389/fimmu.2019.00590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/05/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Human α1-antitrypsin (hAAT) is a circulating anti-inflammatory serine-protease inhibitor that rises during acute phase responses. in vivo, hAAT reduces bacterial load, without directly inhibiting bacterial growth. In conditions of excess nitric-oxide (NO), hAAT undergoes S-nitrosylation (S-NO-hAAT) and gains antibacterial capacity. The impact of S-NO-hAAT on immune cells has yet to be explored. Aim: Study the effects of S-NO-hAAT on immune cells during bacterial infection. Methods: Clinical-grade hAAT was S-nitrosylated and then compared to unmodified hAAT, functionally, and structurally. Intracellular bacterial clearance by THP-1 macrophages was assessed using live Salmonella typhi. Murine peritoneal macrophages were examined, and signaling pathways were evaluated. S-NO-hAAT was also investigated after blocking free mambranal cysteine residues on cells. Results: S-NO-hAAT (27.5 uM) enhances intracellular bacteria elimination by immunocytes (up to 1-log reduction). S-NO-hAAT causes resting macrophages to exhibit a pro-inflammatory and antibacterial phenotype, including release of inflammatory cytokines and induction of inducible nitric oxide synthase (iNOS) and TLR2. These pro-inflammatory effects are dependent upon cell surface thiols and activation of MAPK pathways. Conclusions: hAAT duality appears to be context-specific, involving S-nitrosylation in a nitric oxide rich environment. Our results suggest that S-nitrosylation facilitates the antibacterial activity of hAAT by promoting its ability to activate innate immune cells. This pro-inflammatory effect may involve transferring of nitric oxide from S-NO-hAAT to a free cysteine residue on cellular targets.
Collapse
Affiliation(s)
- Ziv Kaner
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rotem Engelman
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Schuster
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Peleg Rider
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - David Greenberg
- The Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Yossef Av-Gay
- Division of Infectious Diseases, Departments of Medicine and Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Moran Benhar
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
14
|
Zhu W, Li L, Deng M, Wang B, Li M, Ding G, Yang Z, Medynski D, Lin X, Ouyang Y, Lin J, Li L, Lin X. Oxidation-resistant and thermostable forms of alpha-1 antitrypsin from Escherichia coli inclusion bodies. FEBS Open Bio 2018; 8:1711-1721. [PMID: 30338221 PMCID: PMC6168689 DOI: 10.1002/2211-5463.12515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 11/21/2022] Open
Abstract
Native α1‐antitrypsin (AAT) is a 52‐kDa glycoprotein that acts as an antiprotease and is the physiological inhibitor of neutrophil serine proteases. The main function of AAT is to protect the lung from proteolytic damage induced by inflammation. AAT deficiency (AATD) is a codominant autosomal disorder caused by pathogenic mutations in SERPINA1 gene, leading to reduced levels of serum AAT. The deficiency is known to increase the risk of pulmonary emphysema and chronic obstructive pulmonary disease as a consequence of proteolytic imbalance induced by inflammation, associated in many instances with cigarette smoking and other environmental hazards. Currently, the available therapy for lung disease associated with AATD is serum purified human AAT injected into patients on a weekly basis. It would be advantageous to replace serum‐derived AAT with a recombinant version which is stable and resistant to oxidation. We have expressed AAT in Escherichia coli as inclusion bodies and developed a highly efficient refolding and purification process. We engineered a series of mutant forms of AAT to achieve enhance thermostability and oxidation resistance. Moreover, we synthesized an active form of AAT via cysteine‐pegylation to achieve a markedly extended half‐life in vivo. The resulting molecule, which retains comparable activity to the wild‐type form, is expected to be an improved therapeutic agent for treating hereditary emphysema. In addition, the molecule may also be used to treat other types of emphysema caused by smoking, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Wei Zhu
- Key Laboratory for Microorganisms and Biotransformation College of Life Science South-Central University for Nationalities Wuhan China
| | - Lanfen Li
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
| | - Mingjing Deng
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
| | - Bo Wang
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
| | - Mengfei Li
- Key Laboratory for Microorganisms and Biotransformation College of Life Science South-Central University for Nationalities Wuhan China
| | - Guofang Ding
- Key Engineering Research Centers of Marine Organisms Medical Products Food and Medicine School of Zhejiang Ocean University Zhoushan China.,Marine Fisheries Research Institute of Zhejiang Province Zhoushan China
| | - Zuisu Yang
- Key Engineering Research Centers of Marine Organisms Medical Products Food and Medicine School of Zhejiang Ocean University Zhoushan China
| | - Dan Medynski
- Cardinal Intellectual Property LLC Oakland CA USA
| | - Xiaotao Lin
- Shenzhen YHLO Biotech Co., Ltd. Shenzhen China
| | - Ying Ouyang
- Wuxi Biortus Biosciences Co., Ltd. Jiangyin China
| | - Jirui Lin
- School of Software Huazhong University of Science and Technology Wuhan China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology Nankai University College of Pharmacy Tianjin China
| | - Xinli Lin
- Key Laboratory for Microorganisms and Biotransformation College of Life Science South-Central University for Nationalities Wuhan China.,Key Engineering Research Centers of Marine Organisms Medical Products Food and Medicine School of Zhejiang Ocean University Zhoushan China
| |
Collapse
|
15
|
Serban KA, Petrusca DN, Mikosz A, Poirier C, Lockett AD, Saint L, Justice MJ, Twigg HL, Campos MA, Petrache I. Alpha-1 antitrypsin supplementation improves alveolar macrophages efferocytosis and phagocytosis following cigarette smoke exposure. PLoS One 2017; 12:e0176073. [PMID: 28448535 PMCID: PMC5407578 DOI: 10.1371/journal.pone.0176073] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/05/2017] [Indexed: 01/13/2023] Open
Abstract
Cigarette smoking (CS), the main risk factor for COPD (chronic obstructive pulmonary disease) in developed countries, decreases alveolar macrophages (AM) clearance of both apoptotic cells and bacterial pathogens. This global deficit of AM engulfment may explain why active smokers have worse outcomes of COPD exacerbations, episodes characterized by airway infection and inflammation that carry high morbidity and healthcare cost. When administered as intravenous supplementation, the acute phase-reactant alpha-1 antitrypsin (A1AT) reduces the severity of COPD exacerbations in A1AT deficient (AATD) individuals and of bacterial pneumonia in murine models, but the effect of A1AT on AM scavenging functions has not been reported. Apoptotic cell clearance (efferocytosis) was measured in human AM isolated from patients with COPD, in primary rat AM or differentiated monocytes exposed to CS ex vivo, and in AM recovered from mice exposed to CS. A1AT (100 μg/mL, 16 h) significantly ameliorated efferocytosis (by ~50%) in AM of active smokers or AM exposed ex vivo to CS. A1AT significantly improved AM global engulfment, including phagocytosis, even when cells were simultaneously challenged with apoptotic and Fc-coated (bacteria-like) targets. The improved efferocytosis in A1AT-treated macrophages was associated with inhibition of tumor necrosis factor-α converting enzyme (TACE) activity, decreased mannose receptor shedding, and markedly increased abundance of efferocytosis receptors (mannose- and phosphatidyl serine receptors and the scavenger receptor B2) on AM plasma membrane. Directed airway A1AT treatment (via inhalation of a nebulized solution) restored in situ airway AM efferocytosis after CS exposure in mice. The amelioration of CS-exposed AM global engulfment may render A1AT as a potential therapy for COPD exacerbations.
Collapse
Affiliation(s)
- Karina A. Serban
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado, United States of America
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Daniela N. Petrusca
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Andrew Mikosz
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Christophe Poirier
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Angelia D. Lockett
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular and Integrative Physiology at Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Lauren Saint
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Matthew J. Justice
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado, United States of America
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Homer L. Twigg
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Michael A. Campos
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, Florida, United States of America
| | - Irina Petrache
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado, United States of America
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
16
|
Hayashi T, Nakamae T, Higo E, Ikematsu K, Ogata M. Primed neutrophil infiltrations into multiple organs in child physical abuse cases: A preliminary study. Leg Med (Tokyo) 2017; 24:24-31. [PMID: 28081787 DOI: 10.1016/j.legalmed.2016.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/05/2016] [Accepted: 11/06/2016] [Indexed: 11/25/2022]
Abstract
Physical abuse of the elderly induces a massive primed neutrophil infiltration into the lung and liver through chemotaxis by interleukin (IL)-8, similar to cases of traumatic or hemorrhagic shock. Here, we used immunohistochemical analyses to investigate this infiltration in cases of physically abused children. In addition, we examined the expression of neutrophil elastase (NE) as the inflammatory mediator and α1-antitrypsin (AAT) as the elastase inhibitor. The number of neutrophils in the abuse cases was increased significantly in the heart, lung, liver, and kidney, compared with that of control cases. IL-8-positive cells and NE-positive cells in all organs of abuse cases were significantly greater than those in control cases. Large quantities of oxidized AAT, which fails to inactivate NE and results in tissue damage, was detected in the liver of abuse cases. Neutrophil infiltration showed positive correlation with the degree of systemic accumulation of non-fatal injuries caused by repetitive abusive behavior. Although further investigation using more autopsy samples is necessary, results of our preliminary study indicate that massive neutrophil infiltration induced by IL-8 in multiple organs is a new complementary diagnostic indicator of physical abuse in children. Moreover, the demonstration of NE-positive cells and oxidized AAT provides firm evidence of tissue damage.
Collapse
Affiliation(s)
- Takahito Hayashi
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Takuma Nakamae
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Eri Higo
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kazuya Ikematsu
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Nagasaki 852-8523, Japan
| | - Mamoru Ogata
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
17
|
Miyazaki Y, Katanasaka Y, Sunagawa Y, Hirano-Sunagawa S, Funamoto M, Morimoto E, Komiyama M, Shimatsu A, Satoh-Asahara N, Yamakage H, Wada H, Hasegawa K, Morimoto T. Effect of statins on atherogenic serum amyloid A and α1-antitrypsin low-density lipoprotein complexes. Int J Cardiol 2016; 225:332-336. [PMID: 27756037 DOI: 10.1016/j.ijcard.2016.09.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE HMG-CoA reductase inhibitors, also termed statins, are used to reduce the risk of coronary artery disease. Two oxidatively modified low-density lipoprotein (LDL) complexes, serum amyloid A-LDL (SAA-LDL) and α1-antitrypsin-LDL (AT-LDL), serve as atherosclerotic, inflammatory, and cardiovascular risk markers. In this study, we examined the effects of hydrophilic rosuvastatin (RSV) and lipophilic pitavastatin (PTV) on these markers in patients with hypercholesterolemia. METHODS The present study was a sub-analysis of our previous STAT-LVDF study. The subjects were treated with RSV or PTV for 24weeks. Changes in glucose-lipid metabolism, serum levels of SAA-LDL and AT-LDL, and C-reactive protein (CRP) level were assessed. RESULTS In total, 53 patients were analyzed in the present study. RSV and PTV significantly decreased SAA-LDL (RSV: p=0.003, PTV: p=0.012) and AT-LDL levels (RSV: p=0.013, PTV: p=0.037). Changes in SAA-LDL level were significantly and positively correlated with those in CRP in both the RSV (r=0.549, p=0.003) and PTV (r=0.576, p=0.004) groups. Moreover, a positive correlation between changes of SAA-LDL levels and those of HbA1c levels was observed in the PTV group (r=0.442, p=0.030) but not in the RSV group (r=-0.100, p=0.611). CONCLUSIONS Both hydrophilic rosuvastatin and lipophilic pitavastatin reduce serum levels of atherosclerotic and inflammatory markers. These findings also indicate differential effects of RSV and PTV on glucose tolerance.
Collapse
Affiliation(s)
- Yusuke Miyazaki
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Shizuoka General Hospital, Shizuoka, Japan; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yoichi Sunagawa
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Shizuoka General Hospital, Shizuoka, Japan; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Sae Hirano-Sunagawa
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Shizuoka Saiseikai General Hospital, Shizuoka, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | | - Maki Komiyama
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akira Shimatsu
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Noriko Satoh-Asahara
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hajime Yamakage
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hiromichi Wada
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Koji Hasegawa
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Shizuoka General Hospital, Shizuoka, Japan; Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.
| |
Collapse
|
18
|
Guttman O, Freixo-Lima GS, Kaner Z, Lior Y, Rider P, Lewis EC. Context-Specific and Immune Cell-Dependent Antitumor Activities of α1-Antitrypsin. Front Immunol 2016; 7:559. [PMID: 28003813 PMCID: PMC5141363 DOI: 10.3389/fimmu.2016.00559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022] Open
Abstract
α1-antitrypsin (AAT), a circulating glycoprotein that rises during acute phase responses and healthy pregnancies, exhibits immunomodulatory properties in several T-cell-dependent immune pathologies. However, AAT does not directly interfere with T-cell responses; instead, it facilitates polarization of macrophages and dendritic cells towards M2-like and tolerogenic cells, respectively. AAT also allows NK cell responses against tumor cells, while attenuating DC-dependent induction of autoimmune NK cell activities. Since AAT-treated macrophages bear resemblance to cancer-promoting tumor-associated macrophages (TAMs), it became imperative to examine the possible induction of tumor permissive conditions by AAT. Here, AAT treatment is examined for its effect on tumor development, metastatic spread, and tumor immunology. Systemic AAT treatment of mice inoculated with B16-F10 melanoma cells resulted in significant inhibition of tumor growth and metastatic spread. Using NK cell-resistant RMA cells, we show that AAT interferes with tumor development in a CD8+ T-cell-dependent manner. Unexpectedly, upon analysis of tumor cellular composition, we identified functional tumor-infiltrating CD8+ T-cells alongside M1-like TAMs in AAT-treated mice. Based on the ability of AAT to undergo chemical modifications, we emulated conditions of elevated reactive nitrogen and oxygen species. Indeed, macrophages were stimulated by treatment with nitrosylated AAT, and IFNγ transcripts were significantly elevated in tumors extracted soon after ischemia-reperfusion challenge. These context-specific changes may explain the differential effects of AAT on immune responses towards tumor cells versus benign antigenic targets. These data suggest that systemically elevated levels of AAT may accommodate its physiological function in inflammatory resolution, without compromising tumor-targeting immune responses.
Collapse
Affiliation(s)
- Ofer Guttman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Gabriella S Freixo-Lima
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Ziv Kaner
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Yotam Lior
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Peleg Rider
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| |
Collapse
|
19
|
Protease Inhibitors in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Komiyama M, Shimada S, Wada H, Yamakage H, Satoh-Asahara N, Shimatsu A, Akao M, Morimoto T, Takahashi Y, Hasegawa K. Time-dependent Changes of Atherosclerotic LDL Complexes after Smoking Cessation. J Atheroscler Thromb 2016; 23:1270-1275. [PMID: 27298048 PMCID: PMC5113744 DOI: 10.5551/jat.34280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: The α1-antitrypsin – low-density lipoprotein complex (AT-LDL) and serum amyloid A-LDL complex (SAA-LDL) are oxidatively modified LDL complexes that promote atherosclerosis. The serum levels of AT-LDL and SAA-LDL are suggested to be increased by obesity and smoking. We have previously demonstrated that larger weight gain after smoking cessation (SC) perturbs a decrease in the serum level of AT-LDL at 3 months after SC. However, changes of these atherosclerotic makers >3 months after SC are unknown. This study investigated post-SC time-dependent changes in two atherogenic lipoproteins, AT-LDL and SAA-LDL, and in the extent of abdominal obesity. Methods: In 50 outpatients who had continued SC for 1 year, we measured serum AT-LDL and SAA-LDL levels by the enzyme-linked immunosorbent assay before SC, and at 3 months and 1 year after SC. Results: Both body mass index and waist circumstance significantly increased from pre-SC to 3 months after SC and from 3 months after SC to 1 year after SC. Although the serum levels of AT-LDL and SAA-LDL were unchanged from pre-SC to 3 months after SC, these levels decreased significantly from 3 months after SC to 1 year after SC. Conclusions: The extent of abdominal obesity and levels of two atherogenic lipoproteins time-dependently change after SC. Although abdominal obesity progressively worsened after SC, the beneficial effect of non-smoking overcomes the potential vascular risks by cessation-associated obesity at 1 year after SC.
Collapse
Affiliation(s)
- Maki Komiyama
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Topic A, Nagorni-Obradovic L, Francuski D, Ljujic M, Malic Z, Radojkovic D. Oxidative Stress and Polymorphism of Xenobiotic-Metabolizing Enzymes in Two Patients with Severe Alpha-1-Antitrypsin Deficiency. Biochem Genet 2016; 54:746-52. [PMID: 27271084 DOI: 10.1007/s10528-016-9748-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/27/2016] [Indexed: 11/29/2022]
Abstract
Alpha-1-antitrypsin deficiency (AATD) and tobacco smoke play a key role in the pathogenesis of early-onset emphysema. Differences in AATD-related chronic obstructive pulmonary disease stages imply the existence of modifying factors associated with disease severity. We present two male patients with emphysema caused by severe AATD (PiZZ genotype). Both are former smokers and have epoxide hydrolase low-activity phenotype. Extremely high level of oxidative stress (high urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine), increased inflammation (high serum CRP), and GSTP1 105Val mutation were found in patient with a worse lung function and prognosis. These data provide more evidence that oxidative stress-related gene variants and inflammation are associated with worse symptoms of AATD-related emphysema. Therefore, prevention against severe stage of AATD-related emphysema would include early identification of the risk gene variants, cessation or never smoking, and treatment with anti-inflammatory and anti-oxidant drugs. Additionally, urinary 8-oxodG could be a candidate for predictive biomarker for routine assessment of the oxidative stress level in AATD patients.
Collapse
Affiliation(s)
- Aleksandra Topic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe, 450, Belgrade, 11221, Serbia.
| | - Ljudmila Nagorni-Obradovic
- School of Medicine, Clinic for Pulmonary Diseases Clinical Centre of Serbia, University of Belgrade, Belgrade, Serbia
| | - Djordje Francuski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Mila Ljujic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Zivka Malic
- Faculty of Pharmacy, University of Bijeljina, Bijeljina, Bosnia and Herzegovina
| | - Dragica Radojkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
T Helper Subsets, Peripheral Plasticity, and the Acute Phase Protein, α1-Antitrypsin. BIOMED RESEARCH INTERNATIONAL 2015; 2015:184574. [PMID: 26583093 PMCID: PMC4637007 DOI: 10.1155/2015/184574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/30/2015] [Indexed: 02/08/2023]
Abstract
The traditional model of T helper differentiation describes the naïve T cell as choosing one of several subsets upon stimulation and an added reciprocal inhibition aimed at maintaining the chosen subset. However, to date, evidence is mounting to support the presence of subset plasticity. This is, presumably, aimed at fine-tuning adaptive immune responses according to local signals. Reprograming of cell phenotype is made possible by changes in activation of master transcription factors, employing epigenetic modifications that preserve a flexible mode, permitting a shift between activation and silencing of genes. The acute phase response represents an example of peripheral changes that are critical in modulating T cell responses. α1-antitrypsin (AAT) belongs to the acute phase responses and has recently surfaced as a tolerogenic agent in the context of adaptive immune responses. Nonetheless, AAT does not inhibit T cell responses, nor does it shutdown inflammation per se; rather, it appears that AAT targets non-T cell immunocytes towards changing the cytokine environment of T cells, thus promoting a regulatory T cell profile. The present review focuses on this intriguing two-way communication between innate and adaptive entities, a crosstalk that holds important implications on potential therapies for a multitude of immune disorders.
Collapse
|
23
|
Baraldo S, Turato G, Lunardi F, Bazzan E, Schiavon M, Ferrarotti I, Molena B, Cazzuffi R, Damin M, Balestro E, Luisetti M, Rea F, Calabrese F, Cosio MG, Saetta M. Immune Activation in α1-Antitrypsin-Deficiency Emphysema. Beyond the Protease–Antiprotease Paradigm. Am J Respir Crit Care Med 2015; 191:402-9. [DOI: 10.1164/rccm.201403-0529oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
24
|
Stockley RA. Immune Modulation by α1-Antitrypsin. A Nice Concept, but Does It Influence Outcome? Am J Respir Crit Care Med 2015; 191:363-4. [DOI: 10.1164/rccm.201412-2129ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
The effects of weight gain after smoking cessation on atherogenic α1-antitrypsin-low-density lipoprotein. Heart Vessels 2014; 30:734-9. [PMID: 25086816 PMCID: PMC4648963 DOI: 10.1007/s00380-014-0549-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/27/2014] [Indexed: 01/07/2023]
Abstract
Although cardiovascular risks decrease after quitting smoking, body weight often increases in the early period after smoking cessation. We have previously reported that the serum level of the α1-antitrypsin–low-density lipoprotein complex (AT–LDL)—an oxidatively modified low-density lipoprotein that accelerates atherosclerosis—is high in current smokers, and that the level rapidly decreases after smoking cessation. However, the effects of weight gain after smoking cessation on this cardiovascular marker are unknown. In 183 outpatients (134 males, 49 females) who had successfully quit smoking, serum AT–LDL levels were measured using an enzyme-linked immunosorbent assay. For all persons who had successfully quit smoking, body mass index (BMI) significantly increased 12 weeks after the first examination (p < 0.01). Among patients with a BMI increase smaller than the median, a significant decrease (p < 0.01) in serum AT–LDL values was found, but no significant changes in serum AT–LDL values were found in patients with a BMI increase greater than the median. The findings suggest that the decrease in serum AT–LDL levels after quitting smoking is influenced by weight gain after smoking cessation.
Collapse
|
26
|
Alpha 1-antitrypsin activity is markedly decreased in Wegener's granulomatosis. Rheumatol Int 2013; 34:553-8. [PMID: 23604680 DOI: 10.1007/s00296-013-2745-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
Abstract
Alpha 1-antitrypsin (A1AT) is the most abundant proteinase inhibitor in plasma and the main inhibitor of Proteinase 3, the target antigen of antineutrophil cytoplasmic antibodies (ANCAs) that predominant in Wegeners' granulomatosis. Α1AT deficiency correlated with ANCA-associated vasculitis. This study explores the trypsin inhibitory capacity (TIC), specific activity, and phenotypic deficiency of Α1AT in Wegener's granulomatosis. Twenty-seven WG patients were studied. ANCA was tested by IIF and ELISA. Serum a1-anti-trypsin levels were quantified in WG patients and healthy controls by immunoturbidimetric assay. Serum TIC was assessed by the enzymatic colorimetric assay. Phenotypes of A1AT were detected by Isoelectric Focusing. A1AT concentration was equivalent in patients and controls; however, serum TIC (P = 0.001) and specific activity of A1AT (P = 0.001) were dramatically lower in WG patients. Five patients had deficient phenotypes of A1AT: MZ (n = 3), MS (n = 1) and SS (n = 1). This was correlated with an increase in the prevalence of deficient phenotypes of A1AT in WG (P = 0.01). Trypsin inhibitory capacity and specific activity of A1AT were decreased in WG patients and may be involve in disease pathogenesis and can worsen the clinical manifestations. This A1AT deficiency probably resulted from oxidative inactivation and/or enzymatic degradation of A1AT. This could result in localized deficiency of A1AT in vessel wall interfaces and lead to severe disease.
Collapse
|
27
|
Lista S, Faltraco F, Prvulovic D, Hampel H. Blood and plasma-based proteomic biomarker research in Alzheimer's disease. Prog Neurobiol 2013; 101-102:1-17. [DOI: 10.1016/j.pneurobio.2012.06.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/28/2012] [Accepted: 06/18/2012] [Indexed: 12/14/2022]
|
28
|
Wada H, Ura S, Satoh-Asahara N, Kitaoka S, Mashiba S, Akao M, Abe M, Ono K, Morimoto T, Fujita M, Shimatsu A, Takahashi Y, Hasegawa K. α1-Antitrypsin Low-Density-Lipoprotein Serves as a Marker of Smoking-Specific Oxidative Stress. J Atheroscler Thromb 2012; 19:47-58. [DOI: 10.5551/jat.9035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Patel S, Shah RJ, Coleman P, Sabbagh M. Potential peripheral biomarkers for the diagnosis of Alzheimer's disease. Int J Alzheimers Dis 2011; 2011:572495. [PMID: 22114744 PMCID: PMC3202136 DOI: 10.4061/2011/572495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 08/17/2011] [Accepted: 08/25/2011] [Indexed: 11/23/2022] Open
Abstract
Advances in the discovery of a peripheral biomarker for the diagnosis of Alzheimer's would provide a way to better detect the onset of this debilitating disease in a manner that is both noninvasive and universally available. This paper examines the current approaches that are being used to discover potential biomarker candidates available in the periphery. The search for a peripheral biomarker that could be utilized diagnostically has resulted in an extensive amount of studies that employ several biological approaches, including the assessment of tissues, genomics, proteomics, epigenetics, and metabolomics. Although a definitive biomarker has yet to be confirmed, advances in the understanding of the mechanisms of the disease and major susceptibility factors have been uncovered and reveal promising possibilities for the future discovery of a useful biomarker.
Collapse
Affiliation(s)
- Seema Patel
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | | | | | | |
Collapse
|
30
|
Kotani K, Yamada T, Taniguchi N. The association between adiponectin, HDL-cholesterol and α1-antitrypsin-LDL in female subjects without metabolic syndrome. Lipids Health Dis 2010; 9:147. [PMID: 21190590 PMCID: PMC3018436 DOI: 10.1186/1476-511x-9-147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background Oxidized low-density lipoprotein (LDL) may act as an atheroprotective (anti-atherosclerotic) agent under some conditions. While the α1-antitrypsin (AT)-LDL complex is considered a type of oxidized LDL, its clinical relevance remains unknown. The aim of the present study was to investigate the association between AT-LDL and anti-atherosclerotic variables such as HDL-cholesterol and adiponectin in subjects with and without metabolic syndrome (MetS). Methods In asymptomatic females (n = 194; mean age, 54 years) who were divided into non-MetS (n = 108) and MetS groups (n = 86), the fasting levels of serum AT-LDL, adiponectin and glucose/lipid panels were measured, in addition to body mass index (BMI) and blood pressure. Results The MetS group showed significantly higher BMI, blood pressure, glucose and triglyceride levels as well as significantly lower levels of HDL-cholesterol and adiponectin than the non-MetS group. A multivariate-adjusted analysis revealed that in the non-MetS group, AT-LDL was significantly, independently and positively correlated with adiponectin (β = 0.297, P < 0.05), along with HDL-cholesterol (β = 0.217, P < 0.05). In the MetS group, AT-LDL was significantly, independently and positively correlated with LDL-cholesterol only (β = 0.342, P < 0.05). Conclusions These data suggest that AT-LDL may exert anti-atherosclerotic effects in female subjects without MetS. More studies are required to clarify the clinical roles of AT-LDL in relation to the pathophysiology of MetS.
Collapse
Affiliation(s)
- Kazuhiko Kotani
- Department of Clinical Laboratory Medicine, Jichi Medical University, Tochigi, Japan.
| | | | | |
Collapse
|
31
|
Li Z, Alam S, Wang J, Sandstrom CS, Janciauskiene S, Mahadeva R. Oxidized α1-antitrypsin stimulates the release of monocyte chemotactic protein-1 from lung epithelial cells: potential role in emphysema. Am J Physiol Lung Cell Mol Physiol 2009; 297:L388-400. [PMID: 19525388 PMCID: PMC2742802 DOI: 10.1152/ajplung.90373.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
α1-Antitrypsin (AT) is a major elastase inhibitor within the lung. Oxidation of critical methionine residues in AT generates oxidized AT (Ox-AT), which has a greatly diminished ability to inhibit neutrophil elastase. This process may contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD) by creating a functional deficiency of AT permitting lung destruction. We show here that Ox-AT promotes release of human monocyte chemoattractant protein-1 (MCP-1) and IL-8 from human lung type epithelial cells (A549) and normal human bronchial epithelial (NHBE) cells. Native, cleaved, polymeric AT and secretory leukoproteinase inhibitor (SLPI) and oxidized conformations of cleaved, polymeric AT and SLPI did not have any significant effect on MCP-1 and IL-8 secretion. These findings were supported by the fact that instillation of Ox-AT into murine lungs resulted in an increase in JE (mouse MCP-1) and increased macrophage numbers in the bronchoalveolar lavage fluid. The effect of Ox-AT was dependent on NF-κB and activator protein-1 (AP-1)/JNK. These findings have important implications. They demonstrate that the oxidation of methionines in AT by oxidants released by cigarette smoke or inflammatory cells not only reduces the antielastase lung protection, but also converts AT into a proinflammatory stimulus. Ox-AT generated in the airway interacts directly with epithelial cells to release chemokines IL-8 and MCP-1, which in turn attracts macrophages and neutrophils into the airways. The release of oxidants by these inflammatory cells could oxidize AT, perpetuating the cycle and potentially contributing to the pathogenesis of COPD. Furthermore, these data demonstrate that molecules such as oxidants, antiproteinases, and chemokines, rather than act independently, are likely to interact to cause emphysema.
Collapse
|
32
|
Honda H, Ueda M, Kojima S, Mashiba S, Hirai Y, Hosaka N, Suzuki H, Mukai M, Watanabe M, Takahashi K, Shishido K, Akizawa T. Assessment of myeloperoxidase and oxidative alpha1-antitrypsin in patients on hemodialysis. Clin J Am Soc Nephrol 2009; 4:142-51. [PMID: 19129321 DOI: 10.2215/cjn.02280508] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES The present study assesses the effects of the oxidative stress marker, myeloperoxidase (MPO), and the possible MPO-related oxidative stress marker, oxidative alpha(1)-antitrypsin (oxAT), on carotid intima-media thickness (CIMT) and protein-energy wasting (PEW) in patients on hemodialysis (HD). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Blood samples were obtained from 383 patients before HD to measure WBC count, serum albumin, lipids, high-sensitivity C-reactive protein (CRP), alpha(1)-antitrypsin (AT), interleukin-6, oxidative LDL-C, MPO, and oxAT. We assessed both CIMT and the geriatric nutritional risk index (GNRI) in this cross-sectional competitive study. RESULTS Levels of MPO and oxAT correlated. Myeloperoxidase was associated with max-CIMT, and oxAT correlated with max-CIMT and GNRI. Multivariate linear regression models showed that MPO and oxAT were independent predictors of increasing max-CIMT, whereas oxAT, but not MPO, independently correlated with GNRI. In four combined MPO and oxAT groups classified according to median values, a multinomial logistic regression model showed that high MPO together with high oxAT was independently associated with increased max-CIMT. Moreover, the OR for max-CIMT with positive PEW and high MPO was significantly increased in the four groups with combined MPO and PEW. CONCLUSIONS High MPO with high oxAT and high MPO with PEW seem to contribute to plaque formation in patients on HD, whereas elevated MPO or oxAT alone might not predict increasing CIMT. In contrast, a high oxAT value seems to be an independent predictor of PEW in patients on HD.
Collapse
Affiliation(s)
- Hirokazu Honda
- Division of Nephrology, Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Izumi-Yoneda N, Toda A, Okabe M, Koike C, Takashima S, Yoshida T, Konishi I, Saito S, Nikaido T. Alpha 1 antitrypsin activity is decreased in human amnion in premature rupture of the fetal membranes. Mol Hum Reprod 2008; 15:49-57. [PMID: 19073710 DOI: 10.1093/molehr/gan071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Preterm premature rupture of the membranes (PPROM) has been considered to be closely associated with chorioamnionitis. However, the detailed mechanism is not well understood. Alpha 1 antitrypsin (AAT) was reported to decrease in concentration in amniotic fluid obtained from patients with PPROM. However, the origin of AAT in amniotic fluid has not been clarified. In this study, we assessed the expression and localization of AAT in human amnion, as well as its biological activity in cases with PROM. Human amniotic epithelial (hAE) cells expressed AAT. After stimulation with oncostatin M (OSM), interleukin-6 (IL-6) or tumor necrotic factor alpha (TNF alpha), hAE cells increased the expression of AAT, while the expression of MMP9 was reduced by OSM and induced by TNF alpha. Oxidized AAT (inactivated form) was detected in the amnion with PPROM and TPROM, but not in specimens without PROM. Moreover, AAT activity was decreased in amnions from cases with PROM, regardless of gestational age. Thus, the results showed that AAT in the amnion may function as a protective shield at inflammatory sites, and not as it loses it inhibitory activity in cases with PROM, possibly by oxidation, suggesting that its imbalance contributes to PROM.
Collapse
Affiliation(s)
- Noriko Izumi-Yoneda
- Department of Regenerative Medicine, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Banfi C, Brioschi M, Barcella S, Veglia F, Biglioli P, Tremoli E, Agostoni P. Oxidized proteins in plasma of patients with heart failure: role in endothelial damage. Eur J Heart Fail 2008; 10:244-51. [PMID: 18331966 DOI: 10.1016/j.ejheart.2008.01.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 11/16/2007] [Accepted: 01/15/2008] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Oxidative stress is increased in the failing heart, and this might contribute to the pathogenesis of myocardial remodelling and heart failure (HF). AIM To identify the oxidized proteins in plasma of chronic HF patients and to evaluate their possible role in endothelial damage. METHODS Plasma levels of oxidized proteins were measured by immunoassay and by analysis in albumin and immunoglobulin depleted plasma using a proteomic approach, in 40 HF patients and in 20 age-matched normal subjects. Analysis of the effects of proteins oxidized in vitro on human endothelial cell (EC) viability was also performed. RESULTS Plasma levels of oxidized proteins were significantly higher in HF patients than in controls (p<0.01). We identified two proteins, alpha-1-antitrypsin and fibrinogen, which underwent oxidation. Oxidation of alpha-1-antitrypsin resulted in loss of its protease inhibitor activity, thus leading to EC death in the presence of elastase. Fibrinogen, when oxidized, became otherwise cytotoxic and induced apoptosis in EC. CONCLUSIONS This study shows that plasma levels of oxidized proteins are increased in HF, and permitted the identification of two proteins, namely alpha-1-antitrypsin and fibrinogen, which underwent oxidation. In vitro results highlighted the potential role of oxidized proteins in the EC damage that occurs in HF.
Collapse
|
35
|
Janciauskiene S, Nita I, Subramaniyam D, Li Q, Lancaster JR, Matalon S. Alpha1-antitrypsin inhibits the activity of the matriptase catalytic domain in vitro. Am J Respir Cell Mol Biol 2008; 39:631-7. [PMID: 18723439 DOI: 10.1165/rcmb.2008-0015rc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Matriptase is a type II transmembrane protease that is characterized by an N-terminal transmembrane and multiple extracellular domains, in addition to the conserved extracellular serine protease catalytic domain. The expression pattern of matriptase suggests that this protease may play broad roles in the biology of surface lining epithelial cells. In this study we report that alpha1-antitrypsin (AAT), an endogenous inhibitor of serine proteases, inhibits the catalytic domain of human recombinant matriptase in vitro. Co-incubation of AAT with matriptase (at a molar ratio 1:2) resulted in the formation of heat stable complexes, clearly seen in sodium dodecyl sulfate electrophoresis and Western blots. AAT was found to be a slow, tight-binding inhibitor of the catalytic domain of matriptase with a second order reaction rate constant of 0.31 x 10(3) M(-1)s(-1). Notably, the oxidized form of AAT, which lacks serine protease inhibitor activity, failed to generate matriptase complexes and to inhibit matriptase activity. Since matriptase is involved in a number of physiologic processes, including activation of epithelial sodium channels, our findings offer considerable new insights into new regulatory function of AAT in vivo.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Lund University, Department of Clinical Sciences, The Wallenberg Laboratory, Malmö University Hospital, Malmö, Sweden.
| | | | | | | | | | | |
Collapse
|
36
|
Summers FA, Morgan PE, Davies MJ, Hawkins CL. Identification of Plasma Proteins That Are Susceptible to Thiol Oxidation by Hypochlorous Acid and N-Chloramines. Chem Res Toxicol 2008; 21:1832-40. [DOI: 10.1021/tx8001719] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fiona A. Summers
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, Sydney, NSW 2050, Australia
| | - Philip E. Morgan
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, Sydney, NSW 2050, Australia
| | - Michael J. Davies
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, Sydney, NSW 2050, Australia
| | - Clare L. Hawkins
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, Sydney, NSW 2050, Australia
| |
Collapse
|
37
|
Aluise CD, Sowell RA, Butterfield DA. Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2008; 1782:549-58. [PMID: 18760351 DOI: 10.1016/j.bbadis.2008.07.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/22/2008] [Accepted: 07/24/2008] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) affects millions of persons worldwide. Earlier detection and/or diagnosis of AD would permit earlier intervention, which conceivably could delay progression of this dementing disorder. In order to accomplish this goal, reliable and specific biomarkers are needed. Biomarkers are multidimensional and have the potential to aid in various facets of AD such as diagnostic prediction, assessment of disease stage, discrimination from normally cognitive controls as well as other forms of dementia, and therapeutic efficacy of AD drugs. To date, biomarker research has focused on plasma and cerebrospinal fluid (CSF), two bodily fluids believed to contain the richest source of biomarkers for AD. CSF is the fluid surrounding the central nervous system (CNS), and is the most indicative obtainable fluid of brain pathology. Blood plasma contains proteins that affect brain processes from the periphery, as well as proteins/peptides exported from the brain; this fluid would be ideal for biomarker discovery due to the ease and non-invasive process of sample collection. However, it seems reasonable that biomarker discovery will result in combinations of CSF, plasma, and other fluids such as urine, to serve the aforementioned purposes. This review focuses on proteins and peptides identified from CSF, plasma, and urine that may serve as biomarkers in AD.
Collapse
Affiliation(s)
- Christopher D Aluise
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | |
Collapse
|
38
|
Kumpalume P, LePage C, Dalton J. Designing a new manufacturing processes for plasma proteins to maximise alpha-1 antitrypsin recovery. FOOD AND BIOPRODUCTS PROCESSING 2008. [DOI: 10.1016/j.fbp.2007.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Subramaniyam D, Virtala R, Pawłowski K, Clausen IG, Warkentin S, Stevens T, Janciauskiene S. TNF-α-induced self expression in human lung endothelial cells is inhibited by native and oxidized α1-antitrypsin. Int J Biochem Cell Biol 2008; 40:258-71. [PMID: 17869162 DOI: 10.1016/j.biocel.2007.07.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 11/30/2022]
Abstract
Endothelial cells are among the main physiological targets of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). In endothelial cells TNF-alpha elicits a broad spectrum of biological effects including differentiation, proliferation and apoptosis. alpha1-antitrypsin (AAT), an endogenous inhibitor of serine proteases plays a vital role in protecting host tissue from proteolytic injury at sites of inflammation. Recently, it has been shown that AAT can be internalized by pulmonary endothelial cells, raising speculation that it may modulate endothelial cell function in addition to suppressing protease activity. Using Affymetrix microarray technology, real time PCR and ELISA methods we have investigated the effects of AAT on un-stimulated and TNF-alpha stimulated human primary lung microvascular endothelial cell gene expression and protein secretion. We find that AAT and TNF-alpha generally induced expression of distinct gene families with AAT exhibiting little activity in terms of inflammatory gene expression. Approximately 25% of genes up regulated by TNF-alpha were inhibited by co-administration of AAT including TNF-alpha-induced self expression. Surprisingly, the effects of AAT on TNF-alpha-induced self expression was inhibited equally well by oxidized AAT, a modified form of AAT, which lacks serine protease inhibitor activity. Overall, the pattern of gene expression regulated by native and oxidized AAT was similar with neither inducing pro-inflammatory gene expression. These findings suggest that inhibitory effects of native and oxidized forms of AAT on TNF-alpha stimulated gene expression may play an important role in limiting the uncontrolled endothelial cell activation and vascular injury in inflammatory disease.
Collapse
Affiliation(s)
- Devipriya Subramaniyam
- Department of Clinical Sciences, University Hospital Malmö, Lund University, S-20502 Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
Schmechel DE. Art, alpha-1-antitrypsin polymorphisms and intense creative energy: Blessing or curse? Neurotoxicology 2007; 28:899-914. [PMID: 17659342 DOI: 10.1016/j.neuro.2007.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 12/30/2022]
Abstract
Persons heterozygous for Z, S and rare alpha-1-antitrypsin (AAT, SERPIN1A) polymorphisms (ca. 9% of population) are often considered 'silent' carriers with increased vulnerability to environmentally modulated liver and lung disease. They may have significantly more anxiety and bipolar spectrum disorders, nutritional compromise, and white matter disease [Schmechel DE, Browndyke J, Ghio A. Strategies for the dissection of genetic-environmental interactions in neurodegenerative disorders. Neurotoxicology 2006;27:637-57]. Given association of art and mood disorders, we examined occupation and artistic vocation from this same series. One thousand five hundred and thirty-seven consecutive persons aged 16-90 years old received comprehensive work-up including testing for AAT 'phenotype' and level, nutritional factors, and inflammatory, iron and copper indices. Occupations were grouped by Bureau of Labor Standards classification and information gathered on artistic activities. Proportion of reactive airway disease, obstructive pulmonary disease, and pre-existing anxiety disorder or bipolar disorder were significantly increased in persons carrying AAT non-M polymorphisms compared to normal MM genotype (respectively, 10, 20, 21, and 33% compared to 8, 12, 11, and 9%; contingency table, pulmonary: chi2 37, p=0.0001; affective disorder: chi2=171, p=0.0001). In persons with artistic avocation (n=189) or occupation (n=57), AAT non-M polymorphisms are significantly increased (respectively, proportions of 44 and 40% compared to background rate of 9%; contingency table, avocation: chi2=172, p=0.0001; occupation: chi2=57, p=0.0007). Artistic ability and 'anxiety/bipolar spectrum' mood disorders may represent phenotypic attributes that had selective advantage during recent human evolution, an 'intensive creative energy' (ICE) behavioral phenotype. Background proportion of ICE of 7% consists of 49 of 1312 persons with AAT MM genotype (4%), and 58 of 225 persons with non-MM genotypes (26%) (contingency table, chi2=222, p=0.0001). Penetrance of ICE increases in genotypes with lower AAT levels: PiMS, 18%; PiMZ, 44%; PiSS and PiZZ, 100% (five cases). At all ages, persons with non-MM genotype had significantly higher proportion of thiamine deficiency (50% in PiMZ), reactive hypoglycemia (20% in PiMZ), and possibly fatty liver (thiamine: chi2=28, p=0.0001; hypoglycemia: chi2=92, p=0.0001). In older persons, PiMZ genotype had significantly increased proportion (46%) of brain MRI T2 white matter abnormalities (chi2=49, p=0.003). Persons with ICE and MM genotype showed increased prevalence of pulmonary disorders and same signature as S and Z carriers and homozygotes (see above). Z polymorphism was associated with delayed age of onset (average 7 years) for persons with toxic environmental or occupational exposures (log rank, p=0.0001) and more stable cognitive change in persons with neurodegenerative illness (p<0.05). At all ages, ICE phenotype and Z polymorphism were associated with altered copper homeostasis with low or absent non-ceruloplasmin bound copper (p<0.05). AAT polymorphisms which affect iron, lipid and copper metabolism may affect early events in nervous system development, function and response to environmental exposures. AAT may also be a 'switch' for copper metabolism and low 'free' copper would be theorized to provide protection for lipid oxidation and favorably affect beta-amyloid and other aggregation, but possibly alter early 'critical' period of CNS development. AAT polymorphisms may define an important and treatable subset of persons presenting with CNS disorders. This new proposed phenotype for AAT transcends classic pattern of strictly liver and lung disease, and should be considered for proper evaluation and management of patients presenting with classic AAT-related disorders, affective disorders, persons with ICE, white matter disease or multisystem disorders of memory.
Collapse
Affiliation(s)
- Donald Everett Schmechel
- Department of Medicine, Duke University Medical Center, Medical Director, The Falls Neurology and Memory Center, 4355 Hickory Boulevard (US 321), Granite Falls, NC 28630, United States.
| |
Collapse
|
41
|
Tuder RM, Petrache I. Molecular multitasking in the airspace: alpha1-antitrypsin takes on thrombin and plasmin. Am J Respir Cell Mol Biol 2007; 37:130-4. [PMID: 17541009 PMCID: PMC1976548 DOI: 10.1165/rcmb.2007-0163tr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
42
|
Oien DB, Moskovitz J. Substrates of the methionine sulfoxide reductase system and their physiological relevance. Curr Top Dev Biol 2007; 80:93-133. [PMID: 17950373 DOI: 10.1016/s0070-2153(07)80003-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Posttranslational modifications can change a protein's structure, function, and solubility. One specific modification caused by reactive oxygen species is the oxidation of the sulfur atom in the methionine (Met) side chain. This modified amino acid is denoted as methionine sulfoxide (MetO). MetOs in proteins are of considerable interest as they are involved in early posttranslational modification events. Thus, various organisms produce specific enzymes that can reverse these modifications. MetO reductases, known collectively as the methionine sulfoxide reductase (Msr) system, are the only known enzymes that can reduce MetOs. The current research field of Met redox cycles is consumed with elucidating its role in regulation, redox homeostasis, prevention of irreversible modifications, pathogenesis, and the aging process. Substrates of the Msr system can be loosely classified by the overall effect of the MetO on the protein. Regulated substrates utilize Met as a molecular switch to modulate activation; scavenging substrates use Mets to detoxify oxidants and protect important regions of the protein; and modified substrates are altered by Met oxidation resulting in various changes in their properties, including function, activity, structure, and degradation resistance.
Collapse
Affiliation(s)
- Derek B Oien
- Department of Pharmacology & Toxicology, School of Pharmacy University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
43
|
Does the oxidation of methionine in thrombomodulin contribute to the hypercoaguable state of smokers and diabetics? Med Hypotheses 2006; 68:811-21. [PMID: 17064853 DOI: 10.1016/j.mehy.2006.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 09/03/2006] [Indexed: 01/13/2023]
Abstract
The leading cause of premature death in smokers is cardiovascular disease. Diabetics also suffer from increased cardiovascular disease. This results, in part, from the hypercoagulable state associated with these conditions. However, the molecular cause(s) of the elevated risk of cardiovascular disease and the prothrombotic state of smokers and diabetics remain unknown. It is well known that oxidative stress is increased in both conditions. In smokers, it is established that oxidation of methionine residues takes place in alpha(1)-antitrypsin in lungs and that this leads to emphysema. Thrombomodulin is a key regulator of blood clotting and is found on the endothelium. Oxidation of methionine 388 in thrombomodulin is known to slow the rate at which the thrombomodulin-thrombin complex activates protein C, a protein which, in turn, degrades the factors which activate thrombin and lead to clot formation. In analogy to the cause of emphysema, it is hypothesized that oxidation of this methionine is elevated in smokers relative to non-smokers and, perhaps, in conditions such as diabetes that impose oxidative stress on the body. Evidence for the hypothesis that such an oxidation and concomitant reduction in activated protein C levels would lead to elevated cardiovascular risk is presented.
Collapse
|
44
|
Schmechel DE, Browndyke J, Ghio A. Strategies for dissecting genetic-environmental interactions in neurodegenerative disorders. Neurotoxicology 2006; 27:637-57. [PMID: 16870258 DOI: 10.1016/j.neuro.2006.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/18/2006] [Accepted: 05/20/2006] [Indexed: 01/22/2023]
Abstract
Complex genetic and environmental interactions contribute to abnormal aging and neurodegenerative disorders. We present information from a series of 1136 consecutive patients presenting with cognitive disorders and show possible significant contribution of toxic environmental and occupational exposures to pathological aging (21% of patients) and interactions of these exposures with common polymorphisms that affect cell injury and inflammation. Such exposures may lower age of onset to same degree as APOE4/4. Common polymorphisms in apolipoprotein E (APOE), hemochromatosis gene (Hfe) and alpha-1-antitrypsin (AAT) are present in up to 40+% of patients and may partially account for differences in clinical syndrome, age of onset and rate of progression. Strategies for the study of these disorders must also consider the role and treatment of common co-morbid illnesses such as alcohol use, nutritional deficiencies, sleep disorders, and pre-existing affective disorder. APOE, Hfe, and AAT genes are expressed in liver tissue and in macrophages and are involved in the host innate immune response to stress, inflammation and infections. Hfe and AAT are involved in iron metabolism and their polymorphisms may contribute to hepatosteatosis and altered homeostasis of lipids (role of APOE), iron, and trace minerals. Some of these responses may be adaptive. Hfe and AAT modulate the apparent effects of toxic exposures on age of onset and progression rate. C282Y polymorphism paradoxically reverses APOE4/4 effect on age of onset. S and Z AAT polymorphisms may attenuate earlier age of onset in persons with toxic or environmental exposure. AAT S or Z polymorphisms are present in 25% of persons with anxiety disorder and 42% of persons with bipolar disorder compared to 10% of control group without pre-existing affective disorder. Common genetic polymorphisms that affect the response to inflammation and cell injury provide a beginning strategy for dissecting neurodegenerative disorders. The effects of APOE, Hfe, and AAT on glucose, lipid, iron and trace mineral homeostasis may affect normal development and aging of the nervous system in addition to their effects on outcome of toxic environmental and occupational exposures and susceptibility and outcome of neurodegenerative illnesses.
Collapse
Affiliation(s)
- Donald E Schmechel
- Joseph and Kathleen Bryan Alzheimer Disease Research Center, Department of Medicine (Neurology), Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
45
|
Abstract
The primary objectives of this study were to investigate the effects of cobalt(II) chloride (Co, 1.5-25 microM) on the reactivity of hydrogen peroxide (H2O2, 100 microM) or oxidants generated by activated human neutrophils. The prooxidative interactions of Co with H2O2 or cells were measured by luminol-enhanced chemiluminescence (LECL), and according to the extent of oxidative inactivation of added alpha-1-proteinase inhibitor (API). Cobalt dramatically potentiated the oxidation of luminol and API by both H2O2 and neutrophils activated with phorbol 12-myristate 13-acetate (5 ng/ml), without affecting the assembly of NADPH oxidase or the magnitude of oxygen consumption by the cells. Using 5,5-dimethyl-pyrolline 1-oxide-based electron spin resonance spectroscopy we were unable to detect hydroxyl radical formation by Co in the presence of either H2O2 or activated neutrophils, while the corresponding LECL responses were unaffected by the hydroxyl radical scavengers benzoate and mannitol (50 mM). These observations indicate that Co potentiates the reactivity of neutrophil-derived oxidants, primarily H2O2, which if operative in vivo during exposure to the heavy metal may pose the risk of oxidant- and protease-mediated tissue injury.
Collapse
Affiliation(s)
- Grace J Ramafi
- National Centre for Occupational Health, Johannesburg, South Africa
| | | | | |
Collapse
|
46
|
Cockeran R, Anderson R, Feldman C. Pneumolysin in the immunopathogenesis and treatment of pneumococcal disease. Expert Rev Anti Infect Ther 2004; 1:231-9. [PMID: 15482118 DOI: 10.1586/14787210.1.2.231] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent insights into the immunopathogenesis of pneumococcal infection, a common and significant cause of morbidity and mortality, have implicated pneumolysin as being a prominent virulence factor, which may play a role in microbial colonization, invasion and dissemination, as well as tissue inflammation. Being a highly immunogenic polypeptide produced by all clinically relevant pneumococcal isolates, pneumolysin is recognized as a potential carrier protein for polysaccharide conjugate vaccines, while in the setting of acute disease, promising pneumolysin-directed pharmacological strategies include, among others, macrolides and corticosteroids.
Collapse
|
47
|
Malavazi-Piza KC, Araújo MS, Godinho RO, Tanaka AS. Effect of invertebrate serine proteinase inhibitors on carrageenan-induced pleural exudation and bradykinin release. Int Immunopharmacol 2004; 4:1401-8. [PMID: 15313437 DOI: 10.1016/j.intimp.2004.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 03/08/2004] [Accepted: 06/07/2004] [Indexed: 01/30/2023]
Abstract
The carrageenan model of pleurisy is described as temporal plasma exudation (1-5 h) with extensive neutrophil infiltration and release of proteinases into the pleural cavity. The aim of this work was to study the effects of serine proteinase inhibitors on the inflammatory process induced by administration of carrageenan to the rat pleural cavity and on release of kinins in pleural exudate. Pleurisy was induced by injecting carrageenan and serine proteinase inhibitors simultaneously into the pleural cavity. The proteinase inhibitors used were: aprotinin, a plasma kallikrein inhibitor; recombinant leech derived tryptase inhibitor-2PL (LDTI-2PL), a plasmin inhibitor; Boophilus microplus trypsin inhibitors (BmTIs); trypsin; plasma kallikrein; plasmin and neutrophil elastase inhibitors; and a synthetic neutrophil elastase inhibitor (EIsynt). Administration of carrageenan with LDTI-2PL and BmTIs induced a marked increase in exudation (143% and 201%) and leukocyte migration (288% and 408%), respectively, when compared to the control group. Pleural exudate from LDTI-2PL and BmTIs plus carrageenan-treated rats showed a significant increase in plasma kallikrein-like activity, measured by chromogenic substrate hydrolysis. The specific inhibition of enzymatic activity with aprotinin confirmed that 50% of S2302 hydrolysis was produced by plasma kallikrein-like enzymes. Kinin release was increased by 97% and 103% in exudates from LDTI-2PL and BmTIs plus carrageenan-treated rats, respectively. Considering that the plasmin inhibitors LDTI-2PL and BmTIs increased exudation, leukocyte migration and bradykinin release, our results suggest an anti-inflammatory role for plasmin in the pleurisy model.
Collapse
Affiliation(s)
- Kelly C Malavazi-Piza
- Departamento de Bioquímica, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua 3 de Maio 100, 04044-020, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
48
|
Cockeran R, Theron AJ, Feldman C, Mitchel TJ, Anderson R. Pneumolysin potentiates oxidative inactivation of alpha-1-proteinase inhibitor by activated human neutrophils. Respir Med 2004; 98:865-71. [PMID: 15338799 DOI: 10.1016/j.rmed.2004.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study was designed to investigate the effects of the Streptococcus pneumoniae-derived, pro-inflammatory toxin, pneumolysin (8.37 and 41.75 ng/ml), on the oxidative inactivation of alpha-1-protease inhibitor (API) by chemoattractant-activated human neutrophils in vitro. The elastase inhibitory capacity (EIC) of API in supernatants from unstimulated neutrophils, neutrophils treated with pneumolysin only, or with the chemoattractant FMLP (1 microM) only, or the combination of the toxin with FMLP was measured by a colorimetric procedure based on the activity of added porcine elastase. The EIC of API was unaffected by exposure to pneumolysin only, unstimulated neutrophils, or neutrophils treated with pneumolysin only. However, exposure to FMLP-activated neutrophils resulted in a reduction of the EIC of API, which was significantly (P<0.05) augmented by pneumolysin (mean reductions of 16%, 43% and 83% for FMLP only and in combination with 8.37 and 41.75 ng/ml pneumolysin, respectively), and was attenuated by wortmannin (1 microM), an inhibitor of NADPH oxidase, the oxidant-scavenger methionine (100 microM), and depletion of Ca2+ from the cell-suspending medium. These pro-proteolytic interactions of pneumolysin with chemoattractant-activated neutrophils may contribute to the invasiveness of the pneumococcus.
Collapse
Affiliation(s)
- Riana Cockeran
- MRC Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Services, PO Box 2034, Pretoria 0001, South Africa
| | | | | | | | | |
Collapse
|
49
|
Aldonyte R, Jansson L, Janciauskiene S. Concentration-dependent effects of native and polymerised alpha1-antitrypsin on primary human monocytes, in vitro. BMC Cell Biol 2004; 5:11. [PMID: 15050036 PMCID: PMC400726 DOI: 10.1186/1471-2121-5-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 03/29/2004] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Alpha1-antitrypsin (AAT) is one of the major serine proteinase inhibitors controlling proteinases in many biological pathways. There is increasing evidence that AAT is able to exert other than antiproteolytic effects. To further examine this question we compared how various doses of the native (inhibitory) and the polymerised (non-inhibitory) molecular form of AAT affect pro-inflammatory responses in human monocytes, in vitro. Human monocytes isolated from different donors were exposed to the native or polymerised form of AAT at concentrations of 0.01, 0.02, 0.05, 0.1, 0.5 and 1 mg/ml for 18 h, and analysed to determine the release of cytokines and to detect the activity of NF-kappaB. RESULTS We found that native and polymerised AAT at lower concentrations, such as 0.1 mg/ml, enhance expression of TNFalpha (10.9- and 4.8-fold, p < 0.001), IL-6 (22.8- and 23.4-fold, p < 0.001), IL-8 (2.4- and 5.5-fold, p < 0.001) and MCP-1 (8.3- and 7.7-fold, p < 0.001), respectively, compared to buffer exposed cells or cells treated with higher doses of AAT (0.5 and 1 mg/ml). In parallel to increased cytokine levels, low concentrations of either conformation of AAT (0.02-0.1 mg/ml) induced NF-kappaB p50 activation, while 1 mg/ml of either conformation of AAT suppressed the activity of NF-kappaB, compared to controls. CONCLUSIONS The observations reported here provide further support for a central role of AAT in inflammation, both as a regulator of proteinase activity, and as a signalling molecule for the expression of pro-inflammatory molecules. This latter role is dependent on the concentration of AAT, rather than on its proteinase inhibitory activity.
Collapse
Affiliation(s)
- Ruta Aldonyte
- Department of Internal Medicine, University Hospital, Malmo, Sweden
| | | | | |
Collapse
|
50
|
Choi J, Malakowsky CA, Talent JM, Conrad CC, Gracy RW. Identification of oxidized plasma proteins in Alzheimer's disease. Biochem Biophys Res Commun 2002; 293:1566-70. [PMID: 12054695 DOI: 10.1016/s0006-291x(02)00420-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The modification of proteins by reactive oxygen species is central to the pathology of Alzheimer's disease (AD). Previously, we have observed specific oxidized proteins in blood plasma of AD subjects [Biochem. Biophys. Res. Commun. 275 (2000) 678]. Plasma from AD subjects and age-matched controls was subjected to two-dimensional gel electrophoresis (2-DE). Oxidized proteins with new carbonyl groups were detected by reaction with 2,4-dinitrophenylhydrazine, followed by Western blotting with anti-DNP antibody. Seven principal oxidized protein spots (isoelectric point=4.7-5.5; molecular mass=45-65 kDa) were observed, with varying levels of oxidation in plasma samples from both AD and non-AD subjects. Matrix-assisted laser desorption mass spectroscopy (MALDI-TOF/MS) revealed that these oxidized proteins were isoforms of fibrinogen gamma-chain precursor protein and of alpha-1-antitrypsin precursor. These proteins exhibited a two- to sixfold greater specific oxidation index in plasma from AD subjects when compared to controls. Both these proteins have been previously implicated in the pathology of the disease. It is possible that oxidized isoforms of these proteins may serve as biomarkers for AD.
Collapse
Affiliation(s)
- Joungil Choi
- Molecular Aging Unit, Department of Molecular Biology and Immunology, University of North Texas, Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|