1
|
Yang T, Chen Y, Luo X, Keasling JD, Fan K, Pan G. A Simple and Effective Strategy for the Development of Robust Promoter-Centric Gene Expression Tools. ACS Synth Biol 2024; 13:2780-2790. [PMID: 39120429 DOI: 10.1021/acssynbio.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Promoter-centric genetic tools play a crucial role in controlling gene expression for various applications, such as strain engineering and synthetic biology studies. Hence, a critical need persists for the development of robust gene expression tools. Streptomyces are well-known prolific producers of natural products and exceptional surrogate hosts for the production of high-value chemical compounds and enzymes. In this study, we reported a straightforward and effective strategy for the creation of potent gene expression tools. This was primarily achieved by introducing an additional -35-like motif upstream of the original -35 region of the promoter, coupled with the integration of a palindromic cis-element into the 5'-UTR region. This approach has generated a collection of robust constitutive and inducible gene expression tools tailored for Streptomyces. Of particular note, the fully activated oxytetracycline-inducible gene expression system containing an engineered kasOp* promoter (OK) exhibited nearly an order of magnitude greater activity compared to the well-established high-strength promoter kasOp* under the tested conditions, establishing itself as a powerful gene expression system for Streptomyces. This strategy is expected to be applicable in modifying various other promoters to acquire robust gene expression tools, as evidenced by the enhancement observed in the other two promoters, PL and P21 in this study. Moreover, the effectiveness of these tools has been demonstrated through the augmented production of transglutaminase and daptomycin. The gene expression tools established in this study, alongside those anticipated in forthcoming research, are positioned to markedly advance pathway engineering and synthetic biology investigations in Streptomyces and other microbial strains.
Collapse
Affiliation(s)
- Tongjian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jay D Keasling
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Fricke PM, Gries ML, Mürköster M, Höninger M, Gätgens J, Bott M, Polen T. The l-rhamnose-dependent regulator RhaS and its target promoters from Escherichia coli expand the genetic toolkit for regulatable gene expression in the acetic acid bacterium Gluconobacter oxydans. Front Microbiol 2022; 13:981767. [PMID: 36060754 PMCID: PMC9429829 DOI: 10.3389/fmicb.2022.981767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
For regulatable target gene expression in the acetic acid bacterium (AAB) Gluconobacter oxydans only recently the first plasmids became available. These systems solely enable AraC- and TetR-dependent induction. In this study we showed that the l-rhamnose-dependent regulator RhaS from Escherichia coli and its target promoters PrhaBAD, PrhaT, and PrhaSR could also be used in G. oxydans for regulatable target gene expression. Interestingly, in contrast to the responsiveness in E. coli, in G. oxydans RhaS increased the expression from PrhaBAD in the absence of l-rhamnose and repressed PrhaBAD in the presence of l-rhamnose. Inserting an additional RhaS binding site directly downstream from the −10 region generating promoter variant PrhaBAD(+RhaS-BS) almost doubled the apparent RhaS-dependent promoter strength. Plasmid-based PrhaBAD and PrhaBAD(+RhaS-BS) activity could be reduced up to 90% by RhaS and l-rhamnose, while a genomic copy of PrhaBAD(+RhaS-BS) appeared fully repressed. The RhaS-dependent repression was largely tunable by l-rhamnose concentrations between 0% and only 0.3% (w/v). The RhaS-PrhaBAD and the RhaS-PrhaBAD(+RhaS-BS) systems represent the first heterologous repressible expression systems for G. oxydans. In contrast to PrhaBAD, the E. coli promoter PrhaT was almost inactive in the absence of RhaS. In the presence of RhaS, the PrhaT activity in the absence of l-rhamnose was weak, but could be induced up to 10-fold by addition of l-rhamnose, resulting in a moderate expression level. Therefore, the RhaS-PrhaT system could be suitable for tunable low-level expression of difficult enzymes or membrane proteins in G. oxydans. The insertion of an additional RhaS binding site directly downstream from the E. coli PrhaT −10 region increased the non-induced expression strength and reversed the regulation by RhaS and l-rhamnose from inducible to repressible. The PrhaSR promoter appeared to be positively auto-regulated by RhaS and this activation was increased by l-rhamnose. In summary, the interplay of the l-rhamnose-binding RhaS transcriptional regulator from E. coli with its target promoters PrhaBAD, PrhaT, PrhaSR and variants thereof provide new opportunities for regulatable gene expression in G. oxydans and possibly also for simultaneous l-rhamnose-triggered repression and activation of target genes, which is a highly interesting possibility in metabolic engineering approaches requiring redirection of carbon fluxes.
Collapse
|
3
|
Harrison K, Mendoza-Herrera A, Levy JG, Tamborindeguy C. Lasting consequences of psyllid (Bactericera cockerelli L.) infestation on tomato defense, gene expression, and growth. BMC PLANT BIOLOGY 2021; 21:114. [PMID: 33627099 PMCID: PMC7905647 DOI: 10.1186/s12870-021-02876-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato (Solanum lycopersicum L.) in the U.S. and vectors the disease-causing pathogen 'Candidatus Liberibacter solanacearum'. Currently, the only effective strategies for controlling the diseases associated with this pathogen involve regular pesticide applications to manage psyllid population density. However, such practices are unsustainable and will eventually lead to widespread pesticide resistance in psyllids. Therefore, new control strategies must be developed to increase host-plant resistance to insect vectors. For example, expression of constitutive and inducible plant defenses can be improved through selection. Currently, it is still unknown whether psyllid infestation has any lasting consequences on tomato plant defense or tomato plant gene expression in general. RESULTS In order to characterize the genes putatively involved in tomato defense against psyllid infestation, RNA was extracted from psyllid-infested and uninfested tomato leaves (Moneymaker) 3 weeks post-infestation. Transcriptome analysis identified 362 differentially expressed genes. These differentially expressed genes were primarily associated with defense responses to abiotic/biotic stress, transcription/translation, cellular signaling/transport, and photosynthesis. These gene expression changes suggested that tomato plants underwent a reduction in plant growth/health in exchange for improved defense against stress that was observable 3 weeks after psyllid infestation. Consistent with these observations, tomato plant growth experiments determined that the plants were shorter 3 weeks after psyllid infestation. Furthermore, psyllid nymphs had lower survival rates on tomato plants that had been previously psyllid infested. CONCLUSION These results suggested that psyllid infestation has lasting consequences for tomato gene expression, defense, and growth.
Collapse
Affiliation(s)
- Kyle Harrison
- USDA-ARS, Agroecosystem Management Research Unit, Lincoln, NE, 68503, USA.
| | | | - Julien Gad Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | | |
Collapse
|
4
|
Liu Q, Tang X, Jian X, Yang Y, Ma W, Wang Y, Zhang X. Toxic effect and mechanism of tris (1,3-dichloro-2-propyl)phosphate (TDCPP) on the marine alga Phaeodactylum tricornutum. CHEMOSPHERE 2020; 252:126467. [PMID: 32222518 DOI: 10.1016/j.chemosphere.2020.126467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Tris (1,3-dichloro-2-propyl)phosphate (TDCPP) is an organophosphate-based plasticizer and flame retardant with a high production volume. The ubiquitous distribution and persistence of TDCPP in aquatic environment have led to concerns over its possible toxic effects on aquatic organism. However, data regarding the toxicity of TDCPP on algae are limited, and the molecular mechanism remains largely unknown. Therefore, we determined the growth characteristics, physiological changes and transcriptome profiles of Phaeodactylum tricornutum in response to 4 mg L-1 TDCPP for 24 h. TDCPP caused morphological damage and growth inhibition with an EC50 value of 3.71 mg L-1 at 96 h. A decline in pigments and photosynthetic activity was observed, indicating the occurrence of photosynthesis inhibition. Although the activities of both glutathione peroxidase and glutathione reductase were stimulated, oxidative stress was not relieved in the algal cells, as evidenced by the elevated levels of reactive oxygen species and lipid peroxidation. Transcriptomic analyses revealed 3312 differentially expressed genes (DEGs), and photosynthesis was a key target, as genes related to this process were greatly altered under TDCPP stress. Moreover, some DEGs were also enriched in amino acid metabolism, nitrogen metabolism, nucleotide metabolism and lipid metabolism, implying that TDCPP-induced damage towards algae by various pathways. Additionally, several TFs related to stress signaling were differentially expressed, suggesting roles in the TDCPP stress response. The results will provide critical data to understand the ecological risks and toxic mechanism of OPFRs entering into marine habitat.
Collapse
Affiliation(s)
- Qian Liu
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaoyang Jian
- North China Sea Environmental Monitoring Center, State Oceanic Administration, Fushun Road 22, Qingdao, Shandong Province, 266033, China
| | - Yingying Yang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Wenqian Ma
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
5
|
Tadini L, Jeran N, Peracchio C, Masiero S, Colombo M, Pesaresi P. The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190399. [PMID: 32362266 DOI: 10.1098/rstb.2019.0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Plastid genes in higher plants are transcribed by at least two different RNA polymerases, the plastid-encoded RNA polymerase (PEP), a bacteria-like core enzyme whose subunits are encoded by plastid genes (rpoA, rpoB, rpoC1 and rpoC2), and the nuclear-encoded plastid RNA polymerase (NEP), a monomeric bacteriophage-type RNA polymerase. Both PEP and NEP enzymes are active in non-green plastids and in chloroplasts at all developmental stages. Their transcriptional activity is affected by endogenous and exogenous factors and requires a strict coordination within the plastid and with the nuclear gene expression machinery. This review focuses on the different molecular mechanisms underlying chloroplast transcription regulation and its coordination with the photosynthesis-associated nuclear genes (PhANGs) expression. Particular attention is given to the link between NEP and PEP activity and the GUN1- (Genomes Uncoupled 1) mediated chloroplast-to-nucleus retrograde communication with respect to the Δrpo adaptive response, i.e. the increased accumulation of NEP-dependent transcripts upon depletion of PEP activity, and the editing-level changes observed in NEP-dependent transcripts, including rpoB and rpoC1, in gun1 cotyledons after norflurazon or lincomycin treatment. The role of cytosolic preproteins and HSP90 chaperone as components of the GUN1-retrograde signalling pathway, when chloroplast biogenesis is inhibited in Arabidopsis cotyledons, is also discussed. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| |
Collapse
|
6
|
Kelly CL, Taylor GM, Hitchcock A, Torres-Méndez A, Heap JT. A Rhamnose-Inducible System for Precise and Temporal Control of Gene Expression in Cyanobacteria. ACS Synth Biol 2018; 7:1056-1066. [PMID: 29544054 DOI: 10.1021/acssynbio.7b00435] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyanobacteria are important for fundamental studies of photosynthesis and have great biotechnological potential. In order to better study and fully exploit these organisms, the limited repertoire of genetic tools and parts must be expanded. A small number of inducible promoters have been used in cyanobacteria, allowing dynamic external control of gene expression through the addition of specific inducer molecules. However, the inducible promoters used to date suffer from various drawbacks including toxicity of inducers, leaky expression in the absence of inducer and inducer photolability, the latter being particularly relevant to cyanobacteria, which, as photoautotrophs, are grown under light. Here we introduce the rhamnose-inducible rhaBAD promoter of Escherichia coli into the model freshwater cyanobacterium Synechocystis sp. PCC 6803 and demonstrate it has superior properties to previously reported cyanobacterial inducible promoter systems, such as a non-toxic, photostable, non-metabolizable inducer, a linear response to inducer concentration and crucially no basal transcription in the absence of inducer.
Collapse
Affiliation(s)
- Ciarán L. Kelly
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - George M. Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Andrew Hitchcock
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Antonio Torres-Méndez
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - John T. Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| |
Collapse
|
7
|
Methionine adenosyltransferase α2 sumoylation positively regulate Bcl-2 expression in human colon and liver cancer cells. Oncotarget 2016; 6:37706-23. [PMID: 26416353 PMCID: PMC4741959 DOI: 10.18632/oncotarget.5342] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022] Open
Abstract
Ubiquitin-conjugating enzyme 9 (Ubc9) is required for sumoylation and inhibits apoptosis via Bcl-2 by unknown mechanism. Methionine adenosyltransferase 2A (MAT2A) encodes for MATα2, the catalytic subunit of the MATII isoenzyme that synthesizes S-adenosylmethionine (SAMe). Ubc9, Bcl-2 and MAT2A expression are up-regulated in several malignancies. Exogenous SAMe decreases Ubc9 and MAT2A expression and is pro-apoptotic in liver and colon cancer cells. Here we investigated whether there is interplay between Ubc9, MAT2A and Bcl-2. We used human colon and liver cancer cell lines RKO and HepG2, respectively, and confirmed key finding in colon cancer specimens. We found MATα2 can regulate Bcl-2 expression at multiple levels. MATα2 binds to Bcl-2 promoter to activate its transcription. This effect is independent of SAMe as MATα2 catalytic mutant was also effective. MATα2 also directly interacts with Bcl-2 to enhance its protein stability. MATα2's effect on Bcl-2 requires Ubc9 as MATα2's stability is influenced by sumoylation at K340, K372 and K394. Overexpressing wild type (but not less stable MATα2 sumoylation mutants) protected from 5-fluorouracil-induced apoptosis in both colon and liver cancer cells. Colon cancer have higher levels of sumoylated MATα2, total MATα2, Ubc9 and Bcl-2 and higher MATα2 binding to the Bcl-2 P2 promoter. Taken together, Ubc9's protective effect on apoptosis may be mediated at least in part by sumoylating and stabilizing MATα2 protein, which in turn positively maintains Bcl-2 expression. These interactions feed forward to further enhance growth and survival of the cancer cell.
Collapse
|
8
|
Pfannschmidt T, Blanvillain R, Merendino L, Courtois F, Chevalier F, Liebers M, Grübler B, Hommel E, Lerbs-Mache S. Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6957-73. [PMID: 26355147 DOI: 10.1093/jxb/erv415] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chloroplasts are the sunlight-collecting organelles of photosynthetic eukaryotes that energetically drive the biosphere of our planet. They are the base for all major food webs by providing essential photosynthates to all heterotrophic organisms including humans. Recent research has focused largely on an understanding of the function of these organelles, but knowledge about the biogenesis of chloroplasts is rather limited. It is known that chloroplasts develop from undifferentiated precursor plastids, the proplastids, in meristematic cells. This review focuses on the activation and action of plastid RNA polymerases, which play a key role in the development of new chloroplasts from proplastids. Evolutionarily, plastids emerged from the endosymbiosis of a cyanobacterium-like ancestor into a heterotrophic eukaryote. As an evolutionary remnant of this process, they possess their own genome, which is expressed by two types of plastid RNA polymerase, phage-type and prokaryotic-type RNA polymerase. The protein subunits of these polymerases are encoded in both the nuclear and plastid genomes. Their activation and action therefore require a highly sophisticated regulation that controls and coordinates the expression of the components encoded in the plastid and nucleus. Stoichiometric expression and correct assembly of RNA polymerase complexes is achieved by a combination of developmental and environmentally induced programmes. This review highlights the current knowledge about the functional coordination between the different types of plastid RNA polymerases and provides working models of their sequential expression and function for future investigations.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Livia Merendino
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Florence Courtois
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Fabien Chevalier
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Monique Liebers
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Björn Grübler
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Elisabeth Hommel
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Silva Lerbs-Mache
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| |
Collapse
|
9
|
Chi W, He B, Mao J, Jiang J, Zhang L. Plastid sigma factors: Their individual functions and regulation in transcription. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:770-8. [PMID: 25596450 DOI: 10.1016/j.bbabio.2015.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/02/2015] [Accepted: 01/06/2015] [Indexed: 11/18/2022]
Abstract
Sigma factors are the predominant factors involved in transcription regulation in bacteria. These factors can recruit the core RNA polymerase to promoters with specific DNA sequences and initiate gene transcription. The plastids of higher plants originating from an ancestral cyanobacterial endosymbiont also contain sigma factors that are encoded by a small family of nuclear genes. Although all plastid sigma factors contain sequences conserved in bacterial sigma factors, a considerable number of distinct traits have been acquired during evolution. The present review summarises recent advances concerning the regulation of the structure, function and activity of plastid sigma factors since their discovery nearly 40 years ago. We highlight the specialised roles and overlapping redundant functions of plastid sigma factors according to their promoter selectivity. We also focus on the mechanisms that modulate the activity of sigma factors to optimise plastid function in response to developmental cues and environmental signals. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Mao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingjing Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
10
|
Ueda M, Takami T, Peng L, Ishizaki K, Kohchi T, Shikanai T, Nishimura Y. Subfunctionalization of sigma factors during the evolution of land plants based on mutant analysis of liverwort (Marchantia polymorpha L.) MpSIG1. Genome Biol Evol 2014; 5:1836-48. [PMID: 24025801 PMCID: PMC3814195 DOI: 10.1093/gbe/evt137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sigma factor is a subunit of plastid-encoded RNA polymerase that regulates the transcription of plastid-encoded genes by recognizing a set of promoters. Sigma factors have increased in copy number and have diversified during the evolution of land plants, but details of this process remain unknown. Liverworts represent the basal group of embryophytes and are expected to retain the ancestral features of land plants. In liverwort (Marchantia polymorpha L.), we isolated and characterized a T-DNA-tagged mutant (Mpsig1) of sigma factor 1 (MpSIG1). The mutant did not show any visible phenotypes, implying that MpSIG1 function is redundant with that of other sigma factors. However, quantitative reverse-transcription polymerase chain reaction and RNA gel blot analysis revealed that genes related to photosynthesis were downregulated, resulting in the minor reduction of some protein complexes. The transcript levels of genes clustered in the petL, psaA, psbB, psbK, and psbE operons of liverwort were lower than those in the wild type, a result similar to that in the SIG1 defective mutant in rice (Oryza sativa). Overexpression analysis revealed primitive functional divergence between the SIG1 and SIG2 proteins in bryophytes, whereas these proteins still retain functional redundancy. We also discovered that the predominant sigma factor for ndhF mRNA expression has been diversified in liverwort, Arabidopsis (Arabidopsis thaliana), and rice. Our study shows the ancestral function of SIG1 and the process of functional partitioning (subfunctionalization) of sigma factors during the evolution of land plants.
Collapse
Affiliation(s)
- Minoru Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang J, Ruhlman TA, Mower JP, Jansen RK. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing. BMC PLANT BIOLOGY 2013; 13:228. [PMID: 24373163 PMCID: PMC3880972 DOI: 10.1186/1471-2229-13-228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/20/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. RESULTS Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. CONCLUSIONS The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Robert K Jansen
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
- Genomics and Biotechnology Section, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Zahur M, Asif MA, Zeeshan N, Mehmood S, Malik MF, Asif AR. Homeobox leucine zipper proteins and cotton improvement. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.410a3003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
SIG1, a sigma factor for the chloroplast RNA polymerase, differently associates with multiple DNA regions in the chloroplast chromosomes in vivo. Int J Mol Sci 2012. [PMID: 23202891 PMCID: PMC3497265 DOI: 10.3390/ijms131012182] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chloroplasts have their own DNA and gene expression systems. Transcription in chloroplasts is regulated by two types of RNA polymerase, nuclear-encoded plastid RNA polymerase (NEP) and plastid-encoded plastid RNA polymerase (PEP), and multiple sigma factors for PEP. To study transcriptional regulation in chloroplasts, a molecular genetic approach has extensively been used. However, this method may include indirect effects, and it cannot be applied to the analysis of factors essential to survival. These limitations make understanding specific regulation by transcription factors difficult. Chromatin immunoprecipitation (ChIP) is a powerful and useful tool for obtaining information on transcription-factor binding sites; it can directly detect dynamic changes in their interaction patterns in vivo. To further understand transcriptional regulation in chloroplasts, we here established a ChIP-based method in Arabidopsis thaliana and analyzed the binding pattern of a chloroplast sigma factor, SIG1. We found that SIG1 specifically binds to newly identified target promoters as well as to a set of promoters of genes whose mRNA expression is dependent on OsSIG1 in rice and that this binding changed in response to high-light stress. These results suggested that the ChIP-based approach is very useful in understanding transcriptional regulation of chloroplast genes and can overcome several problems posed by conventional methods.
Collapse
|
14
|
Malik Ghulam M, Zghidi-Abouzid O, Lambert E, Lerbs-Mache S, Merendino L. Transcriptional organization of the large and the small ATP synthase operons, atpI/H/F/A and atpB/E, in Arabidopsis thaliana chloroplasts. PLANT MOLECULAR BIOLOGY 2012; 79:259-72. [PMID: 22527751 DOI: 10.1007/s11103-012-9910-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/30/2012] [Indexed: 05/04/2023]
Abstract
The ATP synthase is a ubiquitous enzyme which is found in bacteria and eukaryotic organelles. It is essential in the photosynthetic and respiratory processes, by transforming the electrochemical proton gradient into ATP energy via proton transport across the membranes. In Escherichia coli, the atp genes coding for the subunits of the ATP synthase enzyme are grouped in the same transcriptional unit, while in higher plants the plastid atp genes are organized into a large (atpI/H/F/A) and a small (atpB/E) atp operon. By using the model plant Arabidopsis thaliana, we have investigated the strategy evolved in chloroplasts to overcome the physical separation of the atp gene clusters and to coordinate their transcription. We show that all the identified promoters in the two atp operons are PEP dependent and require sigma factors for specific recognition. Our results indicate that transcription of the two atp operons is initiated by at least one common factor, the essential SIG2 factor. Our data show that SIG3 and SIG6 also participate in transcription initiation of the large and the small atp operon, respectively. We propose that SIG2 might be the factor responsible for coordinating the basal transcription of the plastid atp genes and that SIG3 and SIG6 might serve to modulate plastid atp expression with respect to physiological and environmental conditions. However, we observe that in the sigma mutants (sig2, sig3 and sig6) the deficiency in the recognition of specific atp promoters is largely balanced by mRNA stabilization and/or by activation of otherwise silent promoters, indicating that the rate-limiting step for expression of the atp operons is mostly post-transcriptional.
Collapse
Affiliation(s)
- Mustafa Malik Ghulam
- CEA, IRTSV, Laboratoire Physiologie Cellulaire et Végétale, 38054 Grenoble, France
| | | | | | | | | |
Collapse
|
15
|
Kondrák M, Marincs F, Antal F, Juhász Z, Bánfalvi Z. Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC PLANT BIOLOGY 2012; 12:74. [PMID: 22646706 PMCID: PMC3459809 DOI: 10.1186/1471-2229-12-74] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/30/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND The development of drought-tolerant, elite varieties of potato (Solanum tuberosum L.) is a challenging task, which might be achieved by introducing transgenic lines into breeding. We previously demonstrated that strains of the White Lady potato cultivar that express the yeast trehalose-6-phosphate synthase (TPS1) gene exhibit improved drought tolerance. RESULTS We investigated the responses of the drought-sensitive potato cultivar White Lady and the drought-tolerant TPS1 transgenic variant to prolonged drought stress at both the transcriptional and metabolic levels. Leaf mRNA expression profiles were compared using the POCI microarray, which contains 42,034 potato unigene probes. We identified 379 genes of known function that showed at least a 2-fold change in expression across genotypes, stress levels or the interaction between these factors. Wild-type leaves had twice as many genes with altered expression in response to stress than TPS1 transgenic leaves, but 112 genes were differentially expressed in both strains. We identified 42 transcription factor genes with altered expression, of which four were uniquely up-regulated in TPS1 transgenic leaves. The majority of the genes with altered expression that have been implicated in photosynthesis and carbohydrate metabolism were down-regulated in both the wild-type and TPS1 transgenic plants. In agreement with this finding, the starch concentration of the stressed leaves was very low. At the metabolic level, the contents of fructose, galactose and glucose were increased and decreased in the wild-type and TPS1 transgenic leaves, respectively, while the amounts of proline, inositol and raffinose were highly increased in both the wild-type and TPS1 transgenic leaves under drought conditions. CONCLUSIONS To our knowledge, this study is the most extensive transcriptional and metabolic analysis of a transgenic, drought-tolerant potato line. We identified four genes that were previously reported as drought-responsive in non-transgenic Andean potato cultivars. The substantial increases in proline, inositol and raffinose contents detected in both the wild-type and TPS1 transgenic leaves appears to be a general response of potatoes to drought stress. The four transcription factors uniquely up-regulated in TPS1 transgenic leaves are good candidates for future functional analyses aimed at understanding the regulation of the 57 genes with differential expression in TPS1 transgenic leaves.
Collapse
MESH Headings
- Adaptation, Physiological
- Carbohydrate Metabolism
- Carbohydrates/analysis
- Carbohydrates/genetics
- Droughts
- Gene Expression Regulation, Plant
- Genes, Plant
- Glucosyltransferases/genetics
- Glucosyltransferases/metabolism
- Linear Models
- Metabolomics/methods
- Oligonucleotide Array Sequence Analysis
- Photosynthesis
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Solanum tuberosum/genetics
- Solanum tuberosum/metabolism
- Stress, Physiological
- Time Factors
- Transcriptome
- Yeasts/enzymology
- Yeasts/genetics
Collapse
Affiliation(s)
- Mihály Kondrák
- Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4, Gödöllő, Hungary
| | - Ferenc Marincs
- Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4, Gödöllő, Hungary
| | - Ferenc Antal
- Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4, Gödöllő, Hungary
| | - Zsófia Juhász
- Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4, Gödöllő, Hungary
| | - Zsófia Bánfalvi
- Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4, Gödöllő, Hungary
| |
Collapse
|
16
|
Lerbs-Mache S. Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription? PLANT MOLECULAR BIOLOGY 2011; 76:235-49. [PMID: 21107995 DOI: 10.1007/s11103-010-9714-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/09/2010] [Indexed: 05/04/2023]
Abstract
Plastid gene expression is rather complex. Transcription is performed by three different RNA polymerases, two of them are nucleus-encoded, monomeric, of the phage-type (named RPOTp and RPOTmp) and one of them is plastid-encoded, multimeric, of the eubacterial-type (named PEP). The activity of the eubacterial-type RNA polymerase is regulated by up to six nucleus-encoded transcription initiation factors of the sigma-type. This complexity of the plastid transcriptional apparatus is not yet well understood and raises the question of whether it is subject to any regulation or just ensures constitutive transcription of the plastid genome. On the other hand, considerable advances have been made during the last years elucidating the role of sigma factors for specific promoter recognition and selected transcription of some plastid genes. Sigma-interacting proteins have been identified and phosphorylation-dependent functional changes of sigma factors have been revealed. The present review aims to summarize these recent advances and to convince the reader that plastid gene expression is regulated on the transcriptional level by sigma factor action.
Collapse
Affiliation(s)
- Silva Lerbs-Mache
- Laboratoire de Physiologie Cellulaire Végétale, Centre National de la Recherche Scientifique, CEA-Grenoble, UMR 5168, Université Joseph Fourier, 17 rue des Martyrs, 38054 Grenoble cedex, France.
| |
Collapse
|
17
|
Weirauch MT, Hughes TR. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. Subcell Biochem 2011; 52:25-73. [PMID: 21557078 DOI: 10.1007/978-90-481-9069-0_3] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Transcription factors (TFs) play key roles in the regulation of gene expression by binding in a sequence-specific manner to genomic DNA. In eukaryotes, DNA binding is achieved by a wide range of structural forms and motifs. TFs are typically classified by their DNA-binding domain (DBD) type. In this chapter, we catalogue and survey 91 different TF DBD types in metazoa, plants, fungi, and protists. We briefly discuss well-characterized TF families representing the major DBD superclasses. We also examine the species distributions and inferred evolutionary histories of the various families, and the potential roles played by TF family expansion and dimerization.
Collapse
Affiliation(s)
- Matthew T Weirauch
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada,
| | | |
Collapse
|
18
|
Role and regulation of plastid sigma factors and their functional interactors during chloroplast transcription – Recent lessons from Arabidopsis thaliana. Eur J Cell Biol 2010; 89:940-6. [DOI: 10.1016/j.ejcb.2010.06.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Chi W, Mao J, Li Q, Ji D, Zou M, Lu C, Zhang L. Interaction of the pentatricopeptide-repeat protein DELAYED GREENING 1 with sigma factor SIG6 in the regulation of chloroplast gene expression in Arabidopsis cotyledons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:14-25. [PMID: 20626654 DOI: 10.1111/j.1365-313x.2010.04304.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The pentatricopeptide-repeat (PPR) protein DELAYED GREENING 1 (DG1) has been shown to be involved in the regulation of early chloroplast development and chloroplast gene expression in Arabidopsis. To gain insight into the mode of DG1 action, we used a yeast two-hybrid screening approach and identified a partner, SIG6, which is a chloroplast sigma factor responsible for the transcription of plastid-encoded RNA polymerase (PEP)-dependent chloroplast genes in cotyledons. Further analysis showed that the C-terminal region of DG1 and the N-terminal region of SIG6 are responsible for such interactions. High-level expression of a truncated C-terminal DG1 in wild-type Arabidopsis caused a dominant-negative phenotype. The sig6 dg1 double mutant displayed a more severe chlorotic phenotype, and the PEP-dependent chloroplast gene transcripts were greatly reduced compared with transcript levels in the single mutants. Overexpression of SIG6 rescued the chlorophyll deficiency in dg1 cotyledons but not in young leaves. In addition, increased SIG6 promoted PEP-dependent chloroplast gene transcript accumulation in the dg1 mutant background. These results suggest that the interaction of DG1 and SIG6 is functionally significant in the regulation of PEP-dependent chloroplast gene transcription in Arabidopsis cotyledons.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Schweer J, Türkeri H, Link B, Link G. AtSIG6, a plastid sigma factor from Arabidopsis, reveals functional impact of cpCK2 phosphorylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:192-202. [PMID: 20088902 PMCID: PMC2988416 DOI: 10.1111/j.1365-313x.2010.04138.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/23/2009] [Indexed: 05/17/2023]
Abstract
Plastids contain sigma factors, i.e. gene-regulatory proteins for promoter binding and transcription initiation. Despite the physical and functional similarity shared with their prokaryotic counterparts, the plant sigma factors have distinguishing features: most notably the existence of a variable extra sequence comprising their N-terminal portions. This distinct architecture is reflected by functional differences, including phosphorylation control by organellar protein kinase(s) closely related to nucleocytosolic, rather than bacterial-type, enzymes. In particular, cpCK2, a nuclear-coded plastid-targeted casein kinase 2, has been implicated as a key component in plant sigma factor phosphorylation and transcriptional regulation (Eur. J. Biochem. 269, 2002, 3329; Planta, 219, 2004, 298). Although this notion is based mainly on biochemical evidence and in vitro systems, the recent availability of Arabidopsis sigma knock-out lines for complementation by intact and mutant sigma cDNAs has opened up new strategies for the study of transcription regulatory mechanisms in vivo. Using Arabidopsis sigma factor 6 (AtSIG6) as a paradigm, we present data suggesting that: (i) this factor is a substrate for regulatory phosphorylation by cpCK2 both in vitro and in vivo; (ii) cpCK2 phosphorylation of SIG6 occurs at multiple sites, which can widely differ in their effect on the visual and/or molecular phenotype; (iii) in vivo usage of the perhaps most critical cpCK2 site defined by Ser174 requires (pre-)phosphorylation at the n + 3 serine residue Ser177, pointing to 'pathfinder' kinase activity capable of generating a functional cpCK2 substrate site.
Collapse
Affiliation(s)
| | | | | | - Gerhard Link
- *For correspondence (fax: +49 234 321 4188; e-mail )
| |
Collapse
|
22
|
Schweer J, Geimer S, Meurer J, Link G. Arabidopsis mutants carrying chimeric sigma factor genes reveal regulatory determinants for plastid gene expression. PLANT & CELL PHYSIOLOGY 2009; 50:1382-6. [PMID: 19439445 DOI: 10.1093/pcp/pcp069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Like bacteria, plastids contain sigma factors for promoter binding and transcription initiation. Accumulating evidence suggests that members of the plant sigma factor family can have specialized non-redundant roles in terms of promoter preference in various developmental and environmental situations. To specify regulatory determinants, we have chosen pairwise exchange of portions of Arabidopsis sigma coding regions, followed by transformation of the chimeric constructs into a sigma 6 knockout line. The resulting phenotypes and plastid RNA patterns point to an important though not exclusive role for the highly variable N-terminal portion of plant sigma proteins.
Collapse
|
23
|
Coll NS, Danon A, Meurer J, Cho WK, Apel K. Characterization of soldat8, a suppressor of singlet oxygen-induced cell death in Arabidopsis seedlings. PLANT & CELL PHYSIOLOGY 2009; 50:707-18. [PMID: 19273469 DOI: 10.1093/pcp/pcp036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The flu mutant of Arabidopsis thaliana overaccumulates in the dark the immediate precursor of chlorophyllide, protochlorophyllide (Pchlide), a potent photosensitizer, that upon illumination generates singlet oxygen ((1)O2). Once (1)O2 has been released in plastids of the flu mutant, mature plants stop growing, while seedlings die. Several suppressor mutations, dubbed singlet oxygen-linked death activator (soldat), were identified that specifically abrogate (1)O2-mediated stress responses in young flu seedlings without grossly affecting (1)O2-mediated stress responses of mature flu plants. One of the soldat mutations, soldat8, was shown to impair a gene encoding the SIGMA6 factor of the plastid RNA polymerase. Reintroduction of a wild-type copy of the SOLDAT8 gene into the soldat8/flu mutant restored the phenotype of the flu parental line. In contrast to flu, seedlings of soldat8/flu did not bleach when grown under non-permissive dark/light conditions, despite their continuous overaccumulation of the photosensitizer Pchlide in the dark. The activity of SIGMA6 is confined primarily to the very early stage of seedling development. Inactivation of SIGMA6 in soldat8 mutants disturbed plastid homeostasis, drastically reduced the non-photochemical quenching capacity and enhanced the light sensitivity of young soldat8 seedlings. Surprisingly, after being grown under very low light, soldat8 seedlings showed an enhanced resistance against a subsequent severe light stress that was significantly higher than in wild-type seedlings. In order to reach a similar enhanced stress resistance, wild-type seedlings had to be exposed to a brief higher light treatment that triggered an acclimatory response. Such a mild pre-stress treatment did not further enhance the stress resistance of soldat8 seedlings. Suppression of (1)O2-mediated cell death in young flu/soldat8 seedlings seems to be due to a transiently enhanced acclimation at the beginning of seedling development caused by the initial disturbance of plastid homeostasis.
Collapse
Affiliation(s)
- Núria S Coll
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), Zurich CH-8092, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Lenka SK, Lohia B, Kumar A, Chinnusamy V, Bansal KC. Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes. PLANT MOLECULAR BIOLOGY 2009; 69:261-271. [PMID: 18998058 DOI: 10.1007/s11103-008-9423-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 10/16/2008] [Indexed: 05/27/2023]
Abstract
Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.
Collapse
Affiliation(s)
- Sangram K Lenka
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | | | | | |
Collapse
|
25
|
Onda Y, Yagi Y, Saito Y, Takenaka N, Toyoshima Y. Light induction of Arabidopsis SIG1 and SIG5 transcripts in mature leaves: differential roles of cryptochrome 1 and cryptochrome 2 and dual function of SIG5 in the recognition of plastid promoters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:968-78. [PMID: 18532976 DOI: 10.1111/j.1365-313x.2008.03567.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In higher plants, multiple nuclear-encoded sigma factors activate select subsets of plastid gene promoters in a partially redundant manner. We analysed the light induction profiles of transcripts from six Arabidopsis sigma factor (AtSIG) genes in mature leaves, focusing on the effects of wavelength and intensity. Red-light illumination (660 nm) of dark-adapted plants strongly induced AtSIG1 transcripts, while blue-light illumination (470 nm) caused strong and rapid induction of AtSIG1 and AtSIG5 transcripts. The fluence response differed in blue-light-responsive rapid induction in AtSIG1 and AtSIG5. AtSIG1 transcripts increased to plateau with a threshold of 2 micromol m(-2) sec(-1) under all fluences examined (1-50 micromol m(-2) sec(-1)), and AtSIG5 transcripts were induced with a distinct two-phase profile, with the lower-fluence induction similar to that of AtSIG1 and further enhancement with increasing fluences greater than 10 micromol m(-2) sec(-1). Blue-light-receptor mutational analysis revealed that AtSIG5-specific two-phase induction is mediated through cryptochrome 1 and cryptochrome 2 at lower fluences and more significantly through cryptochrome 1 at higher fluences. In mature chloroplasts, the promoters of psbA and psbD are predominantly recognized by AtSIG5 among six sigma factors. Using a protoplast transient expression assay with AtSIG5-AtSIG1 chimeric genes, we present evidence that AtSIG5 contains determinants for activating the psbD blue-light-responsive promoter (BLRP) in region 4.2 rather than region 2.4. Amino acid scanning within AtSIG5 region 4.2 revealed that Asn484, but not Arg493, functions as a key residue for psbD BLRP activation. Arginine 493 may be involved in psbA promoter recognition.
Collapse
Affiliation(s)
- Yayoi Onda
- Department of Bioscience and Nano-biotechnology Research Centre, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | | | | | | | | |
Collapse
|
26
|
Fachin AL, Mello SS, Sandrin-Garcia P, Junta CM, Donadi EA, Passos GAS, Sakamoto-Hojo ET. Gene expression profiles in human lymphocytes irradiated in vitro with low doses of gamma rays. Radiat Res 2008; 168:650-65. [PMID: 18088177 DOI: 10.1667/rr0487.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 07/26/2007] [Indexed: 11/03/2022]
Abstract
The molecular mechanisms underlying responses to low radiation doses are still unknown, especially in normal lymphocytes, despite the evidence suggesting specific changes that may characterize cellular responses. Our purpose was to analyze gene expression profiles by DNA microarrays in human lymphocytes after in vitro irradiation (10, 25 and 50 cGy) with gamma rays. A cytogenetic analysis was also carried out for different radiation doses. G 0 lymphocytes were irradiated and induced to proliferate for 48 h; then RNA samples were collected for gene expression analysis. ANOVA was applied to data obtained in four experiments with four healthy donors, followed by SAM analysis and hierarchical clustering. For 10, 25 and 50 cGy, the numbers of significantly (FDR <or= 0.05) modulated genes were 86, 130 and 142, respectively, and 25, 35 and 33 genes were exclusively modulated for each dose, respectively. We found CYP4X1, MAPK10 and ATF6 (10 cGy), DUSP16 and RAD51L1 (25 cGy), and RAD50, REV3L and DCLRE1A (50 cGy). A set of 34 significant genes was common for all doses; while SERPINB2 and C14orf104 were up-regulated, CREB3L2, DDX49, STK25 and XAB2 were down-regulated. Chromosome damage was significantly induced for doses >or=10 cGy (total aberrations) and >or=50 cGy (dicentrics/ rings). Therefore, low to moderate radiation doses induced qualitative and/or quantitative differences and similarities in transcript profiles, reflecting the type and extent of DNA lesions. The main biological processes associated with modulated genes were metabolism, stress response/DNA repair, cell growth/differentiation, and transcription regulation. The results indicate a potential risk to humans regarding the development of genetic instability and acquired diseases.
Collapse
Affiliation(s)
- Ana L Fachin
- Departamento de Genética e, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Lysenko EA. Plant sigma factors and their role in plastid transcription. PLANT CELL REPORTS 2007; 26:845-59. [PMID: 17356883 DOI: 10.1007/s00299-007-0318-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/13/2007] [Accepted: 02/09/2007] [Indexed: 05/08/2023]
Abstract
Plant sigma factors determine the promoter specificity of the major RNA polymerase of plastids and thus regulate the first level of plastome gene expression. In plants, sigma factors are encoded by a small family of nuclear genes, and it is not yet clear if the family members are functionally redundant or each paralog plays a particular role. The review presents the analysis of the information on plant sigma factors obtained since their discovery a decade ago and focuses on similarities and differences in structure and functions of various paralogs. Special attention is paid to their interaction with promoters, the regulation of their expression, and their role in the development of a whole plant. The analysis suggests that though plant sigma factors are basically similar, at least some of them perform distinct functions. Finally, the work presents the scheme of this gene family evolution in higher plants.
Collapse
Affiliation(s)
- Eugene A Lysenko
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya ul. 35, 127276 Moscow, Russia.
| |
Collapse
|
28
|
Kubota Y, Miyao A, Hirochika H, Tozawa Y, Yasuda H, Tsunoyama Y, Niwa Y, Imamura S, Shirai M, Asayama M. Two Novel Nuclear Genes, OsSIG5 and OsSIG6 , Encoding Potential Plastid Sigma Factors of RNA Polymerase in Rice: Tissue-Specific and Light-Responsive Gene Expression. ACTA ACUST UNITED AC 2007; 48:186-92. [PMID: 17148693 DOI: 10.1093/pcp/pcl050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Two novel nuclear genes, OsSIG5 and OsSIG6, encoding potential plastid sigma factors of RNA polymerase (RNAP) were identified in Oryza sativa. The deduced amino acid sequences contain conserved regions, regions 1.2-4.2, and a novel region A/B at the N-terminus. Tissue-specific and light-responsive transcripts of OsSIG5 and OsSIG6 were observed. The N-terminal region of OsSig5 conferred import of green fluorescent protein into the chloroplast. Specific transcripts of rice psbA were synthesized in vitro by reconstituted OsSig5-RNAP holoenzymes. These results indicated that OsSig5 is a plastid sigma factor. This is the first report of the Sig5-type sigma factor in crops.
Collapse
Affiliation(s)
- Yoshiki Kubota
- Laboratory of Molecular Genetics, Collage of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, 300-0393 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Transcription and transcriptional regulation in plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0232] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Zghidi W, Merendino L, Cottet A, Mache R, Lerbs-Mache S. Nucleus-encoded plastid sigma factor SIG3 transcribes specifically the psbN gene in plastids. Nucleic Acids Res 2006; 35:455-64. [PMID: 17175536 PMCID: PMC1802608 DOI: 10.1093/nar/gkl1067] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have investigated the function of one of the six plastid sigma-like transcription factors, sigma 3 (SIG3), by analysing two different Arabidopsis T-DNA insertion lines having disrupted SIG3 genes. Hybridization of wild-type and sig3 plant RNA to a plastid specific microarray revealed a strong reduction of the plastid psbN mRNA. The microarray result has been confirmed by northern blot analysis. The SIG3-specific promoter region has been localized on the DNA by primer extension and mRNA capping experiments. Results suggest tight regulation of psbN gene expression by a SIG3-PEP holoenzyme. The psbN gene is localized on the opposite strand of the psbB operon, between the psbT and psbH genes, and the SIG3-dependent psbN transcription produces antisense RNA to the psbT-psbH intergenic region. We show that this antisense RNA is not limited to the intergenic region, i.e. it does not terminate at the end of the psbN gene but extends as antisense transcript to cover the whole psbT coding region. Thus, by specific transcription initiation at the psbN gene promoter, SIG3-PEP holoenzyme could also influence the expression of the psbB operon by producing psbT antisense RNA.
Collapse
Affiliation(s)
| | | | | | | | - Silva Lerbs-Mache
- To whom correspondence should be addressed. Tel: +33 0 4 76 63 57 44; Fax: +33 0 4 76 63 55 86;
| |
Collapse
|
31
|
Schweer J, Loschelder H, Link G. A promoter switch that can rescue a plant sigma factor mutant. FEBS Lett 2006; 580:6617-22. [PMID: 17118361 DOI: 10.1016/j.febslet.2006.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/13/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Chloroplasts sigma factors act in concert with PEP, the bacterial-type plastid RNA polymerase. Using a sigma knockout line from Arabidopsis thaliana, we investigated mutant-specific changes in plastid gene expression at RNA level. One characteristic feature was the appearance of a long transcript that spans the atpB-E operon and extends considerably into the far-upstream region of atpB. This region reveals a cluster of typical promoter elements for NEP, the second (phage-type) plastid RNA polymerase. The NEP promoter cluster can help maintain RNA synthesis in situations where no functional sigma factor is available for PEP.
Collapse
Affiliation(s)
- Jennifer Schweer
- Plant Cell Physiology and Molecular Biology, ND 2/72, University of Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | | | | |
Collapse
|
32
|
Loschelder H, Schweer J, Link B, Link G. Dual temporal role of plastid sigma factor 6 in Arabidopsis development. PLANT PHYSIOLOGY 2006; 142:642-50. [PMID: 16905663 PMCID: PMC1586057 DOI: 10.1104/pp.106.085878] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants contain nuclear-coded sigma factors for initiation of chloroplast transcription. The in vivo function of individual members of the sigma gene family has become increasingly accessible by knockout and complementation strategies. Here we have investigated plastid gene expression in an Arabidopsis (Arabidopsis thaliana) mutant with a defective gene for sigma factor 6. RNA gel-blot hybridization and real-time reverse transcription polymerase chain reaction together indicate that this factor has a dual developmental role, with both early and persistent (long-term) activities. The early role is evident from the sharp decrease of certain plastid transcripts only in young mutant seedlings. The second (persistent) role is reflected by the up- and down-regulation of other transcripts at the time of primary leaf formation and subsequent vegetative development. We conclude that sigma 6 does not represent a general factor, but seems to have specialized roles in developmental stage- and gene-specific plastid transcription. The possibility that plastid DNA copy number might be responsible for the altered transcript patterns in mutant versus wild type was excluded by the results of DNA gel-blot hybridization. Retransformation of the knockout line with the full-length sigma 6 cDNA further established a causal relationship between the functional sigma gene and the resulting phenotype.
Collapse
Affiliation(s)
- Heike Loschelder
- Plant Cell Physiology, University of Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
33
|
Sabree ZL, Bergendahl V, Liles MR, Burgess RR, Goodman RM, Handelsman J. Identification and characterization of the gene encoding the Acidobacterium capsulatum major sigma factor. Gene 2006; 376:144-51. [PMID: 16698197 DOI: 10.1016/j.gene.2006.02.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 02/14/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
Acidobacterium capsulatum is an acid-tolerant, encapsulated, Gram-negative member of the ubiquitous, but poorly understood Acidobacteria phylum. Little is known about the genetics and regulatory mechanisms of A. capsulatum. To begin to address this gap, we identified the gene encoding the A. capsulatum major sigma factor, rpoD, which encodes a 597-amino acid protein with a predicted sequence highly similar to the major sigma factors of Solibacter usitatus Ellin6076 and Geobacter sulfurreducens PCA. Purified hexahistidine-tagged RpoD migrates at approximately 70 kDa under SDS-PAGE conditions, which is consistent with the predicted MW of 69.2 kDa, and the gene product is immunoreactive with monoclonal antibodies specific for either bacterial RpoD proteins or the N-terminal histidine tag. A. capsulatum RpoD restored normal growth to E. coli strain CAG20153 under conditions that prevent expression of the endogenous rpoD. These results indicate we have cloned the gene encoding the A. capsulatum major sigma factor and the gene product is active in E. coli.
Collapse
Affiliation(s)
- Zakee L Sabree
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
34
|
Buhot L, Horvàth E, Medgyesy P, Lerbs-Mache S. Hybrid transcription system for controlled plastid transgene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:700-7. [PMID: 16640605 DOI: 10.1111/j.1365-313x.2006.02718.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plastid transformation technologies have developed rapidly over the last few years, reflecting their value in the study of the principal mechanisms of plastid gene expression and commercial interest in using plastids as bioreactors. Application of this technology is still limited by the difficulty of obtaining regulated, selective expression of plastid transgenes. The plastid genome is transcribed by two different types of RNA polymerase. One of them is of the eubacterial type of polymerase, and its subunits are encoded in the plastid genome [plastid-encoded RNA polymerase (PEP)]. The other one is of the phage type and nucleus-encoded [nucleus-encoded RNA polymerase (NEP)]. To obtain selective transgene expression, we have made use of the similarities and differences between the eubacterial and the plastid eubacterial type transcription systems. We created a hybrid transcription system in which the transgene is placed under the control of a eubacterial promoter which does not exist in the plastid genome and which is not recognized by the plastid endogenous transcriptional machinery. Selective transcription of the transgene is achieved by the supply of a chimeric transcription factor that interacts with PEP and directs it specifically to the foreign eubacterial-type transgene promoter. This hybrid transcription system could be used for biotechnological and fundamental research applications as well as in the characterization of the evolutionary differences between the eubacterial and the plastid eubacterial-type transcription systems.
Collapse
Affiliation(s)
- Laurence Buhot
- Laboratoire Plastes et Differenciation cellulaire, Université Joseph Fourier and Centre National de la Recherche Scientifique, BP 53, F-38041 Grenoble, France
| | | | | | | |
Collapse
|
35
|
Bohne AV, Irihimovitch V, Weihe A, Stern DB. Chlamydomonas reinhardtii encodes a single sigma70-like factor which likely functions in chloroplast transcription. Curr Genet 2006; 49:333-40. [PMID: 16453112 DOI: 10.1007/s00294-006-0060-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 11/30/2022]
Abstract
Chlamydomonas reinhardtii EST clones encoding a protein highly similar to prokaryotic sigma factors and plant sigma-like factors (SLFs) were used to isolate a BAC clone containing the full-length gene CrRpoD. The gene is likely to be single-copy, in contrast to small gene families encoding SLFs in plants. The CrRpoD mRNA comprises 3,033 nt with an open reading frame of 2,256 nt, encoding a putative protein of 752 amino acids with a molecular mass of 80.2 kDa. The sequence contains conserved regions 2-4 typically found in sigma factors, and an unusually long amino terminal extension, which by in silico analysis has properties of a chloroplast transit peptide. Expression of CrRpoD was confirmed by immunodetection of a 85 kDa polypeptide in a preparation enriched for chloroplast proteins. To demonstrate functionality in transcription initiation, a recombinant CrRpoD-thioredoxin fusion protein was reconstituted with E. coli RNA polymerase core enzyme and tested in vitro. This chimeric holoenzyme specifically bound the spinach psbA and Chlamydomonas rrn16 promoters in gel mobility shift assays and exhibited specific transcription initiation from the same two promoters, providing evidence for the role of CrRpoD as a functional transcription factor.
Collapse
Affiliation(s)
- Alexandra-V Bohne
- Institut für Biologie, Humboldt-Universität, Chausseestr. 117, 10115, Berlin, Germany
| | | | | | | |
Collapse
|
36
|
Favory JJ, Kobayshi M, Tanaka K, Peltier G, Kreis M, Valay JG, Lerbs-Mache S. Specific function of a plastid sigma factor for ndhF gene transcription. Nucleic Acids Res 2005; 33:5991-9. [PMID: 16243785 PMCID: PMC1266065 DOI: 10.1093/nar/gki908] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The complexity of the plastid transcriptional apparatus (two or three different RNA polymerases and numerous regulatory proteins) makes it very difficult to attribute specific function(s) to its individual components. We have characterized an Arabidopsis T-DNA insertion line disrupting the nuclear gene coding for one of the six plastid sigma factors (SIG4) that regulate the activity of the plastid-encoded RNA polymerase PEP. This mutant shows a specific diminution of transcription of the plastid ndhF gene, coding for a subunit of the plastid NDH [NAD(P)H dehydrogenase] complex. The absence of another NDH subunit, i.e. NDHH, and the absence of a chlorophyll fluorescence transient previously attributed to the activity of the plastid NDH complex indicate a strong down-regulation of NDH activity in the mutant plants. Results suggest that plastid NDH activity is regulated on the transcriptional level by an ndhF-specific plastid sigma factor, SIG4.
Collapse
Affiliation(s)
- Jean-Jacques Favory
- Laboratoire Plastes et différenciation cellulaire, Université Joseph Fourier and Centre National de la Recherche Scientifique, B.P. 53, 38041 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
37
|
von Zychlinski A, Kleffmann T, Krishnamurthy N, Sjölander K, Baginsky S, Gruissem W. Proteome analysis of the rice etioplast: metabolic and regulatory networks and novel protein functions. Mol Cell Proteomics 2005; 4:1072-84. [PMID: 15901827 DOI: 10.1074/mcp.m500018-mcp200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report an extensive proteome analysis of rice etioplasts, which were highly purified from dark-grown leaves by a novel protocol using Nycodenz density gradient centrifugation. Comparative protein profiling of different cell compartments from leaf tissue demonstrated the purity of the etioplast preparation by the absence of diagnostic marker proteins of other cell compartments. Systematic analysis of the etioplast proteome identified 240 unique proteins that provide new insights into heterotrophic plant metabolism and control of gene expression. They include several new proteins that were not previously known to localize to plastids. The etioplast proteins were compared with proteomes from Arabidopsis chloroplasts and plastid from tobacco Bright Yellow 2 cells. Together with computational structure analyses of proteins without functional annotations, this comparative proteome analysis revealed novel etioplast-specific proteins. These include components of the plastid gene expression machinery such as two RNA helicases, an RNase II-like hydrolytic exonuclease, and a site 2 protease-like metalloprotease all of which were not known previously to localize to the plastid and are indicative for so far unknown regulatory mechanisms of plastid gene expression. All etioplast protein identifications and related data were integrated into a data base that is freely available upon request.
Collapse
Affiliation(s)
- Anne von Zychlinski
- Institute of Plant Science and Functional Genomics Center Zurich, Swiss Federal Institute of Technology, Eidgenössische Technische Hochschule (ETH) Zurich, 8092 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Ishizaki Y, Tsunoyama Y, Hatano K, Ando K, Kato K, Shinmyo A, Kobori M, Takeba G, Nakahira Y, Shiina T. A nuclear-encoded sigma factor, Arabidopsis SIG6, recognizes sigma-70 type chloroplast promoters and regulates early chloroplast development in cotyledons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:133-44. [PMID: 15807777 DOI: 10.1111/j.1365-313x.2005.02362.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Eubacterial-type multi-subunit plastid RNA polymerase (PEP) is responsible for the principal transcription activity in chloroplasts. PEP is composed of plastid-encoded core subunits and one of multiple nuclear-encoded sigma factors that confer promoter specificity on PEP. Thus, the replacement of sigma factors associated with PEP has been assumed to be a major mechanism for the switching of transcription patterns during chloroplast development. The null mutant (sig6-1) of plastid sigma factor gene AtSIG6 exhibited a cotyledon-specific pale green phenotype. Light-dependent chloroplast development was significantly delayed in the sig6-1 mutant. Genetic complementation of the mutant phenotype by the AtSIG6 cDNA demonstrated that AtSIG6 plays a key role in light-dependent chloroplast development. Northern and array-based global analyses for plastid transcripts revealed that the transcript levels of most PEP-dependent genes were greatly reduced in the sig6-1 mutant, but that the accumulation of nuclear-encoded RNA polymerase (NEP)-dependent transcripts generally increased. As the PEP alpha subunit and PEP-dependent trnV accumulated at normal levels in the sig6-1 mutant, the AtSIG6 knockout mutant probably retained functional PEP, and the transcriptional defects are likely to have been directly caused by AtSIG6 deficiency. Most of the AtSIG6-dependent genes are preceded by sigma70-type promoters comprised of conserved -35/-10 elements. Thus, AtSIG6 may act as a major general sigma factor in chloroplasts during early plant development. On the other hand, the mutant phenotype was restored in older seedlings. Arabidopsis probably contains another late general sigma factor, the promoter specificity of which widely overlaps with that of AtSIG6.
Collapse
Affiliation(s)
- Yoko Ishizaki
- Faculty of Human Environment, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shiina T, Tsunoyama Y, Nakahira Y, Khan MS. Plastid RNA polymerases, promoters, and transcription regulators in higher plants. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:1-68. [PMID: 16157177 DOI: 10.1016/s0074-7696(05)44001-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plastids are semiautonomous plant organelles exhibiting their own transcription-translation systems that originated from a cyanobacteria-related endosymbiotic prokaryote. As a consequence of massive gene transfer to nuclei and gene disappearance during evolution, the extant plastid genome is a small circular DNA encoding only ca. 120 genes (less than 5% of cyanobacterial genes). Therefore, it was assumed that plastids have a simple transcription-regulatory system. Later, however, it was revealed that plastid transcription is a multistep gene regulation system and plays a crucial role in developmental and environmental regulation of plastid gene expression. Recent molecular and genetic approaches have identified several new players involved in transcriptional regulation in plastids, such as multiple RNA polymerases, plastid sigma factors, transcription regulators, nucleoid proteins, and various signaling factors. They have provided novel insights into the molecular basis of plastid transcription in higher plants. This review summarizes state-of-the-art knowledge of molecular mechanisms that regulate plastid transcription in higher plants.
Collapse
Affiliation(s)
- Takashi Shiina
- Faculty of Human Environment, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | | | |
Collapse
|
40
|
Suzuki JY, Ytterberg AJ, Beardslee TA, Allison LA, Wijk KJ, Maliga P. Affinity purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the holoenzyme. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:164-72. [PMID: 15361150 DOI: 10.1111/j.1365-313x.2004.02195.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We affinity-purified the tobacco plastid-encoded plastid RNA polymerase (PEP) complex by the alpha subunit containing a C-terminal 12 x histidine tag using heparin and Ni(2+) chromatography. The composition of the complex was determined by mass spectrometry after separating the proteins of the >900 kDa complex in blue native and SDS polyacrylamide gels. The purified PEP contained the core alpha, beta, beta', beta" subunits and five major associated proteins of unknown function, but lacked sigma factors required for promoter recognition. The holoenzyme efficiently recognized a plastid psbA promoter when it was reconstituted from the purified PEP and recombinant plastid sigma factors. Reconstitution of a plastid holoenzyme with individual sigma factors will facilitate identification of sigma factor-specific promoter elements.
Collapse
Affiliation(s)
- Jon Y Suzuki
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | | | | | |
Collapse
|
41
|
Tsunoyama Y, Ishizaki Y, Morikawa K, Kobori M, Nakahira Y, Takeba G, Toyoshima Y, Shiina T. Blue light-induced transcription of plastid-encoded psbD gene is mediated by a nuclear-encoded transcription initiation factor, AtSig5. Proc Natl Acad Sci U S A 2004; 101:3304-9. [PMID: 14976253 PMCID: PMC365785 DOI: 10.1073/pnas.0308362101] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Indexed: 11/18/2022] Open
Abstract
Light is one of the most important environmental factors regulating expression of photosynthesis genes. The plastid psbD gene encoding the photosystem II reaction center protein D2 is under the control of a unique blue light responsive promoter (BLRP) that is transcribed by a bacterial-type plastid RNA polymerase (PEP). Promoter recognition of PEP is mediated by one of the six nuclear-encoded sigma factors in Arabidopsis. The replacement of the plastid sigma factor associated with PEP may be the major mechanism for switching of plastid transcription pattern in response to environmental and developmental signals. This study demonstrates that AtSig5 is a unique sigma factor that is essential for psbD BLRP activity. A T-DNA insertional mutant with reduced AtSIG5 expression resulted in loss of primary transcripts from the psbD BLRP. Furthermore, transient overexpression of AtSig5 in dark-adapted protoplasts specifically elevated psbD and psbA transcription activities. On the other hand, overproduction of AtSig2 enhanced the transcription of psbA gene and trnE operon, but not psbD transcription. The AtSIG5 gene is phylogenetically distinct from other plastid sigma factors, and its expression is induced exclusively by blue light. We propose that AtSig5 acts as a mediator of blue light signaling that specifically activates the psbD BLRP in response to blue light in Arabidopsis.
Collapse
Affiliation(s)
- Yuichi Tsunoyama
- Radioisotope Research Center, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hanaoka M, Kanamaru K, Takahashi H, Tanaka K. Molecular genetic analysis of chloroplast gene promoters dependent on SIG2, a nucleus-encoded sigma factor for the plastid-encoded RNA polymerase, in Arabidopsis thaliana. Nucleic Acids Res 2004; 31:7090-8. [PMID: 14654684 PMCID: PMC291874 DOI: 10.1093/nar/gkg935] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Most photosynthesis-related genes in mature chloroplasts are transcribed by a eubacterial-type RNA polymerase (PEP) whose core subunits are encoded by the plastid genome. It has been shown previously that six putative nuclear genes (SIG1 to SIG6) encode promoter-specificity factors for PEP in Arabidopsis thaliana, and we isolated a T-DNA insertion line of SIG2 (sig2-1 mutant) that manifests aberrant chloroplast development. With the use of S1 nuclease protection and primer extension analyses, we have now characterized the SIG2-dependent chloroplast promoters in A.thaliana. The amounts of transcripts derived from one of the multiple psbD promoters (psbD -256) and from the promoters of two tRNA genes (trnE-UUC and trnV-UAC) were markedly and specifically decreased in the sig2-1 mutant. The abundance of these transcripts was restored to wild-type levels by introduction into the mutant of a SIG2 transgene. The recombinant SIG2 protein mixed with Escherichia coli core RNA polymerase could bind to a DNA fragment that contains the SIG2-dependent psbD -256, trnE-UUC or trnV-UAC promoter. Sequences similar to those of the -35 and -10 promoter elements of E.coli were identified in the regions of the SIG2-dependent chloroplast genes upstream of the transcription initiation sites.
Collapse
Affiliation(s)
- Mitsumasa Hanaoka
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
43
|
Hayashi K, Shiina T, Ishii N, Iwai K, Ishizaki Y, Morikawa K, Toyoshima Y. A role of the -35 element in the initiation of transcription at psbA promoter in tobacco plastids. PLANT & CELL PHYSIOLOGY 2003; 44:334-41. [PMID: 12668780 DOI: 10.1093/pcp/pcg041] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Most plastid promoters recognized by bacteria-like plastid RNA polymerase (PEP) are similar to E. coli sigma(70)-type promoters comprising "-35" and "-10" elements. Among them, psbA promoter is unique in bearing additional elements between the conserved -35 and -10 elements. The psbA promoter activity is differentially maintained in the mature chloroplasts where the activity of most PEP promoters declines. Previously, we identified two types of PEP activities in wheat seedlings [Satoh et al. (1999) Plant J. 18: 407]; PEP present in the mature chloroplasts of the leaf tip (tip-type PEP) can initiate transcription from the -35-destructed psbA promoter, but the -35 element is essential for transcription by PEP present in immature chloroplasts of the leaf base (base-type PEP). To reveal which type of PEP functions in various types of plastids in tobacco, we analyzed the tobacco psbA promoter by means of a transplastomic approach. The promoter core context (-42 to +9) was sufficient for developmental regulation of the psbA promoter activity. The -35 promoter element was important for transcription initiation at the psbA promoter in all types of plastids, including chloroplasts in mature leaves, leucoplasts in roots, etioplasts in etiolated cotyledons. The conclusion is that the PEP bearing a promoter preference, similar to the wheat base-type PEP, functions dominantly in tobacco chloroplasts.
Collapse
Affiliation(s)
- Keiko Hayashi
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501 Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Homann A, Link G. DNA-binding and transcription characteristics of three cloned sigma factors from mustard (Sinapis alba L.) suggest overlapping and distinct roles in plastid gene expression. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1288-300. [PMID: 12631287 DOI: 10.1046/j.1432-1033.2003.03494.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have isolated and studied the cloned sigma factors SASIG1-3 from mustard (Sinapis alba). In functional analyses using both promoter and factor mutants, the three recombinant proteins all had similar basic properties but also revealed differences in promoter preference and requirements for single nucleotide positions. Directed muta- genesis of SASIG1 identified critical residues within the conserved regions 2.4 and 4.2 necessary for binding of the -10 and -35 promoter elements, respectively. SASIG1 and 2, but not SASIG3, each have a typical region 2.5 for binding of the extended -10 promoter element. SASIG3 has a pro-sequence reminiscent of sigma K from Bacillus subtilis, suggesting that proteolytic cleavage from an inactive precursor is involved in the regulation of plastid transcription. In addition, SASIG2 was found to be more abundant in light-grown as compared to dark-grown mustard seedlings, while the converse was true for SASIG3.
Collapse
Affiliation(s)
- Anke Homann
- Plant Cell Physiology and Molecular Biology, University of Bochum, Germany
| | | |
Collapse
|
45
|
Intergenomic transcriptional interplays between plastid as a cyanobacterial symbiont and nucleus. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0921-0423(02)80047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Kanamaru K, Nagashima A, Fujiwara M, Shimada H, Shirano Y, Nakabayashi K, Shibata D, Tanaka K, Takahashi H. An Arabidopsis sigma factor (SIG2)-dependent expression of plastid-encoded tRNAs in chloroplasts. PLANT & CELL PHYSIOLOGY 2001; 42:1034-43. [PMID: 11673617 DOI: 10.1093/pcp/pce155] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A eubacteria-type RNA polymerase (PEP) plays crucial roles for chloroplast development in higher plants. The core subunits are encoded on plastid DNA (rpo genes) while the regulatory sigma factors are encoded on the nuclear DNA (SIG genes). However, the definite gene specificity of each sigma factor is unknown. We recently identified an Arabidopsis recessive pale-green mutant abc1 in which T-DNA is inserted in SIG2 (sigB). In this mutant, almost normal etioplasts were developed under dark conditions while the small chloroplasts with poor thylakoid membranes and stacked lamellar were developed under light conditions. The sig2-1 mutant was deficient in accumulating enough photosynthetic and photosynthesis-related proteins as well as chlorophyll. However, mRNAs of their structural genes were not significantly reduced. Further analyses revealed that several plastid-encoded tRNAs including trnE-UUC that has dual function for protein and ALA biosyntheses were drastically reduced in the sig2-1 mutant. In contrast, nucleus-encoded T7 phage-type RNA polymerase (NEP)-dependent gene transcripts were steadily accumulated in the mutant. These results indicate that progress of chloroplast development requires SIG2-dependent expression of plastid genes, particularly some of the tRNA genes.
Collapse
Affiliation(s)
- K Kanamaru
- Laboratory of Molecular Genetics, Department of Molecular Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Fujiwara M, Nagashima A, Kanamaru K, Tanaka K, Takahashi H. Three new nuclear genes, sigD, sigE and sigF, encoding putative plastid RNA polymerase sigma factors in Aarabidopsis thaliana. FEBS Lett 2000; 481:47-52. [PMID: 10984613 DOI: 10.1016/s0014-5793(00)01965-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three new nuclear genes (sigD, sigE and sigF) of Arabidopsis thaliana, encoding putative plastid RNA polymerase sigma factors, were identified and analyzed. Phylogenetic analysis revealed that higher plant sigma factors fell into at least four distinct subgroups within a diverse protein family. In addition, Arabidopsis sig genes contained conserved chromosomal intron sites, indicating that these genes arose by DNA duplication events during plant evolution. Transcript analyses revealed two alternatively spliced transcripts generated from the sigD region, one of which is predicted to encode a sigma protein lacking the carboxy-terminal regions 3 and 4. Finally, the amino-terminal sequence of the sigF gene product was shown to function as a plastid-targeting signal using green fluorescent protein fusions.
Collapse
Affiliation(s)
- M Fujiwara
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, 113-0032, Japan
| | | | | | | | | |
Collapse
|
49
|
Abstract
Expression of plastid genes is controlled at both transcriptional and post-transcriptional levels in response to developmental and environmental signals. In many cases this regulation is mediated by nuclear-encoded proteins acting in concert with the endogenous plastid gene expression machinery. Transcription in plastids is accomplished by two distinct RNA polymerase enzymes, one of which resembles eubacterial RNA polymerases in both subunit structure and promoter recognition properties. The holoenzyme contains a catalytic core composed of plastid-encoded subunits, assembled with a nuclear-encoded promoter-specificity factor, sigma. Based on examples of transcriptional regulation in bacteria, it is proposed that differential activation of sigma factors may provide the nucleus with a mechanism to control expression of groups of plastid genes. Hence, much effort has focused on identifying and characterizing sigma-like factors in plants. While fractionation studies had identified several candidate sigma factors in purified RNA polymerase preparations, it was only 4 years ago that the first sigma factor genes were cloned from two photosynthetic eukaryotes, both of which were red algae. More recently this achievement has extended to the identification of families of sigma-like factor genes from several species of vascular plants. Now, efforts in the field are directed at understanding the roles in plastid transcription of each member of the rapidly expanding plant sigma factor gene family. Recent results suggest that accumulation of individual sigma-like factors is controlled by light, by plastid type and/or by a particular stage of chloroplast development. These data mesh nicely with accumulating evidence that the core sigma-binding regions of plastid promoters mediate regulated transcription in response to light-regime and plastid type or developmental state. In this review I will outline progress made to date in identifying and characterizing the sigma-like factors of plants, and in dissecting their potential roles in chloroplast gene expression.
Collapse
Affiliation(s)
- L A Allison
- Department of Biochemistry, University of Nebraska, NE 68588-0664, Lincoln, USA.
| |
Collapse
|