1
|
A Novel Spo11 Homologue Functions as a Positive Regulator in Cyst Differentiation in Giardia lamblia. Int J Mol Sci 2021; 22:ijms222111902. [PMID: 34769330 PMCID: PMC8584520 DOI: 10.3390/ijms222111902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/14/2023] Open
Abstract
Giardia lamblia persists in a dormant state with a protective cyst wall for transmission. It is incompletely known how three cyst wall proteins (CWPs) are coordinately synthesized during encystation. Meiotic recombination is required for sexual reproduction in animals, fungi, and plants. It is initiated by formation of double-stranded breaks by a topoisomerase-like Spo11. It has been shown that exchange of genetic material in the fused nuclei occurs during Giardia encystation, suggesting parasexual recombination processes of this protozoan. Giardia possesses an evolutionarily conserved Spo11 with typical domains for cleavage reaction and an upregulated expression pattern during encystation. In this study, we asked whether Spo11 can activate encystation process, like other topoisomerases we previously characterized. We found that Spo11 was capable of binding to both single-stranded and double-stranded DNA in vitro and that it could also bind to the cwp promoters in vivo as accessed in chromatin immunoprecipitation assays. Spo11 interacted with WRKY and MYB2 (named from myeloblastosis), transcription factors that can activate cwp gene expression during encystation. Interestingly, overexpression of Spo11 resulted in increased expression of cwp1-3 and myb2 genes and cyst formation. Mutation of the Tyr residue for the active site or two conserved residues corresponding to key DNA-binding residues for Arabidopsis Spo11 reduced the levels of cwp1-3 and myb2 gene expression and cyst formation. Targeted disruption of spo11 gene with CRISPR/Cas9 system led to a significant decrease in cwp1-3 and myb2 gene expression and cyst number. Our results suggest that Spo11 acts as a positive regulator for Giardia differentiation into cyst.
Collapse
|
2
|
The role of nuclear organization in trans-splicing based expression of heat shock protein 90 in Giardia lamblia. PLoS Negl Trop Dis 2021; 15:e0009810. [PMID: 34559805 PMCID: PMC8494341 DOI: 10.1371/journal.pntd.0009810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/06/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
Hsp90 gene of G. lamblia has a split nature comprising two ORFs separated by 777 kb on chromosome 5. The ORFs of the split gene on chromosome 5 undergo transcription to generate independent pre-mRNAs that join by a unique trans-splicing reaction that remains partially understood. The canonical cis-acting nucleotide elements such as 5'SS-GU, 3'SS-AG, polypyrimidine tract and branch point adenine are present in the independent pre-mRNAs and therefore trans-splicing of Hsp90 must be assisted by spliceosomes in vivo. Using an approach of RNA-protein pull down, we show that an RNA helicase selectively interacts with HspN pre-mRNA. Our experiments involving high resolution chromosome conformation capture technology as well as DNA FISH show that the trans-spliced genes of Giardia are in three-dimensional spatial proximity in the nucleus. Altogether our study provides a glimpse into the in vivo mechanisms involving protein factors as well as chromatin structure to facilitate the unique inter-molecular post-transcriptional stitching of split genes in G. lamblia.
Collapse
|
3
|
Michaels SA, Shih HW, Zhang B, Navaluna ED, Zhang Z, Ranade RM, Gillespie JR, Merritt EA, Fan E, Buckner FS, Paredez AR, Ojo KK. Methionyl-tRNA synthetase inhibitor has potent in vivo activity in a novel Giardia lamblia luciferase murine infection model. J Antimicrob Chemother 2021; 75:1218-1227. [PMID: 32011682 DOI: 10.1093/jac/dkz567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Methionyl-tRNA synthetase (MetRS) inhibitors are under investigation for the treatment of intestinal infections caused by Giardia lamblia. OBJECTIVES To properly analyse the therapeutic potential of the MetRS inhibitor 1717, experimental tools including a robust cell-based assay and a murine model of infection were developed based on novel strains of G. lamblia that employ luciferase reporter systems to quantify viable parasites. METHODS Systematic screening of Giardia-specific promoters and luciferase variants led to the development of a strain expressing the click beetle green luciferase. Further modifying this strain to express NanoLuc created a dual reporter strain capable of quantifying parasites in both the trophozoite and cyst stages. These strains were used to develop a high-throughput cell assay and a mouse infection model. A library of MetRS inhibitors was screened in the cell assay and Compound-1717 was tested for efficacy in the mouse infection model. RESULTS Cell viability in in vitro compound screens was quantified via bioluminescence readouts while infection loads in mice were monitored with non-invasive whole-animal imaging and faecal analysis. Compound-1717 was effective in clearing mice of Giardia infection in 3 days at varying doses, which was supported by data from enzymatic and phenotypic cell assays. CONCLUSIONS The new in vitro and in vivo assays based on luciferase expression by engineered G. lamblia strains are useful for the discovery and development of new therapeutics for giardiasis. MetRS inhibitors, as validated by Compound-1717, have promising anti-giardiasis properties that merit further study as alternative therapeutics.
Collapse
Affiliation(s)
- Samantha A Michaels
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | - Han-Wei Shih
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Bailin Zhang
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Edelmar D Navaluna
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ranae M Ranade
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | - J Robert Gillespie
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | - Ethan A Merritt
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Frederick S Buckner
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | | | - Kayode K Ojo
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
4
|
A Novel Multiprotein Bridging Factor 1-Like Protein Induces Cyst Wall Protein Gene Expression and Cyst Differentiation in Giardia lamblia. Int J Mol Sci 2021; 22:ijms22031370. [PMID: 33573049 PMCID: PMC7866390 DOI: 10.3390/ijms22031370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/05/2022] Open
Abstract
The capacity to synthesize a protective cyst wall is critical for infectivity of Giardia lamblia. It is of interest to know the mechanism of coordinated synthesis of three cyst wall proteins (CWPs) during encystation, a differentiation process. Multiprotein bridging factor 1 (MBF1) gene family is a group of transcription coactivators that bridge various transcription factors. They are involved in cell growth and differentiation in yeast and animals, or in stress response in fungi and plants. We asked whether Giardia has MBF1-like genes and whether their products influence gene expression. BLAST searches of the Giardia genome database identified one gene encoding a putative MBF1 protein with a helix-turn-helix domain. We found that it can specifically bind to the AT-rich initiator promoters of the encystation-induced cwp1-3 and myb2 genes. MBF1 localized to cell nuclei and cytoplasm with higher expression during encystation. In addition, overexpression of MBF1 induced cwp1-3 and myb2 gene expression and cyst generation. Mutation of the helixes in the helix-turn-helix domain reduced cwp1-3 and myb2 gene expression and cyst generation. Chromatin immunoprecipitation assays confirmed the binding of MBF1 to the promoters with its binding sites in vivo. We also found that MBF1 can interact with E2F1, Pax2, WRKY, and Myb2 transcription factors that coordinately up-regulate the cwp genes during encystation. Using a CRISPR/Cas9 system for targeted disruption of mbf1 gene, we found a downregulation of cwp1-3 and myb2 genes and decrease of cyst generation. Our results suggest that MBF1 is functionally conserved and positively regulates Giardia cyst differentiation.
Collapse
|
5
|
Eukaryote-conserved histone post-translational modification landscape in Giardia duodenalis revealed by mass spectrometry. Int J Parasitol 2020; 51:225-239. [PMID: 33275945 DOI: 10.1016/j.ijpara.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Diarrheal disease caused by Giardia duodenalis is highly prevalent, causing over 200 million cases globally each year. The processes that drive parasite virulence, host immune evasion and transmission involve coordinated gene expression and have been linked to epigenetic regulation. Epigenetic regulatory systems are eukaryote-conserved, including in deep branching excavates such as Giardia, with several studies already implicating histone post-translational modifications in regulation of its pathogenesis and life cycle. However, further insights into Giardia chromatin dynamics have been hindered by a lack of site-specific knowledge of histone modifications. Using mass spectrometry, we have provided the first known molecular map of histone methylation, acetylation and phosphorylation modifications in Giardia core histones. We have identified over 50 previously unreported histone modifications including sites with established roles in epigenetic regulation, and co-occurring modifications indicative of post-translational modification crosstalk. These demonstrate conserved histone modifications in Giardia which are equivalent to many other eukaryotes, and suggest that similar epigenetic mechanisms are in place in this parasite. Further, we used sequence, domain and structural homology to annotate putative histone enzyme networks in Giardia, highlighting representative chromatin modifiers which appear sufficient for identified sites, particularly those from H3 and H4 variants. This study is to our knowledge the first and most comprehensive, complete and accurate view of Giardia histone post-translational modifications to date, and a substantial step towards understanding their associations in parasite development and virulence.
Collapse
|
6
|
Sun CH, Weng SC, Wu JH, Tung SY, Su LH, Lin MH, Lee GA. DNA topoisomerase IIIβ promotes cyst generation by inducing cyst wall protein gene expression in Giardia lamblia. Open Biol 2020; 10:190228. [PMID: 32019477 PMCID: PMC7058931 DOI: 10.1098/rsob.190228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Giardia lamblia causes waterborne diarrhoea by transmission of infective cysts. Three cyst wall proteins are highly expressed in a concerted manner during encystation of trophozoites into cysts. However, their gene regulatory mechanism is still largely unknown. DNA topoisomerases control topological homeostasis of genomic DNA during replication, transcription and chromosome segregation. They are involved in a variety of cellular processes including cell cycle, cell proliferation and differentiation, so they may be valuable drug targets. Giardia lamblia possesses a type IA DNA topoisomerase (TOP3β) with similarity to the mammalian topoisomerase IIIβ. We found that TOP3β was upregulated during encystation and it possessed DNA-binding and cleavage activity. TOP3β can bind to the cwp promoters in vivo using norfloxacin-mediated topoisomerase immunoprecipitation assays. We also found TOP3β can interact with MYB2, a transcription factor involved in the coordinate expression of cwp1-3 genes during encystation. Interestingly, overexpression of TOP3β increased expression of cwp1-3 and myb2 genes and cyst formation. Microarray analysis confirmed upregulation of cwp1-3 and myb2 genes by TOP3β. Mutation of the catalytically important Tyr residue, deletion of C-terminal zinc ribbon domain or further deletion of partial catalytic core domain reduced the levels of cleavage activity, cwp1-3 and myb2 gene expression, and cyst formation. Interestingly, some of these mutant proteins were mis-localized to cytoplasm. Using a CRISPR/Cas9 system for targeted disruption of top3β gene, we found a significant decrease in cwp1-3 and myb2 gene expression and cyst number. Our results suggest that TOP3β may be functionally conserved, and involved in inducing Giardia cyst formation.
Collapse
Affiliation(s)
- Chin-Hung Sun
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Jui-Hsuan Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Szu-Yu Tung
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Li-Hsin Su
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Meng-Hsuan Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Gilbert Aaron Lee
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
7
|
Iyer V, Chettiar ST, Grover M, Rajyaguru P, Nageshan RK, Tatu U. Giardia lamblia
Hsp90 pre‐
mRNA
s undergo self‐splicing to generate mature
RNA
in an
in vitro
trans‐splicing reaction. FEBS Lett 2019; 593:433-442. [DOI: 10.1002/1873-3468.13324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/26/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Vinithra Iyer
- Department of Biochemistry Indian Institute of Science Bangalore India
| | | | - Manish Grover
- Department of Biochemistry Indian Institute of Science Bangalore India
| | | | | | - Utpal Tatu
- Department of Biochemistry Indian Institute of Science Bangalore India
| |
Collapse
|
8
|
Ortega-Pierres M, Jex AR, Ansell BR, Svärd SG. Recent advances in the genomic and molecular biology of Giardia. Acta Trop 2018; 184:67-72. [PMID: 28888474 DOI: 10.1016/j.actatropica.2017.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023]
Abstract
Giardia duodenalis is the most common gastrointestinal protozoan parasite of humans and a significant contributor to the global burden of both diarrheal disease and post-infectious chronic disorders. Robust tools for analyzing gene function in this parasite have been developed and a range of genetic tools are now available. These together with public databases have provided insights on the function of different genes in Giardia. In this review we provide a current perspective on different molecular aspects of Giardia related to genomics, regulation of encystation, trophozoite transcriptional responses to physiological and xenobiotic (drug-induced) stress, and mechanisms of drug resistance. We also examine recent insights that have contributed to gain knowledge in the study of VSPs, antigenic variation, epigenetics, DNA repair and in the direct manipulation of gene function in Giardia, with a particular focus on the inducible Cre/loxP system.
Collapse
|
9
|
RNAi-Mediated Specific Gene Silencing as a Tool for the Discovery of New Drug Targets in Giardia lamblia; Evaluation Using the NADH Oxidase Gene. Genes (Basel) 2017; 8:genes8110303. [PMID: 29099754 PMCID: PMC5704216 DOI: 10.3390/genes8110303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/12/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022] Open
Abstract
The microaerophilic protozoan Giardia lamblia is the agent causing giardiasis, an intestinal parasitosis of worldwide distribution. Different pharmacotherapies have been employed against giardiasis; however, side effects in the host and reports of drug resistant strains generate the need to develop new strategies that identify novel biological targets for drug design. To support this requirement, we have designed and evaluated a vector containing a cassette for the synthesis of double-stranded RNA (dsRNA), which can silence expression of a target gene through the RNA interference (RNAi) pathway. Small silencing RNAs were detected and quantified in transformants expressing dsRNA by a stem-loop RT-qPCR approach. The results showed that, in transformants expressing dsRNA of 100-200 base pairs, the level of NADHox mRNA was reduced by around 30%, concomitant with a decrease in enzyme activity and a reduction in the number of trophozoites with respect to the wild type strain, indicating that NADHox is indeed an important enzyme for Giardia viability. These results suggest that it is possible to induce the G. lamblia RNAi machinery for attenuating the expression of genes encoding proteins of interest. We propose that our silencing strategy can be used to identify new potential drug targets, knocking down genes encoding different structural proteins and enzymes from a wide variety of metabolic pathways.
Collapse
|
10
|
Pham JK, Nosala C, Scott EY, Nguyen KF, Hagen KD, Starcevich HN, Dawson SC. Transcriptomic Profiling of High-Density Giardia Foci Encysting in the Murine Proximal Intestine. Front Cell Infect Microbiol 2017; 7:227. [PMID: 28620589 PMCID: PMC5450421 DOI: 10.3389/fcimb.2017.00227] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Giardia is a highly prevalent, understudied protistan parasite causing significant diarrheal disease worldwide. Its life cycle consists of two stages: infectious cysts ingested from contaminated food or water sources, and motile trophozoites that colonize and attach to the gut epithelium, later encysting to form new cysts that are excreted into the environment. Current understanding of parasite physiology in the host is largely inferred from transcriptomic studies using Giardia grown axenically or in co-culture with mammalian cell lines. The dearth of information about the diversity of host-parasite interactions occurring within distinct regions of the gastrointestinal tract has been exacerbated by a lack of methods to directly and non-invasively interrogate disease progression and parasite physiology in live animal hosts. By visualizing Giardia infections in the mouse gastrointestinal tract using bioluminescent imaging (BLI) of tagged parasites, we recently showed that parasites colonize the gut in high-density foci. Encystation is initiated in these foci throughout the entire course of infection, yet how the physiology of parasites within high-density foci in the host gut differs from that of cells in laboratory culture is unclear. Here we use BLI to precisely select parasite samples from high-density foci in the proximal intestine to interrogate in vivo Giardia gene expression in the host. Relative to axenic culture, we noted significantly higher expression (>10-fold) of oxidative stress, membrane transporter, and metabolic and structural genes associated with encystation in the high-density foci. These differences in gene expression within parasite foci in the host may reflect physiological changes associated with high-density growth in localized regions of the gut. We also identified and verified six novel cyst-specific proteins, including new components of the cyst wall that were highly expressed in these foci. Our in vivo transcriptome data support an emerging view that parasites encyst early in localized regions in the gut, possibly as a consequence of nutrient limitation, and also impact local metabolism and physiology.
Collapse
Affiliation(s)
- Jonathan K Pham
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Christopher Nosala
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Erica Y Scott
- Department of Animal Science, University of California, DavisDavis, CA, United States
| | - Kristofer F Nguyen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Kari D Hagen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Hannah N Starcevich
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| |
Collapse
|
11
|
Validation of housekeeping genes as an internal control for gene expression studies in Giardia lamblia using quantitative real-time PCR. Gene 2016; 581:21-30. [PMID: 26778241 DOI: 10.1016/j.gene.2016.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 02/06/2023]
Abstract
The analysis of transcript levels of specific genes is important for understanding transcriptional regulation and for the characterization of gene function. Real-time quantitative reverse transcriptase PCR (RT-qPCR) has become a powerful tool to quantify gene expression. The objective of this study was to identify reliable housekeeping genes in Giardia lamblia. Twelve genes were selected for this purpose, and their expression was analyzed in the wild type WB strain and in two strains with resistance to nitazoxanide (NTZ) and metronidazole (MTZ), respectively. RefFinder software analysis showed that the expression of the genes is different in the three strains. The integrated data from the four analyses showed that the NADH oxidase (NADH) and aldolase (ALD) genes were the most steadily expressed genes, whereas the glyceraldehyde-3-phosphate dehydrogenase gene was the most unstable. Additionally, the relative expression of seven genes were quantified in the NTZ- and MTZ-resistant strains by RT-qPCR, using the aldolase gene as the internal control, and the results showed a consistent differential pattern of expression in both strains. The housekeeping genes found in this work will facilitate the analysis of mRNA expression levels of other genes of interest in G. lamblia.
Collapse
|
12
|
Ansell BRE, McConville MJ, Baker L, Korhonen PK, Young ND, Hall RS, Rojas CAA, Svärd SG, Gasser RB, Jex AR. Time-Dependent Transcriptional Changes in Axenic Giardia duodenalis Trophozoites. PLoS Negl Trop Dis 2015; 9:e0004261. [PMID: 26636323 PMCID: PMC4670223 DOI: 10.1371/journal.pntd.0004261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/03/2015] [Indexed: 12/27/2022] Open
Abstract
Giardia duodenalis is the most common gastrointestinal protozoan parasite of humans and a significant contributor to the global burden of both diarrheal disease and post-infectious chronic disorders. Although G. duodenalis can be cultured axenically, significant gaps exist in our understanding of the molecular biology and metabolism of this pathogen. The present study employed RNA sequencing to characterize the mRNA transcriptome of G. duodenalis trophozoites in axenic culture, at log (48 h of growth), stationary (60 h), and declining (96 h) growth phases. Using ~400-times coverage of the transcriptome, we identified 754 differentially transcribed genes (DTGs), mainly representing two large DTG groups: 438 that were down-regulated in the declining phase relative to log and stationary phases, and 281 that were up-regulated. Differential transcription of prominent antioxidant and glycolytic enzymes implicated oxygen tension as a key factor influencing the transcriptional program of axenic trophozoites. Systematic bioinformatic characterization of numerous DTGs encoding hypothetical proteins of unknown function was achieved using structural homology searching. This powerful approach greatly informed the differential transcription analysis and revealed putative novel antioxidant-coding genes, and the presence of a near-complete two-component-like signaling system that may link cytosolic redox or metabolite sensing to the observed transcriptional changes. Motif searching applied to promoter regions of the two large DTG groups identified different putative transcription factor-binding motifs that may underpin global transcriptional regulation. This study provides new insights into the drivers and potential mediators of transcriptional variation in axenic G. duodenalis and provides context for static transcriptional studies.
Collapse
Affiliation(s)
- Brendan R. E. Ansell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Louise Baker
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ross S. Hall
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Cristian A. A. Rojas
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Staffan G. Svärd
- Department of Cell & Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Tolba MEM, Kobayashi S, Imada M, Suzuki Y, Sugano S. Giardia lamblia transcriptome analysis using TSS-Seq and RNA-Seq. PLoS One 2013; 8:e76184. [PMID: 24116096 PMCID: PMC3792122 DOI: 10.1371/journal.pone.0076184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
Giardia lamblia is a protozoan parasite that is found worldwide and has both medical and veterinary importance. We applied the transcription start sequence (TSS-seq) and RNA sequence (RNA-seq) techniques to study the transcriptome of the assemblage A WB strain trophozoite. We identified 8000 transcription regions (TR) with significant transcription. Of these regions, 1881 TRs were more than 500 nucleotides upstream of an annotated ORF. Combining both techniques helped us to identify 24 ORFs that should be re-annotated and 60 new ORFs. From the 8000 TRs, we were able to identify an AT-rich consensus that includes the transcription initiation site. It is possible that transcription that was previously thought to be bidirectional is actually unidirectional.
Collapse
Affiliation(s)
- Mohammed E. M. Tolba
- Department of Medical Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Seiki Kobayashi
- Department of Infectious Diseases, School of Medicine, Keio University, Tokyo, Japan
| | - Mihoko Imada
- Department of Infectious Diseases, School of Medicine, Keio University, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Sumio Sugano
- Department of Medical Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
DNA topoisomerase II is involved in regulation of cyst wall protein genes and differentiation in Giardia lamblia. PLoS Negl Trop Dis 2013; 7:e2218. [PMID: 23696909 PMCID: PMC3656124 DOI: 10.1371/journal.pntd.0002218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 04/04/2013] [Indexed: 12/16/2022] Open
Abstract
The protozoan Giardia lamblia differentiates into infectious cysts within the human intestinal tract for disease transmission. Expression of the cyst wall protein (cwp) genes increases with similar kinetics during encystation. However, little is known how their gene regulation shares common mechanisms. DNA topoisomerases maintain normal topology of genomic DNA. They are necessary for cell proliferation and tissue development as they are involved in transcription, DNA replication, and chromosome condensation. A putative topoisomerase II (topo II) gene has been identified in the G. lamblia genome. We asked whether Topo II could regulate Giardia encystation. We found that Topo II was present in cell nuclei and its gene was up-regulated during encystation. Topo II has typical ATPase and DNA cleavage activity of type II topoisomerases. Mutation analysis revealed that the catalytic important Tyr residue and cleavage domain are important for Topo II function. We used etoposide-mediated topoisomerase immunoprecipitation assays to confirm the binding of Topo II to the cwp promoters in vivo. Interestingly, Topo II overexpression increased the levels of cwp gene expression and cyst formation. Microarray analysis identified up-regulation of cwp and specific vsp genes by Topo II. We also found that the type II topoisomerase inhibitor etoposide has growth inhibition effect on Giardia. Addition of etoposide significantly decreased the levels of cwp gene expression and cyst formation. Our results suggest that Topo II has been functionally conserved during evolution and that Topo II plays important roles in induction of the cwp genes, which is key to Giardia differentiation into cysts. Giardia lamblia becomes infective by differentiation into water-resistant cysts. During encystation, cyst wall proteins (CWPs) are highly synthesized and are targeted to the cyst wall. However, little is known about the regulation mechanisms of these genes. DNA topoisomerases can resolve the topological problems and are needed for a variety of key cellular functions, including cell proliferation, cell differentiation and organ development in higher eukaryotes. We found that giardial Topo II was highly expressed during encystation. Topo II is present in Giardia nuclei and is associated with the encystation-induced cwp gene promoters. Topo II has typical DNA cleavage activity of type II topoisomerases. Interestingly, overexpression of Topo II can induce cwp gene expression and cyst formation. Addition of a type II topoisomerase inhibitor, etoposide, significantly decreased the levels of cwp gene expression and cyst formation. Etoposide also has growth inhibition effect on Giardia. Our results suggest that Topo II plays an important role in induction of encystation by up-regulation of the cwp gene expression. Our results provide insights into the function of Topo II in parasite differentiation into cysts and help develop ways to interrupt the parasite life cycle.
Collapse
|
15
|
Alam S, Yee J, Couture M, Takayama SIJ, Tseng WH, Mauk AG, Rafferty S. Cytochrome b5 from Giardia lamblia. Metallomics 2013; 4:1255-61. [PMID: 23151674 DOI: 10.1039/c2mt20152f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protozoan intestinal parasite Giardia lamblia lacks mitochondria and the ability to make haem yet encodes several putative haem-binding proteins, including three of the cytochrome b(5) family. We cloned one of these (gCYTb5-I) and expressed it within Escherichia coli as a soluble holoprotein. UV-visible and resonance Raman spectra of gCYTb5-I resemble those of microsomal cytochrome b(5), and homology modelling supports a structure in which a pair of invariant histidine residues act as axial ligands to the haem iron. The reduction potential of gCYTb5-I is -165 mV vs. SHE and is relatively low compared to most values (-110 to +80 mV) for this class of protein. The amino- and carboxy-terminal sequences that flank the central haem-binding core of the Giardia cytochromes are highly charged and differ from those of other family members. A core gCYTb5-I variant lacking these flanking sequences was also able to bind haem. The presence of one actual and two probable functional cytochromes b(5) in Giardia is evidence of uncharacterized cytochrome-mediated metabolic processes within this medically important protist.
Collapse
Affiliation(s)
- Samiah Alam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Spycher C, Herman EK, Morf L, Qi W, Rehrauer H, Aquino Fournier C, Dacks JB, Hehl AB. An ER-directed transcriptional response to unfolded protein stress in the absence of conserved sensor-transducer proteins inGiardia lamblia. Mol Microbiol 2013; 88:754-71. [DOI: 10.1111/mmi.12218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Cornelia Spycher
- Institute of Parasitology; University of Zurich; 8057; Zurich; Switzerland
| | - Emily K. Herman
- Department of Cell Biology; University of Alberta; Edmonton; AB; T6G 2H7; Canada
| | - Laura Morf
- Institute of Parasitology; University of Zurich; 8057; Zurich; Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich; 8057; Zurich; Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich; 8057; Zurich; Switzerland
| | | | - Joel B. Dacks
- Department of Cell Biology; University of Alberta; Edmonton; AB; T6G 2H7; Canada
| | - Adrian B. Hehl
- Institute of Parasitology; University of Zurich; 8057; Zurich; Switzerland
| |
Collapse
|
17
|
Hudson AJ, Moore AN, Elniski D, Joseph J, Yee J, Russell AG. Evolutionarily divergent spliceosomal snRNAs and a conserved non-coding RNA processing motif in Giardia lamblia. Nucleic Acids Res 2012; 40:10995-1008. [PMID: 23019220 PMCID: PMC3510501 DOI: 10.1093/nar/gks887] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have diverse essential biological functions in all organisms, and in eukaryotes, two such classes of ncRNAs are the small nucleolar (sno) and small nuclear (sn) RNAs. In this study, we have identified and characterized a collection of sno and snRNAs in Giardia lamblia, by exploiting our discovery of a conserved 12 nt RNA processing sequence motif found in the 3' end regions of a large number of G. lamblia ncRNA genes. RNA end mapping and other experiments indicate the motif serves to mediate ncRNA 3' end formation from mono- and di-cistronic RNA precursor transcripts. Remarkably, we find the motif is also utilized in the processing pathway of all four previously identified trans-spliced G. lamblia introns, revealing a common RNA processing pathway for ncRNAs and trans-spliced introns in this organism. Motif sequence conservation then allowed for the bioinformatic and experimental identification of additional G. lamblia ncRNAs, including new U1 and U6 spliceosomal snRNA candidates. The U6 snRNA candidate was then used as a tool to identity novel U2 and U4 snRNAs, based on predicted phylogenetically conserved snRNA-snRNA base-pairing interactions, from a set of previously identified G. lamblia ncRNAs without assigned function. The Giardia snRNAs retain the core features of spliceosomal snRNAs but are sufficiently evolutionarily divergent to explain the difficulties in their identification. Most intriguingly, all of these snRNAs show structural features diagnostic of U2-dependent/major and U12-dependent/minor spliceosomal snRNAs.
Collapse
Affiliation(s)
- Andrew J Hudson
- Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Comparative analysis of the 5S rRNA and its associated proteins reveals unique primitive rather than parasitic features in Giardia lamblia. PLoS One 2012; 7:e36878. [PMID: 22685540 PMCID: PMC3369914 DOI: 10.1371/journal.pone.0036878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND 5S rRNA is a highly conserved ribosomal component. Eukaryotic 5S rRNA and its associated proteins (5S rRNA system) have become very well understood. Giardia lamblia was thought by some researchers to be the most primitive extant eukaryote while others considered it a highly evolved parasite. Previous reports have indicated that some aspects of its 5S rRNA system are simpler than that of common eukaryotes. We here explore whether this is true to its entire system, and whether this simplicity is a primitive or parasitic feature. METHODOLOGY/PRINCIPAL FINDINGS By collecting and confirming pre-existing data and identifying new data, we obtained almost complete datasets of the system of three isolates of G. lamblia, two other parasitic excavates (Trichomonas vaginalis, Trypanosoma cruzi), and one free-living one (Naegleria gruberi). After comprehensively comparing each aspect of the system among these excavates and also with those of archaea and common eukaryotes, we found all the three Giardia isolates to harbor a same simplified 5S rRNA system, which is not only much simpler than that of common eukaryotes but also the simplest one among those of these excavates, and is surprisingly very similar to that of archaea; we also found among these excavates the system in parasitic species is not necessarily simpler than that in free-living species, conversely, the system of free-living species is even simpler in some respects than those of parasitic ones. CONCLUSION/SIGNIFICANCE The simplicity of Giardia 5S rRNA system should be considered a primitive rather than parasitically-degenerated feature. Therefore, Giardia 5S rRNA system might be a primitive system that is intermediate between that of archaea and the common eukaryotic model system, and it may reflect the evolutionary history of the eukaryotic 5S rRNA system from the archaeal form. Our results also imply G. lamblia might be a primitive eukaryote with secondary parasitically-degenerated features.
Collapse
|
19
|
Chuang SF, Su LH, Cho CC, Pan YJ, Sun CH. Functional redundancy of two Pax-like proteins in transcriptional activation of cyst wall protein genes in Giardia lamblia. PLoS One 2012; 7:e30614. [PMID: 22355320 PMCID: PMC3280250 DOI: 10.1371/journal.pone.0030614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022] Open
Abstract
The protozoan Giardia lamblia differentiates from a pathogenic trophozoite into an infectious cyst to survive outside of the host. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately induced. Pax family transcription factors are involved in a variety of developmental processes in animals. Nine Pax proteins have been found to play an important role in tissue and organ development in humans. To understand the progression from primitive to more complex eukaryotic cells, we tried to identify putative pax genes in the G. lamblia genome and found two genes, pax1 and pax2, with limited similarity. We found that Pax1 may transactivate the encystation-induced cwp genes and interact with AT-rich initiatior elements that are essential for promoter activity and transcription start site selection. In this study, we further characterized Pax2 and found that, like Pax1, Pax2 was present in Giardia nuclei and it may specifically bind to the AT-rich initiator elements of the encystation-induced cwp1-3 and myb2 genes. Interestingly, overexpression of Pax2 increased the cwp1-3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of nuclear localization, DNA-binding activity, and transactivation activity of Pax2. These results are similar to those found in the previous Pax1 study. In addition, the profiles of gene expression in the Pax2 and Pax1 overexpressing cells significantly overlap in the same direction and ERK1 associated complexes may phosphorylate Pax2 and Pax1, suggesting that Pax2 and Pax1 may be downstream components of a MAPK/ERK1 signaling pathway. Our results reveal functional redundancy between Pax2 and Pax1 in up-regulation of the key encystation-induced genes. These results illustrate functional redundancy of a gene family can occur in order to increase maintenance of important gene function in the protozoan organism G. lamblia.
Collapse
Affiliation(s)
- Shen-Fung Chuang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Li-Hsin Su
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chao-Cheng Cho
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Jiao Pan
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chin-Hung Sun
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
20
|
Cho CC, Su LH, Huang YC, Pan YJ, Sun CH. Regulation of a Myb transcription factor by cyclin-dependent kinase 2 in Giardia lamblia. J Biol Chem 2011; 287:3733-50. [PMID: 22167200 DOI: 10.1074/jbc.m111.298893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protozoan Giardia lamblia parasitizes the human small intestine to cause diseases. It undergoes differentiation into infectious cysts by responding to intestinal stimulation. How the activated signal transduction pathways relate to encystation stimulation remain largely unknown. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately up-regulated by a Myb2 transcription factor. Because cell differentiation is linked to cell cycle regulation, we tried to understand the role of cell cycle regulators, cyclin-dependent kinases (Cdks), in encystation. We found that the recombinant Myb2 was phosphorylated by Cdk-associated complexes and the levels of phosphorylation increased significantly during encystation. We have identified a putative cdk gene (cdk2) by searching the Giardia genome database. Cdk2 was found to localize in the cytoplasm with higher expression during encystation. Interestingly, overexpression of Cdk2 resulted in a significant increase of the levels of cwp gene expression and cyst formation. In addition, the Cdk2-associated complexes can phosphorylate Myb2 and the levels of phosphorylation increased significantly during encystation. Mutations of important catalytic residues of Cdk2 resulted in a significant decrease of kinase activity and ability of inducing cyst formation. Addition of a Cdk inhibitor, purvalanol A, significantly decreased the Cdk2 kinase activity and the levels of cwp gene expression and cyst formation. Our results suggest that the Cdk2 pathway may be involved in phosphorylation of Myb2, leading to activation of the Myb2 function and up-regulation of cwp genes during encystation. The results provide insights into the use of Cdk inhibitory drugs in disruption of Giardia differentiation into cysts.
Collapse
Affiliation(s)
- Chao-Cheng Cho
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
21
|
Su LH, Pan YJ, Huang YC, Cho CC, Chen CW, Huang SW, Chuang SF, Sun CH. A novel E2F-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J Biol Chem 2011; 286:34101-20. [PMID: 21835923 PMCID: PMC3190776 DOI: 10.1074/jbc.m111.280206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/09/2011] [Indexed: 01/01/2023] Open
Abstract
Giardia lamblia differentiates into resistant walled cysts for survival outside the host and transmission. During encystation, synthesis of cyst wall proteins is coordinately induced. The E2F family of transcription factors in higher eukaryotes is involved in cell cycle progression and cell differentiation. We asked whether Giardia has E2F-like genes and whether they influence gene expression during Giardia encystation. Blast searches of the Giardia genome database identified one gene (e2f1) encoding a putative E2F protein with two putative DNA-binding domains. We found that the e2f1 gene expression levels increased significantly during encystation. Epitope-tagged E2F1 was found to localize to nuclei. Recombinant E2F1 specifically bound to the thymidine kinase and cwp1-3 gene promoters. E2F1 contains several key residues for DNA binding, and mutation analysis revealed that its binding sequence is similar to those of the known E2F family proteins. The E2F1-binding sequences were positive cis-acting elements of the thymidine kinase and cwp1 promoters. We also found that E2F1 transactivated the thymidine kinase and cwp1 promoters through its binding sequences in vivo. Interestingly, E2F1 overexpression resulted in a significant increase of the levels of CWP1 protein, cwp1-3 gene mRNA, and cyst formation. We also found E2F1 can interact with Myb2, a transcription factor that coordinate up-regulates the cwp1-3 genes during encystation. Our results suggest that E2F family has been conserved during evolution and that E2F1 is an important transcription factor in regulation of the Giardia cwp genes, which are key to Giardia differentiation into cysts.
Collapse
Affiliation(s)
- Li-Hsin Su
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Jiao Pan
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Chang Huang
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chao-Cheng Cho
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Wei Chen
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shao-Wei Huang
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sheng-Fung Chuang
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chin-Hung Sun
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
22
|
Lynn EC, Beckstead RB. Identification of gene expression elements in Histomonas meleagridis using splinkerette PCR, a variation of ligated adaptor PCR. J Parasitol 2011; 98:135-41. [PMID: 21864131 DOI: 10.1645/ge-2916.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Histomonas meleagridis is the causative agent of blackhead disease in gallinaceous birds. Limited genetic information exists for this organism, with the majority of sequence information coming from the coding regions of genes. No information is available for intergenic regions that contain DNA elements required for the regulation of gene expression. In this study, we demonstrate that splinkerette PCR, a variation of ligated adaptor PCR, can be used to identify regions of unknown sequence that lie upstream and downstream of known genomic sequences. Using this technique, we identified upstream sequences of 2 β-tubulin genes. Sequence analysis identified the 5' coding portions of the β-tubulin genes, the intergenic regions, and 2 different open reading frames encoding for a putative serine/threonine phosphatase and a putative ras-related protein, racG. We predict that these intergenic regions contain polyadenylation and cleavage signals for the 2 open reading frames and initiator elements for the β-tubulin genes. Our research demonstrates the use of splinkerette PCR as a valuable tool to identify unknown DNA sequences. In addition, the identification of the regulatory elements necessary for gene transcription in H. meleagridis will provide tools for future studies on its gene expression.
Collapse
Affiliation(s)
- Elizabeth C Lynn
- Department of Poultry Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
23
|
Roy SW, Hudson AJ, Joseph J, Yee J, Russell AG. Numerous fragmented spliceosomal introns, AT-AC splicing, and an unusual dynein gene expression pathway in Giardia lamblia. Mol Biol Evol 2011; 29:43-9. [PMID: 21482665 DOI: 10.1093/molbev/msr063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spliceosomal introns are hallmarks of eukaryotic genomes, dividing coding regions into separate exons, which are joined during mRNA intron removal catalyzed by the spliceosome. With few known exceptions, spliceosomal introns are cis-spliced, that is, removed from one contiguous pre-mRNA transcript. The protistan intestinal parasite Giardia lamblia exhibits one of the most reduced eukaryotic genomes known, with short intergenic regions and only four known spliceosomal introns. Our genome-wide search for additional introns revealed four unusual cases of spliceosomal intron fragmentation, with consecutive exons of conserved protein-coding genes being dispersed to distant genomic sites. Independent transcripts are trans-spliced to yield contiguous mature mRNAs. Most strikingly, a dynein heavy chain subunit is both interrupted by two fragmented introns and also predicted to be assembled as two separately translated polypeptides, a remarkably complex expression pathway for a nuclear-encoded sequence. For each case, we observe extensive base-pairing potential between intron halves. This base pairing provides both a rationale for the in vivo association of independently transcribed mRNAs transcripts and the apparent specificity of splicing. Similar base-pairing potential in two cis-spliced G. lamblia introns suggests an evolutionary pathway whereby intron fragmentation of cis-spliced introns is permissible and a preliminary evolutionary step to complete gene fission. These results reveal remarkably complex genome dynamics in a severely genomically reduced parasite.
Collapse
Affiliation(s)
- Scott W Roy
- Department of Biology, Stanford University, USA
| | | | | | | | | |
Collapse
|
24
|
Wang YT, Pan YJ, Cho CC, Lin BC, Su LH, Huang YC, Sun CH. A novel pax-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J Biol Chem 2010; 285:32213-26. [PMID: 20699219 DOI: 10.1074/jbc.m110.156620] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Giardia lamblia differentiates into infectious cysts to survive outside of the host. It is of interest to identify factors involved in up-regulation of cyst wall proteins (CWPs) during this differentiation. Pax proteins are important regulators of development and cell differentiation in Drosophila and vertebrates. No member of this gene family has been reported to date in yeast, plants, or protozoan parasites. We have identified a pax-like gene (pax1) encoding a putative paired domain in the G. lamblia genome. Epitope-tagged Pax1 localized to nuclei during both vegetative growth and encystation. Recombinant Pax1 specifically bound to the AT-rich initiator elements of the encystation-induced cwp1 to -3 and myb2 genes. Interestingly, overexpression of Pax1 increased cwp1 to -3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of the transactivation function of Pax1. Our results indicate that the Pax family has been conserved during evolution, and Pax1 could up-regulate the key encystation-induced genes to regulate differentiation of the protozoan eukaryote, G. lamblia.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Identification of Scaffold/Matrix Attachment (S/MAR) like DNA element from the gastrointestinal protozoan parasite Giardia lamblia. BMC Genomics 2010; 11:386. [PMID: 20565887 PMCID: PMC3017767 DOI: 10.1186/1471-2164-11-386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin in the nucleus of all eukaryotes is organized into a system of loops and domains. These loops remain fastened at their bases to the fundamental framework of the nucleus, the matrix or the scaffold. The DNA sequences which anchor the bases of the chromatin loops to the matrix are known as Scaffold/Matrix Attachment Regions or S/MARs. Though S/MARs have been studied in yeast and higher eukaryotes and they have been found to be associated with gene organization and regulation of gene expression, they have not been reported in protists like Giardia. Several tools have been discovered and formulated to predict S/MARs from a genome of a higher eukaryote which take into account a number of features. However, the lack of a definitive consensus sequence in S/MARs and the randomness of the protozoan genome in general, make it a challenge to predict and identify such sequences from protists. RESULTS Here, we have analysed the Giardia genome for the probable S/MARs predicted by the available computational tools; and then shown these sequences to be physically associated with the nuclear matrix. Our study also reflects that while no single computational tool is competent to predict such complex elements from protist genomes, a combination of tools followed by experimental verification is the only way to confirm the presence of these elements from these organisms. CONCLUSION This is the first report of S/MAR elements from the protozoan parasite Giardia lamblia. This initial work is expected to lay a framework for future studies relating to genome organization as well as gene regulatory elements in this parasite.
Collapse
|
26
|
Chiu PW, Huang YC, Pan YJ, Wang CH, Sun CH. A novel family of cyst proteins with epidermal growth factor repeats in Giardia lamblia. PLoS Negl Trop Dis 2010; 4:e677. [PMID: 20485485 PMCID: PMC2867935 DOI: 10.1371/journal.pntd.0000677] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 03/23/2010] [Indexed: 11/26/2022] Open
Abstract
Background Giardia lamblia parasitizes the human small intestine to cause diarrhea and malabsorption. It undergoes differentiation from a pathogenic trophozoite form into a resistant walled cyst form. Few cyst proteins have been identified to date, including three cyst wall proteins (CWPs) and one High Cysteine Non-variant Cyst protein (HCNCp). They are highly expressed during encystation and are mainly targeted to the cyst wall. Methodology and Principal Findings To identify new cyst wall proteins, we searched the G. lamblia genome data base with the sequence of the Cryptosporidium parvum oocyst wall protein as a query and found an Epidermal Growth Factor (EGF)-like Cyst Protein (EGFCP1). Sequence analysis revealed that the EGF-like repeats of the EGFCP1 are similar to those of the tenascin family of extracellular matrix glycoproteins. EGFCP1 and HCNCp have a higher percentage of cysteine than CWPs, but EGFCP1 has no C-terminal transmembrane region found in HCNCp. Like CWPs and HCNCp, the EGFCP1 protein (but not transcript) was expressed at higher levels during encystation and it was localized to encystation-specific vesicles in encysting trophozoites. Like HCNCp, EGFCP1 was localized to the encystation-specific vesicles, cyst wall and cell body of cysts, suggesting that they may share a common trafficking pathway. Interestingly, overexpression of EGFCP1 induced cyst formation and deletion of the signal peptide from EGFCP1 reduced its protein levels and cyst formation, suggesting that EGFCP1 may help mediate cyst wall synthesis. We also found that five other putative EGFCPs have similar expression profiles and similar locations and that the cyst formation was induced upon their overexpression. Conclusions and Significance Our results suggest that EGFCPs may function like cyst wall proteins, involved in differentiation of G. lamblia trophozoites into cysts. The results lead to greater understanding of parasite cyst walls and provide valuable information that helps develop ways to interrupt the G. lamblia life cycle. The biological goal of Giardia lamblia life cycle is differentiation into a cyst form (encystation) that can survive in the environment and infect a new host. Since cystic stages are key to transmission of parasites, this differentiation may be a target for interruption of the life cycle. Synthesis and assembly of the extracellular cyst wall are the major hallmarks of this important differentiation. During encystation, cyst wall structural proteins are coordinately synthesized and are mainly targeted to the cyst wall. However, only a few such proteins have been identified to date. In this study, we used a combination of bioinformatics and molecular approaches to identify new cyst structural proteins from G. lamblia and found a group of Epidermal Growth Factor (EGF)-like Repeats containing Cyst Proteins (EGFCPs). Interestingly, the levels of EGFCPs proteins increased significantly during encystation, which matches the characteristics of the Giardia cyst wall protein. Further characterization and localization studies suggest that EGFCPs may function like cyst wall proteins, involved in differentiation of G. lamblia trophozoites into cysts. Our results provide valuable information regarding the function of a new group of cyst proteins in parasite differentiation into cysts and help develop ways to interrupt the parasite life cycle.
Collapse
Affiliation(s)
- Pei-Wei Chiu
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Chang Huang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Jiao Pan
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chih-Hung Wang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chin-Hung Sun
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Carpenter ML, Cande WZ. Using morpholinos for gene knockdown in Giardia intestinalis. EUKARYOTIC CELL 2009; 8:916-9. [PMID: 19377039 PMCID: PMC2698301 DOI: 10.1128/ec.00041-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/02/2009] [Indexed: 11/20/2022]
Abstract
We used translation-blocking morpholinos to reduce protein levels in Giardia intestinalis. Twenty-four hours after electroporation with morpholinos targeting either green fluorescent protein or kinesin-2b, levels of these proteins were reduced by 60%. An epitope-tagged transgene can also be used as a reporter for morpholino efficacy with targets lacking specific antibodies.
Collapse
Affiliation(s)
- Meredith L Carpenter
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
29
|
Pan YJ, Cho CC, Kao YY, Sun CH. A novel WRKY-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J Biol Chem 2009; 284:17975-88. [PMID: 19423705 DOI: 10.1074/jbc.m109.012047] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of a protective cyst wall is required for survival outside of the host and for infection of Giardia lamblia. Little is known of gene regulation of the cyst wall proteins (CWPs) during differentiation into dormant cysts. WRKY homologues constitute a large family of DNA-binding proteins in plants that are involved in several key cellular functions, including disease resistance, stress response, dormancy, and development. A putative wrky gene has been identified in the G. lamblia genome. We found that wrky expression levels increased significantly during encystation. The epitope-tagged WRKY was translocated into the nuclei during encystation. Recombinant WRKY specifically bound to its own promoter and the encystation-induced cwp1 and cwp2 promoters. WRKY contains several key residues for DNA binding, and mutation analysis revealed that its binding sequences are similar to those of the known plant WRKY proteins and that two of them are positive cis-acting elements of the wrky and cwp2 promoters. Overexpression of WRKY increased the cwp1-2 and myb2 mRNA levels, and these gene promoters were bound by WRKY in vivo. Interestingly, the wrky and cwp1-2 genes were up-regulated by ERK1 (extracellular signal-related kinase 1) overexpression, suggesting that WRKY may be a downstream component of the ERK1 pathway. In addition, a WRKY mutant that cannot enter nuclei and an ERK1 mutant lacking the predicted kinase domain showed decreased cwp1-2 gene expression. Our results suggest that the WRKY family has been conserved during evolution and that WRKY is an important transactivator of the cwp1-2 genes during G. lamblia differentiation into dormant cysts.
Collapse
Affiliation(s)
- Yu-Jiao Pan
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | |
Collapse
|
30
|
Prucca CG, Slavin I, Quiroga R, Elías EV, Rivero FD, Saura A, Carranza PG, Luján HD. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 2008; 456:750-4. [DOI: 10.1038/nature07585] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 10/06/2008] [Indexed: 12/25/2022]
|
31
|
Kim J, Bae SS, Sung MH, Lee KH, Park SJ. Comparative proteomic analysis of trophozoites versus cysts of Giardia lamblia. Parasitol Res 2008; 104:475-9. [PMID: 18853189 DOI: 10.1007/s00436-008-1223-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
The proteome of Giardia lamblia at its cyst stage was compared with that of trophozoites by using two-dimensional SDS-PAGE gel electrophoresis. Protein spots that increased in the extracts of cysts compared to trophozoites were identified by MALDI-TOF mass spectroscopy and categorized as cytoskeletal proteins, metabolic enzymes, a cell-cycle-specific kinase, stress resistance proteins, and a protein involved in translation. Expression patterns of five of the identified proteins were examined during encystation by real-time PCR. Expression of cwp1 (encoding cyst wall protein 1), a marker for encystation, was increased 11-fold. In contrast, tim (encoding triose-1-phosphate isomerase) was expressed constitutively during encystation, and its transcription level was therefore used as a mRNA loading control. Expression of three genes encoding beta-tubulin, vacuolar ATPase, and never-in-mitosis-A-related protein kinase did not vary significantly during encystation. Interestingly, genes encoding two heat shock proteins (Hsp70 and Hsp90) showed increased expression during encystation, suggesting that this differentiation process accompanies a cellular response to stress in G. lamblia.
Collapse
Affiliation(s)
- Juri Kim
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Post Brain Korea 21 Program, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | |
Collapse
|
32
|
Huang YC, Su LH, Lee GA, Chiu PW, Cho CC, Wu JY, Sun CH. Regulation of cyst wall protein promoters by Myb2 in Giardia lamblia. J Biol Chem 2008; 283:31021-9. [PMID: 18768462 DOI: 10.1074/jbc.m805023200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myb family transcription factors are important in regulating cell proliferation, differentiation, and cell cycle progression. Giardia lamblia differentiates into infectious cysts to survive outside of the host. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately induced. We have identified an encystation-induced Myb2 protein, which binds to the promoter regions of the cwp genes and myb2 itself in vitro. To elucidate the role of Myb2 in G. lamblia, we tested the hypothesis that Myb2 can activate encystation-induced genes. We found that overexpression of Myb2 resulted in an increase of expression of CWP1 at both protein and mRNA levels. Interestingly, the Myb2-overexpressing trophozoites had increased capability to differentiate into cysts. In cotransfection assays, Myb2 was able to transactivate the cwp promoters and its own promoter in vivo, suggesting that its gene can be positively autoregulated. Moreover, deletion of the N- or C-terminal domain resulted in a decrease of transactivation and autoregulation function of Myb2. We also found that the promoter of a newly identified encystation-induced gene, the giardial myeloid leukemia factor-like gene, has the Myb2 binding sites and that its mRNA levels were increased by Myb2 overexpression. Chromatin immunoprecipitation assays confirmed that Myb2 was bound to the promoters with its binding sites. Transfection of the myb2 antisense construct reduced the levels of the cwp1 transcripts and cyst formation. Our results suggest that Myb2 is a potent transactivator of the cwp genes and other endogenous genes and plays an important role in G. lamblia differentiation into cysts.
Collapse
Affiliation(s)
- Yu-Chang Huang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
33
|
Olivieri A, Silvestrini F, Sanchez M, Alano P. A 140-bp AT-rich sequence mediates positive and negative transcriptional control of a Plasmodium falciparum developmentally regulated promoter. Int J Parasitol 2008; 38:299-312. [DOI: 10.1016/j.ijpara.2007.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 11/26/2022]
|
34
|
Su LH, Lee GA, Huang YC, Chen YH, Sun CH. Neomycin and puromycin affect gene expression in Giardia lamblia stable transfection. Mol Biochem Parasitol 2007; 156:124-35. [PMID: 17765984 DOI: 10.1016/j.molbiopara.2007.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 07/17/2007] [Accepted: 07/24/2007] [Indexed: 11/28/2022]
Abstract
Two systems for stable transfection of Giardia have been established using selection either by neomycin or by puromycin. We asked if these selection systems themselves influenced expression of endogenous giardial genes. Northern blot analysis showed a approximately 1.4 to approximately 7-fold increase in the encystation-induced cyst wall protein 1 (cwp1), cwp2, and gmyb2 gene transcripts in the drug selected cell lines during vegetative growth, compared with untransfected cells. However, the levels of the constitutive ran, lrp3, or alpha2-tubulin gene transcripts decreased slightly or did not change in these stably transfected cell lines. Part of the effect could be due to drug selection, since treatment of untransfected cells with G418 or puromycin also had similar effects. Nuclear run-on assays showed that part of the effect comes from an increase in transcription initiation rate. The levels of CWP and cyst formation during vegetative growth also increased in the transfected cell lines. Using proteomic technologies, we identified eight genes whose expression is upregulated in neomycin selected cell lines, including phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, ornithine carbamoyltransferase, carbamate kinase, orf 16424, cyclophilin, co-chaperone-like p21, and bip. Six of these are also upregulated in puromycin selected cell lines. Our results indicate that transfection and drug selection, per se, can alter expression of genes involved in metabolism, protein folding, and differentiation status in Giardia.
Collapse
Affiliation(s)
- Li-Hsin Su
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | | | | | | | | |
Collapse
|
35
|
Yee J, Tang A, Lau WL, Ritter H, Delport D, Page M, Adam RD, Müller M, Wu G. Core histone genes of Giardia intestinalis: genomic organization, promoter structure, and expression. BMC Mol Biol 2007; 8:26. [PMID: 17425802 PMCID: PMC1872034 DOI: 10.1186/1471-2199-8-26] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 04/10/2007] [Indexed: 11/19/2022] Open
Abstract
Background Giardia intestinalis is a protist found in freshwaters worldwide, and is the most common cause of parasitic diarrhea in humans. The phylogenetic position of this parasite is still much debated. Histones are small, highly conserved proteins that associate tightly with DNA to form chromatin within the nucleus. There are two classes of core histone genes in higher eukaryotes: DNA replication-independent histones and DNA replication-dependent ones. Results We identified two copies each of the core histone H2a, H2b and H3 genes, and three copies of the H4 gene, at separate locations on chromosomes 3, 4 and 5 within the genome of Giardia intestinalis, but no gene encoding a H1 linker histone could be recognized. The copies of each gene share extensive DNA sequence identities throughout their coding and 5' noncoding regions, which suggests these copies have arisen from relatively recent gene duplications or gene conversions. The transcription start sites are at triplet A sequences 1–27 nucleotides upstream of the translation start codon for each gene. We determined that a 50 bp region upstream from the start of the histone H4 coding region is the minimal promoter, and a highly conserved 15 bp sequence called the histone motif (him) is essential for its activity. The Giardia core histone genes are constitutively expressed at approximately equivalent levels and their mRNAs are polyadenylated. Competition gel-shift experiments suggest that a factor within the protein complex that binds him may also be a part of the protein complexes that bind other promoter elements described previously in Giardia. Conclusion In contrast to other eukaryotes, the Giardia genome has only a single class of core histone genes that encode replication-independent histones. Our inability to locate a gene encoding the linker histone H1 leads us to speculate that the H1 protein may not be required for the compaction of Giardia's small and gene-rich genome.
Collapse
Affiliation(s)
- Janet Yee
- Departments of Biology and Chemistry, Biochemistry Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Anita Tang
- Departments of Biology and Chemistry, Biochemistry Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Wei-Ling Lau
- Departments of Biology and Chemistry, Biochemistry Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Heather Ritter
- Departments of Biology and Chemistry, Biochemistry Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Dewald Delport
- Departments of Biology and Chemistry, Biochemistry Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Melissa Page
- Departments of Biology and Chemistry, Biochemistry Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Rodney D Adam
- Departments of Immunobiology and Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Miklós Müller
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
- Collegium Budapest, H 1012 Budapest, Hungary
| | - Gang Wu
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
- Haskins Laboratories and Department of Chemistry and Physical Sciences, Pace University, 41 Park Row, New York, NY 10038, USA
| |
Collapse
|
36
|
Teodorovic S, Walls CD, Elmendorf HG. Bidirectional transcription is an inherent feature of Giardia lamblia promoters and contributes to an abundance of sterile antisense transcripts throughout the genome. Nucleic Acids Res 2007; 35:2544-53. [PMID: 17403692 PMCID: PMC1885649 DOI: 10.1093/nar/gkm105] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A prominent feature of transcription in Giardia lamblia is the abundant production of sterile antisense transcripts (Elmendorf et al. The abundance of sterile transcripts in Giardia lamblia. Nucleic Acids., 29, 4674-4683). Here, we use a computational biology analysis of SAGE data to assess the abundance and distribution of sense and antisense messages in the parasite genome. Sterile antisense transcripts are produced at approximately 50% of loci with detectable transcription, yet their abundance at a given locus does not correlate to the abundance of the complementary sense transcripts at that locus or to transcription levels at neighboring loci. These data suggest that sterile antisense transcripts are not simply a local effect of open chromatin structure. Using 5'RACE, we demonstrate that Giardia promoters are a source of antisense transcripts through bidirectional transcription, producing both downstream coding sense and upstream sterile antisense transcripts. We use a dual reporter system to explore roles of specific promoter elements in this bidirectional initiation of transcription and suggest that the degenerate AT-rich nature of TATA and Inr elements in Giardia permits them to function interchangeably. The phenomenon of bidirectional transcription in G. lamblia gives us insight into the interaction between transcriptional machinery and promoter elements, and may be the prominent source of the abundant antisense transcription in this parasite.
Collapse
Affiliation(s)
| | | | - Heidi G. Elmendorf
- *To whom correspondence should be addressed +1-(202) 687-9883+1-(202) 687-5662
| |
Collapse
|
37
|
Wang CH, Su LH, Sun CH. A novel ARID/Bright-like protein involved in transcriptional activation of cyst wall protein 1 gene in Giardia lamblia. J Biol Chem 2007; 282:8905-14. [PMID: 17244608 DOI: 10.1074/jbc.m611170200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The capability of protozoan parasite Giardia lamblia to encyst is critical for survival outside the host and its transmission. AT-rich interaction domain (ARID) or Bright homologs constitute a large family of transcription factors in higher eukaryotes that regulate cell proliferation, development, and differentiation. We asked whether Giardia has ARID-like genes and whether they influence gene expression during Giardia encystation. Blast searches of the Giardia genome data base identified two genes with putative ARID/Bright domains (gARID1 and 2). Epitope-tagged gARID1 was found to localize to nuclei. Recombinant gARID1 specifically bound to the encystation-induced cyst wall protein (cwp) gene promoters. Mutation analysis revealed that AT-rich initiators were required for binding of gARID1 to the cwp promoters. gARID1 contains several key residues for DNA binding, and its binding sequences are similar to those of the known ARID family proteins. The gARID1 binding sequences were positive cis-acting elements of the cwp1 promoter during both vegetative growth and encystation. We also found that gARID1 transactivated the cwp1 promoter through its binding sequences in vivo. Our results suggest that the ARID family has been conserved during evolution and that gARID1 is an important transactivator in regulation of the Giardia cwp1 gene, which is key to Giardia differentiation into cysts.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | |
Collapse
|
38
|
Kulakova L, Singer SM, Conrad J, Nash TE. Epigenetic mechanisms are involved in the control of Giardia lamblia antigenic variation. Mol Microbiol 2006; 61:1533-42. [PMID: 16968226 DOI: 10.1111/j.1365-2958.2006.05345.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Giardia lamblia, an intestinal dwelling protozoan parasite, undergoes surface antigenic variation where only one of an estimated 150 variant-specific surface proteins (VSPs) is expressed and present on the surface at any one time. Transcriptional switching between VSPs results in replacement of one VSP by another. The mechanisms that control antigenic variation are poorly understood and difficult to study because there are multiple copies of each VSP and strong similarity with other VSPs. In order to study transcriptional regulation of one specific vsp, a haemagglutinin (HA) epitope-tagged h7 was integrated into the G. lamblia GS genome. We show that HA-tagged H7 undergoes antigenic variation in the same manner as native H7, also present in the GS genome. Control of expression of both HA-tagged H7 and native H7 is independent of each other even though the genes and their surrounding 5' and 3' flanking sequences are virtually identical. Analysis of expressing and non-expressing clones revealed an absence of HA-tagged h7 gene rearrangements upon switching and acetylation of histone lysine residues within the 167 nucleotides 5' to the expressed HA-tagged h7 gene. Lack of vsp rearrangements and acetylation of expressed immediate upstream regions implicates involvement of epigenetic mechanisms in antigenic variation.
Collapse
Affiliation(s)
- Liudmila Kulakova
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Most of the phenotypic diversity that we perceive in the natural world is directly attributable to the peculiar structure of the eukaryotic gene, which harbors numerous embellishments relative to the situation in prokaryotes. The most profound changes include introns that must be spliced out of precursor mRNAs, transcribed but untranslated leader and trailer sequences (untranslated regions), modular regulatory elements that drive patterns of gene expression, and expansive intergenic regions that harbor additional diffuse control mechanisms. Explaining the origins of these features is difficult because they each impose an intrinsic disadvantage by increasing the genic mutation rate to defective alleles. To address these issues, a general hypothesis for the emergence of eukaryotic gene structure is provided here. Extensive information on absolute population sizes, recombination rates, and mutation rates strongly supports the view that eukaryotes have reduced genetic effective population sizes relative to prokaryotes, with especially extreme reductions being the rule in multicellular lineages. The resultant increase in the power of random genetic drift appears to be sufficient to overwhelm the weak mutational disadvantages associated with most novel aspects of the eukaryotic gene, supporting the idea that most such changes are simple outcomes of semi-neutral processes rather than direct products of natural selection. However, by establishing an essentially permanent change in the population-genetic environment permissive to the genome-wide repatterning of gene structure, the eukaryotic condition also promoted a reliable resource from which natural selection could secondarily build novel forms of organismal complexity. Under this hypothesis, arguments based on molecular, cellular, and/or physiological constraints are insufficient to explain the disparities in gene, genomic, and phenotypic complexity between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, USA.
| |
Collapse
|
40
|
Russell AG, Shutt TE, Watkins RF, Gray MW. An ancient spliceosomal intron in the ribosomal protein L7a gene (Rpl7a) of Giardia lamblia. BMC Evol Biol 2005; 5:45. [PMID: 16109161 PMCID: PMC1201135 DOI: 10.1186/1471-2148-5-45] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 08/18/2005] [Indexed: 11/16/2022] Open
Abstract
Background Only one spliceosomal-type intron has previously been identified in the unicellular eukaryotic parasite, Giardia lamblia (a diplomonad). This intron is only 35 nucleotides in length and is unusual in possessing a non-canonical 5' intron boundary sequence, CT, instead of GT. Results We have identified a second spliceosomal-type intron in G. lamblia, in the ribosomal protein L7a gene (Rpl7a), that possesses a canonical GT 5' intron boundary sequence. A comparison of the two known Giardia intron sequences revealed extensive nucleotide identity at both the 5' and 3' intron boundaries, similar to the conserved sequence motifs recently identified at the boundaries of spliceosomal-type introns in Trichomonas vaginalis (a parabasalid). Based on these observations, we searched the partial G. lamblia genome sequence for these conserved features and identified a third spliceosomal intron, in an unassigned open reading frame. Our comprehensive analysis of the Rpl7a intron in other eukaryotic taxa demonstrates that it is evolutionarily conserved and is an ancient eukaryotic intron. Conclusion An analysis of the phylogenetic distribution and properties of the Rpl7a intron suggests its utility as a phylogenetic marker to evaluate particular eukaryotic groupings. Additionally, analysis of the G. lamblia introns has provided further insight into some of the conserved and unique features possessed by the recently identified spliceosomal introns in related organisms such as T. vaginalis and Carpediemonas membranifera.
Collapse
Affiliation(s)
- Anthony G Russell
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Timothy E Shutt
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Russell F Watkins
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Michael W Gray
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| |
Collapse
|
41
|
Kim KT, Mok MTS, Edwards MR. Protein kinase B from Giardia intestinalis. Biochem Biophys Res Commun 2005; 334:333-41. [PMID: 16018966 DOI: 10.1016/j.bbrc.2005.06.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Accepted: 06/20/2005] [Indexed: 11/26/2022]
Abstract
A novel serine/threonine protein kinase from Giardia intestinalis (GiPKB) was isolated by a combination of PCR techniques. Analysis of the GiPKB sequence indicated that the encoded protein appears to be a member of a novel subgroup of serine/threonine protein kinases known as protein kinase B. Reverse transcription PCR and Northern hybridization showed that the transcription of GiPKB is developmentally regulated. The GiPKB was expressed as a recombinant protein, which was characterized and shown to have a protein kinase activity. The preferred substrate for the GiPKB was histone H1, while histone H2A, GSK3 peptide, GS peptide, and Kemptide were phosphorylated at about 96, 73, 51, and 40% of the activity with histone H1, respectively. Neither cAMP, Ca(2+), nor Ca(2+)/calmodulin stimulated the enzyme activity. The GiPKB utilized ATP rather than GTP as a phosphate donor with an apparent K(m) of 20 microM. The identification and characterization of this differentially and constitutively expressed GiPKB should allow further analysis of the regulation and signal transduction pathways in Giardia.
Collapse
Affiliation(s)
- Kyu-Tae Kim
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.
| | | | | |
Collapse
|
42
|
He D, Wen JF, Chen WQ, Lu SQ, Xin DD. Identification, characteristic and phylogenetic analysis of type II DNA topoisomerase gene in Giardia lamblia. Cell Res 2005; 15:474-82. [PMID: 15987606 DOI: 10.1038/sj.cr.7290316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The genes encoding type II DNA topoisomerases were investigated in Giardia lamblia genome, and a type IIA gene, GlTop 2 was identified. It is a single copy gene with a 4476 bp long ORF without intron. The deduced amino acid sequence shows strong homology to eukaryotic DNA Top 2. However, some distortions were found, such as six insertions in the ATPase domain and the central domain, a approximately 100 aa longer central domain; a approximately 200 aa shorter C-terminal domain containing rich charged residues. These features revealed by comparing with Top 2 of the host, human, might be helpful in exploiting drug selectivity for antigiardial therapy. Phylogenetic analysis of eukaryotic enzymes showed that kinetoplastids, plants, fungi, and animals were monophyletic groups, and the animal and fungi lineages shared a more recent common ancestor than either did with the plant lineage; microsporidia grouped with fungi. However, unlike many previous phylogenetic analyses, the "amitochondriate"G. lamblia was not the earliest branch but diverged after mitochondriate kinetoplastids in our trees. Both the finding of typical eukaryotic type IIA topoisomerase and the phylogenetic analysis suggest G. lamblia is not possibly as primitive as was regarded before and might diverge after the acquisition of mitochondria. This is consistent with the recent discovery of mitochondrial remnant organelles in G. lamblia.
Collapse
Affiliation(s)
- De He
- Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | | | | | | | | |
Collapse
|
43
|
Sun CH, Su LH, Gillin FD. Influence of 5' sequences on expression of the Tet repressor in Giardia lamblia. Mol Biochem Parasitol 2005; 142:1-11. [PMID: 15907557 DOI: 10.1016/j.molbiopara.2005.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Revised: 02/01/2005] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
Gene expression is poorly understood in Giardia lamblia. Previously we utilized the Escherichia coli tetracycline regulatory elements to develop a giardial-inducible gene expression system. In this study, we tested the hypothesis that regions flanking the tet repressor (tet R) may influence its expression and affect inducibility of the regulatory system. We found that addition of a 6-His tag or nuclear localization signal (NLS) at the N- but not C-terminus of tet R, increased the induction ratios >100-fold. A non-specific sequence also increased the induction ratio. Fusing NLS at the N-terminus, also led to exclusively nuclear tet R localization. Changing the promoter from gdh or alpha-giardin to alpha2-tubulin increased the induction ratio slightly. Tet R expression at both RNA and protein levels correlated with repression efficiency, indicating that coding sequences of the 6-His tag or NLS may contribute to transcriptional activation of the exotic tet R gene in Giardia. In addition, we found that the tet R system mediated gene repression and induction during encystation. Previous studies used an artificial reporter gene. In this study, we were able to induce overexpression of epitope-tagged cyst wall protein 1 (CWP1) in vegetatively growing Giardia trophozoites. Moreover, we could repress or induce expression of exogenous CWP1 in encysting cells. Taken together, our data suggest that expression of tet R in Giardia is complex and can be strongly influenced by additional sequences, especially at its N-terminus. This system provides insights into expression of an alien gene and can be exploited to regulate gene expression and study important functions in G. lamblia.
Collapse
Affiliation(s)
- Chin-Hung Sun
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, 100 Taiwan, ROC.
| | | | | |
Collapse
|
44
|
Liu Q, Zhang X, Li J, Ying J, Chen L, Zhao Y, Wei F, Wu T. Giardia lamblia: stable expression of green fluorescent protein mediated by giardiavirus. Exp Parasitol 2005; 109:181-7. [PMID: 15713450 DOI: 10.1016/j.exppara.2004.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/26/2004] [Accepted: 12/03/2004] [Indexed: 11/15/2022]
Abstract
Giardia lamblia, an early diverging eukaryote that infects several species including humans and a major agent of water-borne diarrhea throughout the world, can be infected with a double-stranded RNA virus, giardiavirus (GLV). A chimeric GLV cDNA and green fluorescent protein (GFP) according to the cis-acting signals of the GLV genome required for expression of foreign gene was constructed and its in vitro transcript was electroporated into GLV-infected G. lamblia trophozoites, GFP was expressed transiently. pGDH5/NEO/GLV was constructed by combining the neomycin resistance cassette in which the neomycin phosphotransferase gene was flanked by Giardia glutamate dehydrogenase (GDH) uncoding regions and the transcription cassette in which the chimera of GLV cDNA and GFP was located downstream from GDH gene promoter on a single plasmid. This plasmid was electroporated into G. lamblia and the transfectants persistently expressed GFP under G418 selection. This stable transfection system should provide a valuable tool for genetic study of G. lamblia.
Collapse
Affiliation(s)
- Quan Liu
- Department of Veterinary Medicine, JiLin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Best AA, Morrison HG, McArthur AG, Sogin ML, Olsen GJ. Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia. Genome Res 2004; 14:1537-47. [PMID: 15289474 PMCID: PMC509262 DOI: 10.1101/gr.2256604] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Giardia lamblia genome sequencing project affords us a unique opportunity to conduct comparative analyses of core cellular systems between early and late-diverging eukaryotes on a genome-wide scale. We report a survey to identify canonical transcription components in Giardia, focusing on RNA polymerase (RNAP) subunits and transcription-initiation factors. Our survey revealed that Giardia contains homologs to 21 of the 28 polypeptides comprising eukaryal RNAPI, RNAPII, and RNAPIII; six of the seven RNAP subunits without giardial homologs are polymerase specific. Components of only four of the 12 general transcription initiation factors have giardial homologs. Surprisingly, giardial TATA-binding protein (TBP) is highly divergent with respect to archaeal and higher eukaryotic TBPs, and a giardial homolog of transcription factor IIB was not identified. We conclude that Giardia represents a transition during the evolution of eukaryal transcription systems, exhibiting a relatively complete set of RNAP subunits and a rudimentary basal initiation apparatus for each transcription system. Most class-specific RNAP subunits and basal initiation factors appear to have evolved after the divergence of Giardia from the main eukaryotic line of descent. Consequently, Giardia is predicted to be unique in many aspects of transcription initiation with respect to paradigms derived from studies in crown eukaryotes.
Collapse
Affiliation(s)
- Aaron A Best
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Sciences Laboratory, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
The events leading to transcription of eukaryotic protein-coding genes culminate in the positioning of RNA polymerase II at the correct initiation site. The core promoter, which can extend ~35 bp upstream and/or downstream of this site, plays a central role in regulating initiation. Specific DNA elements within the core promoter bind the factors that nucleate the assembly of a functional preinitiation complex and integrate stimulatory and repressive signals from factors bound at distal sites. Although core promoter structure was originally thought to be invariant, a remarkable degree of diversity has become apparent. This article reviews the structural and functional diversity of the RNA polymerase II core promoter.
Collapse
Affiliation(s)
- Stephen T Smale
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
47
|
Davis-Hayman SR, Hayman JR, Nash TE. Encystation-specific regulation of the cyst wall protein 2 gene in Giardia lamblia by multiple cis-acting elements. Int J Parasitol 2003; 33:1005-12. [PMID: 13129521 DOI: 10.1016/s0020-7519(03)00177-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Giardia lamblia, a worldwide cause of diarrhoea, must differentiate into environmentally resistant cysts for dissemination and completion of its life cycle. Although G. lamblia is an early diverging eukaryote, encystation involves many complex cellular changes including formation of the cyst wall that contains at least two cyst wall proteins, cyst wall proteins 1 and 2. Cwp genes are transcribed only during encystation. In this study, we examine the regulatory elements for the encystation-specific gene cwp2. The 64 bp immediately upstream of the cwp2 open reading frame (-64 to -1 relative to ATG) was shown to be sufficient for the encystation-specific expression of luciferase. To determine which region(s) within this 64 bp contributed to encystation-specific expression in vivo, a series of deletions were cloned into a Giardia luciferase expression vector and their ability to control encystation-specific expression of luciferase was assessed. Deletion of elements in the -64 to -23 region of the cwp2 promoter significantly increased expression of luciferase in vegetative trophozoites, suggesting that this area contains a negative cis-acting element. Deletions of elements from -23 to -10 led to decreased expression in encysting cells, suggesting that this region may contain positive cis-acting elements. When the A/T-rich initiator was deleted but the cis-acting elements (-64 to -10) were retained, encystation-specific expression of luciferase was maintained but an aberrant transcriptional start site was utilised. These results indicate that Giardia has developed a classic repressor mechanism(s) that allows tight, encystation-specific control by the cwp2 promoter.
Collapse
Affiliation(s)
- Sara R Davis-Hayman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | |
Collapse
|
48
|
Seshadri V, McArthur AG, Sogin ML, Adam RD. Giardia lamblia RNA polymerase II: amanitin-resistant transcription. J Biol Chem 2003; 278:27804-10. [PMID: 12734189 DOI: 10.1074/jbc.m303316200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Giardia lamblia is an early branching eukaryote, and although distinctly eukaryotic in its cell and molecular biology, transcription and translation in G. lamblia demonstrate important differences from these processes in higher eukaryotes. The cyclic octapeptide amanitin is a relatively selective inhibitor of eukaryotic RNA polymerase II (RNAP II) and is commonly used to study RNAP II transcription. Therefore, we measured the sensitivity of G. lamblia RNAP II transcription to alpha-amanitin and found that unlike most other eukaryotes, RNAP II transcription in Giardia is resistant to 1 mg/ml amanitin. In contrast, 50 microg/ml amanitin inhibits 85% of RNAP III transcription activity using leucyl-tRNA as a template. To better understand transcription in G. lamblia, we identified 10 of the 12 known eukaryotic rpb subunits, including all 10 subunits that are required for viability in Saccharomyces cerevisiae. The amanitin motif (amanitin binding site) of Rpb1 from G. lamblia has amino acid substitutions at six highly conserved sites that have been associated with amanitin resistance in other organisms. These observations of amanitin resistance of Giardia RNA polymerase II support previous proposals of the mechanism of amanitin resistance in other organisms and provide a molecular framework for the development of novel drugs with selective activity against G. lamblia.
Collapse
Affiliation(s)
- Vishwas Seshadri
- Department of Microbiology, University of Arizona College of Medicine, Tucson, Arizona 85724-5049, USA
| | | | | | | |
Collapse
|
49
|
Sun CH, McCaffery JM, Reiner DS, Gillin FD. Mining the Giardia lamblia genome for new cyst wall proteins. J Biol Chem 2003; 278:21701-8. [PMID: 12686559 DOI: 10.1074/jbc.m302023200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Giardia lamblia cyst wall (CW), which is required for survival outside the host and infection, is a primitive extracellular matrix. Because of the importance of the CW, we queried the Giardia Genome Project Database with the coding sequences of the only two known CW proteins, which are cysteine-rich and contain leucine-rich repeats (LRRs). We identified five new LRR-containing proteins, of which only one (CWP3) is up-regulated during encystation and incorporated into the cyst wall. Sequence comparison with CWP1 and -2 revealed conservation within the LRRs and the 44-amino-acid N-flanking region, although CWP3 is more divergent. Interestingly, all 14 cysteine residues of CWP3 are positionally conserved with CWP1 and -2. During encystation, C-terminal epitope-tagged CWP3 was transported to the wall of water-resistant cysts via the novel regulated secretory pathway in encystation-secretory vesicles (ESVs). Deletion analysis revealed that the four LRRs are each essential to target CWP3 to the ESVs and cyst wall. In a deletion of the most C-terminal region, fewer ESVs were stained in encysting cells, and there was no staining in cysts. In contrast, deletion of the 44 amino acids between the signal sequence and the LRRs or the region just C-terminal to the LRRs only decreased the number of cells with CWP3 targeting to ESVs and cyst wall by approximately 50%. Our studies indicate that virtually every portion of the CWP3 protein is needed for efficient targeting to the regulated secretory pathway and incorporation into the cyst wall. Further, these data demonstrate the power of genomics in combination with rigorous functional analyses to verify annotation.
Collapse
Affiliation(s)
- Chin-Hung Sun
- Department of Pathology, School of Medicine, University of California at San Diego, 214 Dickinson Street, San Diego, CA 92103-8416, USA
| | | | | | | |
Collapse
|
50
|
Lopez AB, Sener K, Jarroll EL, van Keulen H. Transcription regulation is demonstrated for five key enzymes in Giardia intestinalis cyst wall polysaccharide biosynthesis. Mol Biochem Parasitol 2003; 128:51-7. [PMID: 12706796 DOI: 10.1016/s0166-6851(03)00049-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cyst wall of Giardia intestinalis contains proteins and a novel N-acetylgalactosamine (GalNAc) polysaccharide, which is its major constituent. GalNAc is not present in growing trophozoites, but is synthesized during encystment via an inducible pathway of enzymes that produce UDP-GalNAc from fructose 6-phosphate. This report focuses on the regulation of these enzymes and thus the genes for glucosamine 6-phosphate N-acetyltransferase (GNA), phosphoacetylglucosamine mutase (AGM), UDP-N-acetylglucosamine pyrophosphorylase (UAP), and UDP-N-acetylglucosamine 4-epimerase (UAE) were cloned and expressed in Escherichia coli. Each of these expressed enzymes had the predicted activity and was used to generate antibodies. Northern and Western blot analyses demonstrated that both the mRNA and protein levels for all of these enzymes increase during encystment. Nuclear run-on assays of these and the previously analyzed glucosamine 6-phosphate deaminase (GNP; glucosamine 6-P isomerase) showed that all of the genes responsible for UDP-GalNAc synthesis during encystment are induced at the transcription level.
Collapse
Affiliation(s)
- Alex B Lopez
- Department of Biological, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | | | | | | |
Collapse
|