1
|
Francis CR, Kushner EJ. Capturing membrane trafficking events during 3D angiogenic development in vitro. Microcirculation 2022; 29:e12726. [PMID: 34415654 PMCID: PMC8858330 DOI: 10.1111/micc.12726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Vesicular trafficking dictates protein localization, functional activity, and half-life, providing a critically important regulatory step in tissue development; however, there is little information detailing endothelial-specific trafficking signatures. This is due, in part, to limitations in visualizing trafficking events in endothelial tissues. Our aim in this investigation was to explore the use of a 3-dimensional (3D) in vitro sprouting model to image endothelial membrane trafficking events. METHODS Endothelial cells were challenged to grow sprouts in a fibrin bead assay. Thereafter, spouts were transfected with fluorescent proteins and stained for various cell markers. Sprouts were then imaged for trafficking events using live and fixed-cell microscopy. RESULTS Our results demonstrate that fibrin bead sprouts have a strong apicobasal polarity marked by apical localization of proteins moesin and podocalyxin. Comparison of trafficking mediators Rab27a and Rab35 between 3D sprouts and 2D culture showed that vesicular carriers can be imaged at high resolution, exhibiting proper membrane polarity solely in 3D sprouts. Lastly, we imaged exocytic events of von Willebrand Factor and demonstrated a distinct imaging advantage for monitoring secretion events in 3D sprouts as compared with 2D culture. CONCLUSIONS Our results establish that the fibrin bead sprouting assay is well-suited for imaging of trafficking events during angiogenic growth.
Collapse
Affiliation(s)
| | - Erich J. Kushner
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| |
Collapse
|
2
|
Kassa EG, Zlotkin-Rivkin E, Friedman G, Ramachandran RP, Melamed-Book N, Weiss AM, Belenky M, Reichmann D, Breuer W, Pal RR, Rosenshine I, Lapierre LA, Goldenring JR, Aroeti B. Enteropathogenic Escherichia coli remodels host endosomes to promote endocytic turnover and breakdown of surface polarity. PLoS Pathog 2019; 15:e1007851. [PMID: 31242273 PMCID: PMC6615643 DOI: 10.1371/journal.ppat.1007851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 07/09/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Enteropathogenic E. coli (EPEC) is an extracellular diarrheagenic human pathogen which infects the apical plasma membrane of the small intestinal enterocytes. EPEC utilizes a type III secretion system to translocate bacterial effector proteins into its epithelial hosts. This activity, which subverts numerous signaling and membrane trafficking pathways in the infected cells, is thought to contribute to pathogen virulence. The molecular and cellular mechanisms underlying these events are not well understood. We investigated the mode by which EPEC effectors hijack endosomes to modulate endocytosis, recycling and transcytosis in epithelial host cells. To this end, we developed a flow cytometry-based assay and imaging techniques to track endosomal dynamics and membrane cargo trafficking in the infected cells. We show that type-III secreted components prompt the recruitment of clathrin (clathrin and AP2), early (Rab5a and EEA1) and recycling (Rab4a, Rab11a, Rab11b, FIP2, Myo5b) endocytic machineries to peripheral plasma membrane infection sites. Protein cargoes, e.g. transferrin receptors, β1 integrins and aquaporins, which exploit the endocytic pathways mediated by these machineries, were also found to be recruited to these sites. Moreover, the endosomes and cargo recruitment to infection sites correlated with an increase in cargo endocytic turnover (i.e. endocytosis and recycling) and transcytosis to the infected plasma membrane. The hijacking of endosomes and associated endocytic activities depended on the translocated EspF and Map effectors in non-polarized epithelial cells, and mostly on EspF in polarized epithelial cells. These data suggest a model whereby EPEC effectors hijack endosomal recycling mechanisms to mislocalize and concentrate host plasma membrane proteins in endosomes and in the apically infected plasma membrane. We hypothesize that these activities contribute to bacterial colonization and virulence. Enteropathogenic Escherichia coli (EPEC) are pathogenic bacteria that cause infantile diarrhea. Upon ingestion, EPEC reaches the small intestine, where an injection device termed the type III secretion system is utilized to inject a set of effector proteins from the bacteria into the host cell. These proteins manipulate the localization and functions of host proteins, lipids and organelles and contribute to the emergence of the EPEC disease. The molecular mechanisms underlying the functions of the EPEC effector proteins are not completely understood. Here we show that early upon infection, two such effector proteins, EspF and Map, hijack host endosomes at bacterial adherence sites to facilitate endocytosis and recycling of plasma membrane proteins at these sites. The consequence of this event is the enrichment and mislocalization of host plasma membrane proteins at infection sites. One such protein is the transferrin receptor, which is a carrier for transferrin, whose function is to mediate cellular uptake of iron. Iron is a critical nutrient for bacterial growth and survival. We postulate that the unique manipulation of transferrin receptor endocytic membrane trafficking by EPEC plays an important role in its survival on the luminal surface of the intestinal epithelium.
Collapse
Affiliation(s)
- Ephrem G. Kassa
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil Friedman
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachana P. Ramachandran
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Melamed-Book
- Bio-imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aryeh M. Weiss
- Bio-imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Michael Belenky
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Proteomics and Mass Spectrometry Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - William Breuer
- Proteomics and Mass Spectrometry Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ritesh Ranjan Pal
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lynne A. Lapierre
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - James R. Goldenring
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Benjamin Aroeti
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
3
|
Rab5 and its effector FHF contribute to neuronal polarity through dynein-dependent retrieval of somatodendritic proteins from the axon. Proc Natl Acad Sci U S A 2016; 113:E5318-27. [PMID: 27559088 PMCID: PMC5018783 DOI: 10.1073/pnas.1601844113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An open question in cell biology is how the general intracellular transport machinery is adapted to perform specialized functions in polarized cells such as neurons. Here we illustrate this adaptation by elucidating a role for the ubiquitous small GTPase Ras-related protein in brain 5 (Rab5) in neuronal polarity. We show that inactivation or depletion of Rab5 in rat hippocampal neurons abrogates the somatodendritic polarity of the transferrin receptor and several glutamate receptor types, resulting in their appearance in the axon. This loss of polarity is not caused primarily by increased transport from the soma to the axon but rather by decreased retrieval from the axon to the soma. Retrieval is also dependent on the Rab5 effector Fused Toes (FTS)-Hook-FTS and Hook-interacting protein (FHIP) (FHF) complex, which interacts with the minus-end-directed microtubule motor dynein and its activator dynactin to drive a population of axonal retrograde carriers containing somatodendritic proteins toward the soma. These findings emphasize the importance of both biosynthetic sorting and axonal retrieval for the polarized distribution of somatodendritic receptors at steady state.
Collapse
|
4
|
Mihov D, Raja E, Spiess M. Chondroitin Sulfate Accelerates Trans-Golgi-to-Surface Transport of Proteoglycan Amyloid Precursor Protein. Traffic 2015; 16:853-70. [PMID: 25951880 DOI: 10.1111/tra.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/28/2022]
Abstract
The amyloid precursor protein (APP) is a membrane protein implicated in the pathogenesis of Alzheimer's disease. APP is a part-time proteoglycan, as splice variants lacking exon 15 are modified by a chondroitin sulfate glycosaminoglycan (GAG) chain. Investigating the effect of the GAG chain on the trafficking of APP in non-polarized cells, we found it to increase the steady-state surface-to-intracellular distribution, to reduce the rate of endocytosis and to accelerate transport kinetics from the trans-Golgi network (TGN) to the plasma membrane. Deletion of the cytosolic domain resulted in delayed surface arrival of GAG-free APP, but did not affect the rapid export kinetics of the proteoglycan form. Protein-free GAG chains showed the same TGN-to-cell surface transport kinetics as proteoglycan APP. Endosome ablation experiments were performed to distinguish between indirect endosomal and direct pathways to the cell surface. Surprisingly, TGN-to-cell surface transport of both GAG-free and proteoglycan APP was found to be indirect via transferrin-positive endosomes. Our results show that GAGs act as alternative sorting determinants in cellular APP transport that are dominant over cytoplasmic signals and involve distinct sorting mechanisms.
Collapse
Affiliation(s)
- Deyan Mihov
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Eva Raja
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| |
Collapse
|
5
|
Wakshlak RBK, Pedahzur R, Avnir D. Antibacterial activity of silver-killed bacteria: the "zombies" effect. Sci Rep 2015; 5:9555. [PMID: 25906433 PMCID: PMC5386105 DOI: 10.1038/srep09555] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/03/2015] [Indexed: 11/25/2022] Open
Abstract
We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.
Collapse
Affiliation(s)
- Racheli Ben-Knaz Wakshlak
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rami Pedahzur
- 1] Institute of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Jerusalem 91904, Israel [2] Department of Environmental Health, Hadassah Academic College, Jerusalem 91010, Israel
| | - David Avnir
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
6
|
|
7
|
Bertuccio CA, Lee SL, Wu G, Butterworth MB, Hamilton KL, Devor DC. Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-dependent and recycling endosome-independent. PLoS One 2014; 9:e92013. [PMID: 24632741 PMCID: PMC3954861 DOI: 10.1371/journal.pone.0092013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/16/2014] [Indexed: 02/01/2023] Open
Abstract
The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the μ1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia cells.
Collapse
Affiliation(s)
- Claudia A. Bertuccio
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shih-Liang Lee
- Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Michael B. Butterworth
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kirk L. Hamilton
- Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, Otago, New Zealand
- * E-mail: (DCD); (KLH)
| | - Daniel C. Devor
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (DCD); (KLH)
| |
Collapse
|
8
|
Abstract
Cells internalize extracellular solutes, ligands and proteins and lipids in the plasma membrane (PM) by endocytosis. The removal of membrane from the PM is counteracted by endosomal recycling pathways that return the endocytosed proteins and lipids back to the PM. Recycling to the PM can occur from early endosomes. However, many cells have a distinct subpopulation of endosomes that have a mildly acidic pH of 6.5 and are involved in the endosomal recycling. These endosomes are dubbed recycling endosomes (REs). In recent years, studies have begun to reveal that function of REs is not limited to the endosomal recycling. In this review, I summarize the nature of membrane trafficking pathways that pass through REs and the cell biological roles of these pathways.
Collapse
Affiliation(s)
- Tomohiko Taguchi
- Laboratory of Pathological Cell Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Ben-Knaz R, Pedahzur R, Avnir D. Bioactive doped metals: high synergism in the bactericidal activity of chlorhexidine@silver towards wound pathogenic bacteria. RSC Adv 2013. [DOI: 10.1039/c3ra41196f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Abstract
The polarized distribution of proteins and lipids at the surface membrane of epithelial cells results in the formation of an apical and a basolateral domain, which are separated by tight junctions. The generation and maintenance of epithelial polarity require elaborate mechanisms that guarantee correct sorting and vectorial delivery of cargo molecules. This dynamic process involves the interaction of sorting signals with sorting machineries and the formation of transport carriers. Here we review the recent advances in the field of polarized sorting in epithelial cells. We especially highlight the role of lipid rafts in apical sorting.
Collapse
|
11
|
|
12
|
Li X, DiFiglia M. The recycling endosome and its role in neurological disorders. Prog Neurobiol 2011; 97:127-41. [PMID: 22037413 DOI: 10.1016/j.pneurobio.2011.10.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 02/08/2023]
Abstract
The recycling endosome (RE) is an organelle in the endocytic pathway where plasma membranes (proteins and lipids) internalized by endocytosis are processed back to the cell surface for reuse. Endocytic recycling is the primary way for the cell to maintain constituents of the plasma membrane (Griffiths et al., 1989), i.e., to maintain the abundance of receptors and transporters on cell surfaces. Membrane traffic through the RE is crucial for several key cellular processes including cytokinesis and cell migration. In polarized cells, including neurons, the RE is vital for the generation and maintenance of the polarity of the plasma membrane. Many RE dependent cargo molecules are known to be important for neuronal function and there is evidence that improper function of key proteins in RE-associated pathways may contribute to the pathogenesis of neurological disorders, including Huntington's disease. The function of the RE in neurons is poorly understood. Therefore, there is need to understand how membrane dynamics in RE-associated pathways are affected or participate in the development or progression of neurological diseases. This review summarizes advances in understanding endocytic recycling associated with the RE, challenges in elucidating molecular mechanisms underlying RE function, and evidence for RE dysfunction in neurological disorders.
Collapse
Affiliation(s)
- Xueyi Li
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
13
|
Ward HH, Brown-Glaberman U, Wang J, Morita Y, Alper SL, Bedrick EJ, Gattone VH, Deretic D, Wandinger-Ness A. A conserved signal and GTPase complex are required for the ciliary transport of polycystin-1. Mol Biol Cell 2011; 22:3289-305. [PMID: 21775626 PMCID: PMC3172256 DOI: 10.1091/mbc.e11-01-0082] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Primary cilia regulate epithelial differentiation and organ function. Failure of mutant polycystins to localize to cilia abolishes flow-stimulated calcium signaling and causes autosomal dominant polycystic kidney disease. We identify a conserved amino acid sequence, KVHPSST, in the C-terminus of polycystin-1 (PC1) that serves as a ciliary-targeting signal. PC1 binds a multimeric protein complex consisting of several GTPases (Arf4, Rab6, Rab11) and the GTPase-activating protein (GAP), ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (ASAP1) in the Golgi, which facilitates vesicle budding and Golgi exocytosis. A related N-terminal ciliary-targeting sequence in polycystin-2 similarly binds Arf4. Deletion of the extreme C-terminus of PC1 ablates Arf4 and ASAP1 binding and prevents ciliary localization of an integral membrane CD16.7-PC1 chimera. Interactions are confirmed for chimeric and endogenous proteins through quantitated in vitro and cell-based approaches. PC1 also complexes with Rab8; knockdown of trafficking regulators Arf4 or Rab8 functionally blocks CD16.7-PC1 trafficking to cilia. Mutations in rhodopsin disrupt a similar signal and cause retinitis pigmentosa, while Bardet-Biedl syndrome, primary open-angle glaucoma, and tumor cell invasiveness are linked to dysregulation of ASAP1 or Rab8 or its effectors. In this paper, we provide evidence for a conserved GTPase-dependent ciliary-trafficking mechanism that is shared between epithelia and neurons, and is essential in ciliary-trafficking and cell homeostasis.
Collapse
Affiliation(s)
- Heather H Ward
- Department of Pathology, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Apical protein transport and lumen morphogenesis in polarized epithelial cells. Biosci Rep 2011; 31:245-56. [PMID: 21366541 DOI: 10.1042/bsr20100119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Segregation of the apical and basolateral plasma membrane domains is the key distinguishing feature of epithelial cells. A series of interrelated cues and processes follow this primary polarization event, resulting in the morphogenesis of the mammalian epithelium. This review focuses on the role of the interactions between the extracellular matrix and neighbouring cells during the initiation and establishment of epithelial polarity, and the role that membrane transport and polarity complexes play in this process. An overview of the formation of the apical junctional complexes is given in relation to the generation of distinct membrane domains characterized by the asymmetric distribution of phosphoinositides and proteins. The mechanisms and machinery utilized by the trafficking pathways involved in the generation and maintenance of this apical-basolateral polarization are expounded, highlighting processes of apical-directed transport. Furthermore, the current proposed mechanisms for the organization of entire networks of cells into a structured, polarized three-dimensional structure are described, with an emphasis on the proposed mechanisms for the formation and expansion of the apical lumen.
Collapse
|
15
|
Zahavi EE, Lieberman JA, Donnenberg MS, Nitzan M, Baruch K, Rosenshine I, Turner JR, Melamed-Book N, Feinstein N, Zlotkin-Rivkin E, Aroeti B. Bundle-forming pilus retraction enhances enteropathogenic Escherichia coli infectivity. Mol Biol Cell 2011; 22:2436-47. [PMID: 21613538 PMCID: PMC3135470 DOI: 10.1091/mbc.e11-01-0001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and other pathogenic bacteria use dynamic type IV pili to adhere to the host. Here we show that the capacity of the EPEC type IV pili to retract is required for the breakdown of the host epithelial tight-junction barrier, efficient actin-pedestal formation, and translocation of effectors via the type III secretion system. Enteropathogenic Escherichia coli (EPEC) is an important human pathogen that causes acute infantile diarrhea. The type IV bundle-forming pili (BFP) of typical EPEC strains are dynamic fibrillar organelles that can extend out and retract into the bacterium. The bfpF gene encodes for BfpF, a protein that promotes pili retraction. The BFP are involved in bacterial autoaggregation and in mediating the initial adherence of the bacterium with its host cell. Importantly, BFP retraction is implicated in virulence in experimental human infection. How pili retraction contributes to EPEC pathogenesis at the cellular level remains largely obscure, however. In this study, an effort has been made to address this question using engineered EPEC strains with induced BFP retraction capacity. We show that the retraction is important for tight-junction disruption and, to a lesser extent, actin-rich pedestal formation by promoting efficient translocation of bacterial protein effectors into the host cells. A model is proposed whereby BFP retraction permits closer apposition between the bacterial and the host cell surfaces, thus enabling timely and effective introduction of bacterial effectors into the host cell via the type III secretion apparatus. Our studies hence suggest novel insights into the involvement of pili retraction in EPEC pathogenesis.
Collapse
Affiliation(s)
- Eitan E Zahavi
- Department of Cell and Developmental Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends Cell Biol 2010; 20:618-26. [PMID: 20833047 DOI: 10.1016/j.tcb.2010.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/05/2010] [Accepted: 08/06/2010] [Indexed: 01/24/2023]
Abstract
Recycling endosomes have taken central stage in the intracellular sorting and polarized trafficking of apical and basolateral plasma membrane components. Molecular players in the underlying mechanisms are now emerging, including small GTPases, class V myosins and adaptor proteins. In particular, defects in the expression or function of these recycling endosome-associated and endosome-regulating proteins have been implicated in cell surface polarity defects and diseases, including microvillus inclusion disease, arthrogryposis-renal dysfunction-cholestasis syndrome, and virus susceptibility. Key findings are that recycling endosomes recruit and deliver core polarity proteins to lateral cell surfaces and initiate the biogenesis of apical plasma membrane domains and epithelial cell polarity. Here, we review recent data that implicate recycling endosomes in the establishment and maintenance of epithelial cell polarity.
Collapse
|
17
|
Weisz OA, Rodriguez-Boulan E. Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 2010; 122:4253-66. [PMID: 19923269 DOI: 10.1242/jcs.032615] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the early days of epithelial cell biology, researchers working with kidney and/or intestinal epithelial cell lines and with hepatocytes described the biosynthetic and recycling routes followed by apical and basolateral plasma membrane (PM) proteins. They identified the trans-Golgi network and recycling endosomes as the compartments that carried out apical-basolateral sorting. They described complex apical sorting signals that promoted association with lipid rafts, and simpler basolateral sorting signals resembling clathrin-coated-pit endocytic motifs. They also noticed that different epithelial cell types routed their apical PM proteins very differently, using either a vectorial (direct) route or a transcytotic (indirect) route. Although these original observations have generally held up, recent studies have revealed interesting complexities in the routes taken by apically destined proteins and have extended our understanding of the machinery required to sustain these elaborate sorting pathways. Here, we critically review the current status of apical trafficking mechanisms and discuss a model in which clustering is required to recruit apical trafficking machineries. Uncovering the mechanisms responsible for polarized trafficking and their epithelial-specific variations will help understand how epithelial functional diversity is generated and the pathogenesis of many human diseases.
Collapse
Affiliation(s)
- Ora A Weisz
- Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
18
|
Kobialka S, Beuret N, Ben-Tekaya H, Spiess M. Glycosaminoglycan Chains Affect Exocytic and Endocytic Protein Traffic. Traffic 2009; 10:1845-55. [DOI: 10.1111/j.1600-0854.2009.00987.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Simovitch M, Sason H, Cohen S, Zahavi EE, Melamed-Book N, Weiss A, Aroeti B, Rosenshine I. EspM inhibits pedestal formation by enterohaemorrhagic Escherichia coli and enteropathogenic E. coli and disrupts the architecture of a polarized epithelial monolayer. Cell Microbiol 2009; 12:489-505. [PMID: 19912240 DOI: 10.1111/j.1462-5822.2009.01410.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Enterohaemorrhagic Escherichia coli and enteropathogenic E. coli are enteropathogens characterized by their ability to induce the host cell to form actin-rich structures, termed pedestals. A type III secretion system, through which the pathogens deliver effector proteins into infected host cells, is essential for their virulence and pedestal formation. Enterohaemorrhagic E. coli encodes two similar effectors, EspM1 and EspM2, which activate the RhoA signalling pathway and induce the formation of stress fibres upon infection of host cells. We confirm these observations and in addition show that EspM inhibits the formation of actin pedestals. Moreover, we show that translocation of EspM into polarized epithelial cells induces dramatic changes in the tight junction localization and in the morphology and architecture of infected polarized monolayers. These changes are manifested by altered localization of the tight junctions and 'bulging out' morphology of the cells. Surprisingly, despite the dramatic changes in their architecture, the cells remain alive and the epithelial monolayer maintains a normal barrier function. Taken together, our results show that the EspM effectors inhibit pedestal formation and induce tight junction mislocalization as well as dramatic changes in the architecture of the polarized monolayer.
Collapse
Affiliation(s)
- Michal Simovitch
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gonzalez A, Rodriguez-Boulan E. Clathrin and AP1B: key roles in basolateral trafficking through trans-endosomal routes. FEBS Lett 2009; 583:3784-95. [PMID: 19854182 DOI: 10.1016/j.febslet.2009.10.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 12/12/2022]
Abstract
Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered.
Collapse
Affiliation(s)
- Alfonso Gonzalez
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Centro de Regulación Celular y Patología and Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile.
| | | |
Collapse
|
21
|
Marie M, Dale HA, Sannerud R, Saraste J. The function of the intermediate compartment in pre-Golgi trafficking involves its stable connection with the centrosome. Mol Biol Cell 2009; 20:4458-70. [PMID: 19710425 PMCID: PMC2762134 DOI: 10.1091/mbc.e08-12-1229] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 01/03/2023] Open
Abstract
Because the functional borders of the intermediate compartment (IC) are not well defined, the spatial map of the transport machineries operating between the endoplasmic reticulum (ER) and the Golgi apparatus remains incomplete. Our previous studies showed that the IC consists of interconnected vacuolar and tubular parts with specific roles in pre-Golgi trafficking. Here, using live cell imaging, we demonstrate that the tubules containing the GTPase Rab1A create a long-lived membrane compartment around the centrosome. Separation of this pericentrosomal domain of the IC from the Golgi ribbon, due to centrosome motility, revealed that it contains a distinct pool of COPI coats and acts as a temperature-sensitive way station in post-ER trafficking. However, unlike the Golgi, the pericentrosomal IC resists the disassembly of COPI coats by brefeldin A, maintaining its juxtaposition with the endocytic recycling compartment, and operation as the focal point of a dynamic tubular network that extends to the cell periphery. These results provide novel insight into the compartmental organization of the secretory pathway and Golgi biogenesis. Moreover, they reveal a direct functional connection between the IC and the endosomal system, which evidently contributes to unconventional transport of the cystic fibrosis transmembrane conductance regulator to the cell surface.
Collapse
Affiliation(s)
- Michaël Marie
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
22
|
Fölsch H, Mattila PE, Weisz OA. Taking the scenic route: biosynthetic traffic to the plasma membrane in polarized epithelial cells. Traffic 2009; 10:972-81. [PMID: 19453969 DOI: 10.1111/j.1600-0854.2009.00927.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The maintenance of epithelial cell function requires the establishment and continuous renewal of differentiated apical and basolateral plasma membrane domains with distinct lipid and protein compositions. Newly synthesized proteins destined for either surface domain are processed along the biosynthetic pathway and segregated into distinct subsets of transport carriers emanating from the trans-Golgi network. Recent studies have illuminated additional complexities in the subsequent delivery of these proteins to the cell surface. In particular, multiple routes to the apical and basolateral cell surfaces have been uncovered, and many of these involve indirect passage through endocytic compartments. This review summarizes our current understanding of these routes and discusses open issues that remain to be clarified.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA.
| | | | | |
Collapse
|
23
|
The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene 2008; 27:6939-57. [DOI: 10.1038/onc.2008.345] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Cramm-Behrens CI, Dienst M, Jacob R. Apical cargo traverses endosomal compartments on the passage to the cell surface. Traffic 2008; 9:2206-20. [PMID: 18785995 DOI: 10.1111/j.1600-0854.2008.00829.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epithelial polarity is based on intracellular sorting machinery that maintains the asymmetric distribution of lipids and proteins to the cell surface. Dependent on their lipid raft affinity, newly synthesized apical polypeptides are segregated into distinct vesicle populations subsequent to the passage through the Golgi apparatus. Using a combined fluorescence microscopic and biochemical approach, we found that lipid raft-associated sucrase-isomaltase (SI) as well as non-raft-associated lactase-phlorizin hydrolase (LPH) traverse endosomal compartments before entering the apical membrane. Fluorescent fusion proteins of both hydrolases were co-stained with Rab4-, Rab8- and Rab11-positive endosomes in polarized Madin-Darby canine kidney and non-polarized COS-1 cells. Immunoisolation of post-Golgi vesicles subsequent to different times of TGN release revealed that LPH and SI navigate in chronological order through Rab4-, Rab8- and Rab11-positive endosomes. Thereafter, the two hydrolases are segregated into distinct vesicle populations. In addition, apical membrane traffic could be significantly inhibited by RNA interference-mediated depletion of these guanosine triphosphatases. These results suggest that in epithelial cells, lipid raft-dependent and -independent apical cargo follow a transendosomal route.
Collapse
|
25
|
Iacob S, Veis A. Identification of the functional activity of the [A-4] amelogenin gene splice product in newborn mouse ameloblasts. Bone 2008; 42:1072-9. [PMID: 18394981 PMCID: PMC2442712 DOI: 10.1016/j.bone.2008.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 01/07/2008] [Accepted: 01/24/2008] [Indexed: 11/28/2022]
Abstract
In the mouse tooth organ, shortly after birth, ameloblasts acquire their secretory phenotype, which is characterized by the prominent expression and subsequent secretion of two isoforms of amelogenin, M180 and M59 (LRAP, [A-4]). Amelogenin deposition into the ameloblast extracellular matrix promotes enamel biomineralization. A complex set of intercellular signaling events, reciprocal communications between the developing oral epithelium and its underlying dental mesenchyme, guide the expression of amelogenin mRNA, and limit it to a defined period of tooth development. In tooth germ organ culture, addition of the [A-4] isoform, lacking amelogenin exon 4 and exon 6 segments a, b, c, was shown to affect ameloblast development. To understand the basis for this regulatory activity, we have studied the effects of r[A-4] on ameloblast-like LS8 cells, and the role of the putative [A-4] cell surface receptor, LAMP1, as well as the related receptor LAMP3. In the LS8 cells, the expression of the spliced isoforms of amelogenin, LAMP1, and LAMP3 were identified by RT-PCR, and real-time PCR semi-quantitative analysis assessed the modulation of M180 message. M180 mRNA was up-regulated by exogenous [A-4], and this was further increased by blockade of LAMP1, suggesting additive effects between the intracellular signaling pathways activated by the discrete agonists. Immunofluorescence staining identified the patterns of [A-4] and LAMP1 localization in LS8 cells. Internalized r[A-4] was co-localized with LAMP1 in late endosomal/lysosomal compartments. Thus, the LAMP1 and [A-4] intracellular sorting pathways are interrelated. The nitric oxide (NO) signaling pathway was activated by exogenous [A-4]. [A-4] modulated inducible nitric oxide synthase (iNOS, NOS2) and endothelial nitric oxide synthase (eNOS, NOS3) expression, albeit, to different extents. NOS2 was significantly up-regulated after 4 h, while NOS3 increased slightly after 24 h. Co-treatment of LS8 cells with r[A-4] and anti-LAMP1 antibodies further enhanced NOS2 expression. Anti-LAMP1 antibodies did not abrogate NO production in LS8 cells treated for 4 h with r[A-4], but the iNOS inhibitor, l-Nil, down-regulated both NO production and the expression of M180 mRNA. These data suggest that [A-4] modulates M180 mRNA expression, partly, via the NO signaling pathway.
Collapse
Affiliation(s)
| | - Arthur Veis
- Corresponding Author: Arthur Veis, Northwestern University, Feinberg School of Medicine, Department of Cell and Molecular Biology, 303 E. Chicago Avenue, Chicago, IL 60611, Phone: 312-503-1355, Fax: 312-503-2544, E-mail:
| |
Collapse
|
26
|
|
27
|
|
28
|
Lasiecka ZM, Yap CC, Vakulenko M, Winckler B. Chapter 7 Compartmentalizing the Neuronal Plasma Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:303-89. [DOI: 10.1016/s1937-6448(08)01607-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Cancino J, Torrealba C, Soza A, Yuseff MI, Gravotta D, Henklein P, Rodriguez-Boulan E, González A. Antibody to AP1B adaptor blocks biosynthetic and recycling routes of basolateral proteins at recycling endosomes. Mol Biol Cell 2007; 18:4872-84. [PMID: 17881725 PMCID: PMC2096610 DOI: 10.1091/mbc.e07-06-0563] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/11/2007] [Indexed: 01/03/2023] Open
Abstract
The epithelial-specific adaptor AP1B sorts basolateral plasma membrane (PM) proteins in both biosynthetic and recycling routes, but the site where it carries out this function remains incompletely defined. Here, we have investigated this topic in Fischer rat thyroid (FRT) epithelial cells using an antibody against the medium subunit micro1B. This antibody was suitable for immunofluorescence and blocked the function of AP1B in these cells. The antibody blocked the basolateral recycling of two basolateral PM markers, Transferrin receptor (TfR) and LDL receptor (LDLR), in a perinuclear compartment with marker and functional characteristics of recycling endosomes (RE). Live imaging experiments demonstrated that in the presence of the antibody two newly synthesized GFP-tagged basolateral proteins (vesicular stomatitis virus G [VSVG] protein and TfR) exited the trans-Golgi network (TGN) normally but became blocked at the RE within 3-5 min. By contrast, the antibody did not block trafficking of green fluorescent protein (GFP)-LDLR from the TGN to the PM but stopped its recycling after internalization into RE in approximately 45 min. Our experiments conclusively demonstrate that 1) AP1B functions exclusively at RE; 2) TGN-to-RE transport is very fast and selective and is mediated by adaptors different from AP1B; and 3) the TGN and AP1B-containing RE cooperate in biosynthetic basolateral sorting.
Collapse
Affiliation(s)
- Jorge Cancino
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Carolina Torrealba
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Andrea Soza
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - María Isabel Yuseff
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Diego Gravotta
- Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021
| | - Peter Henklein
- Institute of Biochemistry Faculty of Medicine, Humboldt University, 10117 Berlin, Germany; and
| | - Enrique Rodriguez-Boulan
- Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021
| | - Alfonso González
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| |
Collapse
|
30
|
Manderson AP, Kay JG, Hammond LA, Brown DL, Stow JL. Subcompartments of the macrophage recycling endosome direct the differential secretion of IL-6 and TNFalpha. ACTA ACUST UNITED AC 2007; 178:57-69. [PMID: 17606866 PMCID: PMC2064421 DOI: 10.1083/jcb.200612131] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activated macrophages secrete an array of proinflammatory cytokines, including tumor necrosis factor-alpha (TNFalpha) and interleukin 6 (IL-6), that are temporally secreted for sequential roles in inflammation. We have previously characterized aspects of the intracellular trafficking of membrane-bound TNFalpha and its delivery to the cell surface at the site of phagocytic cups for secretion (Murray, R.Z., J.G. Kay, D.G. Sangermani, and J.L. Stow. 2005. Science. 310:1492-1495). The trafficking pathway and surface delivery of IL-6, a soluble cytokine, were studied here using approaches such as live cell imaging of fluorescently tagged IL-6 and immunoelectron microscopy. Newly synthesized IL-6 accumulates in the Golgi complex and exits in tubulovesicular carriers either as the sole labeled cargo or together with TNFalpha, utilizing specific soluble NSF attachment protein receptor (SNARE) proteins to fuse with the recycling endosome. Within recycling endosomes, we demonstrate the compartmentalization of cargo proteins, wherein IL-6 is dynamically segregated from TNFalpha and from surface recycling transferrin. Thereafter, these cytokines are independently secreted, with TNFalpha delivered to phagocytic cups but not IL-6. Therefore, the recycling endosome has a central role in orchestrating the differential secretion of cytokines during inflammation.
Collapse
Affiliation(s)
- Anthony P Manderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | |
Collapse
|
31
|
Cresawn KO, Potter BA, Oztan A, Guerriero CJ, Ihrke G, Goldenring JR, Apodaca G, Weisz OA. Differential involvement of endocytic compartments in the biosynthetic traffic of apical proteins. EMBO J 2007; 26:3737-48. [PMID: 17673908 PMCID: PMC1952228 DOI: 10.1038/sj.emboj.7601813] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 07/04/2007] [Indexed: 12/21/2022] Open
Abstract
Newly synthesized basolateral markers can traverse recycling endosomes en route to the surface of Madin-Darby canine kidney cells; however, the routes used by apical proteins are less clear. Here, we functionally inactivated subsets of endocytic compartments and examined the effect on surface delivery of the basolateral marker vesicular stomatitis virus glycoprotein (VSV-G), the raft-associated apical marker influenza hemagglutinin (HA), and the non-raft-associated protein endolyn. Inactivation of transferrin-positive endosomes after internalization of horseradish peroxidase (HRP)-containing conjugates inhibited VSV-G delivery, but did not disrupt apical delivery. In contrast, inhibition of protein export from apical recycling endosomes upon expression of dominant-negative constructs of myosin Vb or Sec15 selectively perturbed apical delivery of endolyn. Ablation of apical endocytic components accessible to HRP-conjugated wheat germ agglutinin (WGA) disrupted delivery of HA but not endolyn. However, delivery of glycosylphosphatidylinositol-anchored endolyn was inhibited by >50% under these conditions, suggesting that the biosynthetic itinerary of a protein is dependent on its targeting mechanism. Our studies demonstrate that apical and basolateral proteins traverse distinct endocytic intermediates en route to the cell surface, and that multiple routes exist for delivery of newly synthesized apical proteins.
Collapse
Affiliation(s)
- Kerry O Cresawn
- Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth A Potter
- Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asli Oztan
- Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Gudrun Ihrke
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine and Nashville Veterans Affairs Medical Center, Nashville, TN, USA
| | - Gerard Apodaca
- Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Rondanino C, Rojas R, Ruiz WG, Wang E, Hughey RP, Dunn KW, Apodaca G. RhoB-dependent modulation of postendocytic traffic in polarized Madin-Darby canine kidney cells. Traffic 2007; 8:932-49. [PMID: 17547697 DOI: 10.1111/j.1600-0854.2007.00575.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Rho family of GTPases is implicated in the control of endocytic and biosynthetic traffic of many cell types; however, the cellular distribution of RhoB remains controversial and its function is not well understood. Using confocal microscopy, we found that endogenous RhoB and green fluorescent protein-tagged wild-type RhoB were localized to early endosomes, and to a much lesser extent to recycling endosomes, late endosomes or Golgi complex of fixed or live polarized Madin-Darby canine kidney cells. Consistent with RhoB localization to early endosomes, we observed that expression of dominant-negative RhoBN19 or dominant-active RhoBV14 altered postendocytic traffic of ligand-receptor complexes that undergo recycling, degradation or transcytosis. In vitro assays established that RhoB modulated the basolateral-to-apical transcytotic pathway by regulating cargo exit from basolateral early endosomes. Our results indicate that RhoB is localized, in part, to early endosomes where it regulates receptor egress through the early endocytic system.
Collapse
Affiliation(s)
- Christine Rondanino
- Laboratory of Epithelial Biology, Renal-Electrolyte Division of the Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Gravotta D, Deora A, Perret E, Oyanadel C, Soza A, Schreiner R, Gonzalez A, Rodriguez-Boulan E. AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells. Proc Natl Acad Sci U S A 2007; 104:1564-9. [PMID: 17244703 PMCID: PMC1785260 DOI: 10.1073/pnas.0610700104] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial-specific adaptor AP1B sorts basolateral proteins, but the trafficking routes where it performs its sorting role remain controversial. Here, we used an RNAi approach to knock down the medium subunit of AP1B (mu1B) in the prototype epithelial cell line Madin-Darby canine kidney (MDCK). Mu1B-knocked down MDCK cells displayed loss of polarity of several endogenous and exogenous basolateral markers transduced via adenovirus vectors, but exhibited normal polarity of apical markers. We chose two well characterized basolateral protein markers, the transferrin receptor (TfR) and the vesicular stomatitis virus G protein, to study the sorting role of AP1B. A surface-capture assay introduced here showed that mu1B-knocked down MDCK cells plated on filters at confluency and cultured for 4.5 d, sorted TfR correctly in the biosynthetic route but incorrectly in the recycling route. In contrast, these same cells missorted vesicular stomatitis virus G apically in the biosynthetic route. Strikingly, recently confluent MDCK cells (1-3 d) displayed AP1B-dependence in the biosynthetic route of TfR, which decreased with additional days in culture. Sucrose density gradient analysis detected AP1B predominantly in TfR-rich endosomal fractions in MDCK cells confluent for 1 and 4 d. Our results are consistent with the following model: AP1B sorts basolateral proteins in both biosynthetic and recycling routes of MDCK cells, as a result of its predominant functional localization in recycling endosomes, which constitute a post-Golgi station in the biosynthetic route of some plasma membrane proteins. TfR utilizes a direct route from Golgi to basolateral membrane that is established as the epithelial monolayer matures.
Collapse
Affiliation(s)
- Diego Gravotta
- *Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021
| | - Ami Deora
- *Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021
| | - Emilie Perret
- *Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021
| | - Claudia Oyanadel
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile; and
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Andrea Soza
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile; and
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Ryan Schreiner
- *Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021
| | - Alfonso Gonzalez
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile; and
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Enrique Rodriguez-Boulan
- *Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Ellis MA, Potter BA, Cresawn KO, Weisz OA. Polarized biosynthetic traffic in renal epithelial cells: sorting, sorting, everywhere. Am J Physiol Renal Physiol 2006; 291:F707-13. [PMID: 16788143 DOI: 10.1152/ajprenal.00161.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The maintenance of apical and basolateral membrane domains with distinct protein and lipid compositions is necessary for the proper function of polarized epithelial cells. Delivery of cargo to the basolateral surface is thought to be mediated by the interaction of cytoplasmically disposed sorting signals with sorting receptors, whereas apically destined cargoes are sorted via mechanisms dependent on cytoplasmic, glycan-mediated, or lipid-interacting sorting signals. Apical and basolateral cargo are delivered to the surface in discrete tubular and vesicular carriers that bud from the trans-Golgi network (TGN). While it has long been thought that the TGN is the primary compartment in which apical and basolateral cargoes are segregated, recent studies suggest that sorting may begin earlier along the biosynthetic pathway. Moreover, rather than being delivered directly from the TGN to the cell surface, at least a subset of biosynthetic cargo appears to transit recycling endosomes en route to the plasma membrane. The implications and limitations of these challenges to the conventional model for how proteins are sorted and trafficked along the biosynthetic pathway are discussed.
Collapse
Affiliation(s)
- Mark A Ellis
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
35
|
Guerriero CJ, Weixel KM, Bruns JR, Weisz OA. Phosphatidylinositol 5-kinase stimulates apical biosynthetic delivery via an Arp2/3-dependent mechanism. J Biol Chem 2006; 281:15376-84. [PMID: 16601114 DOI: 10.1074/jbc.m601239200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mechanisms by which polarized epithelial cells target distinct carriers enriched in newly synthesized proteins to the apical or basolateral membrane remain largely unknown. Here we investigated the effect of phosphatidylinositol metabolism and modulation of the actin cytoskeleton, two regulatory mechanisms that have individually been suggested to function in biosynthetic traffic, on polarized traffic in Madin-Darby canine kidney cells. Overexpression of phosphatidylinositol 5-kinase (PI5K) increased actin comet frequency in Madin-Darby canine kidney cells and concomitantly stimulated trans-Golgi network (TGN) to apical membrane delivery of the raft-associated protein influenza hemagglutinin (HA), but did not affect delivery of a non-raft-associated apical protein or a basolateral marker. Modulation of actin comet formation by pharmacologic means, by overexpression of the TGN-localized inositol polyphosphate 5-phosphatase Ocrl, or by blockade of Arp2/3 function had parallel effects on the rate of apical delivery of HA. Moreover, HA released from a TGN block was colocalized in transport carriers in association with PI5K and actin comets. Inhibition of Arp2/3 function in combination with microtubule depolymerization led to a virtual block in HA delivery, suggesting synergistic coordination of these cytoskeletal assemblies in membrane transport. Our results suggest a previously unidentified role for actin comet-mediated propulsion in the biosynthetic delivery of a subset of apical proteins.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
36
|
Potter BA, Weixel KM, Bruns JR, Ihrke G, Weisz OA. N-glycans mediate apical recycling of the sialomucin endolyn in polarized MDCK cells. Traffic 2006; 7:146-54. [PMID: 16420523 DOI: 10.1111/j.1600-0854.2005.00371.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Apical and basolateral proteins are maintained within distinct membrane subdomains in polarized epithelial cells by biosynthetic and postendocytic sorting processes. Sorting of basolateral proteins in these processes has been well studied; however, the sorting signals and mechanisms that direct proteins to the apical surface are less well understood. We previously demonstrated that an N-glycan-dependent sorting signal directs the sialomucin endolyn to the apical surface in polarized Madin-Darby canine kidney cells. Terminal processing of a subset of endolyn's N-glycans is key for polarized biosynthetic delivery to the apical membrane. Endolyn is subsequently internalized, and via a cytoplasmic tyrosine-based sorting motif is targeted to lysosomes from where it constitutively cycles to the cell surface. Here, we examine the polarized sorting of endolyn along the postendocytic pathway in polarized cells. Our results suggest that similar N-glycan sorting determinants are required for apical delivery of endolyn along both the biosynthetic and the postendocytic pathways.
Collapse
Affiliation(s)
- Beth A Potter
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
37
|
Delacour D, Cramm-Behrens CI, Drobecq H, Le Bivic A, Naim HY, Jacob R. Requirement for Galectin-3 in Apical Protein Sorting. Curr Biol 2006; 16:408-14. [PMID: 16488876 DOI: 10.1016/j.cub.2005.12.046] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/05/2005] [Accepted: 12/28/2005] [Indexed: 01/22/2023]
Abstract
The central aspect of epithelial cells is their polarized structure, characterized by two distinct domains of the plasma membrane, the apical and the basolateral membrane. Apical protein sorting requires various signals and different intracellular routes to the cell surface. The first apical targeting motif identified is the membrane anchoring of a polypeptide by glycosyl-phosphatidyl-inositol (GPI). A second group of apical signals involves N- and O-glycans, which are exposed to the luminal side of the sorting organelle. Sucrase-isomaltase (SI) and lactase-phlorizin hydrolase (LPH), which use separate transport platforms for trafficking, are two model proteins for the study of apical protein sorting. In contrast to LPH, SI associates with sphingolipid/cholesterol-enriched membrane microdomains or "lipid rafts". After exit form the trans-Golgi network (TGN), the two proteins travel in distinct vesicle populations, SAVs (SI-associated vesicles) and LAVs (LPH-associated vesicles) . Here, we report the identification of the lectin galectin-3 delivering non-raft-dependent glycoproteins in the lumen of LAVs in a carbohydrate-dependent manner. Depletion of galectin-3 from MDCK cells results in missorting of non-raft-dependent apical membrane proteins to the basolateral cell pole. This suggests a direct role of galectin-3 in apical sorting as a sorting receptor.
Collapse
Affiliation(s)
- Delphine Delacour
- Department of Cell Biology and Cell Pathology, University of Marburg, D-35033 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Ziblat R, Lirtsman V, Davidov D, Aroeti B. Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells. Biophys J 2006; 90:2592-9. [PMID: 16399831 PMCID: PMC1403176 DOI: 10.1529/biophysj.105.072090] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We developed a novel surface plasmon resonance (SPR) method, based on Fourier transform infrared (FTIR) spectroscopy, as a label-free technique for studying dynamic processes occurring within living cells in real time. With this method, the long (micrometer) infrared wavelength produced by the FTIR generates an evanescent wave that penetrates deep into the sample. In this way, it enables increased depth of sensing changes, covering significant portions of the cell-height volumes. HeLa cells cultivated on a gold-coated prism were subjected to acute cholesterol enrichment or depletion using cyclodextrins. Cholesterol insertion into the cell plasma membrane resulted in an exponential shift of the SPR signal toward longer wavelengths over time, whereas cholesterol depletion caused a shift in the opposite direction. Upon application of the inactive analog alpha-cyclodextrin (alpha-CD), the effects were minimal. A similar trend in the SPR signal shifts was observed on a model membrane system. Our data suggest that FTIR-SPR can be implemented as a sensitive technique for monitoring in real time dynamic changes taking place in living cells.
Collapse
Affiliation(s)
- Roy Ziblat
- Racah Institute of Physics and Department of Cell and Animal Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
39
|
Rodriguez-Boulan E, Müsch A. Protein sorting in the Golgi complex: Shifting paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:455-64. [PMID: 15927284 DOI: 10.1016/j.bbamcr.2005.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 02/08/2023]
Abstract
The paradigms for transport along the biosynthetic route have changed dramatically over the past 15 years. Unlike the situation 15 years ago, the current paradigm involves sorting signals practically at every step of the pathway. In particular, at the exit from the Golgi complex, apical, basolateral and lysosomal targeting signals result in the generation of a variety of routes. Furthermore, it is now quite clear that not all sorting in the biosynthetic route occurs in the Golgi complex or the Trans Golgi Network (TGN). Sorting may occur distally to the Golgi, in recycling endosomes or in budded tubulosaccular structures, or it may occur proximally to the Golgi complex, at the exit from the ER. Several adaptors are candidates to sort apical and basolateral proteins but only AP1B and AP4 are currently involved. Progress is fast and future work should elucidate many of the open questions.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, LC-300, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
40
|
Rodriguez-Boulan E, Kreitzer G, Müsch A. Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 2005; 6:233-47. [PMID: 15738988 DOI: 10.1038/nrm1593] [Citation(s) in RCA: 495] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Experiments using mammalian epithelial cell lines have elucidated biosynthetic and recycling pathways for apical and basolateral plasma-membrane proteins, and have identified components that guide apical and basolateral proteins along these pathways. These components include apical and basolateral sorting signals, adaptors for basolateral signals, and docking and fusion proteins for vesicular trafficking. Recent live-cell-imaging studies provide a real-time view of sorting processes in epithelial cells, including key roles for actin, microtubules and motors in the organization of post-Golgi trafficking.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | | | |
Collapse
|
41
|
|
42
|
Ang AL, Taguchi T, Francis S, Fölsch H, Murrells LJ, Pypaert M, Warren G, Mellman I. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. ACTA ACUST UNITED AC 2004; 167:531-43. [PMID: 15534004 PMCID: PMC2172492 DOI: 10.1083/jcb.200408165] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The AP-1B clathrin adaptor complex is responsible for the polarized transport of many basolateral membrane proteins in epithelial cells. Localization of AP-1B to recycling endosomes (REs) along with other components (exocyst subunits and Rab8) involved in AP-1B-dependent transport suggested that RE might be an intermediate between the Golgi and the plasma membrane. Although the involvement of endosomes in the secretory pathway has long been suspected, we now present direct evidence using four independent methods that REs play a role in basolateral transport in MDCK cells. Newly synthesized AP-1B-dependent cargo, vesicular stomatitis virus glycoprotein G (VSV-G), was found by video microscopy, immunoelectron microscopy, and cell fractionation to enter transferrin-positive REs within a few minutes after exit from the trans-Golgi network. Although transient, RE entry appears essential because enzymatic inactivation of REs blocked VSV-G delivery to the cell surface. Because an apically targeted VSV-G mutant behaved similarly, these results suggest that REs not only serve as an intermediate but also as a common site for polarized sorting on the endocytic and secretory pathways.
Collapse
Affiliation(s)
- Agnes Lee Ang
- Department of Cell Biology, Ludwig Institute of Cancer Research, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Schuck S, Simons K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 2004; 117:5955-64. [PMID: 15564373 DOI: 10.1242/jcs.01596] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized cells establish and maintain functionally distinct surface domains by an elaborate sorting process, which ensures accurate delivery of biosynthetic cargo to different parts of the plasma membrane. This is particularly evident in polarized epithelial cells, which have been used as a model system for studies of sorting mechanisms. The clustering of lipid rafts through the oligomerization of raft components could be utilized for segregating apical from basolateral cargo and for the generation of intracellular transport carriers. Besides functioning in polarized sorting in differentiated cells, raft clustering might also play an important role in the biogenesis of apical membrane domains during development.
Collapse
Affiliation(s)
- Sebastian Schuck
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
44
|
Campo C, Mason A, Maouyo D, Olsen O, Yoo D, Welling PA. Molecular mechanisms of membrane polarity in renal epithelial cells. Rev Physiol Biochem Pharmacol 2004; 153:47-99. [PMID: 15674648 DOI: 10.1007/s10254-004-0037-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Exciting discoveries in the last decade have cast light onto the fundamental mechanisms that underlie polarized trafficking in epithelial cells. It is now clear that epithelial cell membrane asymmetry is achieved by a combination of intracellular sorting operations, vectorial delivery mechanisms and plasmalemma-specific fusion and retention processes. Several well-defined signals that specify polarized segregation, sorting, or retention processes have, now, been described in a number of proteins. The intracellular machineries that decode and act on these signals are beginning to be described. In addition, the nature of the molecules that associate with intracellular trafficking vesicles to coordinate polarized delivery, tethering, docking, and fusion are also becoming understood. Combined with direct visualization of polarized sorting processes with new technologies in live-cell fluorescent microscopy, new and surprising insights into these once-elusive trafficking processes are emerging. Here we provide a review of these recent advances within an historically relevant context.
Collapse
Affiliation(s)
- C Campo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Procino G, Carmosino M, Marin O, Brunati AM, Contri A, Pinna LA, Mannucci R, Nielsen S, Kwon TH, Svelto M, Valenti G. Ser-256 phosphorylation dynamics of Aquaporin 2 during maturation from the ER to the vesicular compartment in renal cells. FASEB J 2003; 17:1886-8. [PMID: 12897058 DOI: 10.1096/fj.02-0870fje] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aquaporin 2 (AQP2) phosphorylation at Ser-256 by protein kinase A (PKA) is a key signal for vasopressin-stimulated AQP2 insertion into the plasma membrane in renal cells. This study underscores the possible role of phosphorylation at Ser-256 in regulating AQP2 maturation. AQP2-transfected renal CD8 cells were incubated with brefeldin A (BFA) to accumulate newly synthesized AQP2 in the endoplasmic reticulum (ER), and AQP2 flow from ER to the vesicular compartment was analyzed after BFA washout. We found that a) in the ER, AQP2 is weakly phosphorylated; b) the amount of phosphorylated AQP2 (p-AQP2) at Ser-256 increased significantly during transit in the Golgi, even in the presence of the PKA inhibitor H89; and c) AQP2 transport from the Golgi to the vasopressin-regulated vesicular compartment occurred with a concomitant decrease in p-AQP2 at Ser-256. These results support the hypothesis that AQP2 transition in the Golgi apparatus is associated with a PKA-independent increase in AQP2 phosphorylation at Ser-256. Conversely, impaired constitutive phosphorylation in a Golgi-associated compartment occurring in cells expressing mutated S256A-AQP2 or E258K-AQP2 causes phosphorylation-defective AQP2 routing to lysosomes. This result might explain the molecular basis of the dominant form of nephrogenic diabetes insipidus caused by the mutation E258K-AQP2, in which the phenotype is caused by an impaired routing of AQP2.
Collapse
Affiliation(s)
- Giuseppe Procino
- Dipartimento di Fisiologia Generale ed Ambientale, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cohen D, Müsch A. Apical surface formation in MDCK cells: regulation by the serine/threonine kinase EMK1. Methods 2003; 30:269-76. [PMID: 12798141 DOI: 10.1016/s1046-2023(03)00033-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
It has recently become evident that basic mechanisms for the establishment of cell polarity are conserved between epithelial and nonepithelial systems. The vast catalogue of known gene products involved in various aspects of invertebrate and yeast cell polarity provides a repertoire of candidate proteins that can be tested for their roles in the organization of mammalian epithelia. Here, we describe cell biological approaches to study the development and maintenance of cell polarity in Mardin-Darby canine kidney (MDCK) cells, an established mammalian model cell line for simple epithelia. The assays allowed us to characterize the Caenorhabditis elegans PAR-1 homologue EMK1 as a novel regulator of apical surface formation in epithelial cells.
Collapse
Affiliation(s)
- David Cohen
- M. Dyson Institute of Vision Research, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
48
|
Terrés AM, Windle HJ, Ardini E, Kelleher DP. Soluble extracts from Helicobacter pylori induce dome formation in polarized intestinal epithelial monolayers in a laminin-dependent manner. Infect Immun 2003; 71:4067-78. [PMID: 12819097 PMCID: PMC162010 DOI: 10.1128/iai.71.7.4067-4078.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori colonizes the stomach at the interface between the mucus layer and the apical pole of gastric epithelial cells. A number of secreted and shed products from the bacteria, such as proteins and lipopolysaccharide, are likely to have a role in the pathogenesis at the epithelial level. To determine the physiological response of transporting polarized epithelia to released soluble factors from the bacterium, we used the T84 cell line. Monolayers of T84 cells were exposed to soluble extracts from H. pylori. The extracts induced rapid "dome" formation as well as an immediate decrease in transepithelial electrical resistance. Domes are fluid-filled blister-like structures unique to polarized epithelia. Their formation has been linked to sodium-transporting events as well as to diminished adherence of the cells to the substrate. H. pylori-induced dome formation in T84 monolayers was exacerbated by amiloride and inhibited by ouabain. Furthermore, it was associated with changes in the expression of the laminin binding alpha 6 beta 4 integrin and the 67-kDa laminin receptor. Domes formed primarily on laminin-coated filters, rather than on fibronectin or collagen matrices, and their formation was inhibited by preincubating the bacterial extract with soluble laminin. This effect was specific to H. pylori and independent of the urease, vacA, cagA, and Lewis phenotype of the strains. These data indicate that released elements from H. pylori can alter the physiological balance and integrity of the epithelium in the absence of an underlying immune response.
Collapse
Affiliation(s)
- A M Terrés
- Department of Clinical Medicine and Dublin Molecular Medicine Centre, Trinity College, Dublin, Ireland.
| | | | | | | |
Collapse
|
49
|
Fernandez MI, Pedron T, Tournebize R, Olivo-Marin JC, Sansonetti PJ, Phalipon A. Anti-inflammatory role for intracellular dimeric immunoglobulin a by neutralization of lipopolysaccharide in epithelial cells. Immunity 2003; 18:739-49. [PMID: 12818156 DOI: 10.1016/s1074-7613(03)00122-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal epithelial cells (IEC) play a central role in innate and acquired mucosal immunity. They ensure early signaling to trigger an inflammatory response against pathogens. Moreover, IEC mediate transcytosis of dimeric IgA (dIgA), through the polymeric-immunoglobulin receptor (pIgR), to provide secretory IgA, the major protective Ig in mucosal secretions. Using an in vitro model of polarized IEC, we describe an additional anti-inflammatory mechanism of dIgA-mediated protection against intracellular bacterial components involved in the proinflammatory activation of IEC. Specific dIgA colocalizes to lipopolysaccharide (LPS) in the apical recycling endosome compartment, preventing LPS-induced NF-kappaB translocation and subsequent proinflammatory response. Thus, intracellular neutralization by dIgA limits the acute local inflammation induced by proinflammatory pathogen-associated molecular patterns such as LPS.
Collapse
Affiliation(s)
- M Isabel Fernandez
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr. Roux, 75015, Paris, France.
| | | | | | | | | | | |
Collapse
|
50
|
Mostov K, Su T, ter Beest M. Polarized epithelial membrane traffic: conservation and plasticity. Nat Cell Biol 2003; 5:287-93. [PMID: 12669082 DOI: 10.1038/ncb0403-287] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Most cells are polarized and have distinct plasma membrane domains, which are the result of polarized trafficking of proteins and lipids. Great progress has been made in elucidating the highly conserved polarized targeting machinery. A pre-eminent challenge now is to understand the plasticity of polarized traffic, how it is altered by differentiation and dedifferentiation during development, as well as the adaptation of differentiated cells to meet changing physiological needs.
Collapse
Affiliation(s)
- Keith Mostov
- Department of Anatomy, Genentech Hall, 600 16th Street, University of California, San Francisco, CA 94143-2140, USA.
| | | | | |
Collapse
|