1
|
Hassan AM, Bajrai LH, Alharbi AS, Alhamdan MM, Dwivedi VD, Azhar EI. Elucidating the role of PPARG inhibition in enhancing MERS virus immune response: A network pharmacology and computational drug discovery. J Infect Public Health 2024; 17:102561. [PMID: 39437592 DOI: 10.1016/j.jiph.2024.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Middle East Respiratory Syndrome (MERS) has become a severe zoonotic disease, posing significant public health concerns due to the lack of specific medications. This urgently demands the development of novel therapeutic molecules. Understanding MERS's genetic underpinnings and potential therapeutic targets is crucial for developing effective treatments. METHODS Two gene expression datasets (GSE81909 and GSE100504) were analyzed to identify differentially expressed genes (DEGs) using GEO2R. Furthermore, gene ontology (GO), pathway enrichment analysis, and protein-protein interaction (PPI) network were performed to understand the gene's functions. A possible drug target was identified, and an FDA-approved drug library was screened against the selected target using molecular docking and validated the findings through molecular dynamics simulation, principal component analysis, free energy landscape, and MM/GBSA calculations. RESULTS The study on GSE81909 and GSE100504 datasets with icMERS and MOCK samples at 24 and 48 h revealed an upregulation in 73 and 267 DEGs, respectively. In the network pharmacology, STAT1, MX1, DDX58, EIF2AK2, ISG15, IFIT1, IFIH1, OAS1, IRF9, and OASL were identified as the top 10 hub genes. STAT1 was identified as the most connected hub gene among these top 10 hub genes, which plays a crucial role in the immune response to the MERS virus. Further study on STAT1 showed that PPARG helps reduce STAT1, which could modulate the immune response. Therefore, by inhibiting PPARG, the immunological response can be successfully enhanced. The known inhibitor of PPARG, 570 (Farglitazar), was used as a control. Further, screening using Tanimoto and K-mean clustering was performed, from which three compounds were identified: 2267, 3478, and 40326. Compound 3478 showed characteristics similar to the control, indicating robust binding to PPARG. 3478 showed the highest negative binding free energy with -41.20 kcal/mol, indicating strong binding with PPARG. CONCLUSIONS These findings suggest that 3478 promises to be a potential inhibitor of PPARG, and further experimental investigations can explore its potential as a MERS inhibitor.
Collapse
Affiliation(s)
- Ahmed M Hassan
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Leena H Bajrai
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Azzah S Alharbi
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Meshari M Alhamdan
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; Family Medicine Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India; Bioinformatics Research Division, Quanta Calculus, Greater Noida, India.
| | - Esam I Azhar
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia.
| |
Collapse
|
2
|
Zhang L, Xu L, Rong A, Cui Y, Wang L, Li L, Han X, Xiao X, Wu H. Effect of Rab18 on liver injury and lipid accumulation by regulating perilipin 2 and peroxisome proliferator-activated receptor gamma in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2024; 39:2219-2227. [PMID: 39030773 DOI: 10.1111/jgh.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND AND AIM Nonalcoholic fatty liver disease (NAFLD) is currently one of the most common chronic liver diseases worldwide, characterized by the presence of lipid droplets. Rab18 is an important lipid droplet protein; however, its effects and mechanisms of action on NAFLD remain unclear. METHODS Free fatty acid-stimulated AML-12 cells and high-fat diet (HFD)-fed mice were used as NAFLD models. Lentiviruses overexpressing Rab18 (Rab18-OE) or knockdown (Rab18-KD) were used to generate stable cell lines for genetic analysis. Blood serum levels of alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, glucose, and leptin were measured using a biochemical autoanalyzer. Hematoxylin and eosin staining was performed to detect pathological damage to the liver. Lipid accumulation in the cells was assessed by Oil Red O staining. Target expression was measured using qPCR, western blotting, and immunocytochemistry. RESULTS Rab18 mRNA and protein expression levels increased in free fatty acid-stimulated AML-12 cells and the livers of HFD-fed mice. Rab18-OE increased lipid accumulation in vitro, which was attenuated by Rab18-KD. In vivo, Rab18-OE augmented liver pathological damage, serum alanine aminotransferase/aspartate aminotransferase activity, and triglyceride, total cholesterol, and low-density lipoprotein levels, whereas Rab18-KD decreased these indicators. Rab18-KD also downregulated blood glucose levels in HFD-fed mice. Mechanistically, Rab18-OE and Rab18-KD regulated the mRNA and protein expression levels of perilipin 2 (PLIN2) and peroxisome proliferator-activated receptor gamma (PPARγ) in vitro and in vivo, respectively. Immunocytochemistry revealed that Rab18 colocalized with PLIN2 and PPARγ in AML-12 cells. CONCLUSION Rab18 expression was elevated in vitro and in vivo in the NAFLD mouse model. Rab18 regulates PLIN2 and PPARγ expression to exaggerate liver injury and lipid accumulation in patients with NAFLD. Thus, Rab18 may be a crucial protein in this disease and a potential therapeutic target.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lidong Xu
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Aimei Rong
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yuanbo Cui
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lin Wang
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lu Li
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaomeng Han
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xingguo Xiao
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Huili Wu
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Singh M, Crosthwait J, Sorisky A, Atlas E. Tetra methyl bisphenol F: another potential obesogen. Int J Obes (Lond) 2024; 48:923-933. [PMID: 38388800 PMCID: PMC11216980 DOI: 10.1038/s41366-024-01496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND/OBJECTIVES Obesity and its associated metabolic diseases are increasing globally. Sedentary lifestyle, high caloric diet, and genetic predisposition are known to contribute to the onset of obesity. It is increasingly recognized that exposure to environmental chemicals such as Bisphenol A (BPA) may also play a significant role. BPA has been correlated with an array of adverse health effects, including obesity and metabolic disorders. Due to public concern, manufacturers are replacing BPA with structural analogues for which there is limited toxicological data. The objective of this study was to assess the effects of these BPA analogues on adipogenesis. METHODS The adipogenic effects of Tetra Methyl Bisphenol F (TMBPF), Bisphenol F (BPF), Bisphenol AP (BPAP), and fluorine-9-bisphenol (BHPF) were evaluated in murine 3T3-L1 cells. The cells were treated with BPA and its analogues at concentrations from 0.01 µM to 20 µM, throughout differentiation, in the absence of Dexamethasone (Dex). Lipid accumulation, mRNA and protein levels of adipogenic markers was assessed. RESULTS We found that TMBPF, BPF and BPA increased 3T3-L1 lipid accumulation and the expression levels of adipogenic markers lipoprotein lipase (Lpl), fatty acid binding protein 4 (Fabp4) and perilipin (Plin) (1-20 µM; p < 0.05), whereas BHPF and BPAP had no effect in this model. Further, TMBPF induced adipogenesis to a greater extent than all the other chemicals including BPA (1-20 µM; p < 0.05). The effect mediated by TMBPF on expression levels of Fabp4, but not Plin, is likely mediated via peroxisome proliferator-activated receptor (PPAR) γ activation. CONCLUSIONS Of the BPA analogues tested, BPF was most similar to BPA in its effects, while TMBPF was most adipogenic. In addition, TMBPF is likely a PPARγ agonist, it is likely an obesogenic chemical and may be a metabolic disruptor.
Collapse
Affiliation(s)
- Misha Singh
- Environmental Health Science and Research Bureau (EHSRB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Jennifer Crosthwait
- Environmental Health Science and Research Bureau (EHSRB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Alexander Sorisky
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau (EHSRB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Yu L, Gao Y, Aaron N, Qiang L. A glimpse of the connection between PPARγ and macrophage. Front Pharmacol 2023; 14:1254317. [PMID: 37701041 PMCID: PMC10493289 DOI: 10.3389/fphar.2023.1254317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Nuclear receptors are ligand-regulated transcription factors that regulate vast cellular activities and serve as an important class of drug targets. Among them, peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family and have been extensively studied for their roles in metabolism, differentiation, development, and cancer, among others. Recently, there has been considerable interest in understanding and defining the function of PPARs and their agonists in regulating innate and adaptive immune responses and their pharmacological potential in combating chronic inflammatory diseases. In this review, we focus on emerging evidence for the potential role of PPARγ in macrophage biology, which is the prior innate immune executive in metabolic and tissue homeostasis. We also discuss the role of PPARγ as a regulator of macrophage function in inflammatory diseases. Lastly, we discuss the possible application of PPARγ antagonists in metabolic pathologies.
Collapse
Affiliation(s)
- Lexiang Yu
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Yuen Gao
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, United States
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
5
|
Zioni N, Bercovich AA, Chapal-Ilani N, Bacharach T, Rappoport N, Solomon A, Avraham R, Kopitman E, Porat Z, Sacma M, Hartmut G, Scheller M, Muller-Tidow C, Lipka D, Shlush E, Minden M, Kaushansky N, Shlush LI. Inflammatory signals from fatty bone marrow support DNMT3A driven clonal hematopoiesis. Nat Commun 2023; 14:2070. [PMID: 37045808 PMCID: PMC10097668 DOI: 10.1038/s41467-023-36906-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/20/2023] [Indexed: 04/14/2023] Open
Abstract
Both fatty bone marrow (FBM) and somatic mutations in hematopoietic stem cells (HSCs), also termed clonal hematopoiesis (CH) accumulate with human aging. However it remains unclear whether FBM can modify the evolution of CH. To address this question, we herein present the interaction between CH and FBM in two preclinical male mouse models: after sub-lethal irradiation or after castration. An adipogenesis inhibitor (PPARγ inhibitor) is used in both models as a control. A significant increase in self-renewal can be detected in both human and rodent DNMT3AMut-HSCs when exposed to FBM. DNMT3AMut-HSCs derived from older mice interacting with FBM have even higher self-renewal in comparison to DNMT3AMut-HSCs derived from younger mice. Single cell RNA-sequencing on rodent HSCs after exposing them to FBM reveal a 6-10 fold increase in DNMT3AMut-HSCs and an activated inflammatory signaling. Cytokine analysis of BM fluid and BM derived adipocytes grown in vitro demonstrates an increased IL-6 levels under FBM conditions. Anti-IL-6 neutralizing antibodies significantly reduce the selective advantage of DNMT3AMut-HSCs exposed to FBM. Overall, paracrine FBM inflammatory signals promote DNMT3A-driven clonal hematopoiesis, which can be inhibited by blocking the IL-6 pathway.
Collapse
Affiliation(s)
- N Zioni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - A Akhiad Bercovich
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - N Chapal-Ilani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Bacharach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - N Rappoport
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - A Solomon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - R Avraham
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - E Kopitman
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Z Porat
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - M Sacma
- Institute of Molecular Medicine Ulm University, Ulm, Germany
| | - G Hartmut
- Institute of Molecular Medicine Ulm University, Ulm, Germany
| | - M Scheller
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - C Muller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Heidelberg, Heidelberg, Germany
| | - D Lipka
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Heidelberg, Heidelberg, Germany
| | - E Shlush
- IVF Unit, Galilee Medical Center, Nahariya, Israel
| | - M Minden
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
- Division of Hematology, University Health Network, Toronto, ON, Canada
| | - N Kaushansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liran I Shlush
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
- Hematology and Bone Marrow Transplantation Institute Rambam Healthcare campus Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H, Lu X. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2023; 245:108391. [PMID: 36963510 DOI: 10.1016/j.pharmthera.2023.108391] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), currently the leading cause of global chronic liver disease, has emerged as a major public health problem, more efficient therapeutics of which are thus urgently needed. Peroxisome proliferator-activated receptor γ (PPAR-γ), ligand-activated transcription factors of the nuclear hormone receptor superfamily, is considered a crucial metabolic regulator of hepatic lipid metabolism and inflammation. The role of PPAR-γ in the pathogenesis of NAFLD is gradually being recognized. Here, we outline the involvement of PPAR-γ in the pathogenesis of NAFLD through adipogenesis, insulin resistance, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. In addition, the evidence for PPAR-γ- targeted therapy for NAFLD are summarized. Altogether, PPAR-γ is a promising therapeutic target for NAFLD, and the development of drugs that can balance the beneficial and undesirable effects of PPAR-γ will bring new light to NAFLD patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juan Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine / West China School of Nursing, Sichuan University, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jincheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haichuan Wang
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Nartey MNN, Jisaka M, Syeda PK, Nishimura K, Shimizu H, Yokota K. Prostaglandin D 2 Added during the Differentiation of 3T3-L1 Cells Suppresses Adipogenesis via Dysfunction of D-Prostanoid Receptor P1 and P2. Life (Basel) 2023; 13:life13020370. [PMID: 36836727 PMCID: PMC9963520 DOI: 10.3390/life13020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
We previously reported that the addition of prostaglandin, (PG)D2, and its chemically stable analog, 11-deoxy-11-methylene-PGD2 (11d-11m-PGD2), during the maturation phase of 3T3-L1 cells promotes adipogenesis. In the present study, we aimed to elucidate the effects of the addition of PGD2 or 11d-11m-PGD2 to 3T3-L1 cells during the differentiation phase on adipogenesis. We found that both PGD2 and 11d-11m-PGD2 suppressed adipogenesis through the downregulation of peroxisome proliferator-activated receptor gamma (PPARγ) expression. However, the latter suppressed adipogenesis more potently than PGD2, most likely because of its higher resistance to spontaneous transformation into PGJ2 derivatives. In addition, this anti-adipogenic effect was attenuated by the coexistence of an IP receptor agonist, suggesting that the effect depends on the intensity of the signaling from the IP receptor. The D-prostanoid receptors 1 (DP1) and 2 (DP2, also known as a chemoattractant receptor-homologous molecule expressed on Th2 cells) are receptors for PGD2. The inhibitory effects of PGD2 and 11d-11m-PGD2 on adipogenesis were slightly attenuated by a DP2 agonist. Furthermore, the addition of PGD2 and 11d-11m-PGD2 during the differentiation phase reduced the DP1 and DP2 expression during the maturation phase. Overall, these results indicated that the addition of PGD2 or 11d-11m-PGD2 during the differentiation phase suppresses adipogenesis via the dysfunction of DP1 and DP2. Therefore, unidentified receptor(s) for both molecules may be involved in the suppression of adipogenesis.
Collapse
Affiliation(s)
- Michael N. N. Nartey
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Council for Scientific and Industrial Research-Animal Research Institute, Achimota, Accra P.O. Box AH20, Ghana
| | - Mitsuo Jisaka
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Correspondence:
| | - Pinky Karim Syeda
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Kohji Nishimura
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Hidehisa Shimizu
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Kazushige Yokota
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| |
Collapse
|
8
|
Xu XT, Shi LY, Ban YJ, Luo BL, Zhu GF, Guo B, Tang L, Sang ZP, Wang JT. Design, synthesis and biological evaluation of cajanonic acid A analogues as potent PPAR γ antagonists. Bioorg Med Chem Lett 2023; 80:129081. [PMID: 36414176 DOI: 10.1016/j.bmcl.2022.129081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPAR γ) antagonists are a key instrument of insulin sensitizers since they have the ability to sensitize insulin and can avoid adverse reactions caused by receptor agonist. In this paper, two series of 28 novel Cajanonic acid A (CAA) derivatives were designed and synthesized. The biological activity showed that a novel CAA derivative 9f was identified as a potential PPAR γ antagonist by medicinal chemistry efforts. The results in vitro displayed that compound 9f could improve the PPAR γ antagonist activity (96.2 % / 50.2 % decrease in PPAR γ transactivation at 10 μM / 1 μM, respectively). It also could improve the glucose consumption activity of insulin-resistant HepG2/3T3-L1 cell line (33.27 % / 72.61 % increase in glucose consumption). And in 3 T3-L1 adipocytes, it showed anti-adipogenesis activity (7.04 % increase in oil red staining). Further, in vivo study suggested that compound 9f could improve the oral glucose tolerance in db/db mice. Taken together, derivative 9f served as a promising candidate for anti-diabetic drug discovery and deserve further study.
Collapse
Affiliation(s)
- Xiao-Ting Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China
| | - Li-Ying Shi
- Department of Ultrasound, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Yu-Juan Ban
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China
| | - Bi-Lan Luo
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China
| | - Gao-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China
| | - Zhi-Pei Sang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China
| | - Jian-Ta Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical Univeristy, Guiyang 550004, China.
| |
Collapse
|
9
|
Appraisal of the Possible Role of PPAR γ Upregulation by CLA of Probiotic Pediococcus pentosaceus GS4 in Colon Cancer Mitigation. PPAR Res 2023; 2023:9458308. [PMID: 36875279 PMCID: PMC9984262 DOI: 10.1155/2023/9458308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
The prevalence of colon cancer (CC) is increasing at the endemic scale, which is accompanied by subsequent morbidity and mortality. Although there have been noteworthy achievements in the therapeutic strategies in recent years, the treatment of patients with CC remains a formidable task. The current study focused on to study role of biohydrogenation-derived conjugated linoleic acid (CLA) of probiotic Pediococcus pentosaceus GS4 (CLAGS4) against CC, which induced peroxisome proliferator-activated receptor gamma (PPARγ) expression in human CC HCT-116 cells. Pre-treatment with PPARγ antagonist bisphenol A diglycidyl ether has significantly reduced the inhibitory efficacy of enhanced cell viability of HCT-116 cells, suggesting the PPARγ-dependent cell death. The cancer cells treated with CLA/CLAGS4 demonstrated the reduced level of Prostaglandin E2 PGE2 in association with reduced COX-2 and 5-LOX expressions. Moreover, these consequences were found to be associated with PPARγ-dependent. Furthermore, delineation of mitochondrial dependent apoptosis with the help of molecular docking LigPlot analysis showed that CLA can bind with hexokinase-II (hHK-II) (highly expressed in cancer cells) and that this association underlies voltage dependent anionic channel to open, thereby causing mitochondrial membrane depolarization, a condition that initiates intrinsic apoptotic events. Apoptosis was further confirmed by annexin V staining and elevation of caspase 1p10 expression. Taken all together, it is deduced that, mechanistically, the upregulation of PPARγ by CLAGS4 of P. pentosaceus GS4 can alter cancer cell metabolism in association with triggering apoptosis in CC.
Collapse
|
10
|
The Role of PPARs in Breast Cancer. Cells 2022; 12:cells12010130. [PMID: 36611922 PMCID: PMC9818187 DOI: 10.3390/cells12010130] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to "PPAR" and "breast cancer" were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Collapse
|
11
|
Li H, Li H, Wu X, Wu Y, Zhang J, Niu Y, Wu Y, Li J, Zhao Y, Lyu B, Shao B. Human dietary exposure to bisphenol-diglycidyl ethers in China: Comprehensive assessment through a total diet study. ENVIRONMENT INTERNATIONAL 2022; 170:107578. [PMID: 36244230 DOI: 10.1016/j.envint.2022.107578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Despite the widespread use of bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) in various consumer products as protective plasticizer, studies on human dietary exposure to these compounds are scare. In this study, nine bisphenol diglycidyl ethers (BDGEs) including BADGE, BFDGE, and seven of their derivatives were determined in the Chinese adult population based on composite dietary samples collected from the sixth (2016-2019) China total diet study (TDS). Contamination level of nine BDGEs was determined in 288 composite dietary samples from 24 provinces in China. BADGE·2H2O and BADGE are the most frequently detected and BADGE·2H2O presented the highest mean concentration (2.402 μg/kg). The most contaminated food composite is meats, with a mean ∑9BDGEs of 8.203 μg/kg, followed by aquatic products (4.255 μg/kg), eggs (4.045 μg/kg), and dairy products (3.256 μg/kg). The estimated daily intake (EDI) of ∑9BDGEs based on the mean and 95th percentile concentrations are 121.27 ng/kg bw/day and 249.71 ng/kg bw/day. Meats, eggs, and aquatic products are the main source of dietary exposure. Notably, beverages and water, alcohols were the main contributors of dietary exposure to BADGE and BADGE·2H2O, followed by animal-derived foods. Dietary exposure assessment demonstrated that human dietary BDGEs do not pose risks to general population based on the mean and 95th percentile hazard index with < 1. This is the first comprehensive national dietary exposure assessment of BDGEs in Chinese general population.
Collapse
Affiliation(s)
- Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Heli Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xuan Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yige Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Bi J, Wang F, Wei Y, Zhang Y, Jia C, He J, Yao J, Zhang Z, Li Z, Li P, He M. Association of serum bisphenol A levels with incident overweight and obesity risk and the mediating effect of adiponectin. CHEMOSPHERE 2022; 308:136287. [PMID: 36084821 DOI: 10.1016/j.chemosphere.2022.136287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Existing cross-sectional studies indicated a positive association of bisphenol A (BPA) with overweight and obesity. However, the relationship and potential mechanisms underlying this association remain to be elucidated in prospective studies. OBJECTIVE This study was designed to investigate whether serum BPA is associated with incident overweight and obesity risk, and to further explore whether adiponectin plays a mediating role in the association. METHODS We measured blood BPA and adiponectin in Chinese populations. The association of serum BPA with overweight and obesity risk was evaluated using multivariable logistic regression models. We further examined the mediating effect of adiponectin by causal mediation analysis. RESULTS Among 796 participants free of overweight and obesity at baseline, 133 individuals developed overweight and obesity during the follow-up period. Compared with those in the lowest quartile of serum BPA, those in the second and third quartiles were positively associated with incident overweight and obesity risk adjusting for covariates (all P-values < 0.05), whereas this association was not observed in the fourth quartile. Further spline analysis showed an inverted U-shaped dose-response relationship (Pnon-linear = 0.04). Furthermore, each unit of serum log10-transformed BPA levels was associated with higher changes in waist-to-height ratio and body roundness index (all P-values < 0.05). Mediation analysis indicated significant indirect effects of adiponectin on the associations of BPA with overweight and obesity prevalence (mediation proportion: 46.08%; P = 0.02), and BMI levels (mediation proportion: 30.32%; P = 0.03). CONCLUSION Serum BPA displayed a positive association with incident overweight and obesity risk in a non-monotonic pattern, and adiponectin might mediate the association. Further mechanistic studies are warranted.
Collapse
Affiliation(s)
- Jiao Bi
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinqiu Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Gómez-Abellán V, Pérez-Oliva AB, Cabas I, Hermi F, Arizcun M, García-Moreno D, Sepulcre MP, Mulero V. Peroxisome proliferator-activated receptors alpha and beta mediate the anti-inflammatory effects of the cyclopentenone prostaglandin 15-deoxy-Δ 12,14-PGJ 2 in fish granulocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104498. [PMID: 35948178 DOI: 10.1016/j.dci.2022.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Prostaglandins (PGs) are highly reactive small lipophilic molecules derived from polyunsaturated fatty acids of the cell membrane and play a key role in the resolution of inflammation processes. 15-deoxy-Δ12,14-PGJ2 (15dPGJ2) is a cyclopentenone PG (CyPG) of the J series with anti-inflammatory, anti-proliferative and pro-apoptotic effects. This CyPG can signal through: (i) the PGD2 receptor (DP2) and peroxisome proliferator-activated receptor γ (PPARγ) or (ii) by covalent binding to protein nucleophiles, such as, thiols groups of cysteine, lysine or histidine via a Michael addition reaction, modifying its structure and function. In this work we show that acidophilic granulocytes (AGs) of gilthead seabream (Sparus aurata L.), the functional equivalent to mammalian neutrophils, constitutively expressed ppara, pparb and pparg genes, the latter showing the highest expression and up-regulation when stimulated by bacterial DNA. In addition, we tested the ability of 15dPGJ2, and its biotinylated analog, as well as several PPARγ ligands, to modulate reactive oxygen species (ROS) and/or cytokines production during a Toll like receptor (TLR)-mediated granulocyte response. Thus, 15dPGJ2 was able to significantly decrease bacterial DNA-induced ROS production and transcript levels of pparg, interleukin-1β (il1b) and prostaglandin-endoperoxide synthase 2 (ptgs2). In contrast, its biotinylated analog was less potent and a higher dose was required to elicit the same effects on ROS production and cytokine expression. In addition, different PPARγ agonists were able to mimic the effects of 15dPGJ2. Conversely, the PPARγ antagonist T007097 abolished the effect of 15dPGJ2 on DNA bacterial-induced ROS production. Surprisingly, transactivation assays revealed that both 15dPGJ2 and its biotinylated analog signaled via Pparα and Pparβ, but not by Pparγ. These results were further confirmed by HPLC/MS analysis, where Pparβ was identified as an interactor of biotin-15dPGJ2 in naïve and DNA-stimulated leukocytes. Taken together, our data show that 15dPGJ2 acts both through Ppar activation and covalent binding to proteins in fish granulocytes and identify for the first time in vertebrates a role for Pparα and Pparβ in the resolution of inflammation mediated by 15dPGJ2.
Collapse
Affiliation(s)
- Victoria Gómez-Abellán
- Departamento de Biología Cellular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain
| | - Ana B Pérez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Isabel Cabas
- Departamento de Biología Cellular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Fatma Hermi
- Unit of Immunology, Environmental Microbiology and Cancerously, Faculty of Sciences of Bizerte, Jarzouna, Bizerte, 7021, University of Carthage, Tunis, Tunisia
| | - Marta Arizcun
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), 30860, Murcia, Spain
| | - Diana García-Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María P Sepulcre
- Departamento de Biología Cellular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Victoriano Mulero
- Departamento de Biología Cellular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
14
|
Tanjaya J, Ha P, Zhang Y, Wang C, Shah Y, Berthiaume E, Pan HC, Shi J, Kwak J, Wu B, Ting K, Zhang X, Soo C. Genetic and pharmacologic suppression of PPARγ enhances NELL-1-stimulated bone regeneration. Biomaterials 2022; 287:121609. [PMID: 35839586 PMCID: PMC10434299 DOI: 10.1016/j.biomaterials.2022.121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/15/2022] [Accepted: 05/28/2022] [Indexed: 11/02/2022]
Abstract
Recent investigations into mechanisms behind the development of osteoporosis suggest that suppressing PPARγ-mediated adipogenesis can improve bone formation and bone mineral density. In this study, we investigated a co-treatment strategy to enhance bone formation by combining NELL-1, an osteogenic molecule that has been extensively studied for its potential use as a therapeutic for osteoporosis, with two methods of PPARγ suppression. First, we suppressed PPARγ genetically using lentiviral PPARγ-shRNA in immunocompromised mice for a proof of concept. Second, we used a PPARγ antagonist to suppress PPARγ pharmacologically in immunocompetent senile osteopenic mice for clinical transability. We found that the co-treatment strategy significantly increased bone formation, increased the proliferation stage cell population, decreased late apoptosis of primary mouse BMSCs, and increased osteogenic marker mRNA levels in comparison to the single agent treatment groups. The addition of PPARγ suppression to NELL-1 therapy enhanced NELL-1's effects on bone formation by upregulating anabolic processes without altering NELL-1's inhibitory effects on osteoclastic and adipogenic activities. Our findings suggest that combining PPARγ suppression with therapeutic NELL-1 may be a viable method that can be further developed as a novel strategy to reverse bone loss and decrease marrow adiposity in age-related osteoporosis.
Collapse
Affiliation(s)
- Justine Tanjaya
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Pin Ha
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Yulong Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA, USA, 90025; Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Chenchao Wang
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Yash Shah
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Emily Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Hsin Chuan Pan
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Jiayu Shi
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Jinny Kwak
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Benjamin Wu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA, USA, 90025; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA, 90025; Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Kang Ting
- Forsyth Institute, Harvard University, Cambridge, MA, USA, 02142.
| | - Xinli Zhang
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA, 90025; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA, 90025; Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025.
| |
Collapse
|
15
|
Xu H, Jia Y, Sun Z, Su J, Liu QS, Zhou Q, Jiang G. Environmental pollution, a hidden culprit for health issues. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:31-45. [PMID: 38078200 PMCID: PMC10702928 DOI: 10.1016/j.eehl.2022.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/26/2022] [Accepted: 04/23/2022] [Indexed: 12/12/2023]
Abstract
The environmental and health impacts from the massive discharge of chemicals and subsequent pollution have been gaining increasing public concern. The unintended exposure to different pollutants, such as heavy metals, air pollutants and organic chemicals, may cause diverse deleterious effects on human bodies, resulting in the incidence and progression of different diseases. The article reviewed the outbreak of environmental pollution-related public health emergencies, the epidemiological evidence on certain pollution-correlated health effects, and the pathological studies on specific pollutant exposure. By recalling the notable historical life-threatening disasters incurred by local chemical pollution, the damning evidence was presented to criminate certain pollutants as the main culprit for the given health issues. The epidemiological data on the prevalence of some common diseases revealed a variety of environmental pollutants to blame, such as endocrine-disrupting chemicals (EDCs), fine particulate matters (PMs) and heavy metals. The retrospection of toxicological studies provided illustrative clues for evaluating ambient pollutant-induced health risks. Overall, environmental pollution, as the hidden culprit, should answer for the increasing public health burden, and more efforts are highly encouraged to strive to explore the cause-and-effect relationships through extensive epidemiological and pathological studies.
Collapse
Affiliation(s)
- Hanqing Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, and Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, and Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian S. Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
16
|
Toobian D, Ghosh P, Katkar GD. Parsing the Role of PPARs in Macrophage Processes. Front Immunol 2021; 12:783780. [PMID: 35003101 PMCID: PMC8727354 DOI: 10.3389/fimmu.2021.783780] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cells are richly equipped with nuclear receptors, which act as ligand-regulated transcription factors. Peroxisome proliferator activated receptors (PPARs), members of the nuclear receptor family, have been extensively studied for their roles in development, differentiation, and homeostatic processes. In the recent past, there has been substantial interest in understanding and defining the functions of PPARs and their agonists in regulating innate and adaptive immune responses as well as their pharmacologic potential in combating acute and chronic inflammatory disease. In this review, we focus on emerging evidence of the potential roles of the PPAR subtypes in macrophage biology. We also discuss the roles of dual and pan PPAR agonists as modulators of immune cell function, microbial infection, and inflammatory diseases.
Collapse
Affiliation(s)
- Daniel Toobian
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
- Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, CA, United States
- Department of Medicine, University of California San Diego, San Diego, CA, United States
- Veterans Affairs Medical Center, La Jolla, CA, United States
| | - Gajanan D. Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
17
|
McMeekin LJ, Joyce KL, Jenkins LM, Bohannon BM, Patel KD, Bohannon AS, Patel A, Fox SN, Simmons MS, Day JJ, Kralli A, Crossman DK, Cowell RM. Estrogen-related Receptor Alpha (ERRα) is Required for PGC-1α-dependent Gene Expression in the Mouse Brain. Neuroscience 2021; 479:70-90. [PMID: 34648866 PMCID: PMC9124582 DOI: 10.1016/j.neuroscience.2021.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
Deficiency in peroxisome proliferator-activated receptor gamma coactivator 1-alpha. (PGC-1α) expression or function is implicated in numerous neurological and psychiatric disorders. PGC-1α is required for the expression of genes involved in synchronous neurotransmitter release, axonal integrity, and metabolism, especially in parvalbumin-positive interneurons. As a transcriptional coactivator, PGC-1α requires transcription factors to specify cell-type-specific gene programs; while much is known about these factors in peripheral tissues, it is unclear if PGC-1α utilizes these same factors in neurons. Here, we identified putative transcription factors controlling PGC-1α-dependent gene expression in the brain using bioinformatics and then validated the role of the top candidate in a knockout mouse model. We transcriptionally profiled cells overexpressing PGC-1α and searched for over-represented binding motifs in the promoters of upregulated genes. Binding sites of the estrogen-related receptor (ERR) family of transcription factors were enriched, and blockade of ERRα attenuated PGC-1α-mediated induction of mitochondrial and synaptic genes in cell culture. Localization in the mouse brain revealed enrichment of ERRα expression in parvalbumin-expressing neurons with tight correlation of expression with PGC-1α across brain regions. In ERRα null mice, PGC-1α-dependent genes were reduced in multiple regions, including neocortex, hippocampus, and cerebellum, though not to the extent observed in PGC-1α null mice. Behavioral assessment revealed ambulatory hyperactivity in response to amphetamine and impairments in sensorimotor gating without the overt motor impairment characteristic of PGC-1α null mice. These data suggest that ERRα is required for normal levels of expression of PGC-1α-dependent genes in neurons but that additional factors may be involved in their regulation.
Collapse
Affiliation(s)
- L J McMeekin
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - K L Joyce
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - L M Jenkins
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - B M Bohannon
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - K D Patel
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA
| | - A S Bohannon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - A Patel
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - S N Fox
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - M S Simmons
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - J J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - A Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - D K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - R M Cowell
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
18
|
Gaculenko A, Gregoric G, Popp V, Seyler L, Ringer M, Kachler K, Wu Z, Kisel W, Hofbauer C, Hofbauer LC, Uder M, Schett G, Bäuerle T, Bozec A. Systemic PPARγ Antagonism Reduces Metastatic Tumor Progression in Adipocyte-Rich Bone in Excess Weight Male Rodents. J Bone Miner Res 2021; 36:2440-2452. [PMID: 34378824 DOI: 10.1002/jbmr.4422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022]
Abstract
Primary tumors are widely associated with an excess in body fat. The role of adipose tissue on tumor cell homing to bone is yet poorly defined. In this study, we aimed to assess whether bone colonization by tumor cells is favored by an adipocyte-rich bone marrow. We delineated the accompanying alterations of the bone microenvironment and established a treatment approach that interferes with high fat diet (HFD)-induced bone metastasis formation. We were able to show that adipocytes affect skeletal tumor growth in a metastatic model of breast cancer in male rats and melanoma in male mice as well as in human breast cancer bone biopsies. Indeed, HFD-induced bone marrow adiposity was accompanied by accelerated tumor progression and increased osteolytic lesions. In human bone metastases, bone marrow adiposity correlated with tumor cell proliferation. By antagonization of the adipocyte differentiation and storage pathway linked to the peroxisome proliferator-activated receptor gamma (PPARγ) with bisphenol-A-diglycidylether (BADGE), we were able to decelerate tumor progression and subsequent osteolytic damage in the bones of two distinct metastatic animal models exposed to HFD. Overall these data show that adipose tissue is a critical factor in bone metastases and cancer-induced bone loss. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Anastasia Gaculenko
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Institute of Radiology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gasper Gregoric
- Institute of Radiology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Vanessa Popp
- Institute of Radiology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lisa Seyler
- Institute of Radiology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mark Ringer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katerina Kachler
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zhengquan Wu
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wadim Kisel
- University Center for Traumatology, Orthopedics and Plastic Surgery OUPC, Technische Universität Dresden, Dresden, Germany
| | - Christine Hofbauer
- National Center for Tumor Diseases (NCT), Partner Site Dresden/University Cancer Center (UCC), Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Michael Uder
- Institute of Radiology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
19
|
Tait S, Carli F, Busani L, Ciociaro D, Della Latta V, Deodati A, Fabbrizi E, Pala AP, Maranghi F, Tassinari R, Toffol G, Cianfarani S, Gastaldelli A, La Rocca C. Italian Children Exposure to Bisphenol A: Biomonitoring Data from the LIFE PERSUADED Project. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211846. [PMID: 34831602 PMCID: PMC8621164 DOI: 10.3390/ijerph182211846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
A human biomonitoring (HBM) study on bisphenol A (BPA) in Italian children and adolescents was performed within the LIFE PERSUADED project, considering the residing areas, sex and age. The median urinary BPA level was 7.02 µg/L, with children living in the South of Italy or in urban areas having higher levels than those residing in the North or in rural areas. Children aged 4–6 years had higher BPA levels than those aged 7–10 and 11–14 years, but no differences were detected between sexes. The exposure in Italian children was higher compared to children from other countries, but lower than the HBM guidance value (135 µg/L). The estimated daily intake was 0.17 μg/kg body weight (bw) per day, about 24-fold below the temporary Tolerable Daily Intake of 4 μg/kg bw per day established by the European Food Safety Authority. However, this threshold was exceeded in 1.44% of the enrolled children, raising concern about the overall exposure of Italian young population.
Collapse
Affiliation(s)
- Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
| | - Fabrizia Carli
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Luca Busani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
| | - Demetrio Ciociaro
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Veronica Della Latta
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Annalisa Deodati
- Dipartimento Pediatrico, Universitario Ospedaliero “Bambino Gesù” Children’s Hospital, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy; (A.D.); (S.C.)
| | - Enrica Fabbrizi
- Unità Operativa Complessa Pediatria e Neonatologia, Ospedale Civile Augusto Murri, Via Augusto Murri, 21, 63900 Fermo, Italy;
- Civitanova Marche Hospital, ASUR MARCHE Area Vasta 3, 62012 Civitanova Marche, Italy
| | - Anna Paola Pala
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Francesca Maranghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
| | - Roberta Tassinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
| | - Giacomo Toffol
- Associazione Culturale Pediatri, Via Montiferru, 6, 09070 Narbolia, Italy;
| | - Stefano Cianfarani
- Dipartimento Pediatrico, Universitario Ospedaliero “Bambino Gesù” Children’s Hospital, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy; (A.D.); (S.C.)
- Department of Systems Medicine, University of Rome Tor Vergata, Via Cracovia, 50, 00133 Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Amalia Gastaldelli
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Cinzia La Rocca
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
- Correspondence: ; Tel.: +39-06-4990-2992
| | | |
Collapse
|
20
|
Wang D, Zhao H, Fei X, Synder SA, Fang M, Liu M. A comprehensive review on the analytical method, occurrence, transformation and toxicity of a reactive pollutant: BADGE. ENVIRONMENT INTERNATIONAL 2021; 155:106701. [PMID: 34146765 DOI: 10.1016/j.envint.2021.106701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A diglycidyl ether (BADGE)-based epoxy resin is one of the most widely used epoxy resins with an annual production amount of several million tons. Compared with all other legacy or emerging organic compounds, BADGE is special due to its toxicity and high reactivity in the environment. More and more studies are available on its analytical methods, occurrence, transformation and toxicity. Here, we provided a comprehensive review of the current BADGE-related studies, with focus on its production, application, available analytical methods, occurrences in the environment and human specimen, abiotic and biotic transformation, as well as the in vitro and in vivo toxicities. The available data show that BADGE and its derivatives are ubiquitous environmental chemicals and often well detected in human specimens. For their analysis, a water-free sample pretreatment should be considered to avoid hydrolysis. Additionally, their complex reactions with endogenous metabolites are areas of great interest. To date, the monitoring and further understanding of their transport and fate in the environment are still quite lacking, comparing with its analogues bisphenol A (BPA) and bisphenol S (BPS). In terms of toxicity, the summary of its current studies and Environmental Protection Agency (EPA) ToxCast toxicity database suggests BADGE might be an endocrine disruptor, though more detailed evidence is still needed to confirm this hypothesis in in vivo animal models. Future study of BADGE should focus on its metabolic transformation, reaction with protein and validation of its role as an endocrine disruptor. We believe that the elucidation of BADGEs can greatly enhance our understandings of those reactive compounds in the environment and human.
Collapse
Affiliation(s)
- Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Haoduo Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Shane Allen Synder
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.
| | - Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.
| |
Collapse
|
21
|
Virtual screening and biological evaluation of PPARγ antagonists as potential anti-prostate cancer agents. Bioorg Med Chem 2021; 46:116368. [PMID: 34433102 DOI: 10.1016/j.bmc.2021.116368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ) was identified as an oncogene and it plays a key role in prostate cancer (PC) development and progression. PPARγ antagonists have been shown to inhibit PC cell growth. Herein, we describe a virtual screening-based approach that led to the discovery of novel PPARγ antagonist chemotypes that bind at the allosteric pocket. Arg288, Lys367, and His449 appear to be important for PPARγ antagonist binding.
Collapse
|
22
|
Miyamae Y. Insights into Dynamic Mechanism of Ligand Binding to Peroxisome Proliferator-Activated Receptor γ toward Potential Pharmacological Applications. Biol Pharm Bull 2021; 44:1185-1195. [PMID: 34471046 DOI: 10.1248/bpb.b21-00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily, which regulates the transcription of a variety of genes involved in lipid and glucose metabolism, inflammation, and cell proliferation. These functions correlate with the onset of type-2 diabetes, obesity, and immune disorders, which makes PPARγ a promising target for drug development. The majority of PPARγ functions are regulated by binding of small molecule ligands, which cause conformational changes of PPARγ followed by coregulator recruitment. The ligand-binding domain (LBD) of PPARγ contains a large Y-shaped cavity that can be occupied by various classes of compounds such as full agonists, partial agonists, natural lipids, and in some cases, a combination of multiple molecules. Several crystal structure studies have revealed the binding modes of these compounds in the LBD and insight into the resulting conformational changes. Notably, the apo form of the PPARγ LBD contains a highly mobile region that can be stabilized by ligand binding. Furthermore, recent biophysical investigations have shed light on the dynamic mechanism of how ligands induce conformational changes in PPARγ and result in functional output. This information may be useful for the design of new and repurposed structures of ligands that serve a different function from original compounds and more potent pharmacological effects with less undesirable clinical outcomes. This review provides an overview of the peculiar characteristics of the PPARγ LBD by examining a series of structural studies focused on the dynamic mechanism of binding and the potential applications of strategies for ligand screening and chemical labeling.
Collapse
Affiliation(s)
- Yusaku Miyamae
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Alliance for Research on the Mediterranean and North Africa, University of Tsukuba
| |
Collapse
|
23
|
Mal S, Dwivedi AR, Kumar V, Kumar N, Kumar B, Kumar V. Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Different Disease States: Recent Updates. Curr Med Chem 2021; 28:3193-3215. [PMID: 32674727 DOI: 10.2174/0929867327666200716113136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR), a ligand dependant transcription factor, is a member of the nuclear receptor superfamily. PPAR exists in three isoforms i.e. PPAR alpha (PPARα), PPAR beta (PPARβ), and PPAR gamma (PPARγ). These are multi-functional transcription factors and help in regulating inflammation, type 2 diabetes, lipid concentration in the body, metastasis, and tumor growth or angiogenesis. Activation of PPARγ causes inhibition of growth of cultured human breast, gastric, lung, prostate, and other cancer cells. PPARγ is mainly involved in fatty acid storage, glucose metabolism, and homeostasis and adipogenesis regulation. A large number of natural and synthetic ligands bind to PPARγ and modulate its activity. Ligands such as thiazolidinedione, troglitazone, rosiglitazone, pioglitazone effectively bind to PPARγ; however, most of these were found to display severe side effects such as hepatotoxicity, weight gain, cardiovascular complications and bladder tumor. Now the focus is shifted towards the development of dual-acting or pan PPAR ligands. The current review article describes the functions and role of PPARγ in various disease states. In addition, recently reported PPARγ ligands and pan PPAR ligands were discussed in detail. It is envisaged that the present review article may help in the development of potent PPAR ligands with no or minimal side effects.
Collapse
Affiliation(s)
- Suvadeep Mal
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Vijay Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Naveen Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| |
Collapse
|
24
|
Aktağ E, Yurdakök K, Yalçın SS, Kandemir N. Urinary bisphenol A levels in prepubertal children with exogenous obesity according to presence of metabolic syndrome. J Pediatr Endocrinol Metab 2021; 34:495-502. [PMID: 33639044 DOI: 10.1515/jpem-2020-0371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/11/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Recent studies have shown a potential link between chronic exposure to Bisphenol A (BPA) and exogenous obesity, the prevalence of which has been increasing dramatically in all age groups and particularly among children in the last decades. In this study, we aimed at comparing BPA exposure levels between controls and otherwise healthy, drug-naive, pre-pubertal children having exogenous obesity with/without metabolic syndrome. METHODS A total of 63 pre-pubertal children with exogenous obesity whom 27 of them having metabolic syndrome attending Hacettepe University Ihsan Dogramaci Children's Hospital were included in this study. The control group consisted of 34 age- and sex-matched healthy children with no significant underlying medical conditions. Urinary BPA levels were measured using LC-MS/MS (high-performance liquid chromatography coupled with tandem mass spectrometry) methodology. RESULTS Urinary BPA levels among obese children were significantly higher than those of the control group (median: 22.9 μg/g-creatinine and 6.9 μg/g-creatinine, respectively; p=0.0001). When adjusted with generalized linear models for age, gender and z scores of body mass index, obese children having metabolic syndrome had significantly higher urinary BPA levels than obese children without metabolic syndrome and both obese groups had considerably elevated levels of urinary BPA than the controls (estimated marginal mean ± standard error: 42.3 ± 7.4 μg/g-creatinine, 22.6 ± 3.5 μg/g-creatinine and 12.1 ± 2.5 μg/g-creatinine, respectively, p=0.0001). CONCLUSIONS This study shows much higher BPA exposure among obese children with metabolic syndrome during the prepubertal period.
Collapse
Affiliation(s)
- Esra Aktağ
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Kadriye Yurdakök
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Nurgün Kandemir
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
25
|
Benzosuberene-sulfone analogues synthesis from Cedrus deodara oil and their therapeutic evaluation by computational analysis to treat type 2 diabetes. Bioorg Chem 2021; 112:104860. [PMID: 33839462 DOI: 10.1016/j.bioorg.2021.104860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 01/07/2023]
Abstract
Benzosuberene-sulfone (BSS) analogues have been semi-synthesized following green approaches from himachalenes, which has been extracted from essential oil of Cedrus deodara. In this process, benzosuberene in presence of different aryl or alkyl sodium sulfinates, I2 and potassium persulfate (K2S2O8) in acetonitrile-water solvent conditions gave BSS-analogues at room temperature. Under this reaction, a facile endocyclic β-H elimination has been noticed for BSS-analogues synthesis instead of vinyl sulfones and the reason may be due to its specific structure and electronic environment. The BSS-compounds were obtained with moderate to excellent yields under mild conditions. All the compounds were computationally subjected to drug likeliness and toxicity prediction studies. Further, the synthesized molecules were evaluated under in-silico studies for their binding affinity towards the native Peroxisome Proliferator-Activated Receptor Gamma (PPARG), and two PPARG mutants (R357A and V290M). Both the mutant forms of PPARG are deficient in eliciting a response to treatment with full and partial agonists. Our computational studies suggested that the molecule 3q performed better than the standard drug (Rosiglitazone) in all three protein structures. This implies that our suggested molecule could act as a more potent antagonist to native PPARG and could also be developed to treat type-2 diabetes patients with R357A and V290M mutations, which didn't elicit any response to currently available drugs in the market.
Collapse
|
26
|
Mett J, Müller U. The medium-chain fatty acid decanoic acid reduces oxidative stress levels in neuroblastoma cells. Sci Rep 2021; 11:6135. [PMID: 33731759 PMCID: PMC7971073 DOI: 10.1038/s41598-021-85523-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Enhanced oxidative stress is a contributing factor in the pathogenesis of several neurodegenerative disorders such as Alzheimer´s disease. Beneficial effects have been demonstrated for medium-chain fatty acids (MCFAs) nutritionally administered as medium-chain triglycerides (MCTs) or coconut oil (CO). The observed effects on cognitive impairment are generally attributed to the hepatic metabolism of MCFAs, where resulting ketone bodies serve as an alternate energy source to compensate for the impaired glucose utilisation in the human brain. Here we show that the saturated MCFA decanoic acid (10:0) reduces the oxidative stress level in two different neuroblastoma cell lines. Phosphatidylcholine (PC) containing decanoic acid (10:0) (PC10:0/10:0) reduced the cellular H2O2 release in comparison to solvent, L-α-Glycerophosphorylcholine and PC containing the long-chain fatty acid (LCFA) arachidic acid (20:0). This effect seems to be at least partially based on an upregulation of catalase activity, independent of alterations in catalase gene expression. Further, PC10:0/10:0 decreased the intracellular oxidative stress level and attenuated the H2O2-induced cell death. It did not affect the level of the ketone body β-hydroxybutyrate (βHB). These results indicate that decanoic acid (10:0) and possibly MCFAs in general directly reduce oxidative stress levels independent of ketone levels and thus may promote neuronal health.
Collapse
Affiliation(s)
- Janine Mett
- Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology) Faculty NT-Natural Science and Technology, Saarland University, 66123, Saarbrücken, Germany.
| | - Uli Müller
- Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology) Faculty NT-Natural Science and Technology, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
27
|
Che L, Ren B, Jia Y, Dong Y, Wang Y, Shan J, Wang Y. Feprazone Displays Antiadipogenesis and Antiobesity Capacities in in Vitro 3 T3-L1 Cells and in Vivo Mice. ACS OMEGA 2021; 6:6674-6680. [PMID: 33748580 PMCID: PMC7970497 DOI: 10.1021/acsomega.0c05470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/09/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND PURPOSE Excessive lipid accumulation in adipose tissues and deregulation of adipogenesis-induced obesity affect millions of people worldwide. Feprazone, a nonsteroidal anti-inflammatory drug, has a wide clinical use. However, it is unknown whether Feprazone possesses an antiadipogenic ability. The aim of this study is to investigate whether Feprazone possesses an antiadipogenic ability in 3 T3-L1 cells and an antiobesity capacity in mouse models. METHODS An MTT assay was used to determine the optimized incubation concentrations of Feprazone in 3 T3-L1 cells. The lipid accumulation was evaluated using Oil Red O staining. The concentrations of triglyceride and glycerol release were detected to check the lipolysis during 3 T3-L1 adipogenesis. A quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the expressions of sterol regulatory element-binding protein-1C (SREBP-1C) and fatty acid binding protein 4 (FABP4) in treated cells. The expressions of peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein α (C/EBP-α), adipose triglyceride lipase (ATGL), and aquaporin-7 (AQP-7) were detected using qRT-PCR and Western blot analysis. After the high-fat diet (HFD) mice were treated with Feprazone, the pathological state of adipocyte tissues was evaluated using HE staining. The adipocyte size, visceral adipocyte tissue weight, and bodyweights were recorded. RESULTS According to the proliferation result, 30 and 60 μM Feprazone were used as the optimized concentrations of Feprazone. In the in vitro study, lipid accumulation, elevated production of triglycerides, the release of glycerol, upregulated SREBP-1C, FABP4, PPAR-γ, and C/EBP-α and downregulated ATGL and AQP-7 in the 3 T3-L1 adipocytes induced by the adipocyte differentiation cocktail medium were significantly reversed by treatment with Feprazone. In the in vivo experiment, we found that the increased adipocyte size, visceral adipocyte tissue weight, and body weights induced by HFD feeding in mice were significantly suppressed by the administration of Feprazone. CONCLUSION Feprazone might display anti-adipogenic and antiobesity capacities in in vitro 3 T3-L1 cells and in vivo mice.
Collapse
Affiliation(s)
- Liqun Che
- Department
of Endocrinology Ward 3, The Third Affiliated
Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Bo Ren
- Department
of Endocrinology Ward 3, The Third Affiliated
Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Yuanyuan Jia
- Department
of Endocrinology Ward 3, The Third Affiliated
Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Yujia Dong
- Department
of Endocrinology Ward 3, The Third Affiliated
Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Yanbing Wang
- Department
of Endocrinology Ward 3, The Third Affiliated
Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jie Shan
- Department
of Endocrinology Ward 3, The Third Affiliated
Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Yuchun Wang
- Department
of pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
- . Tel.: +86-452-2663370
| |
Collapse
|
28
|
Epo receptor signaling in macrophages alters the splenic niche to promote erythroid differentiation. Blood 2021; 136:235-246. [PMID: 32350523 DOI: 10.1182/blood.2019003480] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Anemic stress induces stress erythropoiesis, which rapidly generates new erythrocytes to restore tissue oxygenation. Stress erythropoiesis is best understood in mice where it is extramedullary and occurs primarily in the spleen. However, both human and mouse stress erythropoiesis use signals and progenitor cells that are distinct from steady-state erythropoiesis. Immature stress erythroid progenitors (SEPs) are derived from short-term hematopoietic stem cells. Although the SEPs are capable of self-renewal, they are erythroid restricted. Inflammation and anemic stress induce the rapid proliferation of SEPs, but they do not differentiate until serum erythropoietin (Epo) levels increase. Here we show that rather than directly regulating SEPs, Epo promotes this transition from proliferation to differentiation by acting on macrophages in the splenic niche. During the proliferative stage, macrophages produce canonical Wnt ligands that promote proliferation and inhibit differentiation. Epo/Stat5-dependent signaling induces the production of bioactive lipid mediators in macrophages. Increased production of prostaglandin J2 (PGJ2) activates peroxisome proliferator-activated receptor γ (PPARγ)-dependent repression of Wnt expression, whereas increased production of prostaglandin E2 (PGE2) promotes the differentiation of SEPs.
Collapse
|
29
|
Callaghan MA, Alatorre-Hinojosa S, Connors LT, Singh RD, Thompson JA. Plasticizers and Cardiovascular Health: Role of Adipose Tissue Dysfunction. Front Pharmacol 2021; 11:626448. [PMID: 33716730 PMCID: PMC7947604 DOI: 10.3389/fphar.2020.626448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Since the 1950s, the production of plastics has increased 200-fold, reaching 360 million tonnes in 2019. Plasticizers, additives that modify the flexibility and rigidity of the product, are ingested as they migrate into food and beverages. Human exposure is continuous and widespread; between 75 and 97% of urine samples contain detectable levels of bisphenols and phthalates, the most common plasticizers. Concern over the toxicity of plasticizers arose in the late 1990s, largely focused around adverse developmental and reproductive effects. More recently, many studies have demonstrated that exposure to plasticizers increases the risk for obesity, type 2 diabetes, and cardiovascular disease (CVD). In the 2000s, many governments including Canada, the United States and European countries restricted the use of certain plasticizers in products targeted towards infants and children. Resultant consumer pressure motivated manufacturers to substitute plasticizers with analogues, which have been marketed as safe. However, data on the effects of these new substitutes are limited and data available to-date suggest that many exhibit similar properties to the chemicals they replaced. The adverse effects of plasticizers have largely been attributed to their endocrine disrupting properties, which modulate hormone signaling. Adipose tissue has been well-documented to be a target of the disrupting effects of both bisphenols and phthalates. Since adipose tissue function is a key determinant of cardiovascular health, adverse effects of plasticizers on adipocyte signaling and function may underlie their link to cardiovascular disease. Herein, we discuss the current evidence linking bisphenols and phthalates to obesity and CVD and consider how documented impacts of these plasticizers on adipocyte function may contribute to the development of CVD.
Collapse
Affiliation(s)
- Mikyla A Callaghan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Calgary, AB, Canada
| | | | - Liam T Connors
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Radha D Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Calgary, AB, Canada.,Alberta Children's Health Research Institute, Calgary, AB, Canada
| |
Collapse
|
30
|
Gazo I, Gomes IDL, Savy T, Besnardeau L, Hebras C, Benaicha S, Brunet M, Shaliutina O, McDougall A, Peyrieras N, Dumollard R. High-content analysis of larval phenotypes for the screening of xenobiotic toxicity using Phallusia mammillata embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105768. [PMID: 33592501 DOI: 10.1016/j.aquatox.2021.105768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/12/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
In recent years, pollution of surface waters with xenobiotic compounds became an issue of concern in society and has been the object of numerous studies. Most of these xenobiotic compounds are man-made molecules and some of them are qualified as endocrine disrupting chemicals (EDCs) when they interfere with hormones actions. Several studies have investigated the teratogenic impacts of EDCs in vertebrates (including marine vertebrates). However, the impact of such EDCs on marine invertebrates is much debated and still largely obscure. In addition, DNA-altering genotoxicants can induce embryonic malformations. The goal of this study is to develop a reliable and effective test for assessing toxicity of chemicals using embryos of the ascidian (Phallusia mammillata) in order to find phenotypic signatures associated with xenobiotics. We evaluated embryonic malformations with high-content analysis of larval phenotypes by scoring several quantitative and qualitative morphometric endpoints on a single image of Phallusia tadpole larvae with semi-automated image analysis. Using this approach we screened different classes of toxicants including genotoxicants, known or suspected EDCs and nuclear receptors (NRs) ligands. The screen presented here reveals a specific phenotypic signature for ligands of retinoic acid receptor/retinoid X receptor. Analysis of larval morphology combined with DNA staining revealed that embryos with DNA aberrations displayed severe malformations affecting multiple aspects of embryonic development. In contrast EDCs exposure induced no or little DNA aberrations and affected mainly neural development. Therefore the ascidian embryo/larval assay presented here can allow to distinguish the type of teratogenicity induced by different classes of toxicants.
Collapse
Affiliation(s)
- Ievgeniia Gazo
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Isa D L Gomes
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Thierry Savy
- BioEmergences Laboratory, CNRS USR 3695, 91190, Gif-sur-Yvette, France
| | - Lydia Besnardeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Celine Hebras
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Sameh Benaicha
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Manon Brunet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Olena Shaliutina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Alex McDougall
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| | - Nadine Peyrieras
- BioEmergences Laboratory, CNRS USR 3695, 91190, Gif-sur-Yvette, France
| | - Rémi Dumollard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche sur-mer, France
| |
Collapse
|
31
|
Engin AB, Engin A. The effect of environmental Bisphenol A exposure on breast cancer associated with obesity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103544. [PMID: 33161112 DOI: 10.1016/j.etap.2020.103544] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a widely used endocrine disrupter. Its environmental exposure is a causative factor of cell aging via decreasing telomerase activity, thus leading to shortening of telomere length. Epidemiological studies confirm positive associations between BPA exposure and the incidence of obesity and type 2 diabetes (T2DM). Increased urinary BPA levels in obese females are both significantly correlated with shorter relative telomere length and T2DM. BPA is a critically effective endocrine disrupter leading to poor prognosis via the obesity-inflammation-aromatase axis in breast cancer. Environmental BPA exposure contributes to the progression of both estrogen dependent and triple negative breast cancers. BPA is a positive regulator of human telomerase reverse transcriptase (hTERT) and it increases the expression of hTERT mRNA in breast cancer cells. BPA exposure can lead to tamoxifen resistance. Among patients treated with chemotherapy, those with persistent high telomerase activity due to BPA are at higher risk of death.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
32
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
33
|
Li L, Yin XH, Diao KS. Improving the Solubility and Bioavailability of Pemafibrate via a New Polymorph Form II. ACS OMEGA 2020; 5:26245-26252. [PMID: 33073151 PMCID: PMC7557989 DOI: 10.1021/acsomega.0c04005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Pemafibrate is a new generation of anti-hyperlipidemia drugs. However, its poor solubility in water (0.410 mg/mL at 25 °C) has limited its oral bioavailability. In this study, we aimed to improve the solubility and consequently the oral bioavailability of pemafibrate via a new polymorph. A new polymorph Form II was successfully obtained by controlling the crystallization temperature and characterized by multiple analysis methods. The thermodynamic properties of Form I and Form II are almost the same, the melting points of crystal Form I [differential scanning calorimetry (DSC) onset: 97.5 °C, melting entropy: -76 J/g] and crystal Form II (DSC onset: 96.6 °C, melting entropy: -80 J/g) are very close, and the crystallinity of both is very high. In pure water, Form II is about 1.9 times that of Form I in terms of the intrinsic dissolution rate (IDR) and powder solubility. In medium, the IDR characterization was performed in a pH 6.8 buffer. The solubility of this Form II in 0.1 M HCl (pH 1.0) and phosphate buffers (pH 6.8) was investigated, and the results showed that the solubility of Form II was 2.1 and 2.0 times that of Form I, respectively. The crystal structure of Form II shows that the hydrophilic carboxyl groups of the compound are arranged outside the unit cell, which may be the reason for the increased solubility. We also studied the pharmacokinetics of beagle dogs. The mean AUC0-24h of Form II is about 2.6 times that of Form I, indicating that the solubility and bioavailability of pemafibrate can indeed be improved by forming the new polymorph Form II. It may become an ideal solid form of active pharmaceutically ingredient suitable for pharmaceutical preparations, and it can be further studied in the later period.
Collapse
Affiliation(s)
- Long Li
- Sichuan
Kelun Pharmaceutical Research Institute Co., Ltd., Chengdu 610000, China
| | - Xian-Hong Yin
- College
of Chemistry and Chemical Engineering, Guangxi
University for Nationalities, Nanning 530006, China
| | - Kai-Sheng Diao
- College
of Chemistry and Chemical Engineering, Guangxi
University for Nationalities, Nanning 530006, China
| |
Collapse
|
34
|
Zhang J, Lv C, Li Z, Guan T, Wang Y, Li T, Zhang T. Interactions of bisphenol diglycidyl ethers with estrogen receptors α: Fluorescence polarization, reporter gene, and molecular modeling investigations. Toxicol Lett 2020; 332:14-19. [DOI: 10.1016/j.toxlet.2020.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
35
|
Miyazaki I, Kikuoka R, Isooka N, Takeshima M, Sonobe K, Arai R, Funakoshi H, Quin KE, Smart J, Zensho K, Asanuma M. Effects of maternal bisphenol A diglycidyl ether exposure during gestation and lactation on behavior and brain development of the offspring. Food Chem Toxicol 2020; 138:111235. [DOI: 10.1016/j.fct.2020.111235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
|
36
|
Lin A, Inman RD, Streutker CJ, Zhang Z, Pritzker KPH, Tsui HW, Tsui FWL. Lipocalin 2 links inflammation and ankylosis in the clinical overlap of inflammatory bowel disease (IBD) and ankylosing spondylitis (AS). Arthritis Res Ther 2020; 22:51. [PMID: 32188494 PMCID: PMC7081573 DOI: 10.1186/s13075-020-02149-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Little is known about the mechanisms underlying the clinical overlap between gut inflammation and joint ankylosis, as exemplified by the concurrence of inflammatory bowel diseases (IBD) and ankylosing spondylitis (AS). As dysbiosis may serve as a common contributor, the anti-microbial pleiotropic factor lipocalin 2 could be a potential mediator due to its roles in inflammation and bone homeostasis. Methods Baseline colonic pathology was conducted in the ank/ank mouse model. Serum lipocalin 2 was analyzed by ELISA, in ank/ank mutants versus C3FeB6-A/Aw-jwt/wt, in patients with concurrent AS-IBD, AS alone, IBD alone, or mechanical back pain, and in healthy controls. In the ank/ank mouse model, the expression of nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) was examined by real-time PCR. Intraperitoneal injection was done with the PPARγ agonist rosiglitazone or antagonist bisphenol A diglycidyl ether for four consecutive days. Serum levels of lipocalin 2 were examined on the sixth day. Results This study showed that the ank/ank mice with fully fused spines had concurrent colonic inflammation. By first using the ank/ank mouse model with progressive ankylosis and subclinical colonic inflammation, confirmed in patients with concurrent AS and IBD, elevated circulating lipocalin 2 levels were associated with the coexisting ankylosis and gut inflammation. The intracellular pathway of lipocalin 2 was further investigated with the ank/ank mouse model involving PPARγ. Colonic expression of PPARγ was negatively associated with the degree of gut inflammation. The PPARγ agonist rosiglitazone treatment significantly upregulated the serum levels of lipocalin 2, suggesting a potential regulatory role of PPARγ in the aberrant expression of lipocalin 2. Conclusions In summary, lipocalin 2 modulated by PPARγ could be a potential pathway involved in concurrent inflammation and ankylosis in AS and IBD.
Collapse
Affiliation(s)
- Aifeng Lin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,KeyIntel Medical Inc, Toronto, Ontario, Canada.
| | - Robert D Inman
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Catherine J Streutker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Li Ka Shing Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Zhenbo Zhang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kenneth P H Pritzker
- KeyIntel Medical Inc, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hing Wo Tsui
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Florence W L Tsui
- KeyIntel Medical Inc, Toronto, Ontario, Canada.,Department of Immunology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Soliman E, Behairy SF, El-maraghy NN, Elshazly SM. PPAR-γ agonist, pioglitazone, reduced oxidative and endoplasmic reticulum stress associated with L-NAME-induced hypertension in rats. Life Sci 2019; 239:117047. [DOI: 10.1016/j.lfs.2019.117047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
|
38
|
Wang Y, Pan Z, Chen F. Inhibition of PPARγ by bisphenol A diglycidyl ether ameliorates dexamethasone-induced osteoporosis in a mouse model. J Int Med Res 2019; 47:6268-6277. [PMID: 31709877 PMCID: PMC7045685 DOI: 10.1177/0300060519870723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives Bisphenol A diglycidyl ether (BADGE) is an antagonist for PPARγ that reduces bone marrow adiposity and increases bone formation in some animal models of osteoporosis and osteonecrosis. However, the effect of BADGE treatment on glucocorticoid-induced osteoporosis is unknown. This study investigated the preventive effects of BADGE on steroid-induced osteoporosis in mice. Methods Thirty-six female C57BL/6J mice were randomly divided into normal (phosphate-buffered saline), model (50 mg/kg dexamethasone sodium phosphate [Dex]), and BADGE (30 mg/kg of BADGE, combined with Dex) groups. All groups received intraperitoneal injections of their treatments, daily for 4 weeks. Protein and mRNA expression levels of gene markers were measured. Micro-computed tomography was used to measure physical parameters of femurs. Bone histomorphology was analyzed by hematoxylin and eosin staining. ELISA was used to measure serum osteocalcin and C-terminal telopeptide of type I collagen (CTX-1). Results Glucocorticoid treatment enlarged the marrow fat, concomitant with bone deterioration; BADGE treatment reversed steroid-induced marrow adiposity. Compared with the model group, BADGE treatment improved bone quality and increased bone volume, while increasing osteogenic markers and reducing adipogenic markers at both mRNA and protein levels; moreover, it reduced serum CTX-1 and increased serum osteocalcin. Conclusion BADGE treatment ameliorates glucocorticoid-induced osteoporosis by inhibiting PPARγ.
Collapse
Affiliation(s)
- Yaoqing Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Zhenyu Pan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Fan Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
39
|
Hoepner LA. Bisphenol a: A narrative review of prenatal exposure effects on adipogenesis and childhood obesity via peroxisome proliferator-activated receptor gamma. ENVIRONMENTAL RESEARCH 2019; 173:54-68. [PMID: 30897403 PMCID: PMC10637253 DOI: 10.1016/j.envres.2019.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
There is significant evidence of globally ubiquitous prenatal exposures to bisphenol A (BPA). Childhood obesity as an epidemic has been a global concern for over a decade. Experimental models and epidemiological evidence suggest that BPA may act as an obesogen during adipogenesis. Results from stem cell models and birth cohort studies support the developmental origins of health and disease theory. While literature reviews have presented a variety of potential mechanisms of BPA action during adipogenesis, there remains no consensus. This review is the first to explore the proliferator-activated receptor gamma (PPARγ) mechanism in detail. This review will also examine the obesogenic effect of prenatal exposure to BPA during critical windows of vulnerability. Although vast experimental literature exists, there is limited epidemiological evidence to support the hypothesis for the obesogenic effect of BPA. The primary goal of this review is to provide researchers with a roadmap of existing research and suggestions for future directions for analyzing the relationship between prenatal BPA exposures and childhood obesity.
Collapse
Affiliation(s)
- Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, Downstate Medical Center School of Public Health, State University of New York, Brooklyn, NY, USA; Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
40
|
Sugathan S, Lee SJ, Shiwani S, Singh NK. Transdifferentiation of bovine epithelial towards adipocytes in the presence of myoepithelium. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:349-359. [PMID: 31010974 PMCID: PMC6946969 DOI: 10.5713/ajas.18.0806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 01/22/2023]
Abstract
Objective Orchastric changes in the mammary glands are vital, especially during lactation. The secretary epithelial cells together with the supporting myoepithelial and stromal cells function cordially to secrete milk. Increase in the number of luminal epithelial cells and a decrease in adipocytes are visible during lactation, whereas the reverse happens in the involution. However, an early involution occurs if the epithelial cells transdifferentiate towards adipocytes during the lactation period. We aimed to inhibit the adipocyte transdifferentiation of luminal cells by restraining the peroxisomal proliferator-activated receptor γ (PPARγ) pathway. Methods Linolenic acid (LA) and thiazolidinediones (TZDs) induced adipogenesis in mammary epithelial cells were conducted in monolayer, mixed culture as well as in transwell plate co-culture with mammary myoepithelial cells. Results Co-culture with myoepithelial cells showed higher adipogenic gene expression in epithelial cells under LA+TZDs treatment. Increase in the expressions of PPARγ, CCAAT/enhancer-binding protein α and vimentin in both mRNA as well as protein levels were observed. Whereas, bisphenol A diglycidyl ether treatment blocked LA+TZDs induced adipogenesis, as it could not show a significant rise in adipose related markers. Although comparative results were found in both mixed culture and monolayer conditions, co-culture technic was found to work better than the others. Conclusion Antagonizing PPARγ pathway in the presence of myoepithelial cells can significantly reduce the adipogenisis in epithelial cells, suggesting therapeutic inhibition of PPARγ can be considered to counter early involution or excessive adipogenesis in mammary epithelium in animals.
Collapse
Affiliation(s)
- Subi Sugathan
- Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sung-Jin Lee
- Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Supriya Shiwani
- Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Naresh Kumar Singh
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, Banaras Hindu University,Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
41
|
Perivascular adipose tissue modulates carotid plaque formation induced by disturbed flow in mice. J Vasc Surg 2019; 70:927-936.e4. [PMID: 30777689 DOI: 10.1016/j.jvs.2018.09.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Emerging evidence shows that perivascular adipose tissue (PVAT) is crucially involved in inflammation and cardiovascular diseases. However, controversial results have been reported regarding the effect of PVAT in atherosclerosis. This study aimed to determine the role of PVAT in disturbed blood flow (d-flow)-induced carotid plaque formation. METHODS ApoE-/- male mice underwent partial carotid ligation (PCL) to induce d-flow in the left carotid artery (LCA) and were fed a high-fat diet for 2 weeks. Oil Red O and hematoxylin and eosin stains were used to determine adipose tissue. Thoracic PVAT from ApoE-/- or wild-type female mice were transplanted to the LCA of PCL-treated ApoE-/- mice. Carotid arteries were stained with Sudan IV to detect atherosclerotic lesions. Quantitative real-time reverse transcription polymerase chain reaction and immunofluorescence staining were performed to assess macrophage infiltration. RESULTS By 2 weeks of the high-fat diet after PCL surgery, de novo adipose tissue was formed around the ligated LCA, where atherosclerotic plaques were also observed. Quantitative real-time reverse transcription polymerase chain reaction analysis of the newly formed PVAT revealed a similar transcription profile to native PVAT. Treatment with bisphenol A diglycidyl ether, a peroxisome proliferator-activated receptor γ inhibitor, diminished PVAT formation but increased plaque size and macrophage infiltration. Transplantation of thoracic PVAT from wild-type mice (PVAT-TWT) rather than from ApoE-/- mice (PVAT-TApoE-/-) nearly abrogated LCA plaque macrophage content without affecting plaque size. Mechanistically, PVAT-TApoE-/- showed higher messenger RNA levels of inflammatory cytokines compared with PVAT-TWT. CONCLUSIONS Our findings suggest that regulated PVAT formation may confer protection against atherosclerosis-prone shear stress, probably through attenuation of focal inflammation.
Collapse
|
42
|
Liu M, Jia S, Dong T, Han Y, Xue J, Wanjaya ER, Fang M. The occurrence of bisphenol plasticizers in paired dust and urine samples and its association with oxidative stress. CHEMOSPHERE 2019; 216:472-478. [PMID: 30388685 DOI: 10.1016/j.chemosphere.2018.10.090] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A diglycidy ether (BADGE) and its derivatives are epoxy resins and widely used as emerging plasticizers in food packages and material coating. Though known as endocrine disruptors, little information is available on their occurrence, exposure routes and toxicity. Besides, the analysis of BADGE and its derivatives has always been a challenge due to their reactive chemical properties and the background contamination. Therefore, we firstly developed a novel water-free method to analyze BADGE and its derivatives in dust samples together with other two typical plasticizers bisphenol A (BPA) and bisphenol S (BPS). In order to investigate the levels in paired dust and urine samples, 33 paired samples were collected from Singapore. In both dust and urine samples, the predominant compounds were BPA, BADGE-2H2O and BPS. A significantly positive correlation of BPA levels in paired dust and urine samples was observed in this small-scale study. To tentatively explore the human health effect from exposure to these bisphenol plasticizers, we assessed the correlation between the urinary concentrations of these compounds and oxo-2'-deoxyguanosine (8-OHdG), an oxidative stress biomarker. The result showed that 8-OHdG levels in urine samples was positively correlated with urinary BPA level and body mass index (BMI), suggesting that elevated oxidative stress might be associated with BPA exposure and obesity. In the future, a larger scale study is warranted due to the limited sample size in this study.
Collapse
Affiliation(s)
- Min Liu
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Shenglan Jia
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, CleanTech One, 637141, Singapore
| | - Ting Dong
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 511443, China
| | - Yuan Han
- Analytics Cluster, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, CleanTech One, 637141, Singapore
| | - Jingchuan Xue
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519, USA
| | - Elvy Riani Wanjaya
- Analytics Cluster, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, CleanTech One, 637141, Singapore
| | - Mingliang Fang
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Analytics Cluster, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
43
|
Hawkes CP, Mostoufi-Moab S. Fat-bone interaction within the bone marrow milieu: Impact on hematopoiesis and systemic energy metabolism. Bone 2019; 119:57-64. [PMID: 29550266 PMCID: PMC6139083 DOI: 10.1016/j.bone.2018.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022]
Abstract
The relationship between fat, bone and systemic metabolism is a growing area of scientific interest. Marrow adipose tissue is a well-recognized component of the bone marrow milieu and is metabolically distinct from current established subtypes of adipose tissue. Despite recent advances, the functional significance of marrow adipose tissue is still not clearly delineated. Bone and fat cells share a common mesenchymal stem cell (MSC) within the bone marrow, and hormones and transcription factors such as growth hormone, leptin, and peroxisomal proliferator-activated receptor γ influence MSC differentiation into osteoblasts or adipocytes. MSC osteogenic potential is more vulnerable than adipogenic potential to radiation and chemotherapy, and this confers a risk for an abnormal fat-bone axis in survivors following cancer therapy and bone marrow transplantation. This review provides a summary of data from animal and human studies describing the relationship between marrow adipose tissue and hematopoiesis, bone mineral density, bone strength, and metabolic function. The significance of marrow adiposity in other metabolic disorders such as osteoporosis, diabetes mellitus, and estrogen and growth hormone deficiency are also discussed. We conclude that marrow adipose tissue is an active endocrine organ with important metabolic functions contributing to bone energy maintenance, osteogenesis, bone remodeling, and hematopoiesis. Future studies on the metabolic role of marrow adipose tissue may provide the critical insight necessary for selecting targeted therapeutic interventions to improve altered hematopoiesis and augment skeletal remodeling in cancer survivors.
Collapse
Affiliation(s)
- C P Hawkes
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - S Mostoufi-Moab
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, USA; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA; Perelman School of Medicine, Department of Pediatrics, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
44
|
Feng Z, Ye L, Klebe D, Ding Y, Guo ZN, Flores JJ, Yin C, Tang J, Zhang JH. Anti-inflammation conferred by stimulation of CD200R1 via Dok1 pathway in rat microglia after germinal matrix hemorrhage. J Cereb Blood Flow Metab 2019; 39:97-107. [PMID: 28792282 PMCID: PMC6311673 DOI: 10.1177/0271678x17725211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
CD200 has been reported to be neuroprotective in neurodegenerative diseases. However, the potential protective effects of CD200 in germinal matrix hemorrhage (GMH) have not been investigated. We examined the anti-inflammatory mechanisms of CD200 after GMH. A total of 167 seven-day-old rat pups were used. The time-dependent effect of GMH on the levels of CD200 and CD200 Receptor 1 (CD200R1) was evaluated by western blot. CD200R1 was localized by immunohistochemistry. The short-term (24 h) and long-term (28 days) outcomes were evaluated after CD200 fusion protein (CD200Fc) treatment by neurobehavioral assessment. CD200 small interfering RNA (siRNA) and downstream of tyrosine kinase 1 (Dok1) siRNA were injected intracerebroventricularly. Western blot was employed to study the mechanisms of CD200 and CD200R1. GMH induced significant developmental delay and caused impairment in both cognitive and motor functions in rat pups. CD200Fc ameliorated GMH-induced damage. CD200Fc increased expression of Dok1 and decreased IL-1beta and TNF-alpha levels. CD200R1 siRNA and Dok1 siRNA abolished the beneficial effects of CD200Fc, as demonstrated by enhanced expression levels of IL-1beta and TNF-alpha. CD200Fc inhibited GMH-induced inflammation and this effect may be mediated by CD200R1/Dok1 pathway. Thus, CD200Fc may serve as a potential treatment to ameliorate brain injury for GMH patients.
Collapse
Affiliation(s)
- Zhanhui Feng
- 1 Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,2 Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lan Ye
- 2 Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,3 The Medical Function Laboratory of Experimental Teaching Center of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Damon Klebe
- 2 Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yan Ding
- 2 Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhen-Ni Guo
- 2 Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jerry J Flores
- 2 Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Cheng Yin
- 2 Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- 2 Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- 2 Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,4 Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA.,5 Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
45
|
Beekman KM, Veldhuis-Vlug AG, van der Veen A, den Heijer M, Maas M, Kerckhofs G, Parac-Vogt TN, Bisschop PH, Bravenboer N. The effect of PPARγ inhibition on bone marrow adipose tissue and bone in C3H/HeJ mice. Am J Physiol Endocrinol Metab 2019; 316:E96-E105. [PMID: 30457914 DOI: 10.1152/ajpendo.00265.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone marrow adipose tissue (BMAT) increases after menopause, and increased BMAT is associated with osteoporosis and prevalent vertebral fractures. Peroxisome proliferator-activated receptor-γ (PPARγ) activation promotes adipogenesis and inhibits osteoblastogenesis; therefore, PPARγ is a potential contributor to the postmenopausal increase in BMAT and decrease in bone mass. The aim of this study is to determine if PPARγ inhibition can prevent ovariectomy-induced BMAT increase and bone loss in C3H/HeJ mice. Fourteen-week-old female C3H/HeJ mice ( n = 40) were allocated to four intervention groups: sham surgery (Sham) or ovariectomy (OVX; isoflurane anesthesia) with either vehicle (Veh) or PPARγ antagonist administration (GW9662; 1 mg·kg-1·day-1, daily intraperitoneal injections) for 3 wk. We measured BMAT volume, adipocyte size, adipocyte number. and bone structural parameters in the proximal metaphysis of the tibia using polyoxometalate-based contrast enhanced-nanocomputed topogaphy. Bone turnover was measured in the contralateral tibia using histomorphometry. The effects of surgery and treatment were analyzed by two-way ANOVA. OVX increased the BMAT volume fraction (Sham + Veh: 2.9 ± 2.7% vs. OVX + Veh: 8.1 ± 5.0%: P < 0.001), average adipocyte diameter (Sham + Veh: 19.3 ± 2.6 μm vs. OVX + Veh: 23.1 ± 3.4 μm: P = 0.001), and adipocyte number (Sham + Veh: 584 ± 337cells/μm3 vs. OVX + Veh: 824 ± 113cells/μm3: P = 0.03), while OVX decreased bone volume fraction (Sham + Veh: 15.5 ± 2.8% vs. OVX + Veh: 7.7 ± 1.9%; P < 0.001). GW9662 had no effect on BMAT, bone structural parameters, or bone turnover. In conclusion, ovariectomy increased BMAT and decreased bone volume in C3H/HeJ mice. The PPARγ antagonist GW9662 had no effect on BMAT or bone volume in C3H/HeJ mice, suggesting that BMAT accumulation is regulated independently of PPARγ in C3H/HeJ mice.
Collapse
Affiliation(s)
- Kerensa M Beekman
- Amsterdam Movement Sciences, Section of Endocrinology, Department of Internal Medicine, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
- Amsterdam Movement Sciences, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Annegreet G Veldhuis-Vlug
- Amsterdam Movement Sciences, Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Albert van der Veen
- Department of Physics and Medical Technology, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
- Department Cardiology, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Martin den Heijer
- Amsterdam Movement Sciences, Section of Endocrinology, Department of Internal Medicine, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Mario Maas
- Amsterdam Movement Sciences, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Greet Kerckhofs
- Biomechanics Laboratory, Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
- Department Materials Engineering, KU Leuven , Leuven , Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven , Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Chemistry Department, KU Leuven , Leuven , Belgium
| | - Peter H Bisschop
- Amsterdam Movement Sciences, Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Nathalie Bravenboer
- Amsterdam Movement Sciences, Research Laboratory Bone and Calcium Metabolism, Department of Clinical Chemistry, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
- Department of Internal Medicine, Leiden University Medical Center , Leiden, The Netherlands
| |
Collapse
|
46
|
Cho YL, Park JG, Kang HJ, Kim W, Cho MJ, Jang JH, Kwon MG, Kim S, Lee SH, Lee J, Kim YG, Park YJ, Kim WK, Bae KH, Kwon BM, Chung SJ, Min JK. Ginkgetin, a biflavone from Ginkgo biloba leaves, prevents adipogenesis through STAT5-mediated PPARγ and C/EBPα regulation. Pharmacol Res 2019; 139:325-336. [DOI: 10.1016/j.phrs.2018.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
|
47
|
Skledar DG, Carino A, Trontelj J, Troberg J, Distrutti E, Marchianò S, Tomašič T, Zega A, Finel M, Fiorucci S, Mašič LP. Endocrine activities and adipogenic effects of bisphenol AF and its main metabolite. CHEMOSPHERE 2019; 215:870-880. [PMID: 30408883 DOI: 10.1016/j.chemosphere.2018.10.129] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol AF (BPAF) is a fluorinated analog of bisphenol A (BPA), and it is a more potent estrogen receptor (ER) agonist. BPAF is mainly metabolized to BPAF-glucuronide (BPAF-G), which has been reported to lack ER agonist activity and is believed to be biologically inactive. The main goal of the current study was to examine the influence of the metabolism of BPAF via glucuronidation on its ER activity and adipogenesis. Also, as metabolites can have different biological activities, the effects of BPAF-G on other nuclear receptors were evaluated. First, in-vitro BPAF glucuronidation was investigated using recombinant human enzymes. Specific reporter-gene assays were used to determine BPAF and BPAF-G effects on estrogen, androgen, glucocorticoid, and thyroid receptor pathways, and on PXR, FXR, and PPARγ pathways. Their effects on lipid accumulation and differentiation were determined in murine 3T3L1 preadipocytes using Nile Red, with mRNA expression analysis of the adipogenic markers adiponectin, Fabp4, Cebpα, and PPARγ. BPAF showed strong agonistic activity for hERα and moderate antagonistic activities for androgen and thyroid receptors, and for PXR. BPAF-G was antagonistic for PXR and PPARγ. BPAF (0.1 μM) and BPAF-G (1.0 μM) induced lipid accumulation and increased expression of key adipogenic markers in murine preadipocytes. BPAF-G is therefore not an inactive metabolite of BPAF. Further toxicological and epidemiological investigations of BPAF effects on human health are warranted, to provide better understanding of the metabolic end-elimination of BPAF.
Collapse
Affiliation(s)
- Darja Gramec Skledar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Adriana Carino
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Jurij Trontelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Johanna Troberg
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eleonora Distrutti
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Silvia Marchianò
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Moshe Finel
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Lucija Peterlin Mašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
48
|
Rahman MS, Syeda PK, Nartey MNN, Chowdhury MMI, Shimizu H, Nishimura K, Jisaka M, Shono F, Yokota K. Comparison of pro-adipogenic effects between prostaglandin (PG) D 2 and its stable, isosteric analogue, 11-deoxy-11-methylene-PGD 2, during the maturation phase of cultured adipocytes. Prostaglandins Other Lipid Mediat 2018; 139:71-79. [PMID: 30393164 DOI: 10.1016/j.prostaglandins.2018.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
Prostaglandin (PG) D2 is relatively unstable and dehydrated non-enzymatically into PGJ2 derivatives, which are known to serve as pro-adipogenic factors by activating peroxisome proliferator-activated receptor (PPAR) γ, a master regulator of adipogenesis. 11-Deoxy-11-methylene-PGD2 (11d-11m-PGD2) is a novel, chemically stable, isosteric analogue of PGD2 in which the 11-keto group is replaced by an exocyclic methylene. Here we attempted to investigate pro-adipogenic effects of PGD2 and 11d-11m-PGD2 and to compare the difference in their ways during the maturation phase of cultured adipocytes. The dose-dependent study showed that 11d-11m-PGD2 was significantly more potent than natural PGD2 to stimulate the storage of fats suppressed in the presence of indomethacin, a cyclooxygenase inhibitor. These pro-adipogenic effects were caused by the up-regulation of adipogenesis as evident with higher gene expression levels of adipogenesis markers. Analysis of transcript levels revealed the enhanced gene expression of two subtypes of cell-surface membrane receptors for PGD2, namely the prostanoid DP1 and DP2 (chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2)) receptors together with lipocalin-type PGD synthase during the maturation phase. Specific agonists for DP1, CRTH2, and PPARγ were appreciably effective to rescue adipogenesis attenuated by indomethacin. The action of PGD2 was attenuated by specific antagonists for DP1 and PPARγ. By contrast, the effect of 11d-11m-PGD2 was more potently interfered by a selective antagonist for CRTH2 than that for DP1 while PPARγ antagonist GW9662 had almost no inhibitory effects. These results suggest that PGD2 exerts its pro-adipogenic effect principally through the mediation of DP1 and PPARγ, whereas the stimulatory effect of 11d-11m-PGD2 on adipogenesis occurs preferentially by the interaction with CRTH2.
Collapse
Affiliation(s)
- Mohammad Shahidur Rahman
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Pinky Karim Syeda
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Michael N N Nartey
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Md Mazharul Islam Chowdhury
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Hidehisa Shimizu
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Kohji Nishimura
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Mitsuo Jisaka
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Fumiaki Shono
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tokushima-shi, Tokushima 770-8514, Japan
| | - Kazushige Yokota
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
49
|
Vijayalakshmi K, Selvaraj CI. Cell line cytotoxicity, antiadipogenic and glucose uptake activity of Sarcostemma brevistigma Wight. & Arn. Mol Biol Rep 2018; 45:2555-2561. [DOI: 10.1007/s11033-018-4423-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/05/2018] [Indexed: 11/28/2022]
|
50
|
Zwick RK, Rudolph MC, Shook BA, Holtrup B, Roth E, Lei V, Van Keymeulen A, Seewaldt V, Kwei S, Wysolmerski J, Rodeheffer MS, Horsley V. Adipocyte hypertrophy and lipid dynamics underlie mammary gland remodeling after lactation. Nat Commun 2018; 9:3592. [PMID: 30181538 PMCID: PMC6123393 DOI: 10.1038/s41467-018-05911-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022] Open
Abstract
Adipocytes undergo pronounced changes in size and behavior to support diverse tissue functions, but the mechanisms that control these changes are not well understood. Mammary gland-associated white adipose tissue (mgWAT) regresses in support of milk fat production during lactation and expands during the subsequent involution of milk-producing epithelial cells, providing one of the most marked physiological examples of adipose growth. We examined cellular mechanisms and functional implications of adipocyte and lipid dynamics in the mouse mammary gland (MG). Using in vivo analysis of adipocyte precursors and genetic tracing of mature adipocytes, we find mature adipocyte hypertrophy to be a primary mechanism of mgWAT expansion during involution. Lipid tracking and lipidomics demonstrate that adipocytes fill with epithelial-derived milk lipid. Furthermore, ablation of mgWAT during involution reveals an essential role for adipocytes in milk trafficking from, and proper restructuring of, the mammary epithelium. This work advances our understanding of MG remodeling and tissue-specific roles for adipocytes.
Collapse
Affiliation(s)
- Rachel K Zwick
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Mail Stop F-8305; RC1 North, 12800 E. 19th Avenue P18-5107, Aurora, CO, 80045, USA
| | - Brett A Shook
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Brandon Holtrup
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Eve Roth
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Vivian Lei
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Alexandra Van Keymeulen
- WELBIO, Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles (ULB), 808, route de Lennik, BatC, C6-130, 1070, Brussels, Belgium
| | - Victoria Seewaldt
- Department of Population Sciences and Bekman Institute, City of Hope, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Stephanie Kwei
- Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale University, 333 Ceder St., New Haven, CT, 06510, USA
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University, 333 Ceder St., New Haven, CT, 06510, USA
| | - Matthew S Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University, 333 Ceder St., New Haven, CT, 06510, USA
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA.
- Department of Dermatology, Yale University, 333 Ceder St., New Haven, CT, 06510, USA.
| |
Collapse
|