1
|
McHenry CS. Life at the replication fork: A scientific and personal journey. J Biol Chem 2024; 300:105658. [PMID: 38219819 PMCID: PMC10850973 DOI: 10.1016/j.jbc.2024.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Affiliation(s)
- Charles S McHenry
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
2
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
3
|
Dohrmann PR, Correa R, Frisch RL, Rosenberg SM, McHenry CS. The DNA polymerase III holoenzyme contains γ and is not a trimeric polymerase. Nucleic Acids Res 2016; 44:1285-97. [PMID: 26786318 PMCID: PMC4756838 DOI: 10.1093/nar/gkv1510] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
There is widespread agreement that the clamp loader of the Escherichia coli replicase has the composition DnaX3δδ’χψ. Two DnaX proteins exist in E. coli, full length τ and a truncated γ that is created by ribosomal frameshifting. τ binds DNA polymerase III tightly; γ does not. There is a controversy as to whether or not DNA polymerase III holoenzyme (Pol III HE) contains γ. A three-τ form of Pol III HE would contain three Pol IIIs. Proponents of the three-τ hypothesis have claimed that γ found in Pol III HE might be a proteolysis product of τ. To resolve this controversy, we constructed a strain that expressed only τ from a mutated chromosomal dnaX. γ containing a C-terminal biotinylation tag (γ-Ctag) was provided in trans at physiological levels from a plasmid. A 2000-fold purification of Pol III* (all Pol III HE subunits except β) from this strain contained one molecule of γ-Ctag per Pol III* assembly, indicating that the dominant form of Pol III* in cells is Pol III2τ2 γδδ’χψ. Revealing a role for γ in cells, mutants that express only τ display sensitivity to ultraviolet light and reduction in DNA Pol IV-dependent mutagenesis associated with double-strand-break repair, and impaired maintenance of an F’ episome.
Collapse
Affiliation(s)
- Paul R Dohrmann
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Raul Correa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan L Frisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
| |
Collapse
|
4
|
Tondnevis F, Gillilan RE, Bloom LB, McKenna R. Solution study of the Escherichia coli DNA polymerase III clamp loader reveals the location of the dynamic ψχ heterodimer. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:054701. [PMID: 26798827 PMCID: PMC4711647 DOI: 10.1063/1.4927407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
Several X-ray crystal structures of the E. coli core clamp loader containing the five core (δ', δ, and three truncated γ) subunits have been determined, but they lack the ψ and χ subunits. We report the first solution structure of the complete seven-subunit clamp loader complex using small angle X-ray scattering. This structure not only provides information about the location of the χ and ψ subunits but also provides a model of the dynamic nature of the clamp loader complex.
Collapse
Affiliation(s)
- Farzaneh Tondnevis
- Biochemistry and Molecular Biology, University of Florida , P.O. BOX 100245, Gainesville, Florida 32610, USA
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (CHESS), Cornell University , 161 Synchrotron Drive, Ithaca, New York 14853, USA
| | - Linda B Bloom
- Biochemistry and Molecular Biology, University of Florida , P.O. BOX 100245, Gainesville, Florida 32610, USA
| | - Robert McKenna
- Biochemistry and Molecular Biology, University of Florida , P.O. BOX 100245, Gainesville, Florida 32610, USA
| |
Collapse
|
5
|
Lindow JC, Dohrmann PR, McHenry CS. DNA Polymerase α Subunit Residues and Interactions Required for Efficient Initiation Complex Formation Identified by a Genetic Selection. J Biol Chem 2015; 290:16851-60. [PMID: 25987558 DOI: 10.1074/jbc.m115.661090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 11/06/2022] Open
Abstract
Biophysical and structural studies have defined many of the interactions that occur between individual components or subassemblies of the bacterial replicase, DNA polymerase III holoenzyme (Pol III HE). Here, we extended our knowledge of residues and interactions that are important for the first step of the replicase reaction: the ATP-dependent formation of an initiation complex between the Pol III HE and primed DNA. We exploited a genetic selection using a dominant negative variant of the polymerase catalytic subunit that can effectively compete with wild-type Pol III α and form initiation complexes, but cannot elongate. Suppression of the dominant negative phenotype was achieved by secondary mutations that were ineffective in initiation complex formation. The corresponding proteins were purified and characterized. One class of mutant mapped to the PHP domain of Pol III α, ablating interaction with the ϵ proofreading subunit and distorting the polymerase active site in the adjacent polymerase domain. Another class of mutation, found near the C terminus, interfered with τ binding. A third class mapped within the known β-binding domain, decreasing interaction with the β2 processivity factor. Surprisingly, mutations within the β binding domain also ablated interaction with τ, suggesting a larger τ binding site than previously recognized.
Collapse
Affiliation(s)
- Janet C Lindow
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Paul R Dohrmann
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Charles S McHenry
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303
| |
Collapse
|
6
|
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β₂ processivity factor, and a DnaX complex ATPase that loads β₂ onto DNA and chaperones Pol III onto the newly loaded β₂. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²⁺-dependent exonuclease, but also contains a second Zn²⁺-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
7
|
Dohrmann PR, Manhart CM, Downey CD, McHenry CS. The rate of polymerase release upon filling the gap between Okazaki fragments is inadequate to support cycling during lagging strand synthesis. J Mol Biol 2011; 414:15-27. [PMID: 21986197 DOI: 10.1016/j.jmb.2011.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 10/17/2022]
Abstract
Upon completion of synthesis of an Okazaki fragment, the lagging strand replicase must recycle to the next primer at the replication fork in under 0.1 s to sustain the physiological rate of DNA synthesis. We tested the collision model that posits that cycling is triggered by the polymerase encountering the 5'-end of the preceding Okazaki fragment. Probing with surface plasmon resonance, DNA polymerase III holoenzyme initiation complexes were formed on an immobilized gapped template. Initiation complexes exhibit a half-life of dissociation of approximately 15 min. Reduction in gap size to 1 nt increased the rate of dissociation 2.5-fold, and complete filling of the gap increased the off-rate an additional 3-fold (t(1/2)~2 min). An exogenous primed template and ATP accelerated dissociation an additional 4-fold in a reaction that required complete filling of the gap. Neither a 5'-triphosphate nor a 5'-RNA terminated oligonucleotide downstream of the polymerase accelerated dissociation further. Thus, the rate of polymerase release upon gap completion and collision with a downstream Okazaki fragment is 1000-fold too slow to support an adequate rate of cycling and likely provides a backup mechanism to enable polymerase release when the other cycling signals are absent. Kinetic measurements indicate that addition of the last nucleotide to fill the gap is not the rate-limiting step for polymerase release and cycling. Modest (approximately 7 nt) strand displacement is observed after the gap between model Okazaki fragments is filled. To determine the identity of the protein that senses gap filling to modulate affinity of the replicase for the template, we performed photo-cross-linking experiments with highly reactive and non-chemoselective diazirines. Only the α subunit cross-linked, indicating that it serves as the sensor.
Collapse
Affiliation(s)
- Paul R Dohrmann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
8
|
Downey CD, Crooke E, McHenry CS. Polymerase chaperoning and multiple ATPase sites enable the E. coli DNA polymerase III holoenzyme to rapidly form initiation complexes. J Mol Biol 2011; 412:340-53. [PMID: 21820444 DOI: 10.1016/j.jmb.2011.07.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
Cellular replicases include three subassemblies: a DNA polymerase, a sliding clamp processivity factor, and a clamp loader complex. The Escherichia coli clamp loader is the DnaX complex (DnaX(3)δδ'χψ), where DnaX occurs either as τ or as the shorter γ that arises by translational frameshifting. Complexes composed of either form of DnaX are fully active clamp loaders, but τ confers important replicase functions including chaperoning the polymerase to the newly loaded clamp to form an initiation complex for processive replication. The kinetics of initiation complex formation were explored for DnaX complexes reconstituted with varying τ and γ stoichiometries, revealing that τ-mediated polymerase chaperoning accelerates initiation complex formation by 100-fold. Analyzing DnaX complexes containing one or more K51E variant DnaX subunits demonstrated that only one active ATP binding site is required to form initiation complexes, but the two additional sites increase the rate by ca 1000-fold. For τ-containing complexes, the ATP analogue ATPγS was found to support initiation complex formation at 1/1000th the rate with ATP. In contrast to previous models that proposed ATPγS drives hydrolysis-independent initiation complex formation by τ-containing complexes, the rate and stoichiometry of ATPγS hydrolysis coincide with those for initiation complex formation. These results show that although one ATPase site is sufficient for initiation complex formation, the combination of polymerase chaperoning and the binding and hydrolysis of three ATPs dramatically accelerates initiation complex formation to a rate constant (25-50 s(-1)) compatible with double-stranded DNA replication.
Collapse
Affiliation(s)
- Christopher D Downey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
9
|
Essential biological processes of an emerging pathogen: DNA replication, transcription, and cell division in Acinetobacter spp. Microbiol Mol Biol Rev 2010; 74:273-97. [PMID: 20508250 DOI: 10.1128/mmbr.00048-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the last 15 years, members of the bacterial genus Acinetobacter have risen from relative obscurity to be among the most important sources of hospital-acquired infections. The driving force for this has been the remarkable ability of these organisms to acquire antibiotic resistance determinants, with some strains now showing resistance to every antibiotic in clinical use. There is an urgent need for new antibacterial compounds to combat the threat imposed by Acinetobacter spp. and other intractable bacterial pathogens. The essential processes of chromosomal DNA replication, transcription, and cell division are attractive targets for the rational design of antimicrobial drugs. The goal of this review is to examine the wealth of genome sequence and gene knockout data now available for Acinetobacter spp., highlighting those aspects of essential systems that are most suitable as drug targets. Acinetobacter spp. show several key differences from other pathogenic gammaproteobacteria, particularly in global stress response pathways. The involvement of these pathways in short- and long-term antibiotic survival suggests that Acinetobacter spp. cope with antibiotic-induced stress differently from other microorganisms.
Collapse
|
10
|
Downey CD, McHenry CS. Chaperoning of a replicative polymerase onto a newly assembled DNA-bound sliding clamp by the clamp loader. Mol Cell 2010; 37:481-91. [PMID: 20188667 DOI: 10.1016/j.molcel.2010.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/03/2009] [Accepted: 11/12/2009] [Indexed: 11/29/2022]
Abstract
Cellular replicases contain multiprotein ATPases that load sliding clamp processivity factors onto DNA. We reveal an additional role for the DnaX clamp loader: chaperoning of the replicative polymerase onto a clamp newly bound to DNA. We show that chaperoning confers distinct advantages, including marked acceleration of initiation complex formation. We reveal a requirement for the tau form of DnaX complex to relieve inhibition by single-stranded DNA binding protein during initiation complex formation. We propose that, after loading beta(2), DnaX complex preserves an SSB-free segment of DNA immediately downstream of the primer terminus and chaperones Pol III into that position, preventing competition by SSB. The C-terminal tail of SSB stimulates reactions catalyzed by tau-containing DnaX complexes through a contact distinct from the contact involving the chi subunit. Chaperoning of Pol III by the DnaX complex provides a molecular explanation for how initiation complexes form when supported by the nonhydrolyzed analog ATPgammaS.
Collapse
Affiliation(s)
- Christopher D Downey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
11
|
Yuan Q, McHenry CS. Strand displacement by DNA polymerase III occurs through a tau-psi-chi link to single-stranded DNA-binding protein coating the lagging strand template. J Biol Chem 2009; 284:31672-9. [PMID: 19749191 DOI: 10.1074/jbc.m109.050740] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
12
|
Bloom LB. Loading clamps for DNA replication and repair. DNA Repair (Amst) 2009; 8:570-8. [PMID: 19213612 DOI: 10.1016/j.dnarep.2008.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 01/25/2023]
Abstract
Sliding clamps and clamp loaders were initially identified as DNA polymerase processivity factors. Sliding clamps are ring-shaped protein complexes that encircle and slide along duplex DNA, and clamp loaders are enzymes that load these clamps onto DNA. When bound to a sliding clamp, DNA polymerases remain tightly associated with the template being copied, but are able to translocate along DNA at rates limited by rates of nucleotide incorporation. Many different enzymes required for DNA replication and repair use sliding clamps. Clamps not only increase the processivity of these enzymes, but may also serve as an attachment point to coordinate the activities of enzymes required for a given process. Clamp loaders are members of the AAA+ family of ATPases and use energy from ATP binding and hydrolysis to catalyze the mechanical reaction of loading clamps onto DNA. Many structural and functional features of clamps and clamp loaders are conserved across all domains of life. Here, the mechanism of clamp loading is reviewed by comparing features of prokaryotic and eukaryotic clamps and clamp loaders.
Collapse
Affiliation(s)
- Linda B Bloom
- Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32610-0245, United States.
| |
Collapse
|
13
|
Pomerantz RT, O'Donnell M. Replisome mechanics: insights into a twin DNA polymerase machine. Trends Microbiol 2007; 15:156-64. [PMID: 17350265 DOI: 10.1016/j.tim.2007.02.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/26/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
Chromosomal replicases are multicomponent machines that copy DNA with remarkable speed and processivity. The organization of the replisome reveals a twin DNA polymerase design ideally suited for concurrent synthesis of leading and lagging strands. Recent structural and biochemical studies of Escherichia coli and eukaryotic replication components provide intricate details of the organization and inner workings of cellular replicases. In particular, studies of sliding clamps and clamp-loader subunits elucidate the mechanisms of replisome processivity and lagging strand synthesis. These studies demonstrate close similarities between the bacterial and eukaryotic replication machineries.
Collapse
Affiliation(s)
- Richard T Pomerantz
- Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
14
|
Anderson SG, Williams CR, O'donnell M, Bloom LB. A function for the psi subunit in loading the Escherichia coli DNA polymerase sliding clamp. J Biol Chem 2007; 282:7035-45. [PMID: 17210572 DOI: 10.1074/jbc.m610136200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of an Escherichia coli clamp loader have provided insight into the mechanism by which this molecular machine assembles ring-shaped sliding clamps onto DNA. The contributions made to the clamp loading reaction by two subunits, chi and psi, which are not present in the crystal structures, were determined by measuring the activities of three forms of the clamp loader, gamma(3)deltadelta', gamma(3)deltadelta'psi, and gamma(3)deltadelta'psichi. The psi subunit is important for stabilizing an ATP-induced conformational state with high affinity for DNA, whereas the chi subunit does not contribute directly to clamp loading in our assays lacking single-stranded DNA-binding protein. The psi subunit also increases the affinity of the clamp loader for the clamp in assays in which ATPgammaS is substituted for ATP. Interestingly, the affinity of the gamma(3)deltadelta' complex for beta is no greater in the presence than in the absence of ATPgammaS. A role for psi in stabilizing or promoting ATP- and ATPgammaS-induced conformational changes may explain why large conformational differences were not seen in gamma(3)deltadelta' structures with and without bound ATPgammaS. The beta clamp partially compensates for the activity of psi when this subunit is not present and possibly serves as a scaffold on which the clamp loader adopts the appropriate conformation for DNA binding and clamp loading. Results from our work and others suggest that the psi subunit may introduce a temporal order to the clamp loading reaction in which clamp binding precedes DNA binding.
Collapse
Affiliation(s)
- Stephen G Anderson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | |
Collapse
|
15
|
den Blaauwen T, Aarsman MEG, Wheeler LJ, Nanninga N. Pre‐replication assembly ofE. colireplisome components. Mol Microbiol 2006; 62:695-708. [PMID: 16999830 DOI: 10.1111/j.1365-2958.2006.05417.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The localization of SeqA, thymidylate synthase, DnaB (helicase) and the DNA polymerase components alpha and tau, has been studied by immunofluorescence microscopy. The origin has been labelled through GFP-LacI bound near oriC. SeqA was located in the cell centre for one replication factory (RF) and at 1/4 and 3/4 positions in pre-divisional cells harbouring two RFs. The transition of central to 1/4 and 3/4 positions of SeqA appeared abrupt. Labelled thymidylate synthetase was found all over the cell, thus not supporting the notion of a dNTP-synthesizing complex exclusively localized near the RF. More DnaB, alpha and tau foci were found than expected. We have hypothesized that extra foci arise at pre-replication assembly sites, where the number of sites equals the number of origins, i.e. the number of future RFs. A reasonable agreement was found between predicted and found foci. In the case of multifork replication the number of foci appeared consistent with the assumption that three RFs are grouped into a higher-order structure. The RF is probably separate from the foci containing SeqA and the hemi-methylated SeqA binding sites because these foci did not coincide significantly with DnaB as marker of the RF. Co-labelling of DnaB and oriC revealed limited colocalization, indicating that DnaB did not yet become associated with oriC at a pre-replication assembly site. DnaB and tau co-labelled in the cell centre, though not at presumed pre-replication assembly sites. By contrast, alpha and tau co-labelled consistently suggesting that they are already associated before replication starts.
Collapse
Affiliation(s)
- Tanneke den Blaauwen
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
16
|
Abstract
Sliding clamps and clamp loaders are processivity factors required for efficient DNA replication. Sliding clamps are ring-shaped complexes that tether DNA polymerases to DNA to increase the processivity of synthesis. Clamp loaders assemble these ring-shaped clamps onto DNA in an ATP-dependent reaction. The overall process of clamp loading is dynamic in that protein-protein and protein-DNA interactions must actively change in a coordinated fashion to complete the mechanical clamp-loading reaction cycle. The clamp loader must initially have a high affinity for both the clamp and DNA to bring these macromolecules together, but then must release the clamp on DNA for synthesis to begin. Evidence is presented for a mechanism in which the clamp-loading reaction comprises a series of binding reactions to ATP, the clamp, DNA, and ADP, each of which promotes some change in the conformation of the clamp loader that alters interactions with the next component of the pathway. These changes in interactions must be rapid enough to allow the clamp loader to keep pace with replication fork movement. This review focuses on the measurement of dynamic and transient interactions required to assemble the Escherichia coli sliding clamp on DNA.
Collapse
Affiliation(s)
- Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA.
| |
Collapse
|
17
|
Abstract
DNA replicases are multicomponent machines that have evolved clever strategies to perform their function. Although the structure of DNA is elegant in its simplicity, the job of duplicating it is far from simple. At the heart of the replicase machinery is a heteropentameric AAA+ clamp-loading machine that couples ATP hydrolysis to load circular clamp proteins onto DNA. The clamps encircle DNA and hold polymerases to the template for processive action. Clamp-loader and sliding clamp structures have been solved in both prokaryotic and eukaryotic systems. The heteropentameric clamp loaders are circular oligomers, reflecting the circular shape of their respective clamp substrates. Clamps and clamp loaders also function in other DNA metabolic processes, including repair, checkpoint mechanisms, and cell cycle progression. Twin polymerases and clamps coordinate their actions with a clamp loader and yet other proteins to form a replisome machine that advances the replication fork.
Collapse
Affiliation(s)
- Aaron Johnson
- Howard Hughes Medical Institute, New York City, New York 10021-6399, USA.
| | | |
Collapse
|
18
|
McInerney P, O'Donnell M. Functional uncoupling of twin polymerases: mechanism of polymerase dissociation from a lagging-strand block. J Biol Chem 2004; 279:21543-51. [PMID: 15014081 DOI: 10.1074/jbc.m401649200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication forks are constantly subjected to events that lead to fork stalling, stopping, or collapse. Using a synthetic rolling circle DNA substrate, we demonstrate that a block to the lagging-strand polymerase does not compromise helicase or leading-strand polymerase activity. In fact, lagging-strand synthesis also continues. Thus, the blocked lagging-strand enzyme quickly dissociates from the block site and resumes synthesis on new primed sites. Furthermore, studies in which the lagging polymerase is continuously blocked show that the leading polymerase continues unabated even as it remains attached to the lagging-strand enzyme. Hence, upon encounter of a block to the lagging stand, the polymerases functionally uncouple yet remain physically associated. Further study reveals that naked single-stranded DNA results in disruption of a stalled polymerase from its beta-DNA substrate. Thus, as the replisome advances, the single-stranded DNA loop that accumulates on the lagging-strand template releases the stalled lagging-strand polymerase from beta after SSB protein is depleted. The lagging-strand polymerase is then free to continue Okazaki fragment production.
Collapse
Affiliation(s)
- Peter McInerney
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
19
|
Haroniti A, Anderson C, Doddridge Z, Gardiner L, Roberts CJ, Allen S, Soultanas P. The clamp-loader-helicase interaction in Bacillus. Atomic force microscopy reveals the structural organisation of the DnaB-tau complex in Bacillus. J Mol Biol 2004; 336:381-93. [PMID: 14757052 PMCID: PMC3034218 DOI: 10.1016/j.jmb.2003.12.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The clamp-loader-helicase interaction is an important feature of the replisome. Although significant biochemical and structural work has been carried out on the clamp-loader-clamp-DNA polymerase alpha interactions in Escherichia coli, the clamp-loader-helicase interaction is poorly understood by comparison. The tau subunit of the clamp-loader mediates the interaction with DnaB. We have recently characterised this interaction in the Bacillus system and established a tau(5)-DnaB(6) stoichiometry. Here, we have obtained atomic force microscopy images of the tau-DnaB complex that reveal the first structural insight into its architecture. We show that despite the reported absence of the shorter gamma version in Bacillus, tau has a domain organisation similar to its E.coli counterpart and possesses an equivalent C-terminal domain that interacts with DnaB. The interaction interface of DnaB is also localised in its C-terminal domain. The combined data contribute towards our understanding of the bacterial replisome.
Collapse
Affiliation(s)
- Anna Haroniti
- School of Chemistry University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Christopher Anderson
- Laboratory of Biophysics and Surface Analysis School of Pharmacy University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Zara Doddridge
- School of Chemistry University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Laurence Gardiner
- School of Chemistry University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Clive J. Roberts
- Laboratory of Biophysics and Surface Analysis School of Pharmacy University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Stephanie Allen
- Laboratory of Biophysics and Surface Analysis School of Pharmacy University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Panos Soultanas
- School of Chemistry University of Nottingham University Park, Nottingham NG7 2RD, UK
- Corresponding author
| |
Collapse
|
20
|
Viguera E, Petranovic M, Zahradka D, Germain K, Ehrlich DS, Michel B. Lethality of bypass polymerases in Escherichia coli cells with a defective clamp loader complex of DNA polymerase III. Mol Microbiol 2003; 50:193-204. [PMID: 14507374 DOI: 10.1046/j.1365-2958.2003.03658.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli DNA polymerase III (Pol III) is one of the best studied replicative DNA polymerases. Here we report the properties of an E. coli mutant that lacks one of the subunits of the Pol III clamp loader complex, Psi (psi), as a result of the complete inactivation of the holD gene. We show that, in this mutant, chronic induction of the SOS response in a RecFOR-dependent way leads to lethality at high temperature. The SOS-induced proteins that are lethal in the holD mutant are the specialized DNA polymerases Pol II and Pol IV, combined with the division inhibitor SfiA. Prevention of SOS induction or inactivation of Pol II, Pol IV and SfiA encoding genes allows growth of the holD mutant, although at a reduced rate compared to a wild-type cell. In contrast, the SOS-induced Pol V DNA polymerase does not participate to the lethality of the holD mutant. We conclude that: (i) Psi is essential for efficient replication of the E. coli chromosome; (ii) SOS-induction of specialized DNA polymerases can be lethal in cells in which the replicative polymerase is defective, and (iii) specialized DNA polymerases differ in respect to their access to inactivated replication forks.
Collapse
Affiliation(s)
- Enrique Viguera
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | | | | | | | | | | |
Collapse
|
21
|
Haroniti A, Till R, Smith MCM, Soultanas P. Clamp-loader-helicase interaction in Bacillus. Leucine 381 is critical for pentamerization and helicase binding of the Bacillus tau protein. Biochemistry 2003; 42:10955-64. [PMID: 12974630 PMCID: PMC3034353 DOI: 10.1021/bi034955g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we revealed the architecture of the clamp-loader-helicase (tau-DnaB) complex in Bacillus by atomic force microscopy imaging and constructed a structural model, whereby a pentameric clamp-loader interacts with the hexameric helicase. Crucial to this model is the assumption that the clamp-loader forms a pentamer in the absence of other components of the clamp-loader complex such as deltadelta'. Here, we show that the Bacillus subtilis tau protein, even in the absence of deltadelta', interacts as a pentamer with the hexameric DnaB and that the L381 of tau is critical for the integrity of the tau oligomer and interaction with DnaB. The effects of the L381A mutation were confirmed by gel filtration, ultracentrifugation, circular dichroism, cross-linking studies, and genetic replacement of the dnaX gene with a mutant L381A dnaX gene in vivo. The L381A protein is able to support growth in vivo only when expressed in high quantities. Finally, despite the fact that a mutation at P465 has been reported to result in a thermosensitive gene in vivo, a P465L mutant protein interacts with DnaB in vitro suggesting that this defect is not a result of a defective tau-DnaB interaction.
Collapse
Affiliation(s)
| | | | | | - P. Soultanas
- Corresponding author. Tel.: (+44)-(0)-115-9513525. Fax: (+44)-(0)-115-9513564.
| |
Collapse
|
22
|
McHenry CS. Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol Microbiol 2003; 49:1157-65. [PMID: 12940977 DOI: 10.1046/j.1365-2958.2003.03645.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies of the DNA polymerase III holoenzyme of Escherichia coli support a model in which both the leading and lagging strand polymerases are held together in a complex with the replicative helicase and priming activities, allowing two identical alpha catalytic subunits to assume different functions on the two strands of the replication fork. Creation of distinct functions for each of the two polymerases within the holoenzyme depends on the asymmetric character of the entire complex. The asymmetry of the holoenzyme is created by the DnaX complex, a heptamer that includes tau and gamma products of the dnaX gene. tau and gamma perform unique functions in the DnaX complex, and the interaction between alpha and tau appears to dictate the catalytic subunit's role in the replicative reaction. This review considers the properties of the DnaX complex including both tau and gamma, with the goal of understanding the properties of the replicase and its function in vivo. Recent studies in eukaryotic and other prokaryotic systems suggest that an asymmetric dimeric replicase may be universal. The leading and lagging strand polymerases may be distinct in some systems. For example, Pol e and Pol delta may function as distinct leading and lagging strand polymerases in eukaryotes, and PolC and DnaE may function as distinct leading and lagging strand polymerases in low GC content Gram-positive bacteria.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
23
|
Blinkova A, Hermandson MJ, Walker JR. Suppression of temperature-sensitive chromosome replication of an Escherichia coli dnaX(Ts) mutant by reduction of initiation efficiency. J Bacteriol 2003; 185:3583-95. [PMID: 12775696 PMCID: PMC156227 DOI: 10.1128/jb.185.12.3583-3595.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Accepted: 04/01/2003] [Indexed: 01/10/2023] Open
Abstract
Temperature sensitivity of DNA polymerization and growth of a dnaX(Ts) mutant is suppressible at 39 to 40 degrees C by mutations in the initiator gene, dnaA. These suppressor mutations concomitantly cause initiation inhibition at 20 degrees C and have been designated Cs,Sx to indicate both phenotypic characteristics of cold-sensitive initiation and suppression of dnaX(Ts). One dnaA(Cs,Sx) mutant, A213D, has reduced affinity for ATP, and two mutants, R432L and T435K, have eliminated detectable DnaA box binding in vitro. Two models have explained dnaA(Cs,Sx) suppression of dnaX, which codes for both the tau and gamma subunits of DNA polymerase III. The initiation deficiency model assumes that reducing initiation efficiency allows survival of the dnaX(Ts) mutant at the somewhat intermediate temperature of 39 to 40 degrees C by reducing chromosome content per cell, thus allowing partially active DNA polymerase III to complete replication of enough chromosomes for the organism to survive. The stabilization model is based on the idea that DnaA interacts, directly or indirectly, with polymerization factors during replication. We present five lines of evidence consistent with the initiation deficiency model. First, a dnaA(Cs,Sx) mutation reduced initiation frequency and chromosome content (measured by flow cytometry) and origin/terminus ratios (measured by real-time PCR) in both wild-type and dnaX(Ts) strains growing at 39 and 34 degrees C. These effects were shown to result specifically from the Cs,Sx mutations, because the dnaX(Ts) mutant is not defective in initiation. Second, reduction of the number of origins and chromosome content per cell was common to all three known suppressor mutations. Third, growing the dnaA(Cs,Sx) dnaX(Ts) strain on glycerol-containing medium reduced its chromosome content to one per cell and eliminated suppression at 39 degrees C, as would be expected if the combination of poor carbon source, the Cs,Sx mutation, the Ts mutation, and the 39 degrees C incubation reduced replication to the point that growth (and, therefore, suppression) was not possible. However, suppression was possible on glycerol medium at 38 degrees C. Fourth, the dnaX(Ts) mutation can be suppressed also by introduction of oriC mutations, which reduced initiation efficiency and chromosome number per cell, and the degree of suppression was proportional to the level of initiation defect. Fifth, introducing a dnaA(Cos) allele, which causes overinitiation, into the dnaX(Ts) mutant exacerbated its temperature sensitivity.
Collapse
Affiliation(s)
- Alexandra Blinkova
- Section of Molecular Genetics and Microbiology, University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
24
|
Abstract
We isolated a mutant allele of dnaX, encoding the tau and gamma subunits of the DNA polymerase III holoenzyme, that causes extreme cell filamentation but does not affect either cell growth or DNA replication. This phenotype results from a defect in daughter chromosome decatenation during rapid growth. In these cells, ParC, one subunit of topoisomerase IV, no longer associated with the replication factory, as occurs in wild-type cells, and was instead distributed uniformly on the nucleoid; the distribution of ParE, the other subunit of topoisomerase IV, was unaffected. In addition, the majority of topoisomerase IV activity in synchronized cell populations was restricted to late in the cell cycle, when replication was essentially complete. These observations suggest that topoisomerase IV activity in vivo might be dependent on release of ParC from the replication factory.
Collapse
Affiliation(s)
- Olivier Espeli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|
25
|
Bruck I, Yuzhakov A, Yurieva O, Jeruzalmi D, Skangalis M, Kuriyan J, O'Donnell M. Analysis of a multicomponent thermostable DNA polymerase III replicase from an extreme thermophile. J Biol Chem 2002; 277:17334-48. [PMID: 11859073 DOI: 10.1074/jbc.m110198200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This report takes a proteomic/genomic approach to characterize the DNA polymerase III replication apparatus of the extreme thermophile, Aquifex aeolicus. Genes (dnaX, holA, and holB) encoding the subunits required for clamp loading activity (tau, delta, and delta') were identified. The dnaX gene produces only the full-length product, tau, and therefore differs from Escherichia coli dnaX that produces two proteins (gamma and tau). Nonetheless, the A. aeolicus proteins form a taudeltadelta' complex. The dnaN gene encoding the beta clamp was identified, and the taudeltadelta' complex is active in loading beta onto DNA. A. aeolicus contains one dnaE homologue, encoding the alpha subunit of DNA polymerase III. Like E. coli, A. aeolicus alpha and tau interact, although the interaction is not as tight as the alpha-tau contact in E. coli. In addition, the A. aeolicus homologue to dnaQ, encoding the epsilon proofreading 3'-5'-exonuclease, interacts with alpha but does not form a stable alpha.epsilon complex, suggesting a need for a brace or bridging protein to tightly couple the polymerase and exonuclease in this system. Despite these differences to the E. coli system, the A. aeolicus proteins function to yield a robust replicase that retains significant activity at 90 degrees C. Similarities and differences between the A. aeolicus and E. coli pol III systems are discussed, as is application of thermostable pol III to biotechnology.
Collapse
Affiliation(s)
- Irina Bruck
- Rockefeller University and Howard Hughes Medical Institute, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Bullard JM, Williams JC, Acker WK, Jacobi C, Janjic N, McHenry CS. DNA polymerase III holoenzyme from Thermus thermophilus identification, expression, purification of components, and use to reconstitute a processive replicase. J Biol Chem 2002; 277:13401-8. [PMID: 11823461 DOI: 10.1074/jbc.m110833200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication in bacteria is performed by a specialized multicomponent replicase, the DNA polymerase III holoenzyme, that consist of three essential components: a polymerase, the beta sliding clamp processivity factor, and the DnaX complex clamp-loader. We report here the assembly of the minimal functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme consists of alpha (pol III catalytic subunit), beta (sliding clamp processivity factor), and the essential DnaX (tau/gamma), delta and delta' components of the DnaX complex. We show with purified recombinant proteins that these five components are required for rapid and processive DNA synthesis on long single-stranded DNA templates. Subunit interactions known to occur in DNA polymerase III holoenzyme from mesophilic bacteria including delta-delta' interaction, deltadelta'-tau/gamma complex formation, and alpha-tau interaction, also occur within the Tth enzyme. As in mesophilic holoenzymes, in the presence of a primed DNA template, these subunits assemble into a stable initiation complex in an ATP-dependent manner. However, in contrast to replicative polymerases from mesophilic bacteria, Tth holoenzyme is efficient only at temperatures above 50 degrees C, both with regard to initiation complex formation and processive DNA synthesis. The minimal Tth DNA polymerase III holoenzyme displays an elongation rate of 350 bp/s at 72 degrees C and a processivity of greater than 8.6 kilobases, the length of the template that is fully replicated after a single association event.
Collapse
|
27
|
Bullard JM, Pritchard AE, Song MS, Glover BP, Wieczorek A, Chen J, Janjic N, McHenry CS. A three-domain structure for the delta subunit of the DNA polymerase III holoenzyme delta domain III binds delta' and assembles into the DnaX complex. J Biol Chem 2002; 277:13246-56. [PMID: 11809766 DOI: 10.1074/jbc.m108708200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using psi-BLAST, we have developed a method for identifying the poorly conserved delta subunit of the DNA polymerase III holoenzyme from all sequenced bacteria. This approach, starting with Escherichia coli delta, leads not only to the identification of delta but also to the DnaX and delta' subunits of the DnaX complex and other AAA(+)-class ATPases. This suggests that, although not an ATPase, delta is related structurally to the other subunits of the DnaX complex that loads the beta sliding clamp processivity factor onto DNA. To test this prediction, we aligned delta sequences with those of delta' and, using the start of delta' Domain III established from its x-ray crystal structure, predicted the juncture between Domains II and III of delta. This putative delta Domain III could be expressed to high levels, consistent with the prediction that it folds independently. delta Domain III, like Domain III of DnaX and delta', assembles by itself into a complex with the other DnaX complex components. Cross-linking studies indicated a contact of delta with the DnaX subunits. These observations are consistent with a model where two tau subunits and one each of the gamma, delta', and delta subunits mutually interact to form a pentameric functional core for the DnaX complex.
Collapse
|
28
|
Abstract
A coherent view of the structure and function of DNA polymerase processivity factors (sliding clamps and clamp loaders) is emerging from recent structural studies. Crystal structures of sliding clamps from the T4 and RB69 bacteriophages, and from an archaebacterium expand the gallery of ring-shaped processivity factors and clarify how the clamp interacts with the DNA polymerase. Crystallographic and electron microscopic views of clamp loaders from bacteria, archaebacteria and eukaryotes emphasize their common architecture and have produced models of how ATPbinding might be coupled to clamp opening/loading.
Collapse
Affiliation(s)
- David Jeruzalmi
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, The University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
29
|
Song MS, McHenry CS. Carboxyl-terminal domain III of the delta' subunit of DNA polymerase III holoenzyme binds DnaX and supports cooperative DnaX complex assembly. J Biol Chem 2001; 276:48709-15. [PMID: 11606586 DOI: 10.1074/jbc.m107936200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The delta' subunit of the DNA polymerase-III holoenzyme is a key component of the DnaX complex; it is required for loading the beta(2) processivity factor onto a primed template. The x-ray crystal structure of delta' indicates a three domain C-shaped structure (Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997) Cell 91, 335-345). In this study, we localized the DnaX-binding domain of delta' to its carboxyl-terminal domain III by quantifying protein-protein interactions using a series of delta' fusion proteins lacking specific domains. The fusion protein corresponding to domain III of delta' bound to DnaX with an affinity approaching that of full-length delta'. In contrast, a construct bearing delta' domains I-II did not bind DnaX at detectable levels. The presence of delta and chi psi strengthened the interaction of DnaX with full-length delta' and delta' domain III. Thus, domain III of delta' not only contains the DnaX-binding site, but also contains the elements required for positive cooperative assembly of the DnaX complex. A domain III-specific anti-delta' monoclonal antibody interfered with DnaX complex formation and abolished the replication activity of DNA polymerase III holoenzyme.
Collapse
Affiliation(s)
- M S Song
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
30
|
Leu FP, O'Donnell M. Interplay of clamp loader subunits in opening the beta sliding clamp of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 2001; 276:47185-94. [PMID: 11572866 DOI: 10.1074/jbc.m106780200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli beta dimer is a ring-shaped protein that encircles DNA and acts as a sliding clamp to tether the replicase, DNA polymerase III holoenzyme, to DNA. The gamma complex (gammadeltadelta'chipsi) clamp loader couples ATP to the opening and closing of beta in assembly of the ring onto DNA. These proteins are functionally and structurally conserved in all cells. The eukaryotic equivalents are the replication factor C (RFC) clamp loader and the proliferating cell nuclear antigen (PCNA) clamp. The delta subunit of the E. coli gamma complex clamp loader is known to bind beta and open it by parting one of the dimer interfaces. This study demonstrates that other subunits of gamma complex also bind beta, although weaker than delta. The gamma subunit like delta, affects the opening of beta, but with a lower efficiency than delta. The delta' subunit regulates both gamma and delta ring opening activities in a fashion that is modulated by ATP interaction with gamma. The implications of these actions for the workings of the E. coli clamp loading machinery and for eukaryotic RFC and PCNA are discussed.
Collapse
Affiliation(s)
- F P Leu
- Department of Pharmacology, Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
31
|
Glover BP, Pritchard AE, McHenry CS. tau binds and organizes Escherichia coli replication proteins through distinct domains: domain III, shared by gamma and tau, oligomerizes DnaX. J Biol Chem 2001; 276:35842-6. [PMID: 11463787 DOI: 10.1074/jbc.m103719200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tau and gamma proteins of the DNA polymerase III holoenzyme DnaX complex are products of the dnaX gene with gamma being a truncated version of tau arising from ribosomal frameshifting. tau is comprised of five structural domains, the first three of which are shared by gamma (Gao, D., and McHenry, C. (2001) J. Biol. Chem. 276, 4433-4453). In the absence of the other holoenzyme subunits, DnaX exists as a tetramer. Association of delta, delta', chi, and psi with domain III of DnaX(4) results in a DnaX complex with a stoichiometry of DnaX(3)deltadelta'chipsi. To identify which domain facilitates DnaX self-association, we examined the properties of purified biotin-tagged DnaX fusion proteins containing domains I-II or III-V. Unlike domain I-II, treatment of domain III-V, gamma, and tau with the chemical cross-linking reagent BS3 resulted in the appearance of high molecular weight intramolecular cross-linked protein. Gel filtration of domains I-II and III-V demonstrated that domain I-II was monomeric, and domain III-V was an oligomer. Biotin-tagged domain III-V, and not domain I-II, was able to form a mixed DnaX complex by recruiting tau, delta, delta', chi, and psi onto streptavidin-agarose beads. Thus, domain III not only contains the delta, delta', chi, and psi binding interface, but also the region that enables DnaX to oligomerize.
Collapse
Affiliation(s)
- B P Glover
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
32
|
Song MS, Pham PT, Olson M, Carter JR, Franden MA, Schaaper RM, McHenry CS. The delta and delta ' subunits of the DNA polymerase III holoenzyme are essential for initiation complex formation and processive elongation. J Biol Chem 2001; 276:35165-75. [PMID: 11432857 DOI: 10.1074/jbc.m100389200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
delta and delta' are required for assembly of the processivity factor beta(2) onto primed DNA in the DNA polymerase III holoenzyme-catalyzed reaction. We developed protocols for generating highly purified preparations of delta and delta'. In holoenzyme reconstitution assays, delta' could not be replaced by delta, tau, or gamma, even when either of the latter were present at a 10,000-fold molar excess. Likewise, delta could not be replaced by delta', tau, or gamma. Bacterial strains bearing chromosomal knockouts of either the holA(delta) or holB(delta') genes were not viable, demonstrating that both delta and delta' are essential. Western blots of isolated initiation complexes demonstrated the presence of both delta and delta'. However, in the absence of chipsi and single-stranded DNA-binding protein, a stable initiation complex lacking deltadelta' was isolated by gel filtration. Lack of delta-delta' decreased the rate of elongation about 3-fold, and the extent of processive replication was significantly decreased. Adding back delta-delta' but not chipsi, delta, or delta' alone restored the diminished activity, indicating that in addition to being key components required for the beta loading activity of the DnaX complex, deltadelta' is present in initiation complex and is required for processive elongation.
Collapse
Affiliation(s)
- M S Song
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Pritchard AE, McHenry CS. Assembly of DNA polymerase III holoenzyme: co-assembly of gamma and tau is inhibited by DnaX complex accessory proteins but stimulated by DNA polymerase III core. J Biol Chem 2001; 276:35217-22. [PMID: 11463784 DOI: 10.1074/jbc.m102735200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the two alternative Escherichia coli dnaX gene products, tau and gamma, are found co-assembled in purified DNA polymerase III holoenzyme, the pathway of assembly is not well understood. When the 10 subunits of holoenzyme are simultaneously mixed, they rapidly form a nine-subunit assembly containing tau but not gamma. We developed a new assay based on the binding of complexes containing biotin-tagged tau to streptavidin-coated agarose beads to investigate the effects of various DNA polymerase III holoenzyme subunits on the kinetics of co-assembly of gamma and tau into the same complex. Auxiliary proteins in combination with delta' almost completely blocked co-assembly, whereas chipsi or delta' alone slowed the association only moderately compared with the interaction of tau with gamma alone. In contrast, DNA polymerase III core, in the absence of deltadelta' and chipsi, accelerated the co-assembly of tau and gamma, suggesting a role for DNA polymerase III' [tau(2)(pol III core)(2)] in the assembly pathway of holoenzyme.
Collapse
Affiliation(s)
- A E Pritchard
- Department of Biochemistry and Molecular Genetics and the Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
34
|
Michel B, Flores MJ, Viguera E, Grompone G, Seigneur M, Bidnenko V. Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8181-8. [PMID: 11459951 PMCID: PMC37419 DOI: 10.1073/pnas.111008798] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA synthesis is an accurate and very processive phenomenon; nevertheless, replication fork progression on chromosomes can be impeded by DNA lesions, DNA secondary structures, or DNA-bound proteins. Elements interfering with the progression of replication forks have been reported to induce rearrangements and/or render homologous recombination essential for viability, in all organisms from bacteria to human. Arrested replication forks may be the target of nucleases, thereby providing a substrate for double-strand break repair enzyme. For example in bacteria, direct fork breakage was proposed to occur at replication forks blocked by a bona fide replication terminator sequence, a specific site that arrests bacterial chromosome replication. Alternatively, an arrested replication fork may be transformed into a recombination substrate by reversal of the forked structures. In reversed forks, the last duplicated portions of the template strands reanneal, allowing the newly synthesized strands to pair. In bacteria, this reaction was proposed to occur in replication mutants, in which fork arrest is caused by a defect in a replication protein, and in UV irradiated cells. Recent studies suggest that it may also occur in eukaryote organisms. We will review here observations that link replication hindrance with DNA rearrangements and the possible underlying molecular processes.
Collapse
Affiliation(s)
- B Michel
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France.
| | | | | | | | | | | |
Collapse
|
35
|
Glover BP, McHenry CS. The DNA polymerase III holoenzyme: an asymmetric dimeric replicative complex with leading and lagging strand polymerases. Cell 2001; 105:925-34. [PMID: 11439188 DOI: 10.1016/s0092-8674(01)00400-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The DNA Polymerase III holoenzyme forms initiation complexes on primed DNA in an ATP-dependent reaction. We demonstrate that the nonhydrolyzable ATP analog, ATP gamma S, supports the formation of an isolable leading strand complex that loads and replicates the lagging strand only in the presence of ATP, beta, and the single-stranded DNA binding protein. The single endogenous DnaX complex within DNA polymerase III holoenzyme assembles beta onto both the leading and lagging strand polymerases by an ordered mechanism. The dimeric replication complex disassembles in the opposite order from which it assembled. Upon ATP gamma S-induced dissociation, the leading strand polymerase is refractory to disassembly allowing cycling to occur exclusively on the lagging strand. These results establish holoenzyme as an intrinsic asymmetric dimer with distinguishable leading and lagging strand polymerases.
Collapse
Affiliation(s)
- B P Glover
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|
36
|
Gao D, McHenry CS. tau binds and organizes Escherichia coli replication through distinct domains. Partial proteolysis of terminally tagged tau to determine candidate domains and to assign domain V as the alpha binding domain. J Biol Chem 2001; 276:4433-40. [PMID: 11078743 DOI: 10.1074/jbc.m009828200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tau subunit dimerizes Escherichia coli DNA polymerase III core through interactions with the alpha subunit. In addition to playing critical roles in the structural organization of the holoenzyme, tau mediates intersubunit communications required for efficient replication fork function. We identified potential structural domains of this multifunctional subunit by limited proteolysis of C-terminal biotin-tagged tau proteins. The cleavage sites of each of eight different proteases were found to be clustered within four regions of the tau subunit. The second susceptible region corresponds to the hinge between domain II and III of the highly homologous delta' subunit, and the third region is near the C-terminal end of the tau-delta' alignment (Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997) Cell 91, 335-345). We propose a five-domain structure for the tau protein. Domains I and II are based on the crystallographic structure of delta' by Guenther and colleagues. Domains III-V are based on our protease cleavage results. Using this information, we expressed biotin-tagged tau proteins lacking specific protease-resistant domains and analyzed their binding to the alpha subunit by surface plasmon resonance. Results from these studies indicated that the alpha binding site of tau lies within its C-terminal 147 residues (domain V).
Collapse
Affiliation(s)
- D Gao
- Department of Biochemistry and Molecular Genetics and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262
| | | |
Collapse
|
37
|
Gao D, McHenry CS. Tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain III, shared by gamma and tau, binds delta delta ' and chi psi. J Biol Chem 2001; 276:4447-53. [PMID: 11078742 DOI: 10.1074/jbc.m009827200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DnaX complex of the DNA polymerase holoenzyme assembles the beta(2) processivity factor onto the primed template enabling highly processive replication. The key ATPases within this complex are tau and gamma, alternative frameshift products of the dnaX gene. Of the five domains of tau, I-III are shared with gamma In vivo, gamma binds the auxiliary subunits deltadelta' and chipsi (Glover, B. P., and McHenry, C. S. (2000) J. Biol. Chem. 275, 3017-3020). To localize deltadelta' and chipsi binding domains within gamma domains I-III, we measured the binding of purified biotin-tagged DnaX proteins lacking specific domains to deltadelta' and chipsi by surface plasmon resonance. Fusion proteins containing either DnaX domains I-III or domains III-V bound deltadelta' and chipsi subunits. A DnaX protein only containing domains I and II did not bind deltadelta' or chipsi. The binding affinity of chipsi for DnaX domains I-III and domains III-V was the same as that of chipsi for full-length tau, indicating that domain III contained all structural elements required for chipsi binding. Domain III of tau also contained deltadelta' binding sites, although the interaction between deltadelta' and domains III-V of tau was 10-fold weaker than the interaction between deltadelta' and full length tau. The presence of both delta and chipsi strengthened the delta'-C(0)tau interaction by at least 15-fold. Domain III was the only domain common to all of tau fusion proteins whose interaction with delta' was enhanced in the presence of delta and chipsi. Thus, domain III of the DnaX proteins not only contains the deltadelta' and chipsi binding sites but also contains the elements required for the positive cooperative assembly of the DnaX complex.
Collapse
Affiliation(s)
- D Gao
- Department of Biochemistry, Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
38
|
Flores MJ, Bierne H, Ehrlich S, Michel B. Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks. EMBO J 2001; 20:619-29. [PMID: 11157768 PMCID: PMC133471 DOI: 10.1093/emboj/20.3.619] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The holD gene codes for the psi subunit of the Escherichia coli DNA polymerase III holoenzyme, a component of the gamma complex clamp loader. A holD mutant was isolated for the first time in a screen for mutations that increase the frequency of tandem repeat deletions. In contrast to tandem repeat deletions in wild-type strains, deletion events stimulated by the holD mutation require RecA. They do not require RecF, and hence do not result from the recombinational repair of gaps, arguing against uncoupling of the leading and lagging strand polymerases in the holD mutant. The holD recBC combination of mutations is lethal and holD recBts recCts strains suffer DNA double-strand breaks (DSBs) at restrictive temperature. DSBs require the presence of the Holliday junction-specific enzymes RuvABC and are prevented in the presence of RecBCD. We propose that impairment of replication due to the holD mutation causes the arrest of the entire replisome; consequently, Holliday junctions are formed by replication fork reversal, and unequal crossing over during RecA- and RecBCD-mediated re-incorporation of reversed forks causes the hyper-recombination phenotype.
Collapse
Affiliation(s)
| | - Hélène Bierne
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
Present address: Unité des Interaction Bactéries Cellules, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France Corresponding author e-mail:
| | | | - Bénédicte Michel
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
Present address: Unité des Interaction Bactéries Cellules, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France Corresponding author e-mail:
| |
Collapse
|
39
|
Pritchard AE, Dallmann HG, Glover BP, McHenry CS. A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of deltadelta' with DnaX(4) forms DnaX(3)deltadelta'. EMBO J 2000; 19:6536-45. [PMID: 11101526 PMCID: PMC305859 DOI: 10.1093/emboj/19.23.6536] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have constructed a plasmid-borne artificial operon that expresses the six subunits of the DnaX complex of Escherichia coli DNA polymerase III holoenzyme: tau, gamma, delta, delta', chi and psi. Induction of this operon followed by assembly in vivo produced two taugamma mixed DnaX complexes with stoichiometries of tau(1)gamma(2)deltadelta'chipsi and tau(2)gamma(1)deltadelta'chipsi rather than the expected gamma(2)tau(2)deltadelta'chipsi. We observed the same heterogeneity when taugamma mixed DnaX complexes were reconstituted in vitro. Re-examination of homomeric DnaX tau and gamma complexes assembled either in vitro or in vivo also revealed a stoichiometry of DnaX(3)deltadelta'chipsi. Equilibrium sedimentation analysis showed that free DnaX is a tetramer in equilibrium with a free monomer. An assembly mechanism, in which the association of heterologous subunits with a homomeric complex alters the stoichiometry of the homomeric assembly, is without precedent. The significance of our findings to the architecture of the holoenzyme and the clamp-assembly apparatus of all other organisms is discussed.
Collapse
Affiliation(s)
- A E Pritchard
- Department of Biochemistry and Molecular Genetics and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | |
Collapse
|