1
|
Kim RG, Huang W, Findinier J, Bunbury F, Redekop P, Shrestha R, Grismer TS, Vilarrasa-Blasi J, Jinkerson RE, Fakhimi N, Fauser F, Jonikas MC, Onishi M, Xu SL, Grossman AR. Chloroplast Methyltransferase Homolog RMT2 is Involved in Photosystem I Biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572672. [PMID: 38187728 PMCID: PMC10769443 DOI: 10.1101/2023.12.21.572672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Oxygen (O2), a dominant element in the atmosphere and essential for most life on Earth, is produced by the photosynthetic oxidation of water. However, metabolic activity can cause accumulation of reactive O2 species (ROS) and severe cell damage. To identify and characterize mechanisms enabling cells to cope with ROS, we performed a high-throughput O2 sensitivity screen on a genome-wide insertional mutant library of the unicellular alga Chlamydomonas reinhardtii. This screen led to identification of a gene encoding a protein designated Rubisco methyltransferase 2 (RMT2). Although homologous to methyltransferases, RMT2 has not been experimentally demonstrated to have methyltransferase activity. Furthermore, the rmt2 mutant was not compromised for Rubisco (first enzyme of Calvin-Benson Cycle) levels but did exhibit a marked decrease in accumulation/activity of photosystem I (PSI), which causes light sensitivity, with much less of an impact on other photosynthetic complexes. This mutant also shows increased accumulation of Ycf3 and Ycf4, proteins critical for PSI assembly. Rescue of the mutant phenotype with a wild-type (WT) copy of RMT2 fused to the mNeonGreen fluorophore indicates that the protein localizes to the chloroplast and appears to be enriched in/around the pyrenoid, an intrachloroplast compartment present in many algae that is packed with Rubisco and potentially hypoxic. These results indicate that RMT2 serves an important role in PSI biogenesis which, although still speculative, may be enriched around or within the pyrenoid.
Collapse
Affiliation(s)
- Rick G. Kim
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Weichao Huang
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Justin Findinier
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Freddy Bunbury
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Petra Redekop
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Ruben Shrestha
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - TaraBryn S Grismer
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | | | - Robert E. Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Neda Fakhimi
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Friedrich Fauser
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Martin C. Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Shou-Ling Xu
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Arthur R. Grossman
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Guo J, Yao Q, Dong J, Hou J, Jia P, Chen X, Li G, Zhao Q, Wang J, Liu F, Wang Z, Shan Y, Zhang T, Fu A, Wang F. Immunophilin FKB20-2 participates in oligomerization of Photosystem I in Chlamydomonas. PLANT PHYSIOLOGY 2024; 194:1631-1645. [PMID: 38039102 DOI: 10.1093/plphys/kiad645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
PSI is a sophisticated photosynthesis protein complex that fuels the light reaction of photosynthesis in algae and vascular plants. While the structure and function of PSI have been studied extensively, the dynamic regulation on PSI oligomerization and high light response is less understood. In this work, we characterized a high light-responsive immunophilin gene FKB20-2 (FK506-binding protein 20-2) required for PSI oligomerization and high light tolerance in Chlamydomonas (Chlamydomonas reinhardtii). Biochemical assays and 77-K fluorescence measurement showed that loss of FKB20-2 led to the reduced accumulation of PSI core subunits and abnormal oligomerization of PSI complexes and, particularly, reduced PSI intermediate complexes in fkb20-2. It is noteworthy that the abnormal PSI oligomerization was observed in fkb20-2 even under dark and dim light growth conditions. Coimmunoprecipitation, MS, and yeast 2-hybrid assay revealed that FKB20-2 directly interacted with the low molecular weight PSI subunit PsaG, which might be involved in the dynamic regulation of PSI-light-harvesting complex I supercomplexes. Moreover, abnormal PSI oligomerization caused accelerated photodamage to PSII in fkb20-2 under high light stress. Together, we demonstrated that immunophilin FKB20-2 affects PSI oligomerization probably by interacting with PsaG and plays pivotal roles during Chlamydomonas tolerance to high light.
Collapse
Affiliation(s)
- Jia Guo
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Qiang Yao
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Jie Dong
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Jinrong Hou
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Pulian Jia
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Xueying Chen
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Guoyang Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Qi Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| | - Jingyi Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| | - Fang Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Ziyu Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Yuying Shan
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Tengyue Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| | - Fei Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| |
Collapse
|
3
|
Gao P, Xia H, Li Q, Li Z, Zhai C, Weng L, Mi H, Yan S, Datla R, Wang H, Yang J. PALE-GREEN LEAF 1, a rice cpSRP54 protein, is essential for the assembly of the PSI-LHCI supercomplex. PLANT DIRECT 2022; 6:e436. [PMID: 35949951 PMCID: PMC9358330 DOI: 10.1002/pld3.436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 05/27/2023]
Abstract
Although photosynthetic multiprotein complexes have received major attention, our knowledge about the assembly of these proteins into functional complexes in plants is still limited. In the present study, we have identified a chlorophyll-deficient mutant, pale-green leaf 1 (pgl1), in rice that displays abnormally developed chloroplasts. Map-based cloning of this gene revealed that OsPGL1 encodes a chloroplast targeted protein homologous to the 54-kDa subunit of the signal recognition particle (cpSRP54). Immunoblot analysis revealed that the accumulation of the PSI core proteins PsaA and PsaB, subunits from the ATP synthase, cytochrome, and light-harvesting complex (LHC) is dramatically reduced in pgl1. Blue native gel analysis of thylakoid membrane proteins showed the existence of an extra band in the pgl1 mutant, which located between the dimeric PSII/PSI-LHCI and the monomeric PSII. Immunodetection after 2D separation indicated that the extra band consists of the proteins from the PSI core complex. Measurements of chlorophyll fluorescence at 77 K further confirmed that PSI, rather than PSII, was primarily impaired in the pgl1 mutant. These results suggest that OsPGL1 might act as a molecular chaperone that is required for the efficient assembly and specific integration of the peripheral LHCI proteins into the PSI core complex in rice.
Collapse
Affiliation(s)
- Peng Gao
- Saskatoon Research and Development CentreAgriculture and Agri‐food CanadaSaskatoonSKCanada
| | - Haoqiang Xia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Qiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zongzhu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Chun Zhai
- Saskatoon Research and Development CentreAgriculture and Agri‐food CanadaSaskatoonSKCanada
| | - Lin Weng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Song Yan
- Rice Research InstituteJiangxi Academy of Agricultural SciencesNanchangChina
| | - Raju Datla
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Hua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
4
|
Kim JW, Price NM. The influence of light on copper-limited growth of an oceanic diatom, Thalassiosira oceanica (Coscinodiscophyceae). JOURNAL OF PHYCOLOGY 2017; 53:938-950. [PMID: 28681556 DOI: 10.1111/jpy.12563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Thalassiosira oceanica (CCMP 1005) was grown over a range of copper concentrations at saturating and subsaturating irradiance to test the hypothesis that Cu and light were interacting essential resources. Growth was a hyperbolic function of irradiance in Cu-replete medium (263 fmol Cu' · L-1 ) with maximum rates achieved at 200 μmol photons · m-2 · s-1 . Lowering the Cu concentration at this irradiance to 30.8 fmol Cu' · L-1 decreased cellular Cu quota by 7-fold and reduced growth rate by 50%. Copper-deficient cells had significantly slower (P < 0.0001) rates of maximum, relative photosynthetic electron transport (rETRmax ) than Cu-sufficient cells, consistent with the role of Cu in photosynthesis in this diatom. In low-Cu medium (30.8 fmol Cu' · L-1 ), growth rate was best described as a positive, linear function of irradiance and reached the maximum value measured in Cu-replete cells when irradiance increased to 400 μmol photons · m-2 · s-1 . Thus, at high light, low-Cu concentration was no longer limiting to growth: Cu concentration and light interacted strongly to affect growth rate of T. oceanica (P < 0.0001). Relative ETRmax and Cu quota of cells grown at low Cu also increased at 400 μmol photons · m-2 · s-1 to levels measured in Cu-replete cells. Steady-state uptake rates of Cu-deficient and sufficient cells were light-dependent, suggesting that faster growth of T. oceanica under high light and low Cu was a result of light-stimulated Cu uptake.
Collapse
Affiliation(s)
- Jun-Woo Kim
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada, N6A 5B9
| | - Neil M Price
- Department of Biology, McGill University, 1205 Ave. Docteur Penfield, Montréal, Québec, Canada, H3A 1B1
| |
Collapse
|
5
|
Tetratricopeptide repeat protein protects photosystem I from oxidative disruption during assembly. Proc Natl Acad Sci U S A 2016; 113:2774-9. [PMID: 26903622 DOI: 10.1073/pnas.1524040113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A Chlamydomonas reinhardtii mutant lacking CGL71, a thylakoid membrane protein previously shown to be involved in photosystem I (PSI) accumulation, exhibited photosensitivity and highly reduced abundance of PSI under photoheterotrophic conditions. Remarkably, the PSI content of this mutant declined to nearly undetectable levels under dark, oxic conditions, demonstrating that reduced PSI accumulation in the mutant is not strictly the result of photodamage. Furthermore, PSI returns to nearly wild-type levels when the O2 concentration in the medium is lowered. Overall, our results suggest that the accumulation of PSI in the mutant correlates with the redox state of the stroma rather than photodamage and that CGL71 functions under atmospheric O2 conditions to allow stable assembly of PSI. These findings may reflect the history of the Earth's atmosphere as it transitioned from anoxic to highly oxic (1-2 billion years ago), a change that required organisms to evolve mechanisms to assist in the assembly and stability of proteins or complexes with O2-sensitive cofactors.
Collapse
|
6
|
Madireddi SK, Nama S, Devadasu ER, Subramanyam R. Photosynthetic membrane organization and role of state transition in cyt, cpII, stt7 and npq mutants of Chlamydomonas reinhardtii. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:77-83. [DOI: 10.1016/j.jphotobiol.2014.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/13/2014] [Accepted: 03/31/2014] [Indexed: 11/29/2022]
|
7
|
Downs CA, McDougall KE, Woodley CM, Fauth JE, Richmond RH, Kushmaro A, Gibb SW, Loya Y, Ostrander GK, Kramarsky-Winter E. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS One 2013; 8:e77173. [PMID: 24324575 PMCID: PMC3851020 DOI: 10.1371/journal.pone.0077173] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/31/2013] [Indexed: 11/19/2022] Open
Abstract
Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.
Collapse
Affiliation(s)
- C. A. Downs
- Office of Public Health Studies, John A. Burns School of Medicine, University of Hawaii – Manoa, Honolulu, Hawaii, United States of America
- Pacific Biosciences Research Center, University of Hawaii, University of Hawaii – Manoa, Honolulu, Hawaii, United States of America
- Haereticus Environmental Laboratory, Clifford, Virginia, United States of America
- * E-mail: (CAD); (EKW)
| | - Kathleen E. McDougall
- Environmental Research Institute, North Highland College, UHI Millennium Institute, Thurso, Scotland, United Kingdom
| | - Cheryl M. Woodley
- National Oceanic & Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, United States of America
| | - John E. Fauth
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
| | - Robert H. Richmond
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Ariel Kushmaro
- The National Institute for Biotechnology and the Department of Biotechnology Engineering, Ben Gurion University, Beer Sheva, Israel
| | - Stuart W. Gibb
- Environmental Research Institute, North Highland College, UHI Millennium Institute, Thurso, Scotland, United Kingdom
| | - Yossi Loya
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gary K. Ostrander
- Pacific Biosciences Research Center, University of Hawaii, University of Hawaii – Manoa, Honolulu, Hawaii, United States of America
- Office for the Vice President for Research. Florida State University, Tallahassee, Florida, United State of America
| | - Esti Kramarsky-Winter
- Pacific Biosciences Research Center, University of Hawaii, University of Hawaii – Manoa, Honolulu, Hawaii, United States of America
- The National Institute for Biotechnology and the Department of Biotechnology Engineering, Ben Gurion University, Beer Sheva, Israel
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (CAD); (EKW)
| |
Collapse
|
8
|
Formighieri C, Ceol M, Bonente G, Rochaix JD, Bassi R. Retrograde signaling and photoprotection in a gun4 mutant of Chlamydomonas reinhardtii. MOLECULAR PLANT 2012; 5:1242-62. [PMID: 22767629 DOI: 10.1093/mp/sss051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
GUN4 is a regulatory subunit of Mg-chelatase involved in the control of tetrapyrrole synthesis in plants and cyanobacteria. Here, we report the first characterization of a gun4 insertion mutant of the unicellular green alga Chlamydomonas reinhardtii. The mutant contains 50% of chlorophyll as compared to wild-type and accumulates ProtoIX. In contrast to the increase in LHC transcription, the accumulation of most LHC proteins is drastically diminished, implying posttranscriptional down-regulation in the absence of transcriptional coordination. We found that 803 genes change their expression level in gun4 as compared to wild-type, by RNA-Seq, and this wide-ranging effect on transcription is apparent under physiological conditions. Besides LHCs, we identified transcripts encoding enzymes of the tetrapyrrole pathway and factors involved in signal transduction, transcription, and chromatin remodeling. Moreover, we observe perturbations in electron transport with a strongly decreased PSI-to-PSII ratio. This is accompanied by an enhanced activity of the plastid terminal oxidase (PTOX) that could have a physiological role in decreasing photosystem II excitation pressure.
Collapse
Affiliation(s)
- Cinzia Formighieri
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | | | | | | | | |
Collapse
|
9
|
Formighieri C, Ceol M, Bonente G, Rochaix JD, Bassi R. Retrograde signaling and photoprotection in a gun4 mutant of Chlamydomonas reinhardtii. MOLECULAR PLANT 2012. [PMID: 22767629 DOI: 10.1093/mp/sss051 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
GUN4 is a regulatory subunit of Mg-chelatase involved in the control of tetrapyrrole synthesis in plants and cyanobacteria. Here, we report the first characterization of a gun4 insertion mutant of the unicellular green alga Chlamydomonas reinhardtii. The mutant contains 50% of chlorophyll as compared to wild-type and accumulates ProtoIX. In contrast to the increase in LHC transcription, the accumulation of most LHC proteins is drastically diminished, implying posttranscriptional down-regulation in the absence of transcriptional coordination. We found that 803 genes change their expression level in gun4 as compared to wild-type, by RNA-Seq, and this wide-ranging effect on transcription is apparent under physiological conditions. Besides LHCs, we identified transcripts encoding enzymes of the tetrapyrrole pathway and factors involved in signal transduction, transcription, and chromatin remodeling. Moreover, we observe perturbations in electron transport with a strongly decreased PSI-to-PSII ratio. This is accompanied by an enhanced activity of the plastid terminal oxidase (PTOX) that could have a physiological role in decreasing photosystem II excitation pressure.
Collapse
Affiliation(s)
- Cinzia Formighieri
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | | | | | | | | |
Collapse
|
10
|
Berry LL, Brzezowski P, Wilson KE. Inactivation of the STT7 gene protects PsaF-deficient Chlamydomonas reinhardtii cells from oxidative stress under high light. PHYSIOLOGIA PLANTARUM 2011; 141:188-96. [PMID: 20946347 DOI: 10.1111/j.1399-3054.2010.01421.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Photosystem I (PSI) utilizes light energy to excite electrons for the reduction of NADP(+) , and like photosystem II, it is sensitive to excess light. When PSI is excited and unable to be reduced by the electron transport chain, the special pair of chlorophyll molecules, P700(+) , will take electrons from neighboring sources leading to cellular damage. A Chlamydomonas reinhardtii mutant, which is defective in the production of the PsaF subunit of PSI, provides an ideal platform for studying the processes involved in protecting PSI from excess light. This strain dies following the exposure to high light (HL) because of photo-oxidative damage. We used a second-site suppressor screen to identify genes involved in protecting PsaF-deficient PSI from excess light. In doing so, we demonstrated that the absence of the STT7 protein, which is required for LHCII phosphorylation and the process of state transitions suppresses the psaF HL-lethal phenotype. On the basis of chlorophyll fluorescence measurements, the psaF mutant has a more reduced plastoquinone pool at a given photosynthetic photon flux density than the wild-type cells. Under these conditions the process of state transitions will become active, resulting in the transfer of phosphorylated LHCII proteins to PSI, further increasing the excitation of PSI. However, in the psaF stt7 double mutant, the LHCII proteins will not be transferred to PSI, and thus the level of PSI excitation will remain lower. This study provides clear genetic evidence that the HL-lethal phenotype of the psaF mutant is because of PSI overexciation.
Collapse
Affiliation(s)
- Lindsay L Berry
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7V 1G2, Canada
| | | | | |
Collapse
|
11
|
Oh MH, Safarova RB, Eu YJ, Zulfugarov IS, Kim JH, Hwang HJ, Lee CB, Lee CH. Loss of peripheral polypeptides in the stromal side of photosystem I by light-chilling in cucumber leaves. Photochem Photobiol Sci 2009; 8:535-41. [PMID: 19337668 DOI: 10.1039/b817808a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 01/30/2009] [Indexed: 11/21/2022]
Abstract
Photosystem I (PSI) is severely damaged by chilling at 4 degrees C in low light, especially in the chilling sensitive plant cucumber. To investigate the early events in PSI photoinhibition, we examined structural changes in the level of pigment-protein complexes in cucumber leaves in comparison with pea leaves. The complexes were separated on a native green gel and an increase in the intensity of a band was observed only in light-chilled cucumber leaves. The 77 K fluorescence emission spectrum of this green band indicated that the band was mainly composed of PSI with light-harvesting complex I. Each lane was cut from the green gel and separated on a fully denaturing SDS-PAGE in the second dimension. The new green gel band observed after light-chilling in cucumber leaves lacked 19, 18, and 16.5 kDa polypeptides. These results suggest that light-chilling facilitates the release of three peripheral polypeptides as an early event of chilling stress in vivo, which results in the inactivation of PSI in intact cucumber leaves.
Collapse
Affiliation(s)
- Min-Hyuk Oh
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pesaresi P, Scharfenberg M, Weigel M, Granlund I, Schröder WP, Finazzi G, Rappaport F, Masiero S, Furini A, Jahns P, Leister D. Mutants, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. MOLECULAR PLANT 2009; 2:236-48. [PMID: 19825610 DOI: 10.1093/mp/ssn041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two homologous plastocyanin isoforms are encoded by the genes PETE1 and PETE2 in the nuclear genome of Arabidopsis thaliana. The PETE2 transcript is expressed at considerably higher levels and the PETE2 protein is the more abundant isoform. Null mutations in the PETE genes resulted in plants, designated pete1 and pete2, with decreased plastocyanin contents. However, despite reducing plastocyanin levels by over approximately 90%, a pete2 null mutation on its own affects rates of photosynthesis and growth only slightly, whereas pete1 knockout plants, with about 60-80% of the wild-type plastocyanin level, did not show any alteration. Hence, plastocyanin concentration is not limiting for photosynthetic electron flow under optimal growth conditions, perhaps implying other possible physiological roles for the protein. Indeed, plastocyanin has been proposed previously to cooperate with cytochrome c(6A) (Cyt c(6A)) in thylakoid redox reactions, but we find no evidence for a physical interaction between the two proteins, using interaction assays in yeast. We observed homodimerization of Cyt c(6A) in yeast interaction assays, but also Cyt c(6A) homodimers failed to interact with plastocyanin. Moreover, phenotypic analysis of atc6-1 pete1 and atc6-1 pete2 double mutants, each lacking Cyt c(6A) and one of the two plastocyanin-encoding genes, failed to reveal any genetic interaction. Overexpression of either PETE1 or PETE2 in the pete1 pete2 double knockout mutant background results in essentially wild-type photosynthetic performance, excluding the possibility that the two plastocyanin isoforms could have distinct functions in thylakoid electron flow.
Collapse
Affiliation(s)
- Paolo Pesaresi
- Dipartimento di Produzione Vegetale, Università degli studi di Milano c/o Parco Tecnologico Padano Via Einstein, Loc. Cascina Codazza, I-26900 Lodi, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim HU, van Oostende C, Basset GJC, Browse J. The AAE14 gene encodes the Arabidopsis o-succinylbenzoyl-CoA ligase that is essential for phylloquinone synthesis and photosystem-I function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:272-83. [PMID: 18208520 DOI: 10.1111/j.1365-313x.2008.03416.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phylloquinone is the one-electron carrier at the A(1) site of photosystem I, and is essential for photosynthesis. Arabidopsis mutants deficient in early steps of phylloquinone synthesis do not become autotrophic and are seedling lethals, even when grown on sucrose-supplemented media. Here, we identify acyl-activating enzyme 14 (AAE14, At1g30520) as the o-succinylbenzoyl-coenzyme A (OSB-CoA) ligase acting in phylloquinone synthesis. Three aae14 mutant alleles, identified by reverse genetics, were found to be seedling lethal, to contain no detectable phylloquinone (< 0.1 pmol mg(-1) fresh weight) compared with 10 pmol mg(-1) fresh weight in wild-type leaves, and to accumulate OSB. AAE14 was able to restore menaquinone biosynthesis when expressed in an Escherichia coli mutant disrupted in the menE gene that encodes the bacterial OSB-CoA ligase. Weak expression of an AAE14 transgene in mutant plants (controlled by the uninduced XVE promoter) resulted in chlorotic, slow-growing plants that accumulated an average of 4.7 pmol mg(-1) fresh weight of phylloquinone. Inducing the XVE promoter in these plants, or expressing an AAE14 transgene under the control of the CaMV 35S promoter, led to full complementation of the mutant phenotype. aae14-mutant plants were also able to synthesize phylloquinone when provided with 1,4-dihydroxy-2-naphthoate, an intermediate in phylloquinone synthesis downstream of the OSB-CoA ligase reaction. Expression of an AAE14:GFP reporter construct indicated that the protein accumulated in discrete foci within the chloroplasts. This and other evidence suggests that the enzymes of phylloquinone synthesis from isochorismate may form a complex in the chloroplast stroma to facilitate the efficient channeling of intermediates through the pathway.
Collapse
Affiliation(s)
- Hyun Uk Kim
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | |
Collapse
|
14
|
|
15
|
Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S, Terauchi AM. Between a rock and a hard place: trace element nutrition in Chlamydomonas. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:578-94. [PMID: 16766055 DOI: 10.1016/j.bbamcr.2006.04.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 04/06/2006] [Accepted: 04/06/2006] [Indexed: 11/23/2022]
Abstract
Photosynthetic organisms are among the earliest life forms on earth and their biochemistry is strictly dependent on a wide range of inorganic nutrients owing to the use of metal cofactor-dependent enzymes in photosynthesis, respiration, inorganic nitrogen and sulfur assimilation. Chlamydomonas reinhardtii is a photosynthetic eukaryotic model organism for the study of trace metal homeostasis. Chlamydomonas spp. are widely distributed and can be found in soil, glaciers, acid mines and sewage ponds, suggesting that the genus has significant capacity for acclimation to micronutrient availability. Analysis of the draft genome indicates that metal homeostasis mechanisms in Chlamydomonas represent a blend of mechanisms operating in animals, plants and microbes. A combination of classical genetics, differential expression and genomic analysis has led to the identification of homologues of components known to operate in fungi and animals (e.g., Fox1, Ftr1, Fre1, Fer1, Ctr1/2) as well as novel molecules involved in copper and iron nutrition (Crr1, Fea1/2). Besides activating iron assimilation pathways, iron-deficient Chlamydomonas cells re-adjust metabolism by reducing light delivery to photosystem I (to avoid photo-oxidative damage resulting from compromised FeS clusters) and by modifying the ferredoxin profile (perhaps to accommodate preferential allocation of reducing equivalents). Up-regulation of a MnSOD isoform may compensate for loss of FeSOD. Ferritin could function to buffer the iron released from programmed degradation of iron-containing enzymes in the chloroplast. Some metabolic adjustments are made in anticipation of deficiency while others occur only with sustained or severe deficiency. Copper-deficient Chlamydomonas cells induce a copper assimilation pathway consisting of a cell surface reductase and a Cu(+) transporter (presumed CTR homologue). There are metabolic adaptations in addition: the synthesis of "back-up" enzymes for plastocyanin in photosynthesis and the ferroxidase in iron assimilation plus activation of alternative oxidase to handle the electron "overflow" resulting from reduced cytochrome oxidase function. Oxygen-dependent enzymes in the tetrapyrrole pathway (coproporphyrinogen oxidase and aerobic oxidative cyclase) are also increased in expression and activity by as much as 10-fold but the connection between copper nutrition and tetrapyrroles is not understood. The copper-deficiency responses are mediated by copper response elements that are defined by a GTAC core sequence and a novel metalloregulator, Crr1, which uses a zinc-dependent SBP domain to bind to the CuRE. The Chlamydomonas model is ideal for future investigation of nutritional manganese deficiency and selenoenzyme function. It is also suited for studies of trace nutrient interactions, nutrition-dependent metabolic changes, the relationship between photo-oxidative stress and metal homeostasis, and the important questions of differential allocation of limiting metal nutrients (e.g., to respiration vs. photosynthesis).
Collapse
Affiliation(s)
- Sabeeha S Merchant
- Department of Chemistry and Biochemistry, Box 951569, University of California-Los Angeles, Los Angeles, CA 90095-1569, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Nield J, Redding K, Hippler M. Remodeling of light-harvesting protein complexes in chlamydomonas in response to environmental changes. EUKARYOTIC CELL 2005; 3:1370-80. [PMID: 15590812 PMCID: PMC539040 DOI: 10.1128/ec.3.6.1370-1380.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jon Nield
- Department of Biological Sciences, Imperial College London, London, UK
| | | | | |
Collapse
|
17
|
Stauber EJ, Fink A, Markert C, Kruse O, Johanningmeier U, Hippler M. Proteomics of Chlamydomonas reinhardtii light-harvesting proteins. EUKARYOTIC CELL 2004; 2:978-94. [PMID: 14555480 PMCID: PMC219354 DOI: 10.1128/ec.2.5.978-994.2003] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
With the recent development of techniques for analyzing transmembrane thylakoid proteins by two-dimensional gel electrophoresis, systematic approaches for proteomic analyses of membrane proteins became feasible. In this study, we established detailed two-dimensional protein maps of Chlamydomonas reinhardtii light-harvesting proteins (Lhca and Lhcb) by extensive tandem mass spectrometric analysis. We predicted eight distinct Lhcb proteins. Although the major Lhcb proteins were highly similar, we identified peptides which were unique for specific lhcbm gene products. Interestingly, lhcbm6 gene products were resolved as multiple spots with different masses and isoelectric points. Gene tagging experiments confirmed the presence of differentially N-terminally processed Lhcbm6 proteins. The mass spectrometric data also revealed differentially N-terminally processed forms of Lhcbm3 and phosphorylation of a threonine residue in the N terminus. The N-terminal processing of Lhcbm3 leads to the removal of the phosphorylation site, indicating a potential novel regulatory mechanism. At least nine different lhca-related gene products were predicted by comparison of the mass spectrometric data against Chlamydomonas expressed sequence tag and genomic databases, demonstrating the extensive variability of the C. reinhardtii Lhca antenna system. Out of these nine, three were identified for the first time at the protein level. This proteomic study demonstrates the complexity of the light-harvesting proteins at the protein level in C. reinhardtii and will be an important basis of future functional studies addressing this diversity.
Collapse
Affiliation(s)
- Einar J Stauber
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Ramesh VM, Guergova-Kuras M, Joliot P, Webber AN. Electron transfer from plastocyanin to the photosystem I reaction center in mutants with increased potential of the primary donor in Chlamydomonas reinhardtii. Biochemistry 2002; 41:14652-8. [PMID: 12475214 DOI: 10.1021/bi026392z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dependence of the P(700)(+)/P(700) midpoint potential on kinetics of reduction of P(700)(+) in vivo has been examined in a series of site-directed mutants of Chlamydomonas reinhardtii in which the histidyl axial ligand to the Mg(2+) of the P(700) chlorophyll a has been changed to several different amino acids. In wild-type photosystem I, the potential of P(700)(+)/P(700) is 447 mV and the in vivo half-time of P(700)(+) reduction by its natural donor, plastocyanin, is 4 micros. Substitution of the axial histidine ligand with cysteine increases the potential of P(700)(+)/P(700) to 583 mV and changes the rate of P(700)(+) reduction to 0.8 micros. Mutants with a range of potentials between 447 and 583 mV show a strong correlation of the P(700)(+)/P(700) potential to the rate of reduction of P(700)(+) by plastocyanin. There is also an increase in the rate of photosystem I-mediated electron transfer from the artificial electron donor DCPIP to methyl viologen in thylakoid membranes. The results indicate that the overall rate constant of P(700)(+) reduction is determined by the rate of electron transfer between the copper and P(700)(+) and confirmed that in vivo there is a preformed complex between plastocyanin and photosystem I. Using approximations of the Marcus electron transfer theory, it is possible to estimate that the distance between the copper of plastocyanin and P(700)(+) is approximately 15 A. On the basis of this distance, the plastocyanin docking site should lie in a 10 A hollow formed by the lumenal exposed loops between transmembrane helices i and j of PsaA and PsaB.
Collapse
Affiliation(s)
- V M Ramesh
- Department of Plant Biology and Center for the Study of Early Events in Photosynthesis, P.O. Box 871601, Arizona State University, Tempe 85287-1601, USA
| | | | | | | |
Collapse
|
19
|
Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M. Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. EMBO J 2002; 21:6709-20. [PMID: 12485992 PMCID: PMC139087 DOI: 10.1093/emboj/cdf666] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms underlying the onset of Fe-deficiency chlorosis and the maintenance of photosynthetic function in chlorotic chloroplasts are relevant to global photosynthetic productivity. We describe a series of graded responses of the photosynthetic apparatus to Fe-deficiency, including a novel response that occurs prior to the onset of chlorosis, namely the disconnection of the LHCI antenna from photosystem I (PSI). We propose that disconnection is mediated by a change in the physical properties of PSI-K in PSI in response to a change in plastid Fe content, which is sensed through the occupancy, and hence activity, of the Fe-containing active site in Crd1. We show further that progression of the response involves remodeling of the antenna complexes-specific degradation of existing proteins coupled to the synthesis of new ones, and establishment of a new steady state with decreased stoichiometry of electron transfer complexes. We suggest that these responses are typical of a dynamic photosynthetic apparatus where photosynthetic function is optimized and photooxidative damage is minimized in graduated responses to a combination of nutrients, light quantity and quality.
Collapse
Affiliation(s)
| | - Tanja Allinger
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| | - Sebastian Herzog
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| | - Patric Hoerth
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| | | | - Sabeeha Merchant
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| | - Michael Hippler
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| |
Collapse
|
20
|
Germano M, Yakushevska AE, Keegstra W, van Gorkom HJ, Dekker JP, Boekema EJ. Supramolecular organization of photosystem I and light-harvesting complex I in Chlamydomonas reinhardtii. FEBS Lett 2002; 525:121-5. [PMID: 12163173 DOI: 10.1016/s0014-5793(02)03100-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of photosystem I and light-harvesting complex I from the unicellular green alga Chlamydomonas reinhardtii. The complex is a monomer, has longest dimensions of 21.3 and 18.2 nm in projection, and is significantly larger than the corresponding complex in spinach. Comparison with photosystem I complexes from other organisms suggests that the complex contains about 14 light-harvesting proteins, two or three of which bind at the side of the PSI-H subunit. We suggest that special light-harvesting I proteins play a role in the binding of phosphorylated light-harvesting complex II in state 2.
Collapse
Affiliation(s)
- Marta Germano
- Faculty of Sciences, Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Sommer F, Drepper F, Hippler M. The luminal helix l of PsaB is essential for recognition of plastocyanin or cytochrome c6 and fast electron transfer to photosystem I in Chlamydomonas reinhardtii. J Biol Chem 2002; 277:6573-81. [PMID: 11744732 DOI: 10.1074/jbc.m110633200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At the lumenal side of photosystem I (PSI) in cyanobacteria, algae, and vascular plants, proper recognition and binding of the donor proteins plastocyanin (pc) and cytochrome (cyt) c(6) are crucial to allow subsequent efficient electron transfer to the photooxidized primary donor. To characterize the surface regions of PSI needed for the correct binding of both donors, loop j of PsaB of Chlamydomonas reinhardtii was modified using site-directed mutagenesis and chloroplast transformation. Mutant strains D624K, E613K/D624K, E613K/W627F, and D624K/W627F accumulated <20% of PSI as compared with wild type and were only able to grow photoautotrophically at low light intensities. Mutant strains E613N, E613K, and W627F accumulated >50% of PSI as compared with wild type. This was sufficient to isolate the altered PSI and perform a detailed analysis of the electron transfer between the modified PSI and the two algal donors using flash-induced spectroscopy. Such an analysis indicated that residue Glu(613) of PsaB has two functions: (i) it is crucial for an improved unbinding of the two donors from PSI, and (ii) it orientates the positively charged N-terminal domain of PsaF in a way that allows efficient binding of pc or cyt c(6) to PSI. Mutation of Trp(627) to Phe completely abolishes the formation of an intermolecular electron transfer complex between pc and PSI and also drastically diminishes the rate of electron transfer between the donor and PSI. This mutation also hinders binding and electron transfer between the altered PSI and cyt c(6). It causes a 10-fold increase of the half-time of electron transfer within the intermolecular complex of cyt c(6) and PSI. These data strongly suggest that Trp(627) is a key residue of the recognition site formed by the core of PSI for binding and electron transfer between the two soluble electron donors and the photosystem.
Collapse
Affiliation(s)
- Frederik Sommer
- Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | |
Collapse
|
22
|
Hippler M, Klein J, Fink A, Allinger T, Hoerth P. Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:595-606. [PMID: 11849598 DOI: 10.1046/j.1365-313x.2001.01175.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Functional proteomics of membrane proteins is an important tool for the understanding of protein networks in biological membranes but structural studies on this part of the proteome are limited. In this study we undertook such an approach to analyse photosynthetic thylakoid membranes isolated from wild-type and mutant strains of Chlamydomonas reinhardtii. Thylakoid membrane proteins were separated by high-resolution two-dimensional gel electrophoresis (2-DE) and analysed by immuno-blotting and mass spectrometry for the presence of membrane-spanning proteins. Our data show that light-harvesting complex proteins (LHCP), that cross the membrane with three transmembrane domains, can be separated using this method. We have identified more than 30 different LHCP spots on our gels. Mass spectrometric analysis of 2-DE separated Lhcb1 indicates that this major LHCII protein can associate with the thylakoid membrane with part of its putative transit sequence. Separation of isolated photosystem I (PSI) complexes by 2-DE revealed the presence of 18 LHCI protein spots. The use of two peptide-specific antibodies directed against LHCI subunits supports the interpretation that some of these spots represent products arising from differential processing and post-translational modifications. In addition our data indicate that the reaction centre subunit of PSI, PsaA, that possesses 11 transmembrane domains, can be separated by 2-DE. Comparison between 2-DE maps from thylakoid membrane proteins isolated from a PSI-deficient (Deltaycf4) and a crd1 mutant, which is conditionally reduced in PSI and LHCI under copper-deficiency, showed the presence of most of the LHCI spots in the former but their absence in the latter. Our data demonstrate that (i) hydrophobic membrane proteins like the LHCPs can be faithfully separated by 2-DE, and (ii) that high-resolution 2-DE facilitates the comparative analysis of membrane protein complexes in wild-type and mutants cells.
Collapse
Affiliation(s)
- M Hippler
- Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
23
|
Scheller HV, Jensen PE, Haldrup A, Lunde C, Knoetzel J. Role of subunits in eukaryotic Photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:41-60. [PMID: 11687207 DOI: 10.1016/s0005-2728(01)00196-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photosystem I (PSI) of eukaryotes has a number of features that distinguishes it from PSI of cyanobacteria. In plants, the PSI core has three subunits that are not found in cyanobacterial PSI. The remaining 11 subunits of the core are conserved but several of the subunits have a different role in eukaryotic PSI. A distinguishing feature of eukaryotic PSI is the membrane-imbedded peripheral antenna. Light-harvesting complex I is composed of four different subunits and is specific for PSI. Light-harvesting complex II can be associated with both PSI and PSII. Several of the core subunits interact with the peripheral antenna proteins and are important for proper function of the peripheral antenna. The review describes the role of the different subunits in eukaryotic PSI. The emphasis is on features that are different from cyanobacterial PSI.
Collapse
Affiliation(s)
- H V Scheller
- Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
24
|
Baymann F, Rappaport F, Joliot P, Kallas T. Rapid electron transfer to photosystem I and unusual spectral features of cytochrome c(6) in Synechococcus sp. PCC 7002 in vivo. Biochemistry 2001; 40:10570-7. [PMID: 11523999 DOI: 10.1021/bi010194a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c(6) donates electrons to photosystem I (PS I) in Synechococcus sp. PCC 7002. In this work, we provide evidence for rapid electron transfer (t(1/2) = 3 micros) from cytochrome c(6) to PS I in this cyanobacterium in vivo, indicating prefixation of the reduced donor protein to the photosystem. We have investigated the cytochrome c(6)-PS I interaction by laser flash-induced spectroscopy of intact and broken cells and by redox titrations of membrane and supernatant fractions. Redox studies revealed the expected membrane-bound cytochrome f, b(6), and b(559) species and two soluble cytochromes with alpha-band absorption peaks of 551 and 553 nm and midpoint potentials of -100 and 370 mV, respectively. The characteristics and the symmetrical alpha-band spectrum of the latter correspond to typical cyanobacterial cytochrome c(6) proteins. Rapid oxidation of cytochrome c(6) by PS I in vivo results in a unique, asymmetric oxidation spectrum, which differs significantly from the spectra obtained for cytochrome c(6) in solution. The basis for the unusual cytochrome c(6) spectrum and possible mechanisms of cytochrome c(6) fixation to PS I are discussed. The occurrence of rapid electron transfer to PS I in cyanobacteria suggests that this mechanism evolved before the endosymbiotic origin of chloroplasts. Its selective advantage may lie in protection against photo-oxidative damage as shown for Chlamydomonas.
Collapse
Affiliation(s)
- F Baymann
- IBPC, CNRS UPR 1261, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
25
|
Chitnis PR. PHOTOSYSTEM I: Function and Physiology. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:593-626. [PMID: 11337410 DOI: 10.1146/annurev.arplant.52.1.593] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photosystem I is the light-driven plastocyanin-ferredoxin oxidoreductase in the thylakoid membranes of cyanobacteria and chloroplasts. In recent years, sophisticated spectroscopy, molecular genetics, and biochemistry have been used to understand the light conversion and electron transport functions of photosystem I. The light-harvesting complexes and internal antenna of photosystem I absorb photons and transfer the excitation energy to P700, the primary electron donor. The subsequent charge separation and electron transport leads to the reduction of ferredoxin. The photosystem I proteins are responsible for the precise arrangement of cofactors and determine redox properties of the electron transfer centers. With the availability of genomic information and the structure of photosystem I, one can now probe the functions of photosystem I proteins and cofactors. The strong reductant produced by photosystem I has a central role in chloroplast metabolism, and thus photosystem I has a critical role in the metabolic networks and physiological responses in plants.
Collapse
Affiliation(s)
- Parag R Chitnis
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011; e-mail:
| |
Collapse
|
26
|
Haldrup A, Simpson DJ, Scheller HV. Down-regulation of the PSI-F subunit of photosystem I (PSI) in Arabidopsis thaliana. The PSI-F subunit is essential for photoautotrophic growth and contributes to antenna function. J Biol Chem 2000; 275:31211-8. [PMID: 10900198 DOI: 10.1074/jbc.m002933200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PSI-F subunit of photosystem I is a transmembrane protein with a large lumenal domain. The role of PSI-F was investigated in Arabidopsis plants transformed with an antisense construct of the psaF cDNA. Several plant lines with reduced amounts of the PSI-F subunit were generated. Many of the transgenic plants died, apparently because they were unable to survive without the PSI-F subunit. Plants with 5% of PSI-F were capable of photoautotrophic growth but were much smaller than wild-type plants. The plants suffered severely under normal growth conditions but recovered somewhat in the dark indicating chronic photoinhibition. Photosystem I lacking PSI-F was less stable, and the stromal subunits PSI-C, PSI-D, and PSI-E were present in lower amounts than in wild type. The lack of PSI-F resulted in an inability of light-harvesting complex I-730 to transfer energy to the P700 reaction center. In thylakoids deficient in PSI-F, the steady state NADP(+) reduction rate was only 10% of the wild-type levels indicating a lower efficiency in oxidation of plastocyanin. Surprisingly, the lack of PSI-F also gave rise to disorganization of the thylakoids. The strict arrangement in grana and stroma lamellae was lost, and instead a network of elongated and distorted grana was observed.
Collapse
Affiliation(s)
- A Haldrup
- Plant Biochemistry Laboratory, Department of Plant Biology, the Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
| | | | | |
Collapse
|
27
|
Rochaix J, Fischer N, Hippler M. Chloroplast site-directed mutagenesis of photosystem I in Chlamydomonas: electron transfer reactions and light sensitivity. Biochimie 2000; 82:635-45. [PMID: 10946112 DOI: 10.1016/s0300-9084(00)00604-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The photosystem I (PSI) complex is a multisubunit protein-pigment complex embedded in the thylakoid membrane which acts as a light-driven plastocyanin/cytochrome c(6)-ferredoxin oxido-reductase. The use of chloroplast transformation and site-directed mutagenesis coupled with the biochemical and biophysical analysis of mutants of the green alga Chlamydomonas reinhardtii with specific amino acid changes in several subunits of PSI has provided new insights into the structure-function relationship of this important photosynthetic complex. In particular, this molecular-genetic analysis has identified key residues of the reaction center polypeptides of PSI which are the ligands of some of the redox cofactors and it has also provided important insights into the orientation of the terminal electron acceptors of this complex. Finally this analysis has also shown that mutations affecting the donor side of PSI are limiting for overall electron transfer under high light and that electron trapping within the terminal electron acceptors of PSI is highly deleterious to the cells.
Collapse
Affiliation(s)
- J Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30, quai Ernest-Ansermet, 1211 4, Geneva, Switzerland.
| | | | | |
Collapse
|
28
|
el-Sheekh MM. Stable chloroplast transformation in Chlamydomonas reinhardtii using microprojectile bombardment. Folia Microbiol (Praha) 2000; 45:496-504. [PMID: 11501414 DOI: 10.1007/bf02818717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The chloroplasts of Chlamydomonas reinhardtii were transformed using a vector (paadAGUS4.1) that contained a spectinomycin-resistance gene (aadA) as a selectable gene, and bacterial uidA (GUS) as a reporter gene, and pea 4.1 kb D-loop containing sequence. The vector was introduced into the alga through particle gun bombardment. The transformed colonies were screened for the presence of foreign genes by Southern hybridization using GUS, aadA and 4.1 pea Ori probes. Expression of aadA and GUS genes was detected in all colonies that were grown on spectinomycin. A detailed restriction analysis followed by southern hybridization of total genomic DNA using pea 4.1 kb D-loop as probe indicated that the D-loop sequence can serve in site-specific integration of foreign DNA due to high homology. Restriction analysis of different colonies showed that the foreign DNA was probably present in a mixture population of autonomous segment and integrated in the native chloroplast genome.
Collapse
Affiliation(s)
- M M el-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|